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Motivation for this tutorial
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Scientist’s view of a photograph

Photo by Uwe Hermann



Scientist’s view of a photograph

Photo by Uwe Hermann



Image = radiant energy measurement

Simple models of a camera assumes an image is a “quantitative measurement” of scene radiance.

Illumination source

(radiance)

Internal Image Plane

Scene Element

Output (digital) image

Figure from Digital Image Processing, Gonzales/Woods

Imaging System



Simple models of a camera assumes an image is a “quantitative measurement” of scene radiance.

Illumination source

(radiance)

Internal Image Plane

Scene Element

Imaging System

Output (digital) image

Figure from Digital Image Processing, Gonzales/Woods

Camera = light measuring device



Camera

Macro

lens

LED light ring

Broadband visible light and 

selected non-visible 

spectral bands

19mm 

opening

Visible image
Enhanced RGB image 

using a UV spectral band

Medical imaging

explicitly requires 

accurate 

measurements.

Image courtesy Elucid Labs

Camera = light measuring device



Home diagnostic testing 

requires accurate 

measurements across 

different cameras. 

Image courtesy Scanwell Health

Camera = light measuring device
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Camera = light measuring device?



In-camera photo-finishing is the
“secret recipe” of a camera

Photographs taken from three different cameras with the same aperture, shutter speed, 

white-balance , ISO, and picture style.
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In-camera photo-finishing

may cause problems for 

scientific applications!

Which one is correct?



Motivation

• Cameras are the primary tool used to capture digital images.

• Digital images are the primary inputs to CV algorithms.

• CV researchers/engineers should have a basic understanding of 
how cameras work to inform their algorithms.

• This tutorial aims to provide this basic understanding.



A tutorial in three parts

Part 1: Review of color,  color constancy,  and color spaces
• CIE XYZ, chromatic adaption, color temperature, and output color 

spaces

• Background on color is necessary to understand Part 2

Part 2: Overview of a typical camera pipeline (ISP) 
• Discuss the processing steps used by most ISPs

• Note that some steps are their own research topic

Part 3: Deep-learning/AI and the ISP 
• Machine learning for individual ISP components

• Replacing the whole ISP with DNNs 
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Part 1: 
Review of color, color constancy, 

color temperature, and 
color spaces
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Color and color spaces

• To understand your camera, it is important to review how 
humans perceive color in a real environment. 

• We must also understand how color is encoded by various 
models and color spaces.

• One of the main roles of the in-camera hardware is to convert 
the sensor image into a standard output-referred color space 
suitable for sharing and display.



Color is perceptual

• Color is not a primary physical property of an object.

• Red, green, blue, pink, orange, purple, yellow, . . . 

- These are words we assign to visual sensations.

- The assignment of words can vary among cultures.

Which is the "true blue"?
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Where do “color sensations” come from?

A very small range of electromagnetic radiation 

Generally wavelengths

from 380 to 720nm are

visible to most individuals
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White light through a prism

Light is separated into “monochromatic” light at different wave lengths.

450nm 600nm 650nm

“white light”

(broad spectrum)

Refracted light
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Prism

Spectral “colors”
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Isaac Newton

1704 - Opticks



Biology of color sensations
Our eye has three receptors (cone cells).  The different cones respond to 

different ranges of the visible light spectrum.

Eye

Short, Medium,

Long Cones Retina

Optical nerve
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Cones and rods

• We have additional light-sensitive cells called rods that are not 
responsible for color.  Rods are used in low-light vision.

• Cone cells are most concentrated around the fovea of the eye.

20

Human eye

retina

Fovea

region



Spectral power distribution (SPD)

We rarely see monochromatic light in real world scenes.  Instead, objects reflect a wide 

range of wavelengths.  This can be described by a spectral power distribution (SPD) 

shown above.  The SPD plot shows the relative amount of each wavelength reflected 

over the visible spectrum. 
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SPD relation to perceived color is not unique
Due to the accumulation effect of the cones, two different SPDs can be 

perceived as the same color (such SPDs are called “metamers”).

Lettuce SPD 

stimulating

S=0.2, M=0.8, 

L=0.8

Green ink SPD 

stimulating 

S=0.2, M=0.8, 

L=0.8

Lettuce SPD

Green Ink SPD

SPD of “real lettuce”

SPD of ink in a “picture of lettuce”

Result in the same

color “sensation”.
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Lettuce

Green ink



Tristimulus color theory
• Before the biology of cone cells was understood, it was empirically 

known that only three distinct colors (primaries) could be mixed to 
produce other colors.

• Moses Harris (1766), Thomas Young (1803), Johann Wolfgang von Goethe 
(1810), Hermann Grassman (1853), James Maxwell (1856) all explored 
the theory of trichromacy for human vision.
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Young MaxwellGrassmanvon Goethe Harris

From Harris “The Natural System of Colours"

Maxwell’s color disks

Early color photography

is attributed to Maxwell.



Tristimulus color theory
Grassman’s Law states that a source color can be matched by a linear

combination of three independent “primaries”.  

=
light mixture #1

Three lights (shown as lightbulbs) 

serve as primaries.  Each light has 

intensity, or weights,  R1, G1, B1 to 

match the source light #1 perceived 

color.
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R1 +       G1 +    B1
(10% )                     (80%)                   (5%)

=
light mixture #2

Same three primaries and the 

weights (R2, G2, B2) of each 

primary needed to match the 

source light #2 perceived color

R2              +       G2                  +    B2
(50%)                   ( 2% )                     (50%)

light mixture #3

If we combine source

lights 1 & 2 to get 

a new source light 3 This may seem obvious

now, but discovering

that light obeys the laws

of linear algebra was  a

huge and useful discovery.
= (R1+ R2)        +   (G1+ G2 )         +  (B1+B2)

The amount of  each primary needed to match the new source light 

#3 is the sum of the weights that matched lights sources #1 & #2. 

(60%)                    ( 82% )                (55%)



Radiometry vs. photometry/colorimetry
• Radiometry

• Quantitative measurements of radiant energy.

• Often shown as spectral power distributions (SPD).

• Measures light coming from a source (radiance) or light falling on a surface (irradiance).

• Photometry/ colorimetry
• Quantitative measurement of perceived radiant energy based on human’s sensitivity to 

light.

• Perceived in terms of “brightness” (photometry) and color (colorimetry).

Wavelength (λ)

Radiometry
Photometry/

colorimetry
Tomato’s SPD

Perception of the

tomato’s SPD

Object 

25
Physical Psychophysical 



Quantifying color
• Human cone photoreceptors (L/M/S) were being characterized well into 

the 2000s.1,2

• The need to quantify color and brightness existed much earlier.

• Since SPDs go through a “black box” (human visual system), the only way 
to quantify the “black box” is to perform a human study.

• Two key experiments
• To quantify perceived “brightness” (photometry)

• To quantify perceived “color” (colorimetry)

26

1Schnapf et al. “Spectral sensitivity of human cone photoreceptors,” Nature 1987
2Stockman and Sharpe. “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in
observers of known genotype,” Vision Research 2000

(λ)
“Black box”

Physical SPD



Experiments for photometry

Reference bright light 

with fixed radiant power.

Chromatic source light at

a particular wavelength and

adjustable radiant power. 

Alternate between the source light and reference light 

17 times per second (17 hz). A flicker will be noticeable 

unless the two lights have the same perceived 

“brightness”.

The viewer adjusts the radiant power of the  chromatic 

light until the flicker disappears (i.e. the lights fuse into a 

constant color). The amount of radiant power needed 

for this fusion to happen is recorded.

Repeat this flicker fusion test for each wave length in the 

source light. This allows method  can be used to 

determine  the perceived  “brightness” of each 

wavelength.  
The “flicker photometry” experiment 

for photopic sensitivity.

+

(Alternating between source and reference @ 17Hz)
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Radiant power

of chromatic light.



Result of the flicker experiments
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Reference light

Amount of radiant

power needed for each

wavelength to make

the reference

light.

You need a lot more

400nm light to match

the reference than 

you do the 550nm.

This means you 

perceive 550nm

brighter than 400nm.

Monochromatic light

Perform the flicker

experiment for

each wavelength.



CIE (1924) Photopic luminosity function

International Commission on Illumination (CIE comes from the French name Commission internationale

e l'éclairage) was a body established in 1913 as an authority on light, illumination and color . . CIE is still active 

today -- http://www.cie.co.at

The Luminosity Function (written as y(λ) or V(λ)) shows the eye’s sensitivity to radiant energy into 

luminous energy (or perceived radiant energy) based on human experiments  (flicker fusion test). 

_
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If we invert the

curve on the 

previous slide, 

we get the 

luminosity function.

http://www.cie.co.at/


Radiometric to Photometric

Two SPDs

SPD1

SPD2

Which SDP is 

perceived brighter?

SPD1

Y=0.2989

SPD2

Y=0.2989

Radiometric Photometric

CIE Y gives a way to go from radiometric to photometric!

Now can quantify the perceived brightness of different light.

𝑌 = න

380

780

𝑆𝑃𝐷(λ)ത𝑦 (λ)ⅆλ

How do we use

CIE Y (or ത𝑦 (λ))?

SPD1 and SPD2

are clearly different.

Which one will

be perceived brighter

(assuming the same

overall radiant power.)



Radiometric vs. photometric units

Radiant Flux

(watt)

Radiant intensity

(watt per steradian)

Irradiance

(watt per m2– falling on surface)

Radiance

(watt per m2 steradian)

Radiometric values

Luminous Intensity

(candela)

Illuminance

(lux)

Luminous Flux

(lumens)

Luminance

(candela per m2)

Photometric values

(Radiometric values weighted

by the Luminosity Function)



Colorimetry

Based on tristimulus color theory, colorimetry attempts to quantify all 
visible colors in terms of a standard set of primaries

= R1*              +       G1*                  +    B1*

Three fixed primary lights.Target color

32



CIE RGB color matching

Test color Matched Color

Red   (700nm)

Green (546nm) 

Blue  (435nm)

+/-

+/-

+/-

“Standard Observer”
(Willing participant with no eye disease)

Human subjects

matched test colors 

by add or subtracting 

three primaries.

Field of view was 2-degrees

(where color cones are most

concentrated)

Same?

2◦ FoV

Experiments carried out by

W. David Wright (Imperial College) and John Guild (National Physical Laboratory, London) – Late 1920s
33
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CIE RGB color matching

For some test colors, no mix of the 

primaries could give a match!  For 

these cases, the subjects were  ask to add 

primaries to the test color  to make the 

match.

This was treated as a negative value of the 

primary added to the test color.

Test color Matched Color

Red   (700nm)

Green (546nm) 

Blue  (435nm)

“Standard observer”
(Willing participant with no eye disease)

Same?

2◦ FoV

+/-

+/-

+/-
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Primary is added to the test color!
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CIE RGB results

CIE RGB 2-degree Standard Observer 

(based on Wright/Guild’s data)

Plots are of the mixing

coefficients of each

primary needed to 

produce the corresponding 

monochromatic light at 

that wavelength.

Note that these functions

have been scaled such

that area of each curve

is equal.
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Negative values -- the three primaries used did not span 

the full range of perceptual colors. 36

CIE RGB results



CIE 1931 XYZ
• In 1931, the CIE met and approved defining a new canonical basis, termed XYZ that 

would be derived from Wright-Guild’s CIE RGB data.

• Properties desired in this conversion:
• Positive values only

• Pure white light (flat SPD) to lie at X=1/3, Y=1/3, Z=1/3

• Y would be the luminosity function (V(λ))

• Quite a bit of freedom in selecting the XYZ basis
• In the end, the adopted transform was:

𝑋
𝑌
𝑍

=
0.4887180 0.3106803 0.2006017

0.1762044 0.8129847 0.0108109

0.0000000 0.0102048 0.9897952

𝑅
𝐺
𝐵

Nice article see: Fairman et al “How the CIE 1931 Color-Matching Functions Were Derived from Wright–Guild Data”, Color Research 

& Application, 1997 

CIE 1931 RGB

37



CIE 1931 XYZ

This shows the mixing coefficients x(λ), y(λ), z(λ) for the CIE 1931 2-degree standard observer XYZ basis 

computed from the CIE RGB data.  Coefficients are all now positive.   Note that the basis XYZ are not physical 

SPD like in CIE RGB, but linear combinations defined by the matrix on the previous slide.

_ _ _
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SPD to CIE XYZ example

Two SPDs

SPD1

SPD2

SPD1

X=0.2841

Y=0.2989

Z=0.3254

SPD2

X=0.2841

Y=0.2989

Z=0.3254

CIE XYZ Values

39

How do we use

CIE XYZ?

SPD1 and SPD2

are clearly different.

Will they be

perceived as the

same color?

𝑋 = න

380

780

𝑆𝑃𝐷(λ) ҧ𝑥 (λ)ⅆλ 𝑌 = න

380

780

𝑆𝑃𝐷(λ)ത𝑦 (λ)ⅆλ 𝑍 = න

380

780

𝑆𝑃𝐷(λ) ҧ𝑧 (λ)ⅆλ



SPD to CIE XYZ example

Two SPDs

SPD1

SPD2

SPD1

X=0.2841

Y=0.2989

Z=0.3254

SPD2

X=0.2841

Y=0.2989

Z=0.3254

From their CIE XYZ

mappings,  we can 

determine

that these two

SPDs will be 

perceived as the

same color!

CIE XYZ Values

40

Radiometric Photometric/Colorimetric

CIE XYZ gives a way to go from radiometric to colorimetric.

Imbedded is also the photometric measurement in the Y value.

Now we can 

quantify color!

How do we use

CIE XYZ?

SPD1 and SPD2

are clearly different.

Will they be

perceived as the

same color?



CIE XYZ Plot
It is challenging to visualize the 3D CIE XYZ space.  

We often don’t plot color in this space.  

Image: Gernot HoffmannImage: Joffa



Luminance-chromaticity space (CIE xyY)

• CIE XYZ describes a color in terms of linear combination of three 
primaries (XYZ).

• Sometimes it is useful to discuss color in terms of luminance (perceived 
brightness) and chromaticity (we can think of as the hue-saturation 
combined).

• CIE xyY space is used for this purpose.
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E

Point “E” represents

where X=Y=Z have equal

energy (X=0.33, Y=0.33, Z=0.33)

In the 1930s, CIE had a bad habit of over using the variables X, Y.  Note that x, y are chromaticity coordinates,

x, y (with the bar above) are the matching functions, and X, Y are the imaginary SPDs of CIE XYZ.    
_   _ 43

CIE Yxy chromaticity diagram



Usefulness of CIE 1931 XYZ

• CIE XYZ space is a “device independent” space – the XYZ values are 
not specific to any device.

• Electronic devices (e.g. cameras, flatbed, scanners, printers, displays) 
can compute mappings of their device specific values to the 
corresponding CIE XYZ values.  

• This provides a canonical space to match between devices (at least in 
theory).

44



A caution on CIE xy chromaticity

From Mark D. Fairchild’s book: “Color Appearance Models”

“The use of chromaticity diagrams should be avoided in most circumstances, 
particularly when the phenomena being investigated are highly dependent on 
the three-dimensional nature of color. For example, the display and comparison 
of the color gamuts of imaging devices in chromaticity diagrams is misleading 
to the point of being almost completely erroneous.”

45

Fairchild
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Fast forward 90+ years

• CIE 1931 XYZ, CIE 1931 xyY (2-degree standard observer) color 
spaces have stood the test of time.

• Many other studies have followed (most notably - CIE 1965 XYZ 10-
degree standard observer), . . . 

• But in the literature (and in this tutorial) you’ll find CIE 1931 XYZ 
color space remains the preferred standard.
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What is perhaps most amazing?

• 90+ years of CIE XYZ, and it is all based on the experiments by Guild 
and Wright’s “standard observers.”

• How many standard observers were used?  100, 500, 1000?

A standard observer

47



CIE XYZ is based on 17 (male) standard observers

10 by Wright, 7 by Guild

“The Standard Observers”
48



Can we talk about cameras now?

49

Sorry, not yet . . . 



An object’s SPD
In the real world, most objects do not emit an SPD, instead, they reflect an SPD.  
As a result, an object’s SPD depends on the environmental illumination.

Wavelength (λ)

Tomato SPD

Our earlier example

ignored illumination

(we could assume it was pure

white light).

Instead, think of this

of how the object

reflects different

wavelengths

50

Illuminant 1 SPD 

.*

λ

Illuminant 2 SPD 

.*

λ

Illuminant 3 SPD 

.*

λ



Illuminant 1 SPD 

.*

λ

Illuminant 2 SPD 

.*

λ

Illuminant 3 SPD 

.*

λ

Color constancy
Our visual system has an amazing ability to compensate for environmental 
illumination such that objects are perceived as the same color.

Looks the same!
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Chromatic adaptation example

Example from Andrew Stockman (UCL)



Chromatic adaptation example



Color constancy/chromatic adaptation

• Color constancy (chromatic adaptation) is the ability of the human visual 
system to adapt to scene illumination.

• This ability is not perfect, but it works fairly well.

• Image sensors do not have this ability!  We will discuss this in 
part 2 . . this is related to the camera’s white-balance module.
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Color constancy (at its simplest)

• The Von Kries transform

• Compensate for L/M/S channel corresponding to the L, M, S response to 
scene illumination.

𝐿𝑥
′

𝑀𝑥
′

𝑆′𝑥

=

1/𝐿𝑖𝑙𝑙𝑢𝑚 0 0
0 1/𝑀𝑖𝑙𝑙𝑢𝑚 0
0 0 1/𝑆𝑖𝑙𝑙𝑢𝑚

𝐿𝑥
𝑀𝑥

𝑆𝑥
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Johannes von Kries

“Corrected colors”

Long/medium/short

cone response to scene point 

x under some illuminant.

Divide out long/medium/short

cone response to the scene’s

illuminant.

Long/medium/short

cone response with

illumination “corrected.”

[𝐿𝑥, 𝑀𝑥 , 𝑆𝑥]

[𝐿𝑖𝑙𝑙𝑢𝑚, 𝑀𝑖𝑙𝑙𝑢𝑚, 𝑆𝑖𝑙𝑙𝑢𝑚]

[𝐿𝑥
′ , 𝑀𝑋

′ , 𝑆𝑥
′ ]

L/M/S response to the light source.



Color constancy for printed media

White paper Photo of sunset

Printed media (i.e., stuff that reflects light)

Scene illumination

The white paper reflects the light.  The

paper is almost a perfect reflector.

Since we are adapting to the 

environmental light source, 

the paper appears white.

The photo also reflects the light, so 

the colors are perceived correctly.



Display the color

of illumination Photo of sunset

Scene illumination

Color constancy for emissive media

Emissive media (e.g., monitor/tablet, smartphone screen)

The display does not reflect light.

Because we are adapting to the

environmental lighting, we need 

the display to match the scene 

illumination. If we match the illumination, 

the display will appear “white.”

The displayed image colors will appear

differently than intended, since 

we are adapting to the 

environment illumination.  



Implications of the previous slides

• Color is intimately connected to scene illumination.

• Even for emissive displays, we have to consider (or make assumptions) 
about the illumination in the viewing environment of the display.

• Keep this in mind because it will play a role when we define color 
spaces used to encode our images.



Understanding color temperature

• In the photography and display communities, an illumination’s “color” is 
described using a correlated color temperature (CCT).

• White balance on cameras also often uses color temperature to 
describe illumination.

• This is an excellent example of where metamers are used.
• Recall – a metamer is when two different SPDs appear visually the same color.
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SPDs of common illuminations 

Figures from Ponce and Forsyth 60



CIE standard illuminants

D, E, and F series images from http://www.image-engineering.de

SPDs for CIE standard illuminant A, B, C SPDs for CIE standard illuminant D50, D55, D65

SPDs for CIE standard illuminant E SPDs for CIE standard illuminants F2, F8, F11
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Color temperature
• As mentioned, illuminants are often described by their “color temperature.”

• This mapping is based on theoretical blackbody radiators that produce SPDs for a given 
temperature expressed in Kelvin (K).

• We map light sources (both real and synthetic) to their closest color temperature.

62

Plank's law

Spectral density of electromagnetic

radiation emitted by a blackbody

radiator at a given temperature T.



Visible range of a black body radiator SPD

Consider only the visible 

wavelengths from Plank's 

equation at a certain 

temperature.

Animation credit: Dariusz Kowalczyk

Black body radiator SPD for different color temperatures

wave length 
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Visible range

gamma rays long (radio) waves



Plot visible SPDs in CIE xy chromaticity

64

Plot of color CIE xy locations of SPDs based

on color temperature.

This curve in the CIE xy plot of the 

"Planckian Locus" of color temperatures. 



Color temperature of an SPD example

CIE 1931 mapping functions

(1) Find the light sources SPD mapping to CIE XYZ using the CIE 1931 mapping functions.   

(2) Project the CIE xyY value to the Planckian locus line. 

Where the projection falls is the Correlated Color Temperature (CCT) of this light source.  

So, in this example, the OLED light source is roughly 4500K.

While we often say "color temperature", we should say "correlated color temperature.”  The 

concept is not always related to the physical temperature of the light source, but its correlation

with the black body radiator's color temperature. 

SPD of a light source



Color temperature

From B&H Photo

Typical description of

color temperature used

in photography & lighting

sources.
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Lighting industry uses color temperature

Usage of correlated color temperature in these ads relate to the perceived color of the bulb's light. The heat output of a typical LED bulb is 

between 60C-100C (~333-373K).



White point
• A white point is a color defined in CIE xyY that we want to be 

considered “white” (or achromatic/neutral).

• This is essentially an illuminant’s SPD in terms of CIE XYZ/CIE xyY
• Think of it as CIE Yxy value of a white piece of paper under some illumination.

68

CIE Illuminants
A, B, C, D65, E in terms of CIE xy

CIE x        ,       y

A 0.44757  ,  0.40745

B 0.34842  ,  0.35161

C 0.31006  ,  0.31616

D65 0.31271  ,  0.32902

E 0.33333  ,   0.33333

C

D65

B

A

E



Quick summary on color constancy

• Color constancy is our ability to adapt to illumination in the 
scene.

• Correlated Color Temperature (CCT) — or just color 
temperature — is a system used to describe scene illumination. 

• Note: we must factor in the scene illumination when capturing 
and displaying color images. 



Color adaptation is not perfect

Mark Fairchild

“Remember that all [mathematical] models 
are wrong; the practical question is how 
wrong do they have to be to not be useful.”

“True color constancy, almost never.
Inconstancy, nearly 100% of the time.”

George Box (Statistician pioneer)



Now we are finally done with color?
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Almost . . . 



CIE XYZ and RGB

• While CIE XYZ is a canonical color space, images/devices rarely work 
directly with XYZ.

• RGB primaries dominate the industry, this is because we can produce 
RGB light sources (LEDs, phosphorus for CRT monitors, filters, etc)

• We are all familiar with the RGB color cube.  

• But is the color cube a color space?

By now, you should realize

that “red”,  “green”, and “blue” have no 

quantitative meaning as words.  We need to 

know their corresponding SPDs or

CIE XYZ values.
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Color model versus color space

• A color model is a mathematical system for describing a color as a 
tuple of numbers (RGB, HSV, HSL, more. . . )

• A color space is a specific range of colors within a color model.  The 
range of color (gamut) can be expressed in CIE XYZ.  Color spaces 
typically also define the viewing environment and, therefore, the “white 
point” of the space.

73

Color models (not color spaces)

RGB color model HSV color model HSL color model



Defining a color space with specific RGB values

R

G

B

Color Gamut

The RGB values span a subspace,

of CIE-XYZ to define the devices

gamut.   

We need to define our RGB values.
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R

G

B

RGB 1

RGB 2

RGB 3

RGB values must be specified.  

If not, this is a huge problem for 

color reproduction from one device to 

the next.
75

Problem with just a color model. . 

Which RGB primaries

are the right ones?



Standard RGB (sRGB) – Rec. 709

R

G

In 1996, Microsoft and HP  

defined a set of “standard” 

RGB primaries.
R=CIE xyY (0.64, 0.33, 0.2126)
G=CIE xyY (0.30, 0.60, 0.7153)
B=CIE xyY (0.15, 0.06, 0.0721)

This was considered an RGB

space achievable by most 

devices at the time.

The white point was set to the D65

illuminant.  This is an important

to note.  It means sRGB

has built in the assumed

viewing condition (6500K daylight).
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sRGB's white point
• Color spaces intended for display (called display-referred or output-

referred) define a white-point.

• Remember to match the assumed illumination in the viewing environment
• The “white” of sRGB (i.e., [1,1,1]) is displayed at D65 
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CIE XYZ

R

G

+
+

D65

D50

sRGB (D50 whitepoint)

sRGB (D65 whitepoint)
The positions of the white-point locations are exaggerated here.

D50 viewing

D65 viewing

eye is adapting to D50

environment light. 

eye is adapting to D65

environment light. 



Assumed viewing illumination is important

Remember “the dress”?
Image: Scientific America article explaining

how viewing environment lighting impacted our 

perception of the color.

Viewing

illumination



CIE XYZ to sRGB conversion

Matrix conversion:

• D65 is set as the white-point.

• This is the linear sRGB space.

• sRGB also specifies a gamma correction of the values (next slide)

• The CIE refers to this as the Recommendation 709 color space – or 
Rec.709.

𝑅
𝐺
𝐵

=
3.2404542 −1.5371385 0.4985314

−0.9692660 1.8760108 0.0415560

0.0556434 −0.2040259 1.0572252

𝑋
𝑌
𝑍

CIE XYZLinearized sRGB (D65)

79



sRGB gamma curve

Input linear-sRGB (range 0-1) 

O
u
tp

u
t 

 s
R

G
B

 0
-1

The actual formula is a bit complicated, but effectively this is gamma (I’= 255×I(1/2.2)) where I’ is the output intensity and 

I is the linear sRGB ranged 0-1, with a small linear transfer for linearized sRGB values close to 0 (not shown in this plot). 

This is known as “perceptual encoding” and is intended to allocate more bits based on our nonlinear response to radiant 

power.

This is a close approximation of

the actual sRGB gamma
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(1D transfer curve)



Stevens' power law

• Physical stimulus vs. perceptual sensation 

• Stevens' Power Law
𝑆 = 𝑘𝐼𝑎

Human

sensation Constant
Stimulus

intensity

power

exponent
Dr. Stanley Stevens showed 

that most human sensations 

follow a power-law 

relationship between stimuli 

and sensation.

radiometric power Φ

p
e
rc

e
iv

e
d
 b

ri
gh

tn
e
ss

 𝜓

𝜓 = 10Φ1/3

Stevens' model stated that human perception to brightness

followed a power law. 



Stevens' power law

A constant (linear) increase

in perceived brightness. 

The radiant power needs to change exponentially. 

Interpreting the power law.



sRGB gamma

• The sRGB gamma approximates Steven's 
1

3
power-law.

• The reason we apply gamma is that it remaps the linear color to fit better our visual 
system’s nonlinear response to radiant power.

• There is a misconception in many graphics and image processing textbooks that 
gamma is applied to compensate for displays (CRTs). See a nice writeup about this 
by Poynton.1

1 https://poynton.ca/PDFs/Rehabilitation_of_gamma.pdf

Poynton

radiometric power Φ
p
e
rc

e
iv

e
d
 b

ri
gh

tn
e
ss

 𝜓

𝜓 = 10Φ1/3

Steven’s √3 power-law sRGB gamma



Before (linear sRGB) & after (sRGB)

Linear sRGB Final sRGB

Linear sRGB

F
in

al
 s

R
G

B
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Standardization is not new - NTSC/PAL 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

NTSC

0

0.9

0.6

0.7

0.5

0.4

0.3

0.2

0.1

0.8
CIE XYZ

sRGB

Gamma 

encoding

Primaries of sRGB

Primaries of NTSC

2.2

(2.2)-1

Gamma 

decoding
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Both NTSC and sRGB used gamma encodings.

Most color spaces use some type of perceptual 

encoding.



NTSC/sRGB 
(know your color space!)

Linear-sRGB back to XYZ

Linear-NTSC back to XYZ

It is important to 

known which color space

your image is in.

Many color APIs (e.g., matlab, python) assume the

default color space is NTSC.  Many research papers

use the wrong equations!



An additional fun fact

• Physical stimulus vs. human sensations 

• Stevens' Power Law
𝑆 = 𝑘𝐼𝑎

Human

sensation Constant
Stimulus

intensity

power

exponent
Dr. Stanley Stevens

introduced showed that

most human sensations

follow a power-law relationship

between stimuli and sensation.

stimulus intensity Φ

p
e
rc

e
iv

e
d
 s

e
n
sa

ti
o
n
 𝜓

Stevens also did experiment on the pain sensation of

electrical shock!  Turns out our sensitivity is the opposite

than with radiometric power to brightness.𝜓 = 10Φ1/3

𝜓 = .0015Φ3.5

(curve of pain)

(curve for brightness)



CIE XYZ

CIE XYZ:  The mother color space

CIE LAB sRGB NTSC/PAL

ProPhoto

Adobe RGB
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Display P3



Other common color spaces

89

This tutorial does not go into the details of the mathematical transformations to other

color spaces (we'd need another tutorial for that).  You can find the transforms online.  

The goal here is to explain the rationale behind each transform so you understand

why the other color spaces are introduced.



CIE LAB space

• CIE LAB space (also written as CIE 
L*a*b*) was introduced as a perceptually 
uniform color space

• Why?
• CIE XYZ provides a means to map between 

a physical SPD (radiometric measurement) to 
a colorimetric measurement (perceptual)

• However, a uniform change in CIE XYZ space 
does result in an uniform change in perceived 
color difference (see diagram)

• CIE Lab transforms CIE to a new
space where color (and brightness) 
differences are more uniform.

The ellipses shows the 

range of colors (around the 

center of the ellipse) that 

would be perceived as the 

same.  We can see that CIE 

XYZ this is not uniform.

David MacAdam performed experiments on color

perception.  This plot is known as the MacAdam ellipses.



CIE 1976 LAB 
• Considering the MacAdam experiments and the Steven's power-law, CIE LAB was 

derived in 1976 by applying various transformations to the CIE XYZ values that 

result in the following:

• L* represents a perceptual brightness measure between 0-100

• L* is a non-linear (gamma) transformation of the Y component of CIE XYZ.

• L is approximately a cube root of Y (directly from Steven's power law)

• a* and b* (often range ±50)

• Both have similar non-linear transformations applied, and represent approximately:

• a*  values lying along colors related to red and green

• b*  values lying along colors related to yellow and blue

• a*=b*=0 represents neutral grey colors

NOTE: CIE LAB requires the white point to be specified for the transformation. 

The default white point is D65.

Image from Mohamed Cheriet

0 (Black)

100 - White (D65)

-50 +50

-50

+50



CIE LAB

Chromaticity comparison's between CIE LAB and CIE XYX

CIE-L*ab space CIE-xyY space

Image from Bagdasar et al ICSTCC'17



Color error metric – CIE 2000 Delta E (ΔE)
• Delta E is a color metric based on L*ab space.

• Since L*ab is more uniformly perceptual, distances (e.g., Euclidean 
distance) in L*ab have more meaning than in CIE XYZ.

• Delta E values have an interpretation as follows.

In general, a ΔE of 2 or 

less is considered to be 

very good.  It means a 

standard observer could

not tell that two colors 

are different unless they 

observe them very 

closely.

Table from

https://zschuessler.github.io/DeltaE/learn/

https://zschuessler.github.io/DeltaE/learn/


Other color spaces to be aware of

• Adobe RGB
• Medium gamut color space

• Used for photo-editing

• Display P3
• Medium gamut color space

• Used by Apple devices to accommodate better display technology

• Similar to Adobe RGB

• ProPhoto (ROMM)
• Developed by Kodak

• Intended to encode a wide range of colors and dynamic range

These are known as “output referred” color spaces because they are defined for encoding images for display or 

output devices.  The definition of color spaces also states the space's preferred dynamic range and viewing 

environment (although we rarely view in such conditions).



Wide-gamut

Medium-gamut

Small-gamut

CIE Yxy chromaticity 

All visible colors

Color space’s gamut

A color space’s gamut is the span of colors that can be represented.  The 3D gamuts are plotted in CIE L*ab.



Gamuts expressed in chromaticity are misleading

AdobeRGB plotted 

in CIE XYZ and

then projected to

2D CIE Yxy chromaticity.

*See slide 44 (Mark Fairchild’s comments) Image: Alp_Er_Tunga



a

L

a

b

Wide-gamut ProPhoto RGB color space

ProPhoto color space

ProPhoto encodes over 90% of surface colors (color from reflected light of a surface, i.e., not emitted light).

It is recommended to use 16-bit values per channel since the gamut is so large.

The white point is D50.



a

a

b

L

Medium-gamut AdobeRGB color space.

(Apple’s Display-P3 is very similar). 

Adobe RGB/Display P3 color space

AdobeRGB/Display P3 encodes over ~50% of surface colors.  Display P3 is Apple’s encoding color space.

It is recommended to use 10-bit per channel.

The white point is D65.



a

a

b

L

Small-gamut standard RGB (sRGB) color space

sRGB color space*

*Currently, sRGB is the most common color space (designed for 1990s display technology).

sRGB encodes ~30% of surface colors.

Developed for 8-bit encoding per channel.

The white point is D65.



a

L

a

b

Wide-gamut ProPhoto RGB color space

Displaying different encodings

PowerPoint expects images to be in sRGB.  When encoded in a wider gamut color space, the image may appear dull.

This may seem counter-intuitive because the wider gamut should encode more colors, but this is only possible when

the software and display hardware are aware (and capable) of interpreting the color space correctly.



Now, are we really finally done with color?
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Yes . . .

But remember that color appearance, measurement, and encoding is its own research 

field.  My slides provide only a basic introduction.  The CV community is bad at 

abusing color terminology or not putting in enough effort to understand color fully.



Congratulations!

You

03 Oct  2023

“Tutorial on color for cameras.”
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Part 2: Overview of the 
in-camera rending pipeline

103



In-camera rendering

• The image directly captured from the camera’s sensor needs to be 
processed.

• We can call this process “rendering,” as the goal is to render a digital 
image suitable for viewing.

Sensor image

Intermediate states of the image being “rendered” to sRGB.Final rendered 

image in sRGB



Image signal processor (ISP)
• An ISP is dedicated hardware that renders the sensor image to produce 

the final output.

• Companies such as Qualcomm, HiSilicon, Intel (and more) sell ISP chips 
(often as part of a System on a Chip – SoC).

• Companies can customize the ISP.

• Many ISPs now have neural processing units (NPUs).

Huawei Apple Samsung/Pixel/OnePlus/Xiaomi/….Samsung



A typical color imaging pipeline

106NOTE: This diagram represents the steps applied on a typical consumer camera pipeline.  ISPs may apply these steps in a different order or combine them in 

various ways.  A modern camera ISP will undoubtedly be more complex but will almost certainly implement these steps in some manner.

ISO gain and

raw-image 

processing

Sensor with color filter array  (CFA)

(CCD/CMOS)

Noise 

Reduction

RGB

Demoasicing

Color 

Manipulation

(Photo-finishing)

Image Rescaling 

(or up-scaling)

Mapping to 

output color 

space

(e.g., sRGB, P3)

White-Balance & 

Color Space 

Transform

(CIE XYZ)

JPEG/HEIC

Compression
Save to file
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A typical color imaging pipeline

ISO gain and

raw-image 

processing

Sensor with color filter array  (CFA)

(CCD/CMOS)

Noise 

Reduction

RGB

Demoasicing

Color 

Manipulation

(Photo-finishing)

Image Rescaling 

(or up-scaling)

Mapping to 

output color 

space

(e.g., sRGB, P3)

White-Balance & 

Color Space 

Transform

(CIE XYZ)

JPEG/HEIC

Compression
Save to file



Camera sensor
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Almost all consumer camera sensors are based on complementary metal-

oxide-semiconductor (CMOS) technology.  

We generally describe sensors in terms of number of pixels and size. The larger the sensor, 

the better the noise performance as more light can fall on each pixel.   Smart phones have 

small sensors!

Figure from Photo Review website.

CMOS sensor



Camera sensor RGB values
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Sensor

color filter

Sensor

color filter

Sensor

color filter

Micro-lenses are placed over the

diode to help increase

light collection on the sensor
Light

Photodiode

Photons hit the diode

and force out electrons.

This design is similar to 

a solar cell!

Silicon/Circuitry 

Color filters place over

the sensor.  This forms

a Color Filter Array (CFA)

also called a “Bayer Pattern”

after inventor Bryce Bayer.

Color filter array

or "Bayer" pattern.

Bryce Bayer

(Kodak)

A Near Infrared (NIR) filter 

is often placed before the 

sensor. (This is sometimes 

called a "hot mirror"). This 

is because red filters often 

respond to NIR light.

near infrared filter



Camera RGB sensitivity

• The color filter array (CFA) on the camera filters the light into 
three sensor-specific RGB primaries 

Plotted from camera sensitivity database by Dr. Jinwei Gu from Rochester Institute of Technology (RIT).  Dr. Gu is 

now at SenseTime (USA).    http://www.cis.rit.edu/jwgu/research/camspec/
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http://www.cis.rit.edu/jwgu/research/camspec/


Measuring camera sensitivities 
• It is not easy to get information on a camera’s spectral sensitivities.

• This process is called camera or sensor characterization.

• The sensitivity needs to factor in the entire camera form factor: lens, NIR filter, and CFA. 

• You need specialized equipment to measure camera spectral sensitivities.
• But of course, reviewer 2 will say obtaining sensitivities curves is easy. . . . 

Image Engineering GmbH & Co. KG

camSPEC device for measuring

camera spectral sensitivity.

https://www.image-engineering.de/products/equipment/measurement-devices/588-camspecs-express



Sensor raw-RGB image
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R
G

B

Camera spectral

sensitivities.

400 500 600 700
 

 

SPD1

400 500 600 700
 

 

SPD2

Remember:  physical world

is measured by  radiometric 

spectral power distributions.
Your camera sensor

RGB filter is sensitive 

to different regions

of the incoming SPD.

raw-RGB represents

the physical world's SPD

"projected" onto the 

sensor's spectral filters.



Sensors are linear to irradiance

• Camera sensors are decent light measuring devices.

• If you double the amount of light hitting a sensor's pixel, the digital value 
output of that pixel will double.
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Sensor output is linear with respect to

irradiance falling over the sensor over

a certain amount of time.

𝐼 = 𝑖 ∗ 𝑡

Digital value I is a linear function of irradiate i and exposure t.



IMPORTANT: raw-RGB sensor images are not in a 
standard color space.

Canon 1D Sony 𝜶𝟓𝟕Nikon D40

400 500 600 700
0

0.5

1

400 500 600 700
0

0.5

1

400 500 600 700
0

0.5

1

||Canon 1D – Nikon D40||2 ||Canon 1D - Sony 𝜶𝟓𝟕||2 ||Nikon D40 - Sony 𝜶𝟓𝟕||2

Color plots show L2 distance between the raw-RGB values with different cameras.



Displaying raw-RGB images

• Inserting a raw-RGB image in your slides, research paper, etc will result in 
strange colors.

• Why?  Our devices (computers, printers, etc) expect the image to be in a 
standard color space like sRGB.
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This is a raw-RGB image.  Why does it look bad?

Because the raw-RGB values are not sRGB values.



A typical color imaging pipeline

ISO gain and

raw-image 

processing

Sensor

Noise 

reduction

RGB

demoasicing

Color 

manipulation

(Photo-finishing)

Image rescaling 

(or up-scaling)

Mapping to 

output color 

space

(e.g., sRGB, P3)

White-balance & 

color space 

transform

(CIE XYZ)

JPEG/HEIC

compression

116

Save to file



ISO signal amplification (gain)

• Imaging sensor signal is amplified and digitized. 

• Amplification to assist  A/D conversion.
• Need to get the voltage to the range required for the desired digital output.

• This gain is used to accommodate camera ISO settings.
• Gain to signal applied on the sensor.

• Note – gaining the signal also gains image noise.

117

ISO gain and

raw-image 

processing

Different ISO settings (note: the exposure will be shorter for higher ISO)

Image: Harry Guinness



Pixel "intensity"

• We often talk about a pixel's intensity, however,  a pixel's numerical 
value has no unit.

• The digital value of a pixel is based on several factors.
- Exposure (which is a function of both shutter speed and exposure)

- Gain (ISO setting on the camera)

- Camera hardware that digitizes the signal.

• We typically rely on the relative digital values in the image and not 
the absolute digital values



Black light subtraction

• Sensor values for pixels with “no light” should be zero.

• However, this is not the case due to sensor noise.
• The black level often changes as the sensor heats up.

• This can be corrected by capturing a set of pixels that do not see light

• Place a dark shield around the sensor.

• Subtract the level from the “black” pixels.

119

ISO gain and

raw-image 

processing



Optical black (OB)

Black light capturing areas (likely exaggerated) from Sony US Patent US8227734B2 (Filed 2008) .

Sensor area(s) 

capturing

“optical black”

120

ISO gain and

raw-image 

processing



Defective pixel mask

• CMOS have pixels that are defective.

• Dead pixel masks are pre-calibrated at the factory
• Using “dark current” calibration

• Take an image with no light

• Record locations reporting values to make “mask.”

• Bad pixels in the mask are interpolated.

121

ISO gain and

raw-image 

processing



Defective pixel mask example

Identifying “dead pixels” After interpolation

Image courtesy of Lu Zheng  and Moshe Ben-Ezra
122

ISO gain and

raw-image 

processing



Flat-field correction
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Uniform light falling on the sensor 

may not appear uniform in the raw-RGB

image.   This can be caused by the lens,

sensor position in the camera 

housing, etc.

We want to correct this

problem such that we 

get a "flat" (or uniform) output.

ISO gain and

raw-image 

processing

Before correction

This operation can also be called lens shading correction.

Apply a correction

gain over the sensor

values.
After correction



A typical color imaging pipeline
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ISO gain and

raw-image 

processing

Sensor

Noise 

reduction

RGB

demoasicing

Color 
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(Photo-finishing)

Image rescaling 

(or up-scaling)

Mapping to 
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transform

(CIE XYZ)

JPEG/HEIC

compression
Save to file



B B B

R R R

RRR

B

B

B

CFA/Bayer pattern demosaicing

• Color filter array (CFA) pattern placed over pixel sensors.

• We want an RGB value at each pixel, so we need to perform 
interpolation.

R G R

G B G

RGR

G

B

G

G G G

R R R

RRR

G

G

G

R R R

R R R

RRR

R

R

R

Sensor RGB layout Desired output with RGB per

pixel.
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Sensor with color filter array 

(CMOS)

RGB

Demoasicing



Simple interpolation
G2 B3

G6

B1

G4

G8 B9B7

R5

R5

G5

B5 ?

?

G2

G6G4

G8

B3B1

B9B7

?

?

B5 = B3B1 B9B7+ + +

4

G5 G4G2 G8G6

4

= + + +
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RGB

Demoasicing

At location R5, we have a red pixel

value, but no Green or Blue pixel.

We need to estimate the G5 & B5

values at location R5.

This is a zoomed up version

of the Bayer pattern.



Simple “edge aware” interpolation
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RGB

Demoasicing

Do this procedure also for the blue pixel, B5.

Captured raw-Bayer image

Missing green pixel value is computed 

as a weighted-interpolation of the 

neighboring green values.

Neighborhood
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similarity to neighboring red values.
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1.0



Newer CFA/Bayer patterns

• Newer sensors are starting to use different patterns.

• Quad/Tetra (2x2) and Nona (3x3) are now common on smartphones.

• In low-light situations, the 2x2 or 3x3 layouts are “binned” into a 
single pixel (a process called binning).

128
RGB

Demoasicing Image: Sang-wook Park and Jong-hyun Kim



Demosaicing in practice

• The prior examples are illustrative algorithms only

• Camera IPSs use more complex and proprietary algorithms. 

• Demosaicing can be combined with additional processing
• Highlight clipping

• Sharpening

• Noise reduction

• Demosaicing is an active research area!

129
RGB

Demoasicing



A typical color imaging pipeline
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Noise reduction (NR)

• All sensors inherently have noise

• Most cameras apply additional NR after A/D conversion 

• A simple method is described in the next slide

• For high-end cameras, it is likely that cameras apply different strategies 
depending on the ISO settings, e.g. high ISO will result in more noise, so a 
more aggressive NR could be used

• Smartphone cameras, because the sensor is small, apply aggressive noise 
reduction.

131
Noise 

Reduction

50   100   125   160   200  250   320   400  500

640  800   1000  1250  1600  2000 2500  3200

Camera ISO

setting and

noise



Sensor noise model

• Two main sources of image noise:
1. The quantum nature of light (photon noise/shot noise); unrelated to the imaging sensor.  Follows a 

Poisson distribution.

2. Electronic sources associated with the imaging sensor circuitry (dark current and dark noise).  
Often follows a Normal distribution.

• Gain factor g amplifies noise.

+𝜂(λ) 𝑔+ +

Photon 

collection

Quantum 

efficiency

Dark 

Current

Dark 

Noise
Sensor 

Gain ADC

Quantization

Noise

Raw 

Measurement

𝑒
Electrons

Irradiance

EMVA 1288 Standard

Photon

noise Pixel size;

Aperture;

Exposure t

𝑖

Slide credit: Ali Mosleh

http://www.emva.org/standards-technology/emva-1288/


A simple noise reduction approach
• Blur the image based on the ISO setting (higher ISO = more blur)

• Blurring will reduce noise, but also remove detail.  

• Add image detail back for regions that have a high signal.  We can even 
boost some parts of the signal to enhance detail (i.e. "sharpening")

I B(I)input

blur input

reduces noise 

but blurs edges

|I-B(I)| > T

Subtract I-B

(high pass filter)

Com-

bine

Values with high-response, we may assume are image 

“content” and not noise.  We can add this response 

back to the image (or even boast it). 

Low response areas we don't add back, but 

keep the blurred (noised reduced) result.

Output
NR+Sharpened

Output

-

Noise 

Reduction

Sketch of the procedure here



Input
Noise reduced

image
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A typical color imaging pipeline
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Color mapping/colorimetric stage

• This step in the IPS converts the sensor raw-RGB values to a 
device independent color space 
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Canon 1D

Sony 𝜶𝟓𝟕

Nikon D40

400 500 600 700
0
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400 500 600 700
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400 500 600 700
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CIE XYZ

We will use CIE XYZ in this tutorial, but most 

cameras use a related space called ProPhoto.

ProPhoto RGB

White-Balance & 

Color Space 

Transform

(CIE XYZ)

Camera sensors have

their own spectral

response.

We need to map 

it into a standard

response (CIE XYZ).



Two step procedure

(1) apply a white-balance correction to the raw-RGB values

(2) map the white-balanced raw-RGB values to CIE XYZ
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Color space transform (CST)

# # #

# # #

# # #

#

#

#

White balance

# # #

# # #

# # #

#

#

#

white-balance raw-RGB
raw-RGB values

WB-raw-RGB mapped

to CIE XYZ

3x3 diagonal matrix 3x3 full matrix (or polynomial function)

White-Balance & 

Color Space 

Transform

(CIE XYZ)



How does white balance (WB) work?

raw-RGB sensor image

(pre-white-balance correction)

Sensor's

response to 

illumination (ℓ)

0.2
0.8
0.8

ℓ𝑟
ℓ𝑔
ℓ𝑏

=

“White-balanced” 

raw-RGB image

𝑟𝑤𝑏
𝑔𝑤𝑏
𝑏𝑤𝑏

=

1/ℓ𝑟 0 0
0 1/ℓ𝑔 0

0 0 1/ℓ𝑏

𝑟
𝑔
𝑏

White-balance 

diagonal matrix
White-Balance & 

Color Space 

Transform

(CIE XYZ)



White balance
(computational color constancy)

• The challenging part for white-balance is determining the 
proper white-balance setting!

• Users can manually set the white balance
• Camera specific white-balance matrices for common illuminations

• These can be manually selected by the user

• Otherwise auto white balance (AWB) is performed
• In computer vision, we often refer to AWB as "illumination estimation"

• Since the hard part is trying to determine what the illumination in the scene is.
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WB manual settings

Cameras can pre-calibrate their sensor's response for common illuminations.

Typical mapping of WB icons to related color temperature.   

Image from ExposureGuide.com
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Examples of manual WB matrices
Nikon D7000

Canon 1D

Sony A57K

Sunny Incandescent Shade

Daylight Tungsten Shade

Daylight Tungsten Shade

















1.390600

01.00000

00 2.0273

















2.214800

01.00000

001.3047

















1.136700

01.00000

002.4922

















1.502000

01.00000

002.0938

















2.348700

01.00000

001.4511

















1.227500

01.00000

002.4628

















1.558600

01.00000

002.6836

















2.742200

01.00000

001.6523

















1.289100

01.00000

003.1953
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Pre-calibrated white-balance matrices for different brands of cameras.



Auto white balance (AWB)

• If manual white balance is not used, then an AWB algorithm is 
performed.

• AWB must determine the sensor's raw-RGB response to the scene 
illumination from an arbitrary image.

• AWB is not easy and this remains an open research problem.
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AWB is not easy
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Given an arbitrary raw-RGB image,

determine what is the camera's response 

to the illumination.

The idea is that something that is white* is 

a natural reflector of the scene's 

illuminations SPD.

So, if we can identify what is "white" in the 

raw-RGB image, we are observing the 

sensor's RGB response to the illumination.

raw-RGB input image before white-balance

* It doesn’t have to be "white", but grey – sometimes we call these scene points  "achromatic" or "neutral" regions.



AWB: "Gray world" algorithm

• This methods assumes that the average reflectance of a scene is achromatic (i.e. 
gray) 

• Gray is just the white point not at its brightest, so it serves as an estimate of the illuminant

• This means that image average should have equal energy, i.e. R=G=B

• Based on this assumption, the algorithm adjusts the input average to be gray as 
follows:

𝑅𝑎𝑣𝑔 =
1

𝑁𝑟
෍𝑅𝑠𝑒𝑛𝑠𝑜𝑟(r) 𝐺𝑎𝑣𝑔 =

1

𝑁𝑔
෍𝐺𝑠𝑒𝑛𝑠𝑜𝑟(g) 𝐵𝑎𝑣𝑔 =

1

𝑁𝑏
෍𝐵𝑠𝑒𝑛𝑠𝑜𝑟(b)

r = red pixels values,  g=green pixels values, b =blue pixels values

Nr = # of red pixels, Ng = # of green pixels, Nb = # blue pixels  

First, estimate the average response:

Note:  # of pixel per channel may be different if white balance is applied to the RAW image before demosaicing.  Some 

pipelines may also transform into another colorspace, e.g. LMS, to perform the white-balance procedure.
144



AWB: "Gray world" algorithm

• Based on the image average R/G/B value, white balance can be 
expressed as a matrix as:

𝑅′
𝐺′
𝐵′

=

𝐺𝑎𝑣𝑔/𝑅𝑎𝑣𝑔 0 0

0 1 0
0 0 𝐺𝑎𝑣𝑔/𝐵𝑎𝑣𝑔

𝑅
𝐺
𝐵

Sensor RGBWhite-balanced

sensor RGB
Matrix scales each channel by its average and 

then normalizes to the  green channel average.
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AWB: "White patch" algorithm

• This methods assumes that "highlights" (bright spots) represent specular reflections of 
the illuminant

• This means that maximum R, G, B values are a good estimate of the white point

• Based on this assumption, the algorithm works as follows:

𝑅𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑅𝑠𝑒𝑛𝑠𝑜𝑟(r))

r = red pixels values,  g=green pixels values, b =blue pixels values

𝐺𝑚𝑎𝑥 = 𝑚𝑎𝑥( 𝐺𝑠𝑒𝑛𝑠𝑜𝑟(g)) 𝐵𝑚𝑎𝑥 = 𝑚𝑎𝑥( 𝐵𝑠𝑒𝑛𝑠𝑜𝑟(b))
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AWB: "White patch" algorithm

• Based on RGB max, white balance can be expressed as a matrix as:

𝑅′
𝐺′
𝐵′

=
𝐺𝑚𝑎𝑥/𝑅𝑚𝑎𝑥 0 0

0 1 0
0 0 𝐺𝑚𝑎𝑥/𝐵𝑚𝑎𝑥

𝑅
𝐺
𝐵

Sensor raw-RGBWhite-balanced

sensor raw-RGB
Matrix scales each channel by its maximum value and 

then normalizes to the  green channel’s maximum.
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AWB example

White Patch Gray WorldInput
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Better AWB methods

• Gray world and white patch are very basic algorithms. 
• These both tend to fail when the image is dominated by large regions of a 

single color (e.g. a sky image).

• There are many AWB methods in the literature.

• Camera ISPs often still use simple algorithms with lots of "tuning" . . .
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Color space transform – part 2

• Process used on cameras involves interpolation from factory presets.

• The need for interpolation is related to white-balance only 
approximating true color constancy.

# # #

# # #

# # #

#

#

#

white-balanced raw-RGBraw-RGB values WB-raw-RGB mapped to CIE XYZ

Color space transform is applied after the white balance.  In fact, the matrix we use to perform the CST is

based on the white-balance CCT.

white

balance

color space

transform

(CST)



Color space transform (1/3)

Factory pre-calibration

#

#

#

#

#

#

# # #

# # #

# # #

# # #

# # #

# # #

𝑊𝐷
𝐥𝟐

𝑊𝐷
𝐥𝟏

6500 K

2500 K

𝑇𝐥𝟐

𝑇𝐥𝟏

Illumination 2 (CCT 6500 K)

Illumination 1 (CCT 2500 K)

CIE XYZ target

CIE XYZ target

white-balance matrix CST matrix

CST matrices (𝑇𝐥𝟏 and 𝑇𝐥𝟐 ) are calibrated for two different illuminations (l1 and l2).  Depending on the temperature of the 

white-balance, we use the corresponding CST.
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Transform
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Lightboxes for calibration
Lightboxes are used to perform this calibration under different illuminations.

Lightboxes are able to reproduce standard illuminants (e.g., D65, incandescent, fluorescent, etc)

X-rite lightbox

GTI lightbox

Telelumen can replace the

light source in a lightbox

to allow tunable SPDs.



Color space transform (2/3)
Interpolation process

New input

#

#

#

𝑊𝐷
𝐥𝐚

# # #

# # #

# # #

𝑇𝐥𝐚(4300 K)

𝑔 =
CCT𝐥𝐚

−1 − CCT𝐥𝟐
−1

CCT𝐥𝟏
−1 − CCT𝐥𝟐

−1

4300 K
𝑙𝑎

2500 K
𝑙1

6500 K
𝑙2

𝑇𝐥𝐚 = 𝑔𝑇𝐥𝟏 + (1 − 𝑔)𝑇𝐥𝟐

𝛟𝐜𝐚𝐦
𝐥𝒂

Given a new illumination (la) and its estimated correlated color temperature (CCT), 

we  construct a CST matrix by blending the two factory pre-calibrated matrices.



Color space transform (3/3)
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Weighting functions

1

0

2500 K 6500 K

w
e
ig

h
t

Correlated color temperature

g

(1-g)

𝑔 =
CCT𝐥𝐚

−1 − CCT𝐥𝟐
−1

CCT𝐥𝟏
−1 − CCT𝐥𝟐

−1

𝑇𝐥𝐚 = 𝑔𝑇𝐥𝟏 + (1 − 𝑔)𝑇𝐥𝟐
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A typical color imaging pipeline
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ISO gain and

raw-image 

processing

Sensor

Noise 

reduction

RGB

demoasicing

Color 

manipulation

(Photo-finishing)

Image rescaling 

(or up-scaling)

Mapping to 

output color 

space

(e.g., sRGB, P3)

White-balance & 

color space 

transform

(CIE XYZ)

JPEG/HEIC

compression
Save to file



Color manipulation

• This is the stage where a camera applies its "secret sauce" to make 
the images look good.

• This procedure is called by many names:
• Color manipulation

• Photo-finishing

• Color rendering or selective color rendering

• Yuv processing engine

• DSLR will often allow the user to select various photo-finishing styles.

• Smartphones often compute this per-image.

• Photo-finishing may also tied to geographical regions!



DSLR "picture" styles

From Canon’s user manual 



Picture styles

Color 

Manipulation

(Photo-finishing)

Example of four different picture styles from Nikon

This image is the same raw-RGB image processed in four different ways. 



Nonlinear color manipulation

1D Tone

Curve

3D Look up table 

(LUT)

Color manipulation can be implemented using a 3D look up table (LUT) and a 1D LUT tone-curve.

The 3D LUT table acts like a 3D function: 𝑓 𝑅, 𝐺, 𝐵 → 𝑅′, 𝐺′, 𝐵′
The 1D LUT table is applied per channel: g 𝑅 → 𝑅′, 𝑔 𝐺 → 𝐺′, 𝑔 𝐵 → 𝐵′

The 3D and 1D LUT can change based on picture style.

Color 

Manipulation

(Photo-finishing)



Picture styles

Color 

Manipulation

(Photo-finishing) Each style has its own 3D LUT and 1D LUT. 

Tone curve
3D LUT

Tone curve
3D LUT

Tone curve
3D LUT

Tone curve
3D LUT

Style 1

Style 2 Style 4

Style 3



Global tone map example (1D LUT)

Input

Enhancing contrast

(called an S-curve)

Brightening the

image

Darkening the

image

input tones

o
u
tp

u
t 

to
n
e
s



3D LUT color manipulation visualization

Visualization as a displacement map of a slice

of the 3D LUT mapping, warping an input and output value



Local tone mapping (LTM)

NOTE: On many cameras, esp smartphones, a local 
tone map is applied as part of the photo-finishing.  
This helps bring out highlights in the image.

Global tone-mapping

Camera mode - Manual

Local tone-mapping

Camera mode - Auto

Difference map between image before and after LTM

Color 

Manipulation

(Photo-finishing)



Selective color manipulation

• "Select" colors can be manipulated, especially skin tone.

• Sometimes called preferred color correction (PCC)

Selected color regions 

can be manipulated.

Image: Gromovataya



Color and Imaging Conference (CIC) papers

Examples of papers addressing preferred skin color.



Typical color imaging pipeline
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Sensor

Noise 

reduction

RGB

demoasicing

Color 
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(Photo-finishing)
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space
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White-balance & 

color space 

transform

(CIE XYZ)

JPEG/HEIC

compression
Save to file



Re-scaling image and sRGB conversion
Often, the entire image is processed by the ISP and then rescaled for the 
view-finder or to fit the requested output resolution.

Full-size image Rescaled for view-finder Rescaled for preferred output size



Rescale can also be “digital zoom"

Full frame

Digital zoom

(super res)



Typical color imaging pipeline
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ISO gain and

raw-image 

processing

Sensor

Noise 

reduction

RGB

demoasicing

Color 

manipulation

(Photo-finishing)

Image rescaling 

(or up-scaling)

Mapping to 

output color 

space

(e.g., sRGB, P3)

White-balance & 

color space 

transform

(CIE XYZ)

JPEG/HEIC

compression
Save to file



Final sRGB conversion (or other color space)

• Map from photo-finished CIE XYZ image to sRGB

• Apply the sRGB (2.2)-1 gamma encoding

170
Map to sRGB 

output

Photo-finished CIE XYZ Covert to linear sRGB
𝑅
𝐺
𝐵

=
3.2404542 −1.5371385 0.4985314

−0.9692660 1.8760108 0.0415560

0.0556434 −0.2040259 1.0572252

𝑋
𝑌
𝑍

Apply sRGB gamma

sRGB is known as an "output-referred" or "display-referred" color space.  It is intended for 

use with display devices.



JPEG compression scheme

Take original image and

Break it into 8x8 blocks

8x8 DCT
(Forward DCT)

on each block

Quantize DCT coefficients

via 

Quantization “Table”

C’(u,v) = round(C(u,v)/T(u,v))

“Zig-zag” Order Coefficients

RLE

AC Vector

0Differential

coding DC component

Huffman 

Encode
JPEG bitstream

T(u,v)

f(x,y) - 128

(normalize between –128 to 127)

JPEG applies almost every compression trick known.  

1) Transform coding, 2) psychovisual (loss), 3) Run-length-encoding (RLE), 4) Difference coding, and Huffman.
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JPEG quality

• The amount of quantization applied on the DCT coefficients amounts 
to a “quality” factor

• More quantization = better compression (smaller file size)

• More quantization = lower quality

• Cameras generally allow a range that you can select

Image from nphotomag.com

172
JPEG 

Compression



Note: sRGB/JPEG is slowly being replaced

• sRGB was developed for monitors in 
the 1990s – it is an old standard.

• High Efficient Image Encoding (HEIC)
• Better compression than JPEG

• Apple iPhone has started to use HEIC
to replace JPEG

• HEIC supports multiple color spaces. 
Apple uses Display P3 – a variation on a 
Digitial Cinema Initiative P3 space.

• The P3 gamut is 25% wider than sRGB 

• There is also a gamma encoding similar 
to sRGB.



Typical color imaging pipeline
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Circular buffer for ZSL and multi-frame processing 

Buffer of 

RAW images

𝐼𝑡 𝐼𝑡−1 𝐼𝑡−2 𝐼𝑡−3

• Many ISPs store the last few RAW images in memory (i.e., a circular buffer).

• These images can be used for many purposes (image stabilization, temporal noise 

reduction, etc.).

• Another purpose is to ensure “Zero Shutter Lag” (ZSL).  

• There is often a delay between when a person presses the “capture” and the 

camera capturing the image.  This is called “shutter lag”. 

• So, a previous image in the buffer can saved instead.

Current sensor image

You click “save”, but due to 

shutter lag, an image

in the ZSL buffer is saved.

Photo saved is actually this image!



ISP organization
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ISO gain and

raw-image 

processing

Noise 

reduction

RGB
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Color 

manipulation

(Photo-finishing)

Image rescaling 

(or up-scaling)

Mapping to 

output color 

space
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color space 

transform

(CIE XYZ)

JPEG/HEIC
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Bayer-Processing Front-End

Image-Processing Engine 

(Photo-Finishing)

ISP hardware will often divide 

these operations into two 

components – (1) Bayer-Processing 

and (2) Image Processing.



Pipeline comments

• Again, it is important to stress that the exact steps 
mentioned in these notes only serve as a guide to what takes 
place in a camera

• Smartphone camera pipelines are more complex.

• Note: for the different camera makes/models, the operations could be 
performed in a different order and in different ways (e.g., combining 
sharpening with demosaicing).
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What about machine vision cameras?

• Some industrial/machine vision cameras provide minimal ISP 
processing

• For example, some will only perform white-balance and apply a 
gamma to the raw-RGB values.

• This means the output is in a camera-specific color space.

White-Balance

(per-channel 

gain)

Typical machine vision pipeline
per-channel gamma

ISO gain and

raw-image 

processing

RGB

Demoasicing

Point grey

grasshopper 

camera.



IPS Tuning 

Camera Maker A

Image Quality Engineers Image Quality Engineers

Camera Maker B

The algorithms on an ISP are often predefined.  Camera engineers can

“tune” the algorithm parameters to produce the output they want. 

The "tuning" of the ISP is a labor-intensive procedure.



Congratulations!

You

3 Oct 2023

“In-camera rending pipeline”
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Part 3:

AI targeting ISP components
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A bit more complex ISP
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Use deep learning for hard problems
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The highlighted components are camera pipeline steps that are challenging and areas AI can make

notable gains:

AWB (illumination estimation)

Demosaicing 

Noise reduction

Super-resolution

Lens

Sensor

Defective pixel

correction

Black level

correction/

Normalization

Lens shading 

correction

3As
Auto-exposure

Auto-focus

Auto-white-balance

White-

balance

shutter duration/ISO (gain)/focus parameters

Demosaicing

Color space

transform to 

CIE XYZ/ProPhoto

General and 

selective color 

manipulation

Local and global 

tone-mapping

Image resizing/

super-

resolution

Color mapping to 

display-referred color 

space (sRGB, P3)

Noise

reduction

View-finder or

compression/file 

(JPEG/HEIC)

Add 

grain/noise

Photo-finishing routines

Bayer processing routines



Use deep learning for hard problems
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The highlighted components are camera pipeline steps that are challenging and areas AI can make

notable gains:

AWB (illumination estimation)

Demosaicing 

Noise reduction

Super-resolution

Lens

Sensor

Defective pixel

correction

Black level

correction/

Normalization

Lens shading 

correction

3As
Auto-exposure

Auto-focus

Auto-white-balance

White-

balance

shutter duration/ISO (gain)/focus parameters

Demosaicing

Color space

transform to 

CIE XYZ/ProPhoto

General and 

selective color 

manipulation

Local and global 

tone-mapping

Image resizing/

super-

resolution

Color mapping to 

display-referred color 

space (sRGB, P3)

Noise

reduction

View-finder or

compression/file 

(JPEG/HEIC)

Add 

grain/noise

Photo-finishing routines

Bayer processing routines



Digital zoom

A distinguishing feature in the smartphone camera market is zoom quality.

Full frame

Digital zoom

(super res)



Machine learning (ML) for super-resolution

• SR has been addressed by machine learning methods for a long time.

• Required "training data"
• Quality of results are directly correlated to training data suitability. 

• Before deep learning, used "non-learnable" machine learning.
• Hand-crafted features

• Conditional random fields 

• K-Nearest Neighbor

• Support vector machines



Early example – Freeman 2002

Freeman et al – IEEE Computer Graphics and Applications [2002]

Low-res input

Upsampled Ground truth 

high-res

Training images were 

small photo collection

Search dictionary 

for similar low-res patches,

replace with high-res patch.



Enter deep learning

Approach ML problems with learnable processing graphs 

inspired by biological neurons.

Neurons 

Neuron model

Artificial "neural"

network graph



Super-resolution was target of early CNNs

Dong, Loy, He, Tang [ECCV'14]

Let network learn "feature." 

Let network learn how to reconstruct.



CNN performance

Early CNN approaches were not always the "best."   

Highly hand-crafted methods still worked well.

But, CNN learned everything.

(The care now was in optimizing the CNN).



Super-resolution with very deep networks

Kim, Lee, Lee CVPR'16

• Pairs of convolution layers + nonlinear activations

• Prediction is added to upsampled low-res input

• Special care for gradient clipping 



Took "SR" to the next level visually



Adding adversial loss to SR

In corporate additional loss that considers how

realistic the solution is with respect to image distribution.



SRGAN structure



GAN loss adds another visual level!



AIM/NTIRE SR challenges
New Trends in Image Restoration and Enhancement (NTIRE)

Advances in Image Manipulation (AIM)
• These workshops run regular challenges on super resolution

- Current winning solutions are transformer-based.

- Interestingly, solutions do not use GANs!

GANs often help with visual appearance.

GANs do not necessarily beat benchmarks

Benchmarks are based on RMSE/SIMM losses.

See CVPR’18 paper – Perception-Distortion Tradeoff



Use deep learning for hard problems
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The highlighted components are camera pipeline steps that are challenging and areas AI can make

notable gains:

AWB (illumination estimation)
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compression/file 
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Add 
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Recall why illumination estimation is hard

RAW sensor image

What is the sensor's

response to illumination?

Given an arbitrary input image, 

predict the scene illumination.

Getting this incorrect has significant

impact on image quality/color reproduction.



Many ML approaches before deep learning

Training images 

(sensor specific)

Derive some 

features (usually

histogram statistics)

Apply ML method

to predict illumination

of scene.

Cheng et al CVPR'15



Improving AWB with CNN

Hu et al. CVPR'17

Predicts local estimates over the image and their confidence.

Pools confident weighted estimates for final result.



What did it learn?

The method appears to learns to identify pixels that are 

most likely  "neutral/achromatic" scene patches.

Predicts low-res 

4 channel ouput

(estimation r,g,b

+ confidence map)



Exploiting two cameras for AWB

Abdelhamed et al CVPR'21

Two views of the same scene with different

sensors – is essentially a 6-channel camera.



Exploiting two cameras for AWB

State-of-the-art results

with very lightweight network



Use deep learning for hard problems
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Demosaicing

Captured raw-Bayer image

?

Demosaicing role is to interpolate 2/3 (66%) 

of your sensor image!



DNN for demosaicing (and denoising)

Gharbi et al SIGGRAPH Asia, 2016

- Early work found that you got denoising for free.

- Network similar to SR-residual.  

- Training data/experimental data 100% synthetic.



Deep CNN for demosiacing

Examined #1 – shallow network with deep channels (SRNet)

Examined #2 - deep layers with residual (SR-ResNet)

Syu et at al - arXiv 2018



Deep CNN for demosiacing

Paper showed that Deep SR-ResNet is a good DNN for demosiacing too. 



More recent approach

Considers the following:

(1) Demosaicing is hardest in high-frequency areas

(2) Green channel 

most reliable (since 

we have a lot of green)

Liu et al CVPR'21 [Huawei]
Predicting

hard regions



Demosiacing with "self guidance"

Guidance map

Green channel upsampling trained with its own loss



Produces nice visual results

Self-guidance NET



Use deep learning for hard problems
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The highlighted components are camera pipeline steps that are challenging and areas AI can make
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Non-deep-learning noise reduction

• One of the best-performing methods was based on non-local means (2007).

• Block-matching with 3D filtering [BM3D]

• It is slow, but works well.

Dabov et al TIP'07

For small reference patch R, find similar patches.

Average the patches.



DNN for denoising (DnDNN)

Zhang et a.  TIP'17

- Straight-forward network based on deep residual learning

(Kim SR-ResNet).

- Introduced batch normalization to the network.

- Predicts the residual noise layer.



DnCNN result

- Method trained on synthetic noise data.

- Beats BM3D and is much faster.

- BM3D does not require training data!
BM3D DnCNN



Need for real denoising dataset

-30,000 images

-5 cameras

-160 scene instances

-15 ISO settings

-Direct current lighting

-Three illuminations

Abdelhamed et al CVPR 2018
SIDD:  Smartphone Image 

Denoising Dataset

Interesting finding

- When trained on synthetic only, BM3D beat DnCNN

- When trained on real data, DnCNN wins

- Implies noise models in literature are not accurate



Denoising contest at CVPR'20

NTIRE denoising contest at CVPR'20

- Winning solutions (Baidu) relied on neural 

architecture search

- Samsung method used a U-net + multi-scale residual 

nets



ISPs with multi-frame (burst) imaging
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Why multi-frame?

• Two primary applications where is currently multi-frame is 
used

• Low-light imaging (or "night mode" or "extended ISO")
• High-dynamic-range (HDR) imaging

• Many ISP now support multi-frame image.

• Possible to do super-res with multi-frame.
• For time sake, I won't discuss those methods



ISP with multi-frame
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ISP with multi-frame
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Low-light imaging

Single short exposure (noise corruption)

ISP

ISP

ISP

Long exposure (motion blur)

Align 

and

merge

Single short exposure (burst)

Synthetic 

long exposure

Multi-frame (burst) for low-light

Low-light imaging is essentially a noise-reduction problem.



Multi-frame for low-light

Early work on low-light image 

is from Samsung SAIT Moon et al – ICCE 2013

Proposed alignment

(1) Works on a Laplacian

pyramid.

(2) global motion alignment

(3) local motion correction 

(4) Temporal fusion 

(to avoid ghosting)



Burst for low-light and HDR

Hassinoff et al SIGGRAPH'16 (Google)

No deep learning – this paper describes a fast/robust alignment 

estimation based on bilateral fitter.

Robust merging is guided by a reference frame.

All is done in the Bayer/RAW frame.

High-dynamic-range is in terms of bit depth. This paper claims

the denoising/fusion can upsample from 10bit to 12bit.
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Multi-frame for low light

Senhar et al TIP 2021

Learns a multi-scale burst encoder/decoder framework.

Input is RAW, output is sRGB.

Each encoder is at a different

resolution scale.
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Google pixel phones multi-frame

Wronski et al SIGGRAPH 2019

Not necessarily for low-light, but does 

target RAW.

This paper uses multiple frames and very 

small camera motion (from hand tremors) 

to perform demosaicing and

super-resolution.  By exploiting motion,

they can fill in missing Bayer data too.



ISP with multi-frame
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High dynamic range imaging

Fused result

An f-stop adjusts the amount of light that falls 

on the sensor generally by a factor of 2. 

So, a +1 f-stop increases the amount of light 

by two times.  An -1 f-stop reduces the amount 

of light by ½.   We assume the ISO is not adjusted. 

This is often called an Exposure Value adjustment.

Change of EV is a change in stop.
Fused result + local tone mapping



Exposure fusion

Mertens et al – Pacific Graphics 2007

Simple method that fused multiple exposed (and rendered)

images to a single 'fused' output.

Works on Laplacian pyramid.

Proposed heuristics for determining weights for fusion.

- Namely: saturation, contrast, "exposedness" at each level 
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Exposure fusion

Exposure fusion gave spectacular

results compared to existing 

methods in 2007.

Simple algorithm

makes it suitable

for real-time deployment

on device.
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DNN-based multi-frame HDR

Kalantari and Ramanoorthi SIGGRAPH'17
Paper examined three strategies. 

(1) Multi-frame and CNN to predict final HDR.

(2) Multi-frame and CNN to predict blending weights, then HDR.

(3) Multi-frame and CNN to predict blending weights and align

misaligned regions

Found that (#2) is the best; (3) works for small motions.



Summary

• Deep learning is good at addressing hard ISP components
• Demosiacing, denoising, AWB, super-resolution (digital zoom)

• These are components that are ill-posed problems (many-to-one solutions)

• Hand-crafted solutions still work well 

• GANs shows promise for visual results (not necessarily benchmarks)

• Many current SOTA solutions are based on neural architecture search 
(NAS)
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Part 2:

AI-based ISPs
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Replacing the conventional ISP

Conventional

Image Signal 

Processor

(ISP)

RAW

input

DNN

Replace with a single DNN

DNN1 DNN2 DNN3

Replace with modular DNNs

RAW

input

RAW

input

sRGB 

output

sRGB 

output

sRGB 

output
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Single DNN replacement
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Modeling camera rendering with a DNN

Nam and Kim CVPR'17

- The paper is motivated by "reversing"

the ISP from sRGB to RAW

- Addresses the scene-dependent nature

of ISPs for radiometric calibration

- However, the framework can be used 

for "forward rendering"  (RAW to sRGB)

- This work is often overlooked due to the 

focus on radiometric calibration

236



Modeling camera with DNN

This paper works on image patches

and is trained per camera. 

To encode local context information,

a learnable histogram feature is used

and polled at different scales.

The local histogram feature provides

spatial context for converting from 

RAW to sRGB (or sRGB to RAW).
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Modeling camera with DNN

Results of rendering RAW to sRGB.
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ISP replacement to mimic better camera

Raw Input

(smartphone)
Processed 

output

(DSLR)

Uses U-net structure

(called "PyNet" for pyramid Net)

CVPRW'19 (NTIRE workshop)
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ISP replacement to mimic better camera

Training images

RAW from smartphone

sRGB from DSLR

Images are misaligned!

Images are globally aligned, and then patch wise aligned.

Additional perceptual loss (VGG) is included in training at different U-

net scales.
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ISP replacement to mimic better camera
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"Learning to see in the dark"

Chen et al CVPR 2018

This paper is essentially a learned ISP.

However, it learns to process noisy RAW to clean sRGB.

Image Signal 

Processor

(ISP)

Image Signal 

Processor

(ISP)

Short 

exposure

Carefully

captured

low exposure

Learned

denoiser +

ISP rendering



"Learning to see in the dark"

U-net articture is used.

Key to this paper is the careful alignment of data.

Results show for

very low-light cases

so significant 

performance.
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CRISPnet (color reproduction ISP)

Souza and Heidrich, Arxv 2021

Monolithic ISP with focus on high-quality color rendering
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CRISPNet
Motivation is that one day we will have RAW 

images from an smartphone, but no

hardware to render it, so a DNN will be used 

instead. The paper refers to this as legacy ISPs.

Some interesting ideas:

(1) WB (from RAW) is injected 

into network layers.

(2) Global semantics is also

incorporated into architecture.

Training data is Apple iPhone images.

This DNN essentially learns

to "render" RAW like Apple.

.

Results against

other DNN ISPs.
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A two stage DNN-based ISP
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Two stage ISP

Liang, Cao, Zhang – TIP 2021

Proposes a "restore-net" and "enhance-net".
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CameraNet considers real ISP stages
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CameraNet – Training data preparation

Details are not very clear, but Photoshop is claimed to be used to process RAW to denoised RAW.

Lightroom is used to generate enhanced images.   Assumed trained per sensor type.
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CameraNet

RestoreNet/EnhanceNet share

similar structure.

EnhanceNet uses a dilated 

convolution.
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Results
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Three stage DNN-based ISP
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Winner of the night photography challenge (2022)

- Teams were asked to process night RAW images to sRGB

- Toloka was used to evaluate results.

- Professional photographer Michael Freeman also evaluated.

- Winning team was from Xiaomi (net slide)
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FlexISP

- Winner for Night Photography challenge 

- Results were far better than competitors 

- Introduced a 3-stage ISP

Liu et al NTIRE'22/CVPRW'22 (Xiaomi)
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FlexISP

F4C was used for white-balance.

Two networks were used, each

predicting biased results towards warm/cold

ground truth.   User can "slide" 

between results.

Custom denoiser. Training data unclear 

(possibly in-house Xiaomi denoiser used

to generate ground truth).  

Network was conditioned in noise level.  

Allowing adjustment.

Images were manually adjusted

(lightroom?) at different levels.

Users could "slide" between results.
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Baseline was a simple

software ISP given 

to participants. 

PyNet is single

DNN method.

FlexISP.

HERN

(Enhancement

network)
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Misc: RAW to bits
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RAW to bit

Jeong and Jung  - ECCV'22

RAW to sRGB

Encoder/Decoder (sRGB)

[compression]

Combined RAW to sRGB

with encoder.
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RAW to bit

Paper shows that a knowledge distillation strategy 

is best to learn the RAW to sRGB with bit encoder.
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DNN-based ISP considerations and challenges
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Training data

• It is important to remember that RAW images are sensor-specific
• This means we often need to train ISPs (and ISP modules) per sensor

• Modern smartphones can have 3-4 different sensors

• Capturing training data can be overwhelming for camera engineers

• Care is required when capturing training data
• Many of the low-light/HDR papers, the real contribution is the carefully captured 

training data

• Again, this needs to be captured "per" sensors

• Single stage ISPs have limited "tune-ability"
• Conventional IPS are designed to be tunable 

• DNNs are often tuned by changing the training data
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Consideration for DNN-based ISP

• A conventional ISP is still required to produce training data

• Can we beat conventional ISPs?

Current ISP workflow

Team of Image Quality Engineers tune ISP parameters

to produce desired images.
Team of Image Quality Engineers process 

thousand of RAW images with a

"software ISP" to produce training data?

raw

2

raw

3

raw

N

raw

1

output

2

output

3

output 

N

output

1

Neural-ISP workflow 

software

ISP
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Tutorial summary

• Background on color and color spaces
• This topic mixes many disciplines 

• Color constancy and terminology for illumination (e.g. color temperature)

• Overview of basic steps on camera pipeline

• Discussion of more modern multi-frame methods

• Discussion of some recent AI-based methods



Last slide (almost)

• I hope you have learned more about color and the in-camera rendering 
pipeline.

• I encourage you to state your assumptions about your image's color space in 
your research papers:

For example,  replace this:  "Our input is an RGB image …"
to: "Our input is an RGB image encoded in standard RGB…"

• Such a small clarification in your paper will greatly help other researchers.
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