
The C String Library

1

Using the C String Library

• Some programming languages provide operators that can

copy strings, compare strings, concatenate strings, select

substrings, and the like.

• C’s operators, in contrast, are essentially useless for

working with strings.

• Strings are treated as arrays in C, so they’re restricted in

the same ways as arrays.

• In particular, they can’t be copied or compared using

operators.

2

Using the C String Library

• Direct attempts to copy or compare strings will fail.

• Copying a string into a character array using the =
operator is not possible:

char str1[10], str2[10];

…

str1 = "abc"; /*** WRONG ***/

str2 = str1; /*** WRONG ***/

Using an array name as the left operand of = is illegal.

• Initializing a character array using = is legal, though:

char str1[10] = "abc";

In this context, = is not the assignment operator.

3

Using the C String Library

• Attempting to compare strings using a relational or

equality operator is legal but won’t produce the desired

result:

if (str1 == str2) … /*** WRONG ***/

• This statement compares str1 and str2 as pointers.

• Since str1 and str2 have different addresses, the

expression str1 == str2 must have the value 0.

4

Using the C String Library

• The C library provides a rich set of functions for

performing operations on strings.

• Programs that need string operations should contain the

following line:

#include <string.h>

• In subsequent examples, assume that str1 and str2

are character arrays used as strings.

5

The strcpy (String Copy) Function

• Prototype for the strcpy function:

char *strcpy(char *s1, const char *s2);

• strcpy copies the string s2 into the string s1.

− To be precise, we should say “strcpy copies the string

pointed to by s2 into the array pointed to by s1.”

• strcpy returns s1 (a pointer to the destination string).

6

The strcpy (String Copy) Function

• A call of strcpy that stores the string "abcd" in str2:

strcpy(str2, "abcd");

/* str2 now contains "abcd" */

• A call that copies the contents of str2 into str1:

strcpy(str1, str2);

/* str1 now contains "abcd" */

7

The strcpy (String Copy) Function

• In the call strcpy(str1, str2), strcpy has no way to

check that the str2 string will fit in the array pointed to by

str1.

• If it doesn’t, undefined behavior occurs.

8

The strcpy (String Copy) Function

• Calling the strncpy function is a safer, albeit slower, way

to copy a string.

• strncpy has a third argument that limits the number of

characters that will be copied.

• A call of strncpy that copies str2 into str1:

strncpy(str1, str2, sizeof(str1));

9

The strcpy (String Copy) Function

• strncpy will leave str1 without a terminating null

character if the length of str2 is greater than or equal to

the size of the str1 array.

• A safer way to use strncpy:

strncpy(str1, str2, sizeof(str1) - 1);

str1[sizeof(str1)-1] = '\0';

• The second statement guarantees that str1 is always

null-terminated.

10

The strlen (String Length) Function

• Prototype for the strlen function:

size_t strlen(const char *s);

• size_t is a typedef name that represents one of C’s

unsigned integer types.

11

The strlen (String Length) Function

• strlen returns the length of a string s, not including the

null character.

• Examples:

int len;

len = strlen("abc"); /* len is now 3 */

len = strlen(""); /* len is now 0 */

strcpy(str1, "abc");

len = strlen(str1); /* len is now 3 */

12

• Prototype for the strcat function:

char *strcat(char *s1, const char *s2);

• strcat appends the contents of the string s2 to the
end of the string s1.

• It returns s1 (a pointer to the resulting string).

• strcat examples:

strcpy(str1, "abc");

strcat(str1, "def");

/* str1 now contains "abcdef" */

strcpy(str1, "abc");

strcpy(str2, "def");

strcat(str1, str2);

/* str1 now contains "abcdef" */

13

The strcat (String Concat.) Function

• As with strcpy, the value returned by strcat is

normally discarded.

• The following example shows how the return value might

be used:

strcpy(str1, "abc");

strcpy(str2, "def");

strcat(str1, strcat(str2, "ghi"));

/* str1 now contains "abcdefghi";

str2 contains "defghi" */

14

The strcat (String Concat.) Function

• strcat(str1, str2) causes undefined behavior if the

str1 array isn’t long enough to accommodate the

characters from str2.

• Example:

char str1[6] = "abc";

strcat(str1, "def"); /*** WRONG ***/

• str1 is limited to six characters, causing strcat to write

past the end of the array.

15

The strcat (String Concat.) Function

• The strncat function is a safer but slower version of

strcat.

• Like strncpy, it has a third argument that limits the

number of characters it will copy.

• A call of strncat:

strncat(str1, str2, sizeof(str1) - strlen(str1) - 1);

• strncat will terminate str1 with a null character, which

isn’t included in the third argument.

16

The strcat (String Concat.) Function

• Prototype for the strcmp function:

int strcmp(const char *s1, const char *s2);

• strcmp compares the strings s1 and s2, returning a

value less than, equal to, or greater than 0, depending on
whether s1 is less than, equal to, or greater than s2.

17

The strcat (String Concat.) Function

• Testing whether str1 is less than str2:

if (strcmp(str1, str2) < 0) /* is str1 < str2? */

…

• Testing whether str1 is less than or equal to str2:

if (strcmp(str1, str2) <= 0) /* is str1 <= str2? */

…

• By choosing the proper operator (<, <=, >, >=, ==, !=),

we can test any possible relationship between str1 and

str2.

18

The strcat (String Concat.) Function

• strcmp considers s1 to be less than s2 if either one of

the following conditions is satisfied:

− The first i characters of s1 and s2 match, but the (i+1)st

character of s1 is less than the (i+1)st character of s2.

− All characters of s1 match s2, but s1 is shorter than s2.

19

The strcat (String Concat.) Function

• As it compares two strings, strcmp looks at the

numerical codes for the characters in the strings.

• Some knowledge of the underlying character set is helpful
to predict what strcmp will do.

• Important properties of ASCII:

− A–Z, a–z, and 0–9 have consecutive codes.

− All upper-case letters are less than all lower-case letters.

− Digits are less than letters.

− Spaces are less than all printing characters.

20

The strcat (String Concat.) Function

Writing String Functions

• We’ll explore some details of writing the strlen and

strcat functions.

21

Searching for the End of a String

• A version of strlen that searches for the end of a string,

using a variable to keep track of the string’s length:

size_t strlen(const char *s)

{

size_t n;

for (n = 0; *s != '\0'; s++)

n++;

return n;

}

22

Searching for the End of a String

• To condense the function, we can move the initialization
of n to its declaration:

size_t strlen(const char *s)

{

size_t n = 0;

for (; *s != '\0'; s++)

n++;

return n;

}

23

Searching for the End of a String

• The condition *s != '\0' is the same as *s != 0,

which in turn is the same as *s.

• A version of strlen that uses these observations:

size_t strlen(const char *s)

{

size_t n = 0;

for (; *s; s++)

n++;

return n;

}

24

Searching for the End of a String

• The next version increments s and tests *s in the same

expression:

size_t strlen(const char *s)

{

size_t n = 0;

for (; *s++;)

n++;

return n;

}

25

Searching for the End of a String

• Replacing the for statement with a while statement

gives the following version of strlen:

size_t strlen(const char *s)

{

size_t n = 0;

while (*s++)

n++;

return n;

}

26

Searching for the End of a String

• Although we’ve condensed strlen quite a bit, it’s likely
that we haven’t increased its speed.

• A version that does run faster, at least with some
compilers:

size_t strlen(const char *s)

{

const char *p = s;

while (*s)

s++;

return s - p;

}

27

Searching for the End of a String

• Idioms for “search for the null character at the end of a

string”:

while (*s) while (*s++)

s++; ;

• The first version leaves s pointing to the null character.

• The second version is more concise, but leaves s pointing

just past the null character.

28

Copying a String

• Copying a string is another common operation.

• To introduce C’s “string copy” idiom, we’ll develop two
versions of the strcat function.

• The first version of strcat (next slide) uses a two-step

algorithm:

− Locate the null character at the end of the string s1 and

make p point to it.

− Copy characters one by one from s2 to where p is pointing.

29

Copying a String

char *strcat(char *s1, const char *s2)

{

char *p = s1;

while (*p != '\0')

p++;

while (*s2 != '\0') {

*p = *s2;

p++;

s2++;

}

*p = '\0';

return s1;

}

30

Copying a String

• p initially points to the first character in the s1 string:

31

Copying a String

• The first while statement locates the null character at the

end of s1 and makes p point to it:

32

Copying a String

• The second while statement repeatedly copies one

character from where s2 points to where p points, then

increments both p and s2.

• Assume that s2 originally points to the string "def".

• The strings after the first loop iteration:

33

Copying a String

• The loop terminates when s2 points to the null character:

• After putting a null character where p is pointing, strcat

returns.

34

Copying a String

• Condensed version of strcat:

char *strcat(char *s1, const char *s2)

{

char *p = s1;

while (*p)

p++;

while (*p++ = *s2++)

;

return s1;

}

35

Copying a String

• The heart of the streamlined strcat function is the

“string copy” idiom:

while (*p++ = *s2++)

;

• Ignoring the two ++ operators, the expression inside

the parentheses is an assignment:

*p = *s2

• After the assignment, p and s2 are incremented.

• Repeatedly evaluating this expression copies
characters from where s2 points to where p points.

36

Copying a String

• But what causes the loop to terminate?

• The while statement tests the character that was copied

by the assignment *p = *s2.

• All characters except the null character test true.

• The loop terminates after the assignment, so the null

character will be copied.

37

