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Motivation for this tutorial



Scientist’s view of a photograph

Photo by Uwe Hermann



Scientist’s view of a photograph
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Image = radiant energy measurement
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Simple models of a camera assumes an image is a “quantitative measurement” of scene radiance.

Figure from Digital Image Processing, Gonzales/VWoods



Camera = light measuring device
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Simple models of a camera assumes an image is a “quantitative measurement” of scene radiance.

Figure from Digital Image Processing, Gonzales/VWoods



Camera = light measuring device

LED light ring
Broadband visible light and
selected non-visible
spectral bands

19mm /

opening

lens

Camera

Medical imaging
explicitly requires
accurate
measurements.

Visible image

Image courtesy Elucid Labs

Enhanced RGB image

using a UV spectral band



Camera = light measuring device
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Image courtesy Scanwell Health

Home diagnostic testing
requires accurate
measurements across
different cameras.




Camera = light measuring device?

User defined
programs
(Custom modes)

Manual program
Diaphragm priority

Shutter speeds
priority

Programmable
automatic program

Fully automatic SAMSt
program
Subject modes
Portrait Mode n Soft Skin Mode ﬂ Transform Mode
— | o8
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In-camera photo-finishing is the
“secret recipe” of a camera

Nikon Sony

Photographs taken from three different cameras with the same aperture, shutter speed,
white-balance , ISO, and picture style.



In-camera photo-finishing
may cause problems for
scientific applications!

Which one is correct?



Motivation

* Cameras are the primary tool used to capture digital images.
* Digital images are the primary inputs to CV algorithms.

* CV researchers/engineers should have a basic understanding of
how cameras work to inform their algorithms.

* This tutorial aims to provide this basic understanding.
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A tutorial in three parts

Part |: Review of color, color constancy, and color spaces

* CIE XYZ, chromatic adaption, color temperature, and output color
spaces

* Background on color is necessary to understand Part 2

Part 2: Overview of a typical camera pipeline (ISP)
* Discuss the processing steps used by most ISPs
* Note that some steps are their own research topic

Part 3: Deep-learning/Al and the ISP

* Machine learning for individual ISP components
* Replacing the whole ISP with DNNs



Part 1:
Review of color, color constancy,
color temperature, and
color spaces



Color and color spaces

* To understand your camera, it is important to review how
humans perceive color in a real environment.

* We must also understand how color is encoded by various
models and color spaces.

* One of the main roles of the in-camera hardware is to convert
the sensor image into a standard output-referred color space
suitable for sharing and display.



Color is perceptual

Color is not a primary physical property of an object.

Red, green, blue, pink, orange, purple, yellow, . ..
- These are words we assign to visual sensations.
- The assighment of words can vary among cultures.

Which is the "true blue"?



Where do “color sensations” come from?

A very small range of electromagnetic radiation
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White light through a prism

“white light”
(broad spectrum)

Spectral “colors”

J y J

450nm 600nm 650nm

Isaac Newton
1’704 - Opticks

Relative Power

Light is separated into “monochromatic” light at different wave lengths.



Biology of color sensations

Our eye has three receptors (cone cells). The different cones respond to
different ranges of the visible light spectrum.

Light Response Spectra for Human Light Receptors (Cones)
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Cones and rods

* We have additional light-sensitive cells called rods that are not
responsible for color. Rods are used in low-light vision.

* Cone cells are most concentrated around the fovea of the eye.

Cone
density

Lens

Rod
density

Density in thousands per square mm
T

Cormea

-80 -60 -40 -20 0 20 40 60 80

Human eye Fovea Angular separation from fovea (degrees)

region
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Spectral power distribution (SPD)
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We rarely see monochromatic light in real world scenes. Instead, objects reflect a wide
range of wavelengths. This can be described by a spectral power distribution (SPD)

shown above. The SPD plot shows the relative amount of each wavelength reflected
over the visible spectrum.
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SPD relation to perceived color is not unique

Due to the accumulation effect of the cones, two different SPDs can be
perceived as the same color (such SPDs are called “metamers”).

Lettuce SPD
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Green ink SPD ’

‘ stimulating
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SPD of ink in a “picture of lettuce”
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Result in the same
color “sensation’’.



Tristimulus color theory

* Before the biology of cone cells was understood, it was empirically
known that only three distinct colors (primaries) could be mixed to
produce other colors.

* Moses Harris (1766), Thomas Young (1803), Johann Wolfgang von Goethe
(1810), Hermann Grassman (1853), James Maxwell (1856) all explored
the theory of trichromacy for human vision.

von Goethe Grassman

Harris

Early color photography

_ " is attributed to Maxwell.
From Harris “The Natural System of Colours
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Tristimulus color theory

Grassman’s Law states that a source color can be matched by a linear
combination of three independent “primaries”.

?

Three lights (shown as lightbulbs)
serve as primaries. Each light has

—_ R1 + G1 + B1 intensity, or weights, R1, G1, B1 to

— (10%) (80%) (5%) match the source light #| perceived

light mixture #1 color.

‘ g ! Same three primaries and the
— R2 ! + + B2 weights (R2, G2, B2) of each

. . (50%) ( 2% (50%) primary needed to match the

light mixture #2 source light #2 perceived color

If we combine source The amount of each primary needed to match the new source light
lights 1 & 2 to get #3 is the sum of the weights that matched lights sources #1 & #2.
a new source light 3 This may seem obvious

now, but discovering

@ that light obeys the laws
— (R1+ R2) + (G1+ G2) + (B1+B2) of linear algebra was a
(60%) (82%) (55%) huge and useful discovery.

light mixture #3
24



Radiometry vs. photometry/colorimetry

* Radiometry
* Quantitative measurements of radiant energy.
* Often shown as spectral power distributions (SPD).
* Measures light coming from a source (radiance) or light falling on a surface (irradiance).

* Photometry/ colorimetry

* Quantitative measurement of perceived radiant energy based on human’s sensitivity to
light.

* Perceived in terms of “brightness” (photometry) and color (colorimetry).

Object

N

¢

. Photometry/
Radiometry .
colorimetry
Tomato’s SPD O
o
—J Perception of the
Wavelength (1) tomato’s SPD

Physical Psychophysical



Quantifying color

* Human cone photoreceptors (L/M/S) were being characterized well into
the 2000s.1:2

* The need to quantify color and brightness existed much earlier.

* Since SPDs go through a “black box™ (human visual system), the only way
to quantify the “black box” is to perform a human study.

* Two key experiments
* To quantify perceived “brightness” (photometry)
* To quantify perceived “color” (colorimetry)

Physical SPD » @ @

“Black box”

1Schnapf et al. “Spectral sensitivity of human cone photoreceptors,” Nature 1987
2Stockman and Sharpe. “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in
observers of known genotype,” Vision Research 2000



Experiments for photometry

Relative Power

450nm 600nm 65

Chromatic source light at
a particular wavelength and

adjustable radiant power.

-4

Radiant power
of chromatic light.

The “flicker photometry” experiment
for photopic sensitivity.

LI

Reference bright light

O
/ with fixed radiant power.

O (Alternating between source and reference @ |7Hz)

Alternate between the source light and reference light
|7 times per second (17 hz).A flicker will be noticeable
unless the two lights have the same perceived
“brightness”.

The viewer adjusts the radiant power of the chromatic
light until the flicker disappears (i.e. the lights fuse into a
constant color).The amount of radiant power needed
for this fusion to happen is recorded.

Repeat this flicker fusion test for each wave length in the
source light. This allows method can be used to
determine the perceived “brightness” of each
wavelength.



|

450nm 600nm 650nm

Relative Power

Monochromatic light

O

Reference light

Perform the flicker
experiment for
each wavelength.

Result of the flicker experiments

Radiant power needed to match refernece light

400 500 600 700

wavelength

Amount of radiant
power needed for each
wavelength to make
the reference

light.

You need a lot more
400nm light to match
the reference than
you do the 550nm.

This means you
perceive 550nm
brighter than 400nm.



CIE (1924) Photopic luminosity function

Lof
If we invert the 08
curve on the
previous slide, 0.6
we get the O |
luminosity function. 04
02F
0.0 1.

400 500 A(nm) 600 700

The Luminosity Function (written as (A1) or V(1)) shows the eye’s sensitivity to radiant energy into
luminous energy (or perceived radiant energy) based on human experiments (flicker fusion test).

International Commission on lllumination (CIE comes from the French name Commission internationale
e I'éclairage) was a body established in 1913 as an authority on light, illumination and color .. CIE is still active
today -- http://www.cie.co.at



http://www.cie.co.at/

Radiometric to Photometric

How do we use | N\ | o Which SDP is
CIEY (or y (1))? SPD1 o : perceived brighter?
SPD1 and SPD2 i A
are clearly different. ol = FrR— e 780 @
Which one will ~ Y=0.2989
be perceived brighter Y = f SPD(A)y (A) dA
‘ SPD?2 380
(assuming the same SPD?

overall radiant power.)

Radiometric Photometric

CIEY gives a way to go from radiometric to photometric!
Now can quantify the perceived brightness of different light.




Radiometric vs. photometric units

Luminous Flux

Radiant Flux (lumens)
(watt)
Radiant intensity Luminous Intensity
(watt per steradian) candela :
Radiance ( ) | Luminance 2
l/kwa’ct per m? steradian) /candela per m’)
Irradiance | IIIumin’ance
(watt per m2— falling on surface) (Ilux)
Radiometric values Photometric values
‘ (Radiometric values weighted
: ———Ne by the Luminosity Function)
i «5\- 7

3100 lumens colour brightness



Colorimetry

Based on tristimulus color theory, colorimetry attempts to quantify all
visible colors in terms of a standard set of primaries

PO R I

Target color Three fixed primary lights.
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CIE RGB color matching
.

450nm 600nm 650nm

Relative Power

L‘ Red (700nm)

+/-
<« ‘ Green (546nm)
+/-
Test color  Matched Color 4‘/ Blue (435nm)
Human subjects
matched test colors \ 2° FoV
by add or subtracting
three primaries.
Field of view was 2-degrees

(where color cones are most ooo
concentrated)
Wright  Guild
“Standard Observer” "
(Willing participant with no eye disease) . '

Experiments carried out by
W. David Wright (Imperial College) and John Guild (National Physical Laboratory, London) — Late 1920s



CIE RGB color matching

)

450nm 600nm 650nm

Relative Power

+

Primary is added to the test color!

L‘ Red (700nm)

+/-
<« ‘ Green (546nm)

+/-
Test color  Matched Color L‘ Blue (435nm)

For some test colors, no mix of the
primaries could give a match! For
these cases, the subjects were ask to add
primaries to the test color to make the
match.

This was treated as a negative value of the
primary added to the test color.

\ \/ 2° FoV
oo
“Standard observer”
(Willing participant with no eye disease)

34



CIE RGB results

0.4C-IIIIIIIIIIIIIIIIIIlllll]lIIIIIIIIIIIIIIIIIIIII:
F()
0-3% g () *
: ——b@) 3
0.2(F E
0.1 E
0.0C ;
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CIE RGB 2-degree Standard Observer
(based on Wright/Guild’s data)

Plots are of the mixing
coefficients of each
primary needed to
produce the corresponding
monochromatic light at
that wavelength.

Note that these functions
have been scaled such
that area of each curve
is equal.
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CIE RGB results
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Negative values -- the three primaries used did not span
the full range of perceptual colors.



CIE 1931 XYZ

* In 1931, the CIE met and approved defining a new canonical basis, termed XYZ that
would be derived from Wright-Guild’s CIE RGB data.

* Properties desired in this conversion:

* Positive values only
* Pure white light (flat SPD) to lie at X=1/3, Y=1/3, Z=1/3
* Y would be the luminosity function (V(A))

* Quite a bit of freedom in selecting the XYZ basis
* In the end, the adopted transform was:

X 0.4887180 0.3106803 0.2006017][R
Y| =10.1762044 0.8129847 0.0108109( |G
Z 0.0000000 0.0102048 0.9897952/ LBI™ cie 1931 rGB

Nice article see: Fairman et al “How the CIE 1931 Color-Matching Functions Were Derived from Wright—Guild Data”, Color Research
& Application, 1997



CIE 1931 XYZ

0T — )
I y

1.5 — Z(A)

1.0+

0.5+

400 500 600 700
A/nm

This shows the mixing coefficients X{(A), y(A), Z(A) for the CIE 1931 2-degree standard observer XYZ basis
computed from the CIE RGB data. Coefficients are all now positive. Note that the basis XYZ are not physical
SPD like in CIE RGB, but linear combinations defined by the matrix on the previous slide.
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SPD to CIE XYZ example

— X1

How do we use “  CIE XYZ Values
T 15T — )
CIE XYZ? SPD1
XS SPD |
SPD1 and SPD2 X=0.284|

are clearly different. " agm " Y=0.2989
Will they be
e | wor 2O
SPD2
% . % & % & & - = % X=0.2841|
Two SPDs Y=0.2989
Z=0.3254

780 780 780
X = j SPD(V)x () dA Y = J SPD)Yy WdL  Z = j SPD(V)zZ (1) dA

380 380 380



SPD to CIE XYZ example

—  CIE XYZ Values
How do we use 154 —
CIE XYZ? SPD1
&3 SPDI
SPD1 and SPD2 X=0.2841
are clearly different. Y=0.2989 _
Will they be ' -
Perceived < the 1 Z=03254 From.thelr CIE XYZ
SPD?2 mappings, we can
same color? determine
SPD?2 ~ that these two
& i L L L T - L X=0.284 | SPDs.W|II be
perceived as the
Two SPDs Y=0.2989 | same color!
Z=0.3254
Now we can
Radiometric Photometric/Colorimetric

quantify color! <.

CIE XYZ gives a way to go from radiometric to colorimetric.
Imbedded is also the photometric measurement in the Y value.




CIE XYZ Plot

It is challenging to visualize the 3D CIE XYZ space.
We often don’t plot color in this space.
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Luminance-chromaticity space (CIE xyY)

e CIE XYZ describes a color in terms of linear combination of three
primaries (XYZ).

* Sometimes it is useful to discuss color in terms of luminance (perceived
brightness) and chromaticity (we can think of as the hue-saturation
combined).

* CIE xyY space is used for this purpose.



CIEYxy chromaticity diagram
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In the 1930s, CIE had a bad habit of over using the variables X,Y. Note that x,y are chromaticity coordinates,
X, ¥ (with the bar above) are the matching functions, and XY are the imaginary SPDs of CIE XYZ.



Usefulness of CIE 1931 XYZ

* CIE XYZ space is a “device independent” space — the XY/Z values are
not specific to any device.

* Electronic devices (e.g. cameras, flatbed, scanners, printers, displays)
can compute mappings of their device specific values to the
corresponding CIE XYZ values.

* This provides a canonical space to match between devices (at least in
theory).
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A caution on C|E xy chromaticity

From Mark D. Fairchild’s book: “Color Appearance Models”

“The use of chromaticity diagrams should be avoided in most circumstances,
barticularly when the phenomena being investigated are highly dependent on
the three-dimensional nature of color. For example, the display and comparison
of the color gamuts of imaging devices in chromaticity diagrams is misleading
to the point of being almost completely erroneous.”

Fairchild

COLOR APPEARANCE 1
MODELS Y e




Fast forward 90+ years

* CIE 1931 XYZ, CIE 193] xyY (2-degree standard observer) color
spaces have stood the test of time.

* Many other studies have followed (most notably - CIE 1965 XYZ |0-
degree standard observer), ...

* But in the literature (and in this tutorial) you'll find CIE 1931 XYZ
color space remains the preferred standard.



What is perhaps most amazing!

* 90+ years of CIE XY/, and it is all based on the experiments by Guild
and Wright’s “standard observers.”

* How many standard observers were used? 100,500, 1000?

(&

A standard observer



CIE XYZ is based on |7 (male) standard observers

|0 by Wright, 7 by Guild

| | >

|\

g

“The Standard Observers”
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Can we talk about cameras now!

Sorry, not yet ...



An object’s SPD

In the real world, most objects do not emit an SPD, instead, they reflect an SPD.
As a result, an object’s SPD depends on the environmental illumination.

Our earlier example
ignored illumination [lluminant 1 SPD [lluminant 2 SPD llluminant 3 SPD
(we could assume it was pure

white light). i

Tomato SPD

— W
© L
e
]

Wavelength (1)
l Instead, think of this ”, g b
of how the object N

reflects different
wavelengths

-

"’f\
.>!<
.
|



Color constancy

Our visual system has an amazing ability to compensate for environmental
illumination such that objects are perceived as the same color.

llluminant 1 SPD llluminant 2 SPD llluminant 3 SPD

— - A
éJ ébx

!

0,

Looks the same!

@&

|

O



Chromatic adaptation example

Example from Andrew Stockman (UCL)



Chromatic adaptation example




Color constancy/chromatic adaptation

* Color constancy (chromatic adaptation) is the ability of the human visual
system to adapt to scene illumination.

* This ability is not perfect, but it works fairly well.

* Image sensors do not have this ability! We will discuss this in
part 2 .. this is related to the camera’s white-balance module.



Color constancy (at its simplest)

. ) .
e The Von Kries transform Johannes von Kries

* Compensate for L/M/S channel corresponding to the L, M, S response to
scene illumination.

[Lillumr Miium Sillum]
L/M/S response to the light source.

“Corrected colors”

T [ 1T ] S M //"\‘ L
Lx 1/ Lillum 0 0 Lx / \
M, |= 0 1/M;11um 0 M,
g! S ’x O O 1 / S illum S X : L T R 55.0\-100
[L, My, S,] ) ) ) - T Ly, My, Si]
Divide out long/medium/short Long/medium/short
Long/medium/short cone response to the scene’s cone response to scene point
cone response with illuminant.

X under some illuminant.
illumination “corrected.”
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Color constancy for printed media

Printed media (i.e., stuff that reflects light)

Scene illumination

White paper

°o

O

The white paper reflects the light. The The photo also reflects the light, so

paper is almost a perfect reflector. the colors are perceived correctly.
Since we are adapting to the

environmental light source,
the paper appears white.

Photo of sunset




Color constancy for emissive media

Emissive media (e.g., monitor/tablet, smartphone screen)

Display the color
of illumination

The display does not reflect light.
Because we are adapting to the
environmental lighting, we need
the display to match the scene

Scene illumination

Photo of sunset

illumination. If we match the illumination,

the display will appear “white.”

The displayed image colors will appear
differently than intended, since

we are adapting to the

environment illumination.



Implications of the previous slides

* Color is intimately connected to scene illumination.

* Even for emissive displays, we have to consider (or make assumptions)
about the illumination in the viewing environment of the display.

* Keep this in mind because it will play a role when we define color
spaces used to encode our images.



Understanding color temperature

* In the photography and display communities, an illumination’s “color” is
described using a correlated color temperature (CCT).

* White balance on cameras also often uses color temperature to
describe illumination.

* This is an excellent example of where metamers are used.
* Recall — a metamer is when two different SPDs appear visually the same color.



SPDs of common illuminations

i | l I I l [
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CIE standard illuminants

250
200
150
[
100 B
50 A
Q

400 450 500 550 600 650 YOO o T30

SPDs for CIE standard illuminant A, B, C

120¢

110}

100+ N
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40" i i I 2 —
400 450 500 550 600 650 700

130

50

| =]

A0 450 500 550 G600 G50 F00

SPDs for CIE standard illuminant E

D, E, and F series images from http://www.image-engineering.de

SPDs for CIE standard illuminant D50, D55, D65

60

-F2
50t

—F1||

40+
30t

20t e /A\ |

400 450 500 550 600 650 700

SPDs for CIE standard illuminants F2, F8, F1 |
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Color temperature

* As mentioned, illuminants are often described by their “color temperature.”

* This mapping is based on theoretical blackbody radiators that produce SPDs for a given
temperature expressed in Kelvin (K).

* We map light sources (both real and synthetic) to their closest color temperature.

JF Blackbody Radiation
a
%10 Spectrum
T T

Plank's law

Spectral density of electromagnetic
radiation emitted by a blackbody
radiator at a given temperature T.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 22 2.4 26 28
A wavelength nm %1 03

Tmin=1000 K T=4000 K Tmax=6000 K A_max = 3000 nm 1 [0 Log scale.

™ ™) Ty P66 & I._._'_. — |
L | L L ] L L 3 L ““—ﬂ) [ b |
|
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Visible range of a black body radiator SPD

 T=6000K

Lo . .

g Consider only the visible

o ™ ‘ wavelengths from Plank's

0 equation at a certain

5 temperature.

Q

£

Q

o iy —1-

- &0 R0

Visible range

gamma rays wave length long (radio) waves

Black body radiator SPD for different color temperatures

Animation credit: Dariusz Kowalczyk



400

500

g0

Plot visible SPDs in CIE xy chromaticity

700

0.9;

0.8

0.71

0.6-

5001
0.51

0.4

hot

520

540

10000

0.21

0.14

0.0

Plot of color CIE xy locations of SPDs based
on color temperature.

This curve in the CIE xy plot of the
"Planckian Locus" of color temperatures.
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2000 1500°
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700

0.0

0.8
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Color temperature of an SPD example

SPD of a light source

OLED

power
b >

380 430 480 530 580 630 680 730 780
wavelength (nm)

X

BT — ()

0.2

(1) Find the light sources SPD mapping to CIE XYZ using the CIE 193] mapping functions.
(2) Project the CIE xyY value to the Planckian locus line.

400 500 600 700

CIE 1931 mapping functions Where the projection falls is the Correlated Color Temperature (CCT) of this light source.
So, in this example, the OLED light source is roughly 4500K.

—

While we often say "color temperature", we should say "correlated color temperature.” The
concept is not always related to the physical temperature of the light source, but its correlation
with the black body radiator's color temperature.



Color temperature

Kelvin Color Temperature Scale

10,000K
dmi 10,000K +: Blue Sky
9,000K Typical description of
- color temperature used
8,000K in photography & lighting
- sources.
7'000'(_ —— 7,000K-7,500K: Cool White Seesmart LED
6,000K
il | 6,000K: Cloudy Sky
5,000K —_— 5,500K-6,000K:Day White Seesmart LED

= 4,800K: Direct Sunlight

4o000K 4,000K-4,5000K: Natural White Seesmart LED
— 4,000K: Clear Metal Halide

30000K a— 3,000K: 100W Halogen
— b 2,800K: 100W Incandescent
— 2,700K-3,200K: Warm White Seesmart LED
2,000K 2,200K: High Pressure

&y ——— 1,900K: Candle

From B&H Photo
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Lighting industry uses

color temperature

LVWIT LED Light Bulbs 60 watt
Equivalent (8.5W) 5000K Daylight
Non-dimmable A19 LED Bulb E26
Screw Base UL-Listed 6-Pack

WRRR®Y V119

CDN$‘| 999

< <> <>
- - =%

A A
@ﬁé“ @ &

Hyperikon PAR30 LED Bulb, Short
Neck (L: 3.6"), 1T0W (65W
Equivalent), 820lm, 3000K (Soft
White Glow), CRI90+, 40° Beam...

Y e A e Ay~ 57

CDN$4 595 (cpN$ 7.66/Bulbs)

Usage of correlated color temperature in these ads relate to the perceived color of the bulb's light. The heat output of a typical LED bulb is
between 60C-100C (~333-373K).




White point

* A white point is a color defined in CIE xyY that we want to be
considered “white” (or achromatic/neutral).

* This is essentially an illuminant’s SPD in terms of CIE XYZ/CIE xyY

* Think of it as CIE Yxy value of a white piece of paper under some illumination.

0.9

0.81 A

0.71

0.61

5001
0.5

CIE llluminants
A, B, C, D65, E in terms of CIE xy

CIE X , y
A 0.44757 , 0.40745
B 0.34842 , 0.35161
C 0.31006 , 0.31616

Dé5 0.31271 , 0.32902
E 0.33333 , 0.33333
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Quick summary on color constancy

* Color constancy is our ability to adapt to illumination in the
scene.

* Correlated Color Temperature (CCT) — or just color
temperature — is a system used to describe scene illumination.

* Note: we must factor in the scene illumination when capturing
and displaying color images.



Color adaptation is not perfect

Mark Fairchild

“True color constancy, almost never.
Inconstancy, nearly 100% of the time.”

George Box (Statistician pioneer)
“Remember that all [mathematical] models

are wrong; the practical question is how
wrong do they have to be to not be useful.”




Now we are finally done with color?

Almost ...



* While CIE XYZ is a canonical color space, images/devices rarely work

directly with XYZ.

CIE XYZ and RGB

* RGB primaries dominate the industry, this is because we can produce
RGB light sources (LEDs, phosphorus for CRT monitors, filters, etc)

* We are all familiar with the RGB color cube.

* But is the color cube a color space!?

B

By now, you should realize

255,255,255) that “red”, “green”, and “blue” have no
quantitative meaning as words. We need to
know their corresponding SPDs or

CIE XYZ values.
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Color model versus color space

* A color model is a mathematical system for describing a color as a
tuple of numbers (RGB, HSV, HSL, more...)

* A color space is a specific range of colors within a color model. The
range of color (gamut) can be expressed in CIE XYZ. Color spaces
typically also define the viewing environment and, therefore, the “white
point” of the space.

Color models (not color spaces)

i

RGB color model | HSV color model | HSL color model




Defining a color space with specific RGB values

The RGB values span a subspace,
of CIE-XYZ to define the devices
gamut.

We need to define our RGB values.

White
(255,255,255)
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Problem with just a color model..

RGB |
RGB 2
RGB 3

Which RGB primaries
are the right ones!?

White
(255,255,255)

RGB values must be specified.
If not, this is a huge problem for
color reproduction from one device to

the next.
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Standard RGB (sRGB) — Rec. 709

520

In 1996, Microsoft and HP
defined a set of “standard”

RGB primaries.

R=CIE xyY (0.64, 0.33, 0.2126)
G=CIE xyY (©.30, 0.60, 0.7153)
B=CIE xyY (0.15, 0.06, 0.0721)

This was considered an RGB
space achievable by most
devices at the time.

The white point was set to the D65
illuminant. This is an important
to note. It means sRGB

has built in the assumed

viewing condition (6500K daylight).
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sRGB's white point

* Color spaces intended for display (called display-referred or output-
referred) define a white-point.

* Remember to match the assumed illumination in the viewing environment
* The “white” of sRGB (i.e.,,[1,1,1]) is displayed at D65

D50 viewing

0.9
0.8

0.7

4

0.6

D50
eye is adapting to D50

sRGB (DSO whitepoint) environment light.

1 D65 viewing

sRGB (D65 whitepoint) :Z:“:l ic:;leplzitnﬁgt& D65

500

0.4

0.0 R &5 ‘
00 01 02 03 04 05 06 07 08
X

CIE XYZ

The positions of the white-point locations are exaggerated here.



Assumed viewing illumination is important

Viewing
illumination

”
Image: Scientific America article explaining

how viewing environment lighting impacted our
perception of the color.

Remember “the dress’’?



CIE XYZ to sRGB conversion

Matrix conversion:

R 3.2404542 —1.5371385 0.4985314][X
G| =1-0.9692660 1.8760108 0.0415560(|Y
V. B 0.0556434 -0.2040259 1.05722521171 ~_
Linearized sRGB (Dé65) CIE XYZ

* D65 is set as the white-point.
* This is the linear sRGB space.
* sSRGB also specifies a gamma correction of the values (next slide)

* The CIE refers to this as the Recommendation 709 color space — or
Rec.709.



sRGB gamma curve

(1D transfer curve)

0.9F -

04} .

0.3F -

—i

é 08} .

(a0 0.7f i

QO . o
o o 1 This is a close approximation of
(%]

o 1 the actual SRGB gamma

=

s

=

O

02} B

0.1 -

U | | | 1 | 1 | | |
0 0.1 0.2 03 04 05 06 07 08 09 1

Input linear-sRGB (range 0-1)

The actual formula is a bit complicated, but effectively this is gamma (I’= 255 x1(/22)) where I’ is the output intensity and
| is the linear sRGB ranged 0-1, with a small linear transfer for linearized sRGB values close to 0 (not shown in this plot).
This is known as “perceptual encoding” and is intended to allocate more bits based on our nonlinear response to radiant
power.



Stevens' power law

* Physical stimulus vs. perceptual sensation

* Stevens' Power Law
Dr. Stanley Stevens showed

that most human sensations
follow a power-law
relationship between stimuli
and sensation.

. a power
/S — kI <’exponent

Human T
sensation Constant

Stimulus
intensity

Stevens' model stated that human perception to brightness
followed a power law.

Y = 1091/3

perceived brightness i

radiometric power @



Stevens' power law

Interpreting the power law.

) S
S? mmmmmmmmmmm -":_'j___'j-"'l'

S6 ——————____7/“-

A constant (linear) increase S5 [-———
in perceived brightness. sq4

|

S3

52

S1
!

S0

0 20 40 60 80 100

|

|

|

A |

| |

| |

| |

I |

| |

| |
T“;\.l “*“**| Al T Al ——— |

I | |

The radiant power needs to change exponentially.



sRGB gamma

1

09
0.8
07

| sRGB gamma

05

Steven’s V3 power-law

Y =1091/3

04

03

Output sRGB 0-1

02

perceived brightness 1

01

0

d' . (D 0 0.l1 012 Uj3 Ui4 UTE U‘IG 0?7 0}8 U:B 1
radiometric power .
P Input linear-sRGB (range 0-1)

* The sSRGB gamma approximates Steven's § power-law.

* The reason we apply gamma is that it remaps the linear color to fit better our visual
system’s nonlinear response to radiant power.

* There is 2 misconception in many graphics and image processing textbooks that
gamma is apPIied to compensate for displays (CRTs). See a nice writeup about this
by Poynton.

! https://poynton.ca/PDFs/Rehabilitation_of gamma.pdf



Before (linear sSRGB) & after (sSRGB)

1

09

08

07

06

05

04

0.3

02

Final sSRGB

01

0 L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1

Linear sRGB

Linear sRGB Final sSRGB



Standardization is not new - NTSC/PAL

0.9

0.6

0.5

0.4

0.3

0.2

0.1

520

o7f

® Primaries of sSRGB
®primaries of NTSC

1
0.8 Gamma
encoding J
,I
0.6 ,
4
U4
0.4r y 4
’
’ 22
0.2
decoding
0 _—r’ . . r
0 0.2 0.4 0.6 0.8 1

Both NTSC and sRGB used gamma encodings.
Most color spaces use some type of perceptual
encoding.
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NTSC/sRGB

(know your color space!)

Linear-sRGB back to XYZ
X 0.4124 0.3576 0.1805]| [R

Y| =10.2126 0.7152 0.0722| (G
A 10.0193 0.1192 0.9505| |B

Linear-NTSC back to XYZ
X 0.6071 0.1736 0.1995] [R

Y| =10.2990 0.5870 0.1140| (G
Z 10.0000 0.0661 1.1115] |B

It is important to L~
known which color space
your image is in.

Many color APIs (e.g., matlab, python) assume the
default color space is NTSC. Many research papers
use the wrong equations!



An additional fun fact

* Physical stimulus vs. human sensations

e Stevens' Power Law Dr Stanley St
I. an ey evens

introduced showed that
most human sensations
follow a power-law relationship
between stimuli and sensation.

. a power
Human/S - kI 4——exponent

sensation ConstTant \

Stimulus
/ . . )
/ (curve of pain) Intensity

[ =.0015P3>
/

/ Stevens also did experiment on the pain sensation of
electrical shock! Turns out our sensitivity is the opposite

P =1091/3 than with radiometric power to brightness.
(curve for brightness) L ey ) =

perceived sensation 1

stimulus intensity ®




CIE XYZ: The mother color space

CIE XYZ
ProPhoto / \
Adobe RGB / I Display P3
CIELAB sRGB NTSC/PAL



Other common color spaces

This tutorial does not go into the details of the mathematical transformations to other
color spaces (we'd need another tutorial for that). You can find the transforms online.

The goal here is to explain the rationale behind each transform so you understand
why the other color spaces are introduced.



CIE LAB space

The ellipses shows the
range of colors (around the

0.9- center of the ellipse) that
* CIE LAB space (also written as CIE Fem would be perceived as the
L"a"b") was introduced as a perceptually oy Sa;'("}ez-\t’l‘:? can see thfat CIE
uniform color space Gl AT£ this 1S not Uniform.
* Why? 06/
* CIE XYZ provides a means to map between 500+
a physical SPD (radiometric measurement) to yO'S'

a colorimetric measurement (perceptual)

* However, a uniform change in CIE XYZ space
does result in an uniform change in perceived 0.31
color difference (see diagram)

e CIE Lab transforms CIE to a new
space where color (and brightness)
differences are more uniform. -

David MacAdam performed experiments on color
perception. This plot is known as the MacAdam ellipses.




CIE 1976 LAB

* Considering the MacAdam experiments and the Steven's power-law, CIE LAB was
derived in 1976 by applying various transformations to the CIE XYZ values that

result in the following:

100 - White (D65)

L

* L* represents a perceptual brightness measure between 0-100

* L*is a non-linear (gamma) transformation of the Y component of CIE XYZ.

* L is approximately a cube root of Y (directly from Steven's power law)

* a* and b* (often range £50)

* Both have similar non-linear transformations applied, and represent approximately:

* a* values lying along colors related to red and green
* b* values lying along colors related to yellow and blue 0 (Black)
» a*=b*=0 represents neutral grey colors

NOTE: CIE LAB requires the white point to be specified for the transformation.
The default white point is D65.

Image from Mohamed Cheriet



CIE LAB

CIE-L*ab space CIE-xyY space

Chromaticity comparison's between CIE LAB and CIE XYX

Image from Bagdasar et al ICSTCC'I7

0.8




Color error metric — CIE 2000 Delta E (AE)

* Delta E is a color metric based on L*ab space.

* Since L*ab is more uniformly perceptual, distances (e.g., Euclidean
distance) in L*ab have more meaning than in CIE XYZ.

* Delta E values have an interpretation as follows.

DeltaE Perception
In general, a AE of 2 or

<=1.0 Not perceptible by human eyes. less is considered to be
very good. It means a

1-2 Perceptible through close observation. standard observer could

2-10 Perceptible at a glance. not t(.ell that two colors
are different unless they

11-49 Colors are more similar than opposite observe them very
closely.

100 Colors are exact opposite

Table from
https://zschuessler.github.io/DeltaE/learn/



https://zschuessler.github.io/DeltaE/learn/

Other color spaces to be aware of
+ Adobe RGB

* Medium gamut color space
* Used for photo-editing

* Display P3
* Medium gamut color space

* Used by Apple devices to accommodate better display technology
* Similar to Adobe RGB

* ProPhoto (ROMM)

* Developed by Kodak
* Intended to encode a wide range of colors and dynamic range

These are known as “output referred” color spaces because they are defined for encoding images for display or
output devices. The definition of color spaces also states the space's preferred dynamic range and viewing
environment (although we rarely view in such conditions).



Color space’s gamut

ProPhoto RGB

Wide-gamut
Adobe RGB 1998

Medium-gamut

Small-gamut

CIE Yxy chromaticity

A color space’s gamut is the span of colors that can be represented. The 3D gamuts are plotted in CIE L*ab.



Gamuts expressed in chromaticity are misleading

AdobeRGB plotted

in CIE XYZ and

then projected to

2D CIEYxy chromaticity.

Image:Alp_Er_Tunga *See slide 44 (Mark Fairchild’s comments)



ProPhoto color space

Wide-gamut ProPhoto RGB color space

Wi e if-ii-%'g}:;;@i\;::\\:\ﬁ“:&‘ DS
RS S ece == , X
R R R
\Vava \\\\\\\\\ SRR
LN ‘ \\ \\
VARSI

ProPhoto encodes over 90% of surface colors (color from reflected light of a surface, i.e., not emitted light).
It is recommended to use |6-bit values per channel since the gamut is so large.
The white point is D50.



Adobe RGB/Display P3 color space

* Medium-gamut AdobeRGB color space.
(Apple’s Display-P3 is very similar).

AdobeRGB/Display P3 encodes over ~50% of surface colors. Display P3 is Apple’s encoding color space.
It is recommended to use 10-bit per channel.
The white point is D65.



sRGB color space™

Small-gamut standard RGB (sRGB) color space

a

*Currently, sSRGB is the most common color space (designed for 1990s display technology).
sRGB encodes ~30% of surface colors.

Developed for 8-bit encoding per channel.
The white point is D65.



Displaying different encodings

L .
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55

PowerPoint expects images to be in SRGB. When encoded in a wider gamut color space, the image may appear dull.
This may seem counter-intuitive because the wider gamut should encode more colors, but this is only possible when
the software and display hardware are aware (and capable) of interpreting the color space correctly.



Now, are we really finally done with color?

Yes ...

But remember that color appearance, measurement, and encoding is its own research
field. My slides provide only a basic introduction. The CV community is bad at
abusing color terminology or not putting in enough effort to understand color fully.



Congratulations!

Cos ("(“‘ .
éﬁffﬁfw!ﬁ rf S ﬂf/&r’;’wﬁ 7,

’ :-’EF.I r‘l'_’-t':-"ﬁ"qj-{r'rﬂrr fer fd J,f'iﬁ*rjr"m‘r“rf fev
You

wnihis 03 dayoy  Oct 2023

Jor .-.--,.;.-,-II_-!..-'.'-.-'.-:.-..;.- oy
“Tutorial on color for cameras.”
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Part 2: Overview of the
in-camera rending pipeline



In-camera rendering

* The image directly captured from the camera’s sensor needs to be
processed.

* We can call this process “rendering,” as the goal is to render a digital
image suitable for viewing.

Sensor image

Final rendered
image in sSRGB



Image signal processor (ISP)

* An ISP is dedicated hardware that renders the sensor image to produce

the final output.
* Companies such as Qualcomm, HiSilicon, Intel (and more) sell ISP chips
(often as part of a System on a Chip — SoC).
* Companies can customize the ISP,

* Many ISPs now have neural processing units (NPUs).

Snapdrogon

&

SAMSUNG

EXynos &3 3
2200 . i Gem

Samsung Huawei Apple Samsung/Pixel/OnePlus/Xiaomi/....



A typical color imaging pipeline

ISO gain and RGB
raw-lma-ge I Demoasicing
processing

Sensor with color filter array (CFA)
(CCD/CMOS) l
ol White-Balance &
olor i
_ Color S Noise
Image ReSCI?"“g « Manipulation « 'I(')r:qrsfopri:e « Reduction
(or up-scaling) (Photo-finishing) (CIE XYZ)
Mapping to PEGIHEIC | g
output color '
U » Compression Save to file

(e.g.. sSRGB, P3)

NOTE:This diagram represents the steps applied on a typical consumer camera pipeline. ISPs may apply these steps in a different order or combine them in
various ways. A modern camera ISP will undoubtedly be more complex but will almost certainly implement these steps in some manner.



A typical color imaging pipeline

Image Rescaling
(or up-scaling)

$

Mapping to
output color
space
(e.g., sSRGB, P3)

ISO gain and

raw-image ‘

processing

Sensor with color filter array (CFA)

-

(CCD/CMOS)

Color

Manipulation
(Photo-finishing)

JPEG/HEIC
Compression

—

RGB
Demoasicing

White-Balance &
Color Space
Transform

(CIE XYZ)

§

Save to file

Noise
Reduction
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Camera sensor

Medium format film_—" | _Fujifilm G Format
(70 x 60 mm) 'M/,// (43.8 x 32.9 mm)
B 35mm format
‘Medium format’ sensor 11 (36 x 24 mm)
(ORI i) il APS-C format
@ i} (~23.5 x 15.7 mm)
‘Medium format'sensor =
(49 x 36.8 mm) — 14l [ Micro Four Thirds
- MY (17.3 x 13.0 mm)
Pen(t:: S%%DmS;?SL/_ B | [T teineh Type
\\ (12.8 x 9.6 mm)
~ Smartphone sensor
CMOS sensor e

Figure from Photo Review website.

Almost all consumer camera sensors are based on complementary metal-
oxide-semiconductor (CMOS) technology.

We generally describe sensors in terms of number of pixels and size. The larger the sensor,
the better the noise performance as more light can fall on each pixel. Smart phones have
small sensors!
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Camera sensor RGB values

A Near Infrared (NIR) filter
is often placed before the Micro-lenses are placed over the

sensor. (This is sometimes Light diode to help increase
" irror™. Thi , : light collection on the sensor
Falled a "hot mirror )- This o ! near infrared filter / g
is because red filters often = |
respond to NIR light.

Color filters place over

the sensor. This forms

a Color Filter Array (CFA)
also called a “Bayer Pattern”
after inventor Bryce Bayer.

=

Color filter array . N
or "Bayer" pattern. Photodiode llicon/Circuitry

Photons hit the diode
and force out electrons.
This design is similar to

a solar cell!

Bryce Bayer
(Kodak)
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Camera RGB sensitivity

* The color filter array (CFA) on the camera filters the light into
three sensor-specific RGB primaries

Nikon D3 Canon 1D Mark Il

1¢ 1¢
) =
£ 0.8} = 0.8}
@ @
5 0.6t 5 0.6
W W
T 0.4 £04
[&] Q
g 3
CD 02' (D 02'

£00 500 500 700 £00

500 500 700
Wavelength nm

Wavelength nm

Plotted from camera sensitivity database by Dr. Jinwei Gu from Rochester Institute of Technology (RIT). Dr. Gu is
now at SenseTime (USA). http://www.cis.rit.edu/jwgu/research/camspec/



http://www.cis.rit.edu/jwgu/research/camspec/

Measuring camera sensitivities

* It is not easy to get information on a camera’s spectral sensitivities.
* This process is called camera or sensor characterization.
* The sensitivity needs to factor in the entire camera form factor: lens, NIR filter; and CFA.

* You need specialized equipment to measure camera spectral sensitivities.
* But of course, reviewer 2 will say obtaining sensitivities curves is easy....

Image Engineering GmbH & Co. KG

camSPEC device for measuring
camera spectral sensitivity.

https://www.image-engineering.de/products/equipment/measurement-devices/588-camspecs-express



Remember: physical world
is measured by radiometric
spectral power distributions.

Sensor raw-RGB image

400

500

Canon 1D Mark Il

-

[

N

o
N

Spectral Senistivity

200 500 600 700
Wavelength nm

Camera spectral
sensitivities.

Your camera sensor
RGB filter is sensitive
to different regions
of the incoming SPD.

o O o
(0]

raw-RGB represents
the physical world's SPD
"projected” onto the
sensor's spectral filters.
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Sensors are linear to irradiance

* Camera sensors are decent light measuring devices.

* If you double the amount of light hitting a sensor's pixel, the digital value
output of that pixel will double.

é

Sensor output is linear with respect to
irradiance falling over the sensor over
a certain amount of time.

[ =1*t

Digital value | is a linear function of irradiate | and exposure t.
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IMPORTANT: raw-RGB sensor images are not in a
standard color space.

N

Canon ID Sony a57
" Jo.20
W\ & ol
[|[Canon ID - Nikon D40||, [|Canon ID - Sony a57||, ||[Nikon D40 - Sony a57||,

Color plots show L2 distance between the raw-RGB values with different cameras.



Displaying raw-RGB images
* Inserting a raw-RGB image in your slides, research paper, etc will result in

strange colors.

* Why? Our devices (computers, printers, etc) expect the image to be in a
standard color space like sRGB.

This is a raw-RGB image. Why does it look bad?

Because the raw-RGB values are not sRGB values.
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A typical color imaging pipeline

Sensor

ISO gain and

raw-image ‘

processing

Image rescaling
(or up-scaling)

Color

manipulation
(Photo-finishing)

$

Mapping to
output color
space
(e.g., sSRGB, P3)

JPEG/HEIC

compression

RGB
demoasicing

White-balance &
color space
transform

(CIE XYZ)

§

Save to file

Noise
reduction

16



ISO signal amplification (gain)

* Imaging sensor signal is amplified and digitized.

* Amplification to assist A/D conversion.
* Need to get the voltage to the range required for the desired digital output.

* This gain is used to accommodate camera ISO settings.

* Gain to signal applied on the sensor.
* Note — gaining the signal also gains image noise.

Different ISO settings (note: the exposure will be shorter for higher ISO)

ISO gain and
raw-image
processing

Image: Harry Guinness



Pixel "intensity"

* We often talk about a pixel's intensity, however, a pixel's numerical
value has no unit.

* The digital value of a pixel is based on several factors.
- Exposure (which is a function of both shutter speed and exposure)
- Gain (ISO setting on the camera)
- Camera hardware that digitizes the signal.

* We typically rely on the relative digital values in the image and not
the absolute digital values



Black light subtraction

* Sensor values for pixels with “no light” should be zero.

* However, this is not the case due to sensor noise.
* The black level often changes as the sensor heats up.

* This can be corrected by capturing a set of pixels that do not see light
* Place a dark shield around the sensor.

* Subtract the level from the “black” pixels.

ISO gain and
raw-image
processing




Optical black (OB)
Sensor area(s)
: % capturing

“optical black”

VOB
25—t— SE;.ECTIDN

CIRCUIT

VOB e \\\\\\x\‘t\\%\m\\\\\\ -i-.’-i-i- [}
24—t SELECTION e BN \\ FIRST OB PIXEL \\\:-.‘-i-i-i k3

CIRCUIT lelelels R A \\\ el )

§ \\:;:;:;;
23— szcron \ BEEETUEE FUIEE EART % ;
\

22 SELECTION >
| crreur e

L B

VOB N L N L N
21— SELECTION -f-f-f-f-f-i-f-i-iti-f-i-i-_'-i-i-i-'_-i-i-i-i-i-Z-Z-Z-Z-Z-Z-.'-'_-Z-. SROBABANS I | 5|
L 0 | | | O R P Y P PR PP - P I PP
K \ READ-OUT CIRCUIT \
/ / |
103 102 101

Black light capturing areas (likely exaggerated) from Sony US Patent US8227734B2 (Filed 2008) .

ISO gain and
raw-image 120
processing




Defective pixel mask

* CMOS have pixels that are defective.

* Dead pixel masks are pre-calibrated at the factory
* Using “dark current” calibration
* Take an image with no light
* Record locations reporting values to make “mask.”

* Bad pixels in the mask are interpolated.

ISO gain and
raw-image
processing




Defective pixel mask example

|dentifying “dead pixels” After interpolation

raw-image
processing

ISO gain and
122

Image courtesy of Lu Zheng and Moshe Ben-Ezra



Flat-field correction

Uniform light falling on the sensor

may not appear uniform in the raw-RGB
image. This can be caused by the lens,
sensor position in the camera

housing, etc.

We want to correct this
problem such that we
get a "flat" (or uniform) output.

Apply a correction
gain over the sensor
values.

Before correction After correction

ISO gain and
raw-image
processing

123

This operation can also be called lens shading correction.




A typical color imaging pipeline

Sensor

ISO gain and

raw-image ‘

processing

Image rescaling
(or up-scaling)

Color

manipulation
(Photo-finishing)

$

Mapping to
output color
space
(e.g., sSRGB, P3)

JPEG/HEIC

compression

RGB
demoasicing

White-balance &
color space
transform

(CIE XYZ)

l

Save to file

Noise
reduction
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CFA/Bayer pattern demosaicing

* Color filter array (CFA) pattern placed over pixel sensors.

* We want an RGB value at each pixel, so we need to perform
interpolation.

&

Sensor with color filter array

(CMOS) Sensor RGB layout Desired output with RGB per

pixel.

RGB
Demoasicing
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This is a zoomed up version

of the Bayer pattern. Simple interPOIation
G4! 7 | Gé

o [
G8
H -

G2

G8

At location R5, we have a red pixel . G5 - G2 + G4 + Gé
value, but no Green or Blue pixel. /
G5 ! 4

We need to estimate the G5 & B5
values at location R5. ) A
T EEE

L2

Demoasicing
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Simple “edge aware” interpolation

Neighborhood
about red pixel

mn
R G B

Captured raw-Bayer image

RGB
Demoasicing

o

?

O

Neighboring Weight mask based on red pixel's
green values similarity to neighboring red values.

\ )
f

0. 02 02 02 0.2

Missing green pixel value is computed
as a weighted-interpolation of the
neighboring green values. G

Do this procedure also for the blue pixel, BS.
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Newer CFA/Bayer patterns

* Newer sensors are starting to use different patterns.

* Quad/Tetra (2x2) and Nona (3x3) are now common on smartphones.

* In low-light situations, the 2x2 or 3x3 layouts are “binned” into a

single pixel (a process called binning).

RGB
Demoasicing

HEER =
O | |
Tetra CFA Nona CFA

Image: Sang-wook Park and Jong-hyun Kim
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Demosaicing in practice

* The prior examples are illustrative algorithms only
* Camera IPSs use more complex and proprietary algorithms.

* Demosaicing can be combined with additional processing
* Highlight clipping
* Sharpening
* Noise reduction

* Demosaicing is an active research area!

RGB
Demoasicing




A typical color imaging pipeline

Sensor

ISO gain and

raw-image ‘

processing

Image rescaling
(or up-scaling)

Color

manipulation
(Photo-finishing)

$

Mapping to
output color
space
(e.g., sSRGB, P3)

JPEG/HEIC

compression

RGB
demoasicing

White-balance &
color space
transform

(CIE XYZ)

Save to file

Noise
reduction
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Noise reduction (NR)

* All sensors inherently have noise
* Most cameras apply additional NR after A/D conversion
* A simple method is described in the next slide

* For high-end cameras, it is likely that cameras apply different strategies
depending on the ISO settings, e.g. high ISO will result in more noise, so a
more aggressive NR could be used

* Smartphone cameras, because the sensor is small, apply aggressive noise
reduction.

50 160 125 160 200 250 320 400 500

Camera ISO
setting and
noise

Noise !
Reduction 640 800 1000 1250 1600 2000 2500 3200




Sensor noise model

EMVA 1288 Standard

Photon Quantum

Sensor
collection efficiency Gain ADC Raw
Irradiance Measurement
e
Pixel size; Electrons
Aperture;
Exposure t

* Two main sources of image noise:

|.  The quantum nature of light (photon noise/shot noise); unrelated to the imaging sensor. Follows a

Poisson distribution.

2. Electronic sources associated with the imaging sensor circuitry (dark current and dark noise).

Often follows a Normal distribution.

* Gain factor g amplifies noise.

Slide credit: Ali Mosleh


http://www.emva.org/standards-technology/emva-1288/

A simple noise reduction

* Blur the image based on the ISO setting (higher

* Blurring will reduce noise, but also remove detail.

* Add image detail back for regions that have a hig
boost some parts of the signal to enhance detail

Sketch of the procedure here

approach
SO = more blur)

h signal. VWe can even
(i.e."sharpening")

- NR+Sh d
input 1 |—] By | —— | o™ | ——— | output arpene
bine Output
blur input 1

reduces noise
but blurs edges

> (O)=>| B >T

Noise (high pass filter)

Reduction

Values with high-response, we may assume are image
“content” and not noise. We can add this response
1' back to the image (or even boast it).

Low response areas we don't add back, but
Subtract I-B keep the blurred (noised reduced) result.



Noise reduced
image
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A typical color imaging pipeline

Sensor

ISO gain and

raw-image ‘

processing

Image rescaling
(or up-scaling)

Color

manipulation
(Photo-finishing)

$

Mapping to
output color
space
(e.g., sSRGB, P3)

JPEG/HEIC

compression

RGB
demoasicing

White-balance &
color space
transform

(CIE XYZ)

§

Noise
reduction

Save to file
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Color mapping/colorimetric stage

* This step in the IPS converts the sensor raw-RGB values to a
device independent color space

Camera sensors have = /\ s |
. Canon ID
their own spectral 207 —
response. o3
We need to map & ‘
it into a standard P SN =
400 500 A/nm 600 700 ] p
response (CIE XYZ). Nikon D40 >
CIE XYZ 980”01 02 03 04 05 08 07 08
. ProPhoto RGB
\ We will use CIE XYZ in this tutorial, but most
o cameras use a related space called ProPhoto.
White-Balance & Sony a57
Color Space
Transform
(CIE XYZ)
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Two step procedure

(1) apply a white-balance correction to the raw-RGB values
(2) map the white-balanced raw-RGB values to CIE XYZ

White-Balance &
Color Space
Transform

(CIE XYZ)

White balance

#H

#

#

3x3 diagonal matrix

raw-RGB values

white-balance raw-RGB

Color space transform (CST)

#H

#

#

#H

#H

#

#H

#

#

3x3 full matrix (or polynomial function)

WB-raw-RGB mapped
to CIE XYZ
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How does white balance (VWB) work!?

Sensor's
response to
illumination (£)

£r| 0.2

£,1=10.8

¢,| los

raw-RGB sensor image
(pre-white-balance correction)
White-bal b
White-Balance & Ite-Dalance Iwp | =

Color Space i i
olor pac diagonal matrix |b,,
(CIE XYZ)

raw-RGB image

1/2;
0

0

0
1/¢,
0

0 1
0

1/ ]

|

r

b




White balance
(computational color constancy)

* The challenging part for white-balance is determining the
proper white-balance setting!

* Users can manually set the white balance
* Camera specific white-balance matrices for common illuminations
* These can be manually selected by the user

* Otherwise auto white balance (AVVB) is performed
* In computer vision, we often refer to AWB as "illumination estimation”
* Since the hard part is trying to determine what the illumination in the scene is.

White-Balance &
Color Space
Transform

(CIE XYZ)




WB manual settings

WB SETTINGS COLOR TEMPERATURE LIGHT SOURCES
10000 - 15000 K Clear Blue Sky
da 0. 6500 - 8000 K Cloudy Sky / Shade
Al 6000 - 7000 K Noon Sunlight
K 5500 - 6500 K Average Daylight
J& 2000 - 5500 K Electronic Flash
— 4000 - 5000 K Fluorescent Light
3000 - 4000 K Farly AM / Late PM
- 2500 - 3000 K Domestic Lightning
1000 - 2000 K Candle Flame

Cameras can pre-calibrate their sensor's response for common illuminations.
Typical mapping of WB icons to related color temperature.

White-Balance &
Color Space

Transform . 140
(CIE XYZ) Image from ExposureGuide.com




White-Balance &
Color Space
Transform

(CIE XYZ)

Examples

Sunny

2.0273 0 0
0 1.0000 0

0 0 1.3906

Daylight

2.0938 0 0
0 1.0000 0

0 0 1.5020

Daylight

2.6836 0 0
0 1.0000 0
0 0 1.5586

of manual VWB matrices

Nikon D7000

Incandescent
1.3047 0 0
0 1.0000 0
0 0 22148
Canon 1D
Tungsten
1.4511 0 0
0 1.0000 O
0 0  2.3487
Sony A57K
Tungsten
1.6523 0 0
0 1.0000 0
0 0  2.7422

Shade
24922 0 0
0 1.0000 O
0 0 1.1367
Shade
24628 0 0
0 1.0000 O
0 0 1.2275
Shade
3.1953 0 0
0 1.0000 O
0 0 1.2891

Pre-calibrated white-balance matrices for different brands of cameras.



Auto white balance (AVVB)

* If manual white balance is not used, then an AWB algorithm is
performed.

* AWB must determine the sensor's raw-RGB response to the scene
illumination from an arbitrary image.

* AWB is not easy and this remains an open research problem.

White-Balance &
Color Space
Transform

(CIE XYZ)




AVWVB is not easy

Given an arbitrary raw-RGB image,
determine what is the camera's response
to the illumination.

The idea is that something that is white* is
a natural reflector of the scene's
illuminations SPD.

So, if we can identify what is "white" in the
raw-RGB image, we are observing the
sensor's RGB response to the illumination.

raw-RGB input image before white-balance

143
* It doesn’t have to be "white", but grey — sometimes we call these scene points "achromatic" or "neutral” regions.



AWB: "Gray world" algorithm

* This methods assumes that the average reflectance of a scene is achromatic (i.e.
gray)

* Gray is just the white point not at its brightest, so it serves as an estimate of the illuminant
* This means that image average should have equal energy, i.e. R=G=B

* Based on this assumption, the algorithm adjusts the input average to be gray as
follows:

First, estimate the average response:

1 1 1
Ruyvg = mz Rsensor(r) Ggyg = N_gz Gsensor(g) Bgyg = N_bz Bsensor(b)

r = red pixels values, g=green pixels values, b =blue pixels values
Nr = # of red pixels, Ng = # of green pixels, Nb = # blue pixels

Note: # of pixel per channel may be different if white balance is applied to the RAVW image before demosaicing. Some
pipelines may also transform into another colorspace, e.g. LMS, to perform the white-balance procedure.



AWB: "Gray world" algorithm

* Based on the image average R/G/B value, white balance can be
expressed as a matrix as:

R’ Gavg/Ravg O 0 R
G'| = 0 1 0 G
B’ i 0 0 Gavg /Bavg_ B
/
White-balanced T Sensor RGB
sensor RGB

Matrix scales each channel by its average and
then normalizes to the green channel average.

White-Balance &
Color Space
Transform

(CIE XYZ)




AWB: "White patch” algorithm

* This methods assumes that "highlights" (bright spots) represent specular reflections of
the illuminant

* This means that maximum R, G, B values are a good estimate of the white point

* Based on this assumption, the algorithm works as follows:

Riax = max(Rsensor(r))  Gpugx = max( Gsensor(g)) B,,g, = max( Bsensor(b))

r = red pixels values, g=green pixels values, b =blue pixels values

White-Balance &
Color Space
Transform

(CIE XYZ)




AWB: "White patch” algorithm

* Based on RGB max, white balance can be expressed as a matrix as:

R’ Gnax/Rmax 0 0 R

G'| = 0 1 0 G

B’ I 0 0 Gmax/ Bmax_ B
7 N\

White-balanced T Sensor raw-RGB

sensor raw-RGB
Matrix scales each channel by its maximum value and

then normalizes to the green channel’s maximum.

White-Balance &
Color Space
Transform

(CIE XYZ)




AWB example

Gray World White Patch

White-Balance &
Color Space

Transform 148
(CIE XYZ)




Better AYWB methods

* Gray world and white patch are very basic algorithms.

* These both tend to fail when the image is dominated by large regions of a
single color (e.g. a sky image).

* There are many AWB methods in the literature.

» Camera ISPs often still use simple algorithms with lots of "tuning” ...

White-Balance &
Color Space

Transform | 49
(CIE XYZ)




Color space transform — part 2

* Process used on cameras involves interpolation from factory presets.

* The need for interpolation is related to white-balance only
approximating true color constancy.

Color space transform is applied after the white balance. In fact, the matrix we use to perform the CST is
based on the white-balance CCT.

raw-RGB values white-balanced raw-RGB WB-raw-RGB mapped to CIE XYZ

H#|#
H|#|#
#H|#|#

—

color space
transform

(CST)




Color space transform (1/3)

Factory pre-calibration o
lllumination 1 (CCT 2500 K)
# #|#|#
# #|#|#
# #|#|#
1
2500 K WDl T ) CIE XYZ target
lllumination 2 (CCT 6500 K)
# #|# | #
# #| # | #
# #|#|#
|
6500 K W,? 1y, CIE XYZ target
White-Balance & white-balance matrix CST matrix
Color Space
Transform CST matrices (T}, and Tj, ) are calibrated for two different illuminations (Il and [2). Depending on the temperature of the
(CIE XYZ) white-balance, we use the corresponding CST.




Lightboxes for calibration

Lightboxes are used to perform this calibration under different illuminations.
Lightboxes are able to reproduce standard illuminants (e.g., D65, incandescent, fluorescent, etc)

The Recording and Playback of Light

~ GTl lightbox

o

Telelumen can replace the
light source in a lightbox
to allow tunable SPDs.

X-rite lightbox



Color space transform (2/3)

Interpolation process

520

4300 K 9500 K

Vleor CCT,' — CCTy,*

g7 et —ccr !

n, =gh, +(1—-9)T,

# H\#H|#
# H\#H|#
# H\H#H|#
New input gle WDla T,

(4300 K)

Given a new illumination (Ia) and its estimated correlated color temperature (CCT),
we construct a CST matrix by blending the two factory pre-calibrated matrices.



Color space transform (3/3)

Weighting functions

1
g
m— (1-g)
CCT,' — CCTy,* =
9= cert —ceT ! o
14 1 g
nh, =90, +(1-9)T,
0
2500 K 6500 K

Correlated color temperature

White-Balance &
Color Space
Transform

(CIE XYZ)
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A typical color imaging pipeline

Sensor

ISO gain and

raw-image ‘

processing

Image rescaling
(or up-scaling)

Color

manipulation
(Photo-finishing)

$

Mapping to
output color
space
(e.g., sSRGB, P3)

JPEG/HEIC

compression

RGB
demoasicing

White-balance &
color space
transform

(CIE XYZ)

§

Save to file

Noise
reduction
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Color manipulation

* This is the stage where a camera applies its "secret sauce" to make
the images look good.

* This procedure is called by many names:

* Color manipulation

* Photo-finishing

* Color rendering or selective color rendering

* Yuv processing engine
* DSLR will often allow the user to select various photo-finishing styles.
* Smartphones often compute this per-image.

* Photo-finishing may also tied to geographical regions!



DSLR "picture” styles

= Standard * Portrait

* Landsca pe From Canon’s user manual

e vl RN e :
Glowing prints with crisp For transparent, healthy Crisp and impressive
finishes. skin for women and reproduction of blue skies
It is the basic color of EOS | | children and green trees in deep,
DIGITAL. vivid color
* Neutral = Faithful * Monochrome

N e
Subjects are recorded In Accurate recording of the

rich detail, giving the subject’s color, close to with the freedom of digital
greatest latitude for image the actual image seen with monochrome
processing the naked eye

7

—

Filter work and sepia tone



Picture styles

Color
Manipulation

Example of four different picture styles from Nikon
(Photo-finishing) This image is the same raw-RGB image processed in four different ways.




Nonlinear color manipulation

3D Look up table |D Tone
(LUT) Curve

Color manipulation can be implemented using a 3D look up table (LUT) and a 1D LUT tone-curve.
The 3D LUT table acts like a 3D function: f(R,G,B) - R',G',B’
The 1D LUT table is applied per channel: g(R) - R',g(G) - G',g(B) - B’

The 3D and 1D LUT can change based on picture style.

Color
Manipulation
(Photo-finishing)



Tone curve

Tone curve

o <
() Q
> 2
) n

Tone curve

Tone curve

icture styles

Style 1
Style 2

P

Each style has its own 3D LUT and ID LUT.

Color
Manipulation
(Photo-finishing)




Global tone map example (1D LUT)

output tones

input tones  “ o e

Darkening the Brightening the Enhancing contrast
image image (called an S-curve)



3D LUT color manipulation visualization

CanonEOS1Ds Landscape

Visualization as a displacement map of a slice
of the 3D LUT mapping, warping an input and output value




Local tone mapping (LTM)

Global tone-mapping Local tone-mapping
Camera mode - Manual Camera mode - Auto

NOTE: On many cameras, esp smartphones, a local
tone map is applied as part of the photo-finishing.
This helps bring out highlights in the image.

Color ; e e
Manipulation (e e SN e

(Photo-finishing) Difference map between image before and after LTM




Selective color manipulation

* "Select” colors can be manipulated, especially skin tone.
* Sometimes called preferred color correction (PCC)

Selected color regions
can be manipulated.

Image: Gromovataya



Color and Imaging Conference (CIC) papers

Examples of papers addressing preferred skin color.

Investigation of Effect of Skin Tone to Facial Attractiveness, Yan Luf,. Jie Yangf, Kaida Xfao",
Michael Pointer’, Changjun L and Sophie WuergerS; 1 University of Leeds (UK), EUnfversfty of
Science and Technology Liaoning (China) and 3Unfversfty of Liverpool (UK)

Preferred Skin Colours Observed by Three Ethnic Groups under different Ambient Lighting
Conditions, Mingkai Cao, Ming Ronnier Luo, Rui Peng, Yuechen Zhu, and Xiaoxuan Liu, Zhejiang
University, and Guoxiang Liu, Huawei Technologies Co, Ltd. (China)

Preferred Skin Reproduction Centres for Different Skin Groups, Rui Peng, Ming Ronnier Luo,
Mingkai Cao, Yuechen Zhu, and Xiaoxuan Liu, State Key Laboratory of Modern Optical
Instrumentation, and Guoxiang Liu, Hisilicon (China)

Are We Alike? Skin Color Perception in Portrait Image and AR-based Humanoid Emoji, Yuchun
Yan and Hyeon-Jeong Suk, KAIST (South Korea)



Typical color imaging pipeline

Sensor

ISO gain and

raw-image ‘

processing

Image rescaling
(or up-scaling)

Color

manipulation
(Photo-finishing)

$

Mapping to
output color
space
(e.g., sSRGB, P3)

JPEG/HEIC

compression

RGB
demoasicing

White-balance &
color space
transform

(CIE XYZ)

§

Save to file

Noise
reduction
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Re-scaling image and sRGB conversion

Often, the entire image is processed by the ISP and then rescaled for the
view-finder or to fit the requested output resolution.

Full-size image

Rescaled for view-finder Rescaled for preferred output size

——
——

Mo,

I

‘H
Il

|

|



Rescale can also be “digital zoom"

Full frame

Digital zoom
(super res)




Typical color imaging pipeline

Sensor

ISO gain and

raw-image ‘

processing

Image rescaling
(or up-scaling)

Color

manipulation
(Photo-finishing)

3

Mapping to
output color
space
(e.g., SRGB, P3)

JPEG/HEIC

compression

RGB
demoasicing

White-balance &
color space
transform

(CIE XYZ)

§

Save to file

Noise
reduction
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Final sSRGB conversion (or other color space)

* Map from photo-finished CIE XYZ image to sRGB
* Apply the sRGB (2.2)"' gamma encoding

b agm L

- \33

S|
{j'

Photo-finished CIE XYZ Covert to linear sRGB Apply sRGB gamma
R 3.2404542 -1.5371385 0.4985314][X 5
G| =(-0.9692660 1.8760108 0.0415560(|Y
B 0.0556434 —0.2040259 1.0572252117Z

sRGB is known as an "output-referred" or "display-referred" color space. It is intended for

Map to sRGB . . .
b use with display devices.

output
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JPEG compression scheme

f(x,y) - 128
(normalize between —128 to 127)

Take original image and
Break it into 8x8 blocks

8x8 DCT

(Forward DCT)
on each block

(

Differential @rrrrnnnnnns
coding DC component

RLE €
AC Vector

Quantize DCT coefficients
via
Quantization “Table”

C’(u,v) = round(C(u,v)/T(u,v))

“Zig-zag” Order Coefficients

JPEG applies almost every compression trick known.
1) Transform coding, 2) psychovisual (loss), 3) Run-length-encoding (RLE), 4) Difference coding, and Huffman.




JPEG quality

* The amount of quantization applied on the DCT coefficients amounts
to a “quality” factor

* More quantization = better compression (smaller file size)
* More quantization = lower quality

* Cameras generally allow a range that you can select

_E

NORM
BASIC

BBack <¢>M0V;_

Image from nphotomag.com
JPEG & P &

Compression 172




Note: sSRGB/JPEG is slowly being replaced

* sSRGB was developed for monitors in
the 1990s — it is an old standard.

* High Efficient Image Encoding (HEIC)

* Better compression than |PEG

* Apple iPhone has started to use HEIC
to replace JPEG

* HEIC supports multiple color spaces.
Apple uses Display P3 — a variation on a
Digitial Cinema Initiative P3 space.

* The P3 gamut is 25% wider than sRGB

* There is also a gamma encoding similar
to sRGB.




Typical color imaging pipeline

Sensor

ISO gain and

raw-image ‘

processing

Image rescaling
(or up-scaling)

Color

manipulation
(Photo-finishing)

$

Mapping to
output color
space
(e.g., sSRGB, P3)

JPEG/HEIC

compression

RGB
demoasicing

White-balance &
color space
transform

(CIE XYZ)

§

Save to file

Noise
reduction
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Circular buffer for ZSL and multi-frame processing

* Many ISPs store the last few RAW images in memory (i.e., a circular buffer).
* These images can be used for many purposes (image stabilization, temporal noise
reduction, etc.).
* Another purpose is to ensure “Zero Shutter Lag” (ZSL).
* There is often a delay between when a person presses the “capture” and the
camera capturing the image. This is called “shutter lag”.
* So, a previous image in the buffer can saved instead.

You click “save”, but due to
shutter lag, an image
in the ZSL buffer is saved.

Photo saved is actually this image!

Buffer of
RAW images

Current sensor image



ISP organization

Bayer-Processing Front-End

ISO gain and RGB
raw-image demoasicing
processing

Image-Processing Engine
(Photo-Finishing) ‘

White-balance &

Color :
Image rescaling . . color space Noise
manipulation transform reduction

(or up-scaling) (Photo-finishing) (CIE XYZ)

$

Mapping to ISP hardware will often divide

output color ‘ JPEG/HEIC ‘ Save to file these operations into two
space compression components — (1) Bayer-Processing

(e.g., sSRGB, P3) and (2) Image Processing.
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Pipeline comments

* Again, it is important to stress that the exact steps
mentioned in these notes only serve as a guide to what takes
place in a camera

* Smartphone camera pipelines are more complex.

* Note: for the different camera makes/models, the operations could be
performed in a different order and in different ways (e.g., combining
sharpening with demosaicing).



What about machine vision cameras/?

* Some industrial/machine vision cameras provide minimal ISP
processing

* For example, some will only perform white-balance and apply a
gamma to the raw-RGB values.

* This means the output is in a camera-specific color space.

ISO ggin and RGB White-EaIancIe l
raw-image - Demoasicing - (per-channe ¥
processing gain)

: . . . T er-channel gamma
Typical machine vision pipeline P &
Point grey
grasshopper
camera.




IPS Tuning

’ 855+

’ 855+

Camera Maker A Camera Maker B

Qualcomm
snapdragon QUO'CONVV\

snapdragon

/] ] T T Ts
| /: | ) ' [l | #lee —
: [Te ] [e o] | |
"L/:";\&" “‘lb‘ e dlsnninnn | /| :\& * "'..EH
= = 1 ) ST ) ) _f /6 White-balancing & - | | »: . » h‘* aon
2- Black light subtraction, ~ 3- Lens correction ~ 4- Demosaicing  5- Noise reduction Color space [MATs] = S i 6- White-balancing &
1- Reading raw Image Linearization (2D Array(s)) [Func] __[Funq &l - Black light subtraction, 3-Lens correction  4- Demosaicing  5- Noise reductlon Color space [MATs]
[Value_s o1 W) r / i J 1- Reading raw Image Linearization [20 Array(s)] [Func]
alwls | P/ B, HEgEEl O e e ———— [Valuesor1IDLUT] = 1]
// « wlala @« l"/ | qm - //ﬂl #leln] {
#laln ;/ / ' L] nluln @« V4 ‘ ‘E -
12- Gamma curve 11- Final color space 10- Tone curve 9- Color mani- 8- Exposure curve 7- Hue/Sat map [ . LAEAE) e SRRy

application (1D LUT] conversion [Mat] application [1DLUT]  pulation [3D LUT] [EV value or 1D LUT] [30 LUT] 12- Gamma curve 11- Final color space 10- Tone curve 9- Color mani- 8- Exposure curve 7- Hue/Sat map

application (10 LUT] conversion [Mat] application [1DLUT]  pulation (3D LUT] [EV value or 1D LUT] 30T

W T

Image Quality Engineers Image Quality Engineers

The algorithms on an ISP are often predefined. Camera engineers can
“tune” the algorithm parameters to produce the output they want.
The "tuning” of the ISP is a labor-intensive procedure.



Congratulations!

éﬁfffﬁf’ﬁﬁ“’ rf S ﬂ;“,{ﬂ";”fﬂ"r 7,

y L
; ;53?;:; l"-t'-"ﬁ'qj-{r'rﬂrr fes 14 J,ff'ﬁ*rjr"m‘r“rf fii
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Part 3:
Al targeting ISP components



A bit more complex ISP
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Photo-finishing routines
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Use deep learning for hard problems
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Digital zoom

A distinguishing feature in the smartphone camera market is zoom quality.

Full frame

Digital zoom
(super res)




Machine learning (ML) for super-resolution

* SR has been addressed by machine learning methods for a long time.

* Required "training data”
* Quality of results are directly correlated to training data suitability.

* Before deep learning, used "non-learnable"” machine learning.
* Hand-crafted features
* Conditional random fields
* K-Nearest Neighbor
* Support vector machines



Early example — Freeman 2002

Low-res input

Upsampled

round truth
high-res

Example-Based
Super-Resolution

To address the lack of

resolution independence in

Polygnn»based representations of 3D
objects offer resolution independence
over a wide range of scales. With this approach, object
boundaries remain sharp when we zoom in on an object
until very close range, where faceting appears due to
finite polygon size (see Figure 1).
However, constructing polygon
models for complex, real-world
objects can be difficult. Image-
based rendering (IBR), a comple-
mentary approach for representing

most models, we developed  and render uses cameras
to obtain rich models directly from

a fast and simple pass, real 1d data. U ly,
these representations no longer

training-based super- have ion ind

resolution algorithm for
creating plausible high-

frequency details in zoomed

images.

William T. Freeman, Thouis R. Jones, and
Egon C. Pasztor
Mitsubishi Electric Research Labs

1 of pixel-based images super-
algorithms. Many applications in graphics or image pro-
cessing could benefit from such resolution indepen-
dence, including IBR, texture mapping, enlarging
consumer photographs, and converting NTSC video
content to high-definition television. We built on anoth-
ertraining-based super-resolution algorithm' and devel-
oped a faster and simpler algorithm for one-pass

p lution. (The one-pass, example-based algo-
rithm gives the enlargements in Figures 2h and 2i.) Our
algorithm requires only a nearest-neighbor search in the
training set for a vector derived from each patch oflocal

image data. This one-pass sup ithmi
a step toward achieving resolution independence in
image-based representations. We don’t expect perfect
resolution ind the polygon represen-

When we enlarge a bitmapped
image, we getablurry result. Figure
2shows the problem for an IBR ver-
sion of a teapot image, rich with
real-world detail. Standard pixel
interpolation methods, such as
pixel replication (Figures 2b and 2c)
and cubic-spline interpolation (Fig-
ures 2d and 2e), introduce artifacts

tation doesn’t have that—but increasing the resolution
independence of pixel-based representations is an
important task for IBR.

Example-based approaches

ion relatesto i interpolation—how
should we interpolate between the digital samples of a
photograph? Researchers have long studied this prob-
lem, although only recently with machine learning or

Training images were
small photo collection

External dictionarv

Search dictionary
for similar low-res patches,
replace with high-res patch.

Freeman et al — |EEE Computer Graphics and Applications [2002]



Enter deep learning

Neurons

Approach ML problems with learnable processing graphs
inspired by biological neurons.

Artificial "neural"
network graph

Neuron model



Super-resolution was target of early CNNs

Dong, Loy, He, Tang [ECCV'[4]

Image Super-Resolution Using Deep
Convolutional Networks

Chao Dong, Chen Change Loy, Member, IEEE, Kaiming He, Member, IEEE,
and Xiaoou Tang, Fellow, IEEE

Abstract—We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end
mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) that takes
the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR
methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately,
our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality,
and achieves fast speed for practical on-line usage. We explore different network structures and parameter settings to achieve trade-
offs between performance and speed. Moreover, we extend our network to cope with three color channels simultaneously, and show

better overall reconstruction quality.

Index Terms—Super-resolution, deep convolutional neural networks, sparse coding

1 INTRODUCTION

Single image super-resolution (SR) [20], which aims at
recovering a high-resolution image from a single low-
resolution image, is a classical problem in computer
vision. This problem is inherently ill-posed since a mul-
tiplicity of solutions exist for any given low-resolution
pixel. In other words, it is an underdetermined in-

constructed patches are aggregated (e.g., by weighted
averaging) to produce the final output. This pipeline is
shared by most external example-based methods, which
pay particular attention to learning and optimizing the
dictionaries [2], [49], [50] or building efficient mapping
functions [25], [41], [42], [47]- However, the rest of the
steps in the pipeline have been rarely optimized or

1y feature maps
of low-resolution image

1a feature maps
of high-resolution image

f2 x fa ERE
== el N -z

Low-resolution #

image (input)

Patch extraction

Non-linear mapping Reconstruction

and representation

Let network learn "feature."
Let network learn how to reconstruct.

High-resolution
image (output)



CNN performance

[ Eval. Mat | Scale | Bicubic | SC [50] | NE+LLE [4] | KK [25] | ANR [41] | A+ [41] | SRCNN |

2 30.23 - 31.76 32.11 31.80 32.28 32.45
PSNR 3 27.54 28.31 28.60 28.94 28.65 29.13 29.30
4 26.00 - 26.81 27.14 26.85 27.32 27.50
2 0.8687 - 0.8993 0.9026 0.9004 0.9056 0.9067
SSIM 3 0.7736 0.7954 0.8076 0.8132 0.8093 0.8188 0.8215
4 0.7019 - 0.7331 0.7419 0.7352 0.7491 0.7513
2 6.09 - 7.59 6.83 7.81 8.11 7.76
IFC 3 3.41 2.98 4.14 3.83 4.23 4.45 4.26
4 2.23 - 271 2.57 2.78 2.94 2.74
2 40.98 - 41.34 38.86 41.79 42.61 38.95
NOM 3 33.15 29.06 37.12 35.23 37.22 38.24 35.25
4 26.15 - 31.17 29.18 31.27 32.31 30.46
2 47.64 - 54.47 53.85 54.57 55.62 55.39
WPSNR 3 39.72 41.66 43.22 43.56 43.36 44.25 44.32
4 35.71 - 37.75 38.26 37.85 38.72 38.87
2 0.9813 - 0.9886 0.9890 0.9888 0.9896 0.9897
MSSSIM 3 0.9512 0.9595 0.9643 0.9653 0.9647 0.9669 0.9675
4 0.9134 - 0.9317 0.9338 0.9326 0.9371 0.9376

Early CNN approaches were not always the "best."
Highly hand-crafted methods still worked well.

But, CNN learned everything.
(The care now was in optimizing the CNN).



Super-resolution with very deep networks

Kim, Lee, Lee CVPR'| 6

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the version available on IEEE Xplore.

Accurate Image Super-Resolution Using Very Deep Convolutional Networks

Jiwon Kim, Jung Kwon Lee and Kyoung Mu Lee
Department of ECE, ASRI, Seoul National University, Korea

{j .kim, derueci, kyoung‘mu}@snu. ac.kr

Abstract

We present a highly accurate single-image super-
resolution (SR) method. Our method uses a very deep con-
volutional network inspired by VGG-net used for ImageNet
classification [19]. We find increasing our network depth
shows a significant improvement in accuracy. Our final
model uses 20 weight layers. By cascading small filters
many times in a deep network structure, contextual infor-
mation over large image regions is exploited in an efficient
way. With very deep networks, however, convergence speed
becomes a critical issue during training. We propose a sim-
ple yet effective training procedure. We learn residuals only
and use extremely high learning rates (10* times higher
than SRCNN [6]) enabled by adjustable gradient clipping.
Qur proposed method performs better than existing meth-
ods in accuracy and visual improvements in our results are
easily noticeable.

1. Introduction

-
o :VDSR (Qurs)
Ak { BEiTEE L D
@2
)
=
o 37
z
2
agg b
+ SRCNN
%8 A
» SelEx RFL
102 10! 10 10 1w
slow running time(s) fast

Figure 1: Our VDSR improves PSNR for scale factor x2 on
dataset Set5 in comparison to the state-of-the-art methods (SR-
CNN uses the public slower implementation using CPU). VDSR
outperforms SRCNN by a large margin (0.87 dB).

end-to-end manner. Their method, termed SRCNN, does
not require any engineered features that are typically neces-
sary in other methods [25, 26, 21, 22] and shows the state-

. . . . . L o of-the-art performance.

Conv.D (Residual)

* Pairs of convolution layers + nonlinear activations
* Prediction is added to upsampled low-res input

* Special care for gradient clipping



Took "SR" to the next level visually

VDSR (Ours)
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Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi
Twitter

{Cledig, ltheis, fhuszar, jcaballero,aacostadiaz,aaitken, atejani, jtotz, zehanw, wshi}@twitter.com

Abstract

Despite the breakthroughs in accuracy and speed of
single image super-resolution using faster and deeper con-
volutional neural networks, one central problem remains
largely unsolved: how do we recover the finer texture details
when we super-resolve at large upscaling factors? The
behavior of optimization-based super-resolution methods is
principally driven by the choice of the objective function.
Recent work has largely focused on minimizing the mean
squared reconstruction error. The resulting estimates have
high peak signal-to-noise ratios, but they are often lacking
high-frequency details and are perceptually unsatisfying in
the sense that thev fail to match the fidelity expected at

1. Introduction

The highly challenging task of estimating a high-
resolution (HR) image from its low-resolution (LR)
counterpart is referred to as super-resolution (SR). SR
received substantial attention from within the computer
vision research community and has a wide range of
applications [62, 70, 42].

4x SRGAN (proposed) original

Adding adversial loss to SR

A Natural Image Manifold
MSE-based Solution

”pixel-wise average
) of possible solutions”

>
In corporate additional loss that considers how
realistic the solution is with respect to image distribution.



SRGAN structure

Generator Network B residual blocks
|
’ k3n64s1 k3n64s1 ’ k3n64s1 k3n256s1 k9n3s1

k9n64s1

PixelShuffler x2

: N
skip connection
Discriminator Network k3n128s2 k3n256s2 k3n512s2
k3n64s1 k3n64s2 k3n128s1 k3n256s1 k3n512s1

|
]
|

Leaky RelLU
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GAN loss adds another visual level!

SRResNet SRGAN-MSE SRGAN-VGG22 SRGAN-VGG54 original HR image




AIM/NTIRE SR challenges

New Trends in Image Restoration and Enhancement (NTIRE)

Advances in Image Manipulation (AlIM)

* These workshops run regular challenges on super resolution

NTIRE 2022 Challenge on Efficient Super-Resolution: Methods and Results

Yawei Li* Kai Zhang* Radu Timofie* Lue Van Gool* Fangyvuan Kong
Mingxi Li Songwei Liu Zongeai Du Ding Liu Chenhui Zhou Jingyi Chen
Qingrui Han Zheyuan Li Yinggi Liu Miangyu Chen Haoming Cai Yu Qiao

Chao Dong Long Sun Jinshan Pan Yi Zhu Zhikai Zong Xiaoxiao Liu
Zheng Hui Tao Yang Peiran Ren Kuansong Xie Xian-Sheng Hua Yanbo Wang
Xiaozhong i Chuming Lin Donghao Luo Ying Tai Chengjie Wang
Zhizhong Zhang Yuoan Xie Shen Cheng Ziwei Luo Lei Yu Zhihong Wen
i Wul Youwei Li Haogiang Fan Jian Sun Shuaicheng Liu Yuanfei Huang
Meiguang Jin Hua Huang Jing Liu Xinjian Zhang Yan Wang Lingshun Long
Gen Li Yuanfan Zhang Zuowei Cao Lei Sun Panaetov Alexander
Yucong Wang Minjie Cai Li Wang Lu Tian Zheyuan Wang Hongbing Ma
Jie Liu Chao Chen Yidong Cai Jie Tang Gangshan Wu Weiran Wang
Shirui Huang Honglei Lu Huan Liu Keyan Wang Jun Chen Shi Chen

Yuchun Miao Zimo Huang Lefei Zhang Mustafa Ayazoglu Wei Xiong
Chengyi Xiong Fei Wang Hao Li Ruimian Wen Zhijing Yang Wenbin Zou

Weixin Zheng Tian Ye Yuncheng Zhang Xiangzhen Kong Aditya Arora

Syed Wagas Zamir Salman Khan Munawar Hayat Fahad Shahbaz Khan
Dandan Gao Dengwen Zhou Qian Ming Jingzhu Tang Han Huang Yufei Wang
Zhangheng Peng Haobo Li Wenxue Guan Shenghua Gong Xin Li Jun Liu
Wanjun Wang Dengwen Zhou Kun Zeng Hanjiang Lin Xinyu Chen
Jinsheng Fang

- Current winning solutions are transformer-based.

- Interestingly, solutions do not use GANs!
GAN:s often help with visual appearance.

GANs do not necessarily beat benchmarks
Benchmarks are based on RMSE/SIMM losses.

See CVPR’18 paper — Perception-Distortion Tradeoff

The Perception-Distortion Tradeoff

Yochai Blau and Tomer Michaeli
Technion-Israel Institute of Technology, Haifa, Israel
{yochai@campus, tomer .m@ee}.technion.ac. il

Abstract Perception




Use deep learning for hard problems

shutter duration/ISO (gain)/focus parameters Bayer processing routines
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The highlighted components are camera pipeline steps that are challenging and areas Al can make
notable gains:

AWB (illumination estimation)

Demosaicing

Noise reduction

Super-resolution



Recall why illumination estimation is hard

What is the sensor's
response to illumination? ‘

Given an arbitrary input image,
predict the scene illumination.

Getting this incorrect has significant
impact on image quality/color reproduction.



Many ML approaches before deep learning

Cheng et al CVPR'I5

Effective Learning-Based Illuminant Estimation Using Simple Features

Dongliang Cheng! Brian Price?
'"National University of Singapore

{deheng, brown}leomp.nus.edu.sg

Abstract

Hlumination estimation is the process of determining the
chromaticity of the illumination in an imaged scene in order
to remove undesirable color casts through white-balancing.
While computational color constancy is a well-studied topic
in computer vision, it remains challenging due to the ill-
posed nature of the problem. One class of techniques relies
on low-level statistical information in the image color dis-
tribution and works under various assumptions {e.g. Grey-
World, White-Patch, etc). These methods have an advan-
tage that they are simple and fast, but offen do not per-
form well. Maore recent state-of-the-art methods employ
learning-based technigues that produce better results, but
aften rely on complex features and have long evaluation and
training times. In this paper, we present a learning-based
method based on four simple color features and show how
to wse this with an ensemble of regression trees to estimate
the illumination. We demonstrate that our approach is not
only faster than existing learning-based methods in terms af
both evaluation and training time, but also gives the best re-
sults reported to date on modern color constancy data sets.

1. Introduction and Related Work

An RGB image captured by a camera 1s a combination of

Scott Cohen? Michael S. Brown!

?Adobe Research

{bprice, scohen}Badobe.com
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Figure 1: Evaluation time vs. performance of representative illu-
minant estimation methods. Statistics-based methods are fast but
have lower accuracy than learning-based methods. The slow speed
of leamning-based methods makes them impractical for onboard
camera white-balancing. Our proposed learning-based method
achieves high accuracy and fast evaluation. (Mean angular error
and time statistics for this plot are based results in Table 1 and
Table 3). Note time axis is nonlinear.

illumination. When the illumination is not sufficiently white
(e.g. daylight), this can cause a notable color cast in the
image. One of the key pre-processing steps applied to most
1rndgu. 1% 1u remove color casts caused h} lumination to

Input image

Training images
(sensor specific)

f': average color chromaticity

Derive some
features (usually
histogram statistics)

Apply ML method

to predict illumination

of scene.
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Improving AWB with CNN

high confidence .
convl-5 I |‘C4 mage regions semi-dense
input image from AlexNet KX feature maps

' conv/ReLLU/max pooling layers convb, conv7
H uet al CVP R I 7 i randomly initialized
g convé6: conv7: ] X
Emaxpnoling 6% 6% 64 Ix1x4 :
wxhx3 :‘!: @\":E Ua\""< | »2as
4 : i S <Al 323
FC*: Fully Convolutional Color Constancy with Confidence-weighted Pooling &3% o p;
restored image G \.” .................... -
Yuanming Hu'* Baoyuan Wang? ~ Stephen Lin? g S -SSR h ...... :
ITsinghua University, 2Microsoft Research e . Confidence-weighted pooling L
yuanmhu@gmail.com, {baoyuanw,stevelin}@microsoft.com —: illumination color Py ‘ E PR Pg - Pi
: H normalization summation

Abstract Tnput Onatprat (cobor cast rensonved)

Computatienal Celor Constaney
Improvements in color constancy have arisen from the ] » groum nh  Thamiinatioh estiation
use of convolutional neural networks (CNNs). However, the Em._]_ -

patch-based CNNs that exist for this problem are faced with
the issue of estimation ambiguity, where a paich may con-

Predicts local estimates over the image and their confidence.
Pools confident weighted estimates for final result.

. . s . . . Paxh Diuminstion  Refectance Example Image
rain insufficient information to establish a unigue or even a o R
limited possible range of illumination colors. Image patch-
es with estimation ambiguity not only appear with great fre- =
quency in photographs, but also significantly degrade the Ambiguom
quality of network training and inference. To overcome =

this problem, we present a fully convolutional network ar-
chitecture in which patches throughour an image can car- =

ry different confidence weights according to the value they
provide for color constancy estimation. These confidence =
weipghts are learned and applied within a novel pooling lay- o ———
¥ - . — resiicted possible reflectance
er where the local estimates are merged into a global so- XE Sieher i gt con® dence

lution.  With this formulation, the network is able to de-
termine “what to learn” and “how to pool” automatical-
Iy from color constancy datasets withow additional super-
vision. The proposed network also allows for end-to-end
training, and achieves higher efficiency and accuracy. On s-
tandard benchmarks, our network outperforms the previous

s ] R N N L I ) | [ LT T R i - j———




What did it learn?

T

Predicts low-res
4 channel ouput
(estimation r,g,b
+ confidence map)

confidence map estimation map weighted estimation  image X confidence

The method appears to learns to identify pixels that are
most likely "neutral/achromatic” scene patches.



Exploiting two

Abdelhamed et al CVPR"2 |

Leveraging the Availability of Two Cameras for Illuminant Estimation

Abdelrahman Abdelhamed Abhijith Punnappurath Michael S. Brown
Samsung Al Center - Toronto

{a.abdelhamed, abhijith.p,michael.bl}fsamsung.com

Abstract

Most modern smartphones are now equipped with two
rear-facing cameras — a main camera for standard imaging
and an additional camera to provide wide-angle or tele-
photo zoom capabilities. In this paper, we leverage the
availability of these two cameras for the task of illumination
estimation using a small newral network to perform the il-
lumination prediction. Specifically, if the two cameras’ sen-
sors have different spectral sensitivities, the two images pro-
vide different spectral measuremenis of the physical scene.
A linear 3 x 3 color transform that maps between these two
observations — and that is unigue to a given scene illumi-
nant — can be used to train a lightweight neural network
comprising no more than 1460 parameters to predict the
scene illumination. We demonstrate that this two-camera
approach with a lightweight network provides results on par
or better than much more complicated illuminant estima-
tion methods operating on a single image. We validate our
method's effectiveness through extensive experiments on ra-
diometric data, a quasi-real iwo-camera dataset we gen-
erated from an existing single camera dataset, as well as
a new real image dataset that we captured using a smart-
phone with two rear-facing cameras.

1. Introduction

An overwhelming percentage of consumer photographs

Cameral
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E
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smartphone Sensor's spectral senshivity

O twe-camera
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sigorithm
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estimate
of camera 1

Seene illuminant

(8)

Figure 1: (A) Most modern smartphones use two rear-
facing cameras. Typically, the spectral characteristics of
these two cameras’ sensors are slightly different. (B) Thus,
a two-camera system furnishes two different measurements
of the scene being imaged. Our proposed two-camera al-
gorithm harnesses this extra information for more accurate
and efficient illuminant estimation.

the accuracy of illuminant estimation.

Illuminant estimation is the most critical step for com-
putational color constancy. Color constancy refers to the
ability of the human visual system to perceive scene col-

cameras for AYWB

Cameral
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Our two-camera
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algorithm

» 3
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Scene illuminant

Raw-RGB image

Two views of the same scene with different
sensors — is essentially a 6-channel camera.



Exploiting two cameras for AYVB

Scene
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State-of-the-art results
with very lightweight network

=

Method Mean Med B25% W25% Ql Q3
GW [15] 443 342 090 9.82 1.54 6.11
SoG [24] 331 2.63 0.70 7.20 1.18 4.17
GE-1 [46] 449 3.03 0.87 10.38 1.40 6.34
GE-2 [40] 499 3.28 094 11.83 1.54 6.65
WGE [29] 5.77 3.11 0.77 14.75 1.38 7.89
PCA [16] 401 2.68 0.69 920 1.22 6.07
WP [14] 449 347 093 999 1.42 6.09
Gamut Pixel [25] 599 370 090 1495 1.41 8.65
Gamut Edge [2¢] 499 338 0.85 11.63 1.72 7.22
CM [1%] 280 2.09 0.66 6.12 1.21 3.67
Homography [19] (SoG)  2.70 1.95 0.69 5.88 1.06 3.71
Homography [19] (PCA) 297 2.16 0.72 6.47 1.14 4.22
APAP [4] (GW) 264 200 0.60 599 1.02 3.26
APAP [4] (SoG) 249 1.75 060 561 0.88 3.14
APAP [4] (PCA) 277 1.83 0.60 6.45 0.94 3.49
SIIE [?] 204 1.55 051 441 0.80 2.80
Quasi U CC [10] 3.57 277 0.62 8.04 1.09 5.06
Quasi U CC finetuned [10] 2.68 1.72 0.57 6.25 0.98 3.67
FC4 [32] 265 206 0.67 569 1.12 349
FFCC [Y] 244 150 040 587 0.75 3.19
Ours (200 params) 239 144 046 5095 0.81 281
Ours (470 params) 191 1.24 036 478 0.62 2.22
Ours (1460 params) 1.69 1.09 0.37 4.02 0.59 2.02




Use deep learning for hard problems

K o Sensor-
Lens

View-finder or

compression/file
(JPEG/HEIC)

shutter duration/ISO (gain)/focus parameters

Bayer processing routines

Black level 3As :
ive pi . Lens shadin . White- .
Defectlve‘plxel correction/ ‘ ding Auto-exposure » : Demosaicing
correction N lizati correction Auto-focus balance 1
ormalization Auto-white-balance s
| f
Color mapping to : Image resizing/ General and
. PPIng g g Add Local and global .
display-referred color super- . . ) selective color
' : grain/noise tone-mapping ) )
space (sRGB, P3) i resolution manipulation

Photo-finishing routines

» Noise
reduction

Color space
transform to
CIE XYZ/ProPhoto

The highlighted components are camera pipeline steps that are challenging and areas Al can make

notable gains:

AWVB (illumination estimation)
Demosaicing

Noise reduction
Super-resolution



Demosaicing

-

Demosaicing role is to interpolate 2/3 (66%)
of your sensor image!

Captured raw-Bayer image



DNN for demosaicing (and denoising)

Gharbi et al SIGGRAPH Asia, 2016

Deep Joint Demosaicking and Denoising

Michaél Gharbi Gaurav Chaurasia

MIT CSAIL MIT CSAIL

FlexISP
325d8B

Sylvain Paris Frédo Durand
Adobe MIT CSAIL

Figure 1: We propose a data-driven approach for jointly solving denoising and demosaicking. By carefully designing a dataset made of rare
but challenging image features, we train a neural network that outperforms both the state-of-the-art and commercial solutions on demosaicking
alone (group of images on the left, insets show error maps), and on joint denoising—demosaicking (on the right, insets show close-ups). The
benefit of our method is most noticeable on difficult image structures that lead to moiré or zippering of the edges.

Abstract

Demosaicking and denoising are the key first stages of the digital
imaging pipeline but they are also a severely ill-posed problem that

infers three color values per pixel from a single noisy measurement.

Earlier methods rely on hand-crafted filters or priors and still exhibit

disturbing visual artifacts in hard cases such as moiré or thin edges.

We introduce a new data-driven approach for these challenges: we
train a deep neural network on a large corpus of images instead
of using hand-tuned filters. While deep leaming has shown great
success, its naive application using existing training datasets does
not give satisfactory results for our problem because these datasets
lack hard cases. To create a better training set, we present metrics to

1 Introduction

Dy icking and denoising are simul ly the crucial firsl
steps of most digital camera pip They are qui ially
ill-posed reconstruction problems: at least two-thirds of the data is
missing and the existing data is corrupted with noise. Furthermore,
complex aliasing issues arise because the red, green and blue chan-
nels are sampled at different locations and at different rates. while
most image areas are easy to address. the rare challenging regions
can still lead to catastrophic failure and visually disturbing artifacts
such as checkerboard patterns. zippering around edges. and moiré.

For modularity. demosaicking and denoising are often solved in-
A Aentlv and 1allyv Thic nnformmnatelv leade to arrne

noise level D —1 times

downsampled  conv. features residual
F° F* FP
input ed output
M upsample 0

forward masked input F

- Early work found that you got denoising for free.
- Network similar to SR-residual.

- Training data/experimental data 100% synthetic.



Deep CNN for demosiacing

Syu et at al - arXiv 2018

Learning Deep Convolutional Networks for
Demosaicing

Nai-Sheng Syu*, Yu-Sheng Chen*, Yung-Yu Chuang

Abstract—This paper presents a comprehensive study of ap-
plying the convelutional neural network (CNN) to solving the
demosaicing problem. The paper presents two CNN models that
learn end-to-end mappings between the mosaic samples and the
original image patches with full information. In the case the
Bayer color filter array (CFA) is used, an evaluation on popular
benchmarks confirms that the data-driven, automatically learned
features by the CNN models are very effective and our best
proposed CNN model outperforms the current state-of-the-art
algorithms. Experiments show that the proposed CNN models
can perform equally well in both the sRGB space and the
linear space. It is also demonstrated that the CNN model can
perform joint denoising and demosaicing. The CNN model is
very flexible and can be easily adopted for demosaicing with any
CFA design. We train CNN models for demosaicing with three
different CFAs and obtain better results than existing methods.
With the great flexibility to be coupled with any CFA, we present
the first data-driven joint optimization of the CFA design and
the demosaicing method using CNN. Experiments show that the
combination of the automatically discovered CFA pattern and
the automatically devised demosaicing method outperforms other
patterns and demosaicing methods. Visual comparisons confirm

for reducing visual artifacts as much as possible. However,
most researches only focus on one of them.

The Bayer filter is the most popular CFA [5] and has been
widely used in both academic researches and real camera
manufacturing. It samples the green channel with a quincunx
erid while sampling red and blue channels by a rectangular
erid. The higher sampling rate for the green component is con-
sidered consistent with the human visual system. Most demo-
saicing algorithms are designed specifically for the Bayer CFA.
They can be roughly divided into two groups, interpolation-
based methods [6], [7]. [8], [9]. [10]. [L1]. [12], [L3], [14]
and dictionary-based methods [15], [16]. The interpolation-
based methods usually adopt observations of local properties
and exploit the correlation among wavelengths. However, the
handcrafted features extracted by observations have limitations
and often fail to reconstruct complicated structures. Although
iterative and adaptive schemes could improve demosaicing re-
sults, they have limitations and introduce more computational

Examined #l — shallow network with deep channels (SRNet)

data size
25%x25x64

data size

25x25x128 data size

21x21%3

data size
33x33x3

kernel size kemel size kernel size
9x9x3 1x1x128 5x5x64

Examined #2 - deep layers with residual (SR-ResNet)

mosaic conv. BN SELU

H)—

Bilinear Interpolation




Deep CNN for demosiacing

Kodak (12 photos) McM (18 photos) Kodak+McM (30 photos)
Algorithm PSNR . PSNR 1 PSNR .
R T G | B CPSNR R T G | B CPSNR R T G | B CPSNR
SA [44] 39.8 43.31 39.5 40.54 3273 | 3473 32.1 32.98 35.56 | 38.16 | 35.06 36.01
SSD [14] 38.83 | 40.51 | 39.08 39.4 35.02 | 38.27 33.8 35.23 36.54 | 39.16 | 35.91 36.9
NLS [16] 4234 | 45.68 | 41.57 42.85 36.02 | 38.81 | 34.71 36.15 38.55 | 41.56 | 37.46 38.83
CS [45] 41.01 | 44.17 | 40.12 41.43 35.56 | 38.84 | 34.58 35.92 37.74 | 40.97 36.8 38.12
ECC [46] 39.87 | 42.17 39 40.14 36.67 | 39.99 | 35.31 36.78 37.95 | 40.86 | 36.79 38.12
RI [8] 39.64 | 42.17 | 38.87 39.99 36.07 | 39.99 | 35.35 36.48 37.5 40.80 | 36.76 37.88
MLRI [9] 40.53 | 4291 | 39.82 40.88 36.32 | 39.87 | 35.35 36.60 38.00 | 41.08 | 37.13 38.32
ARI [10] 40.75 | 43.59 | 40.16 41.25 37.39 | 40.68 | 36.03 37.49 3873 | 41.84 | 37.68 39.00
PAMD [47] 41.88 | 45.21 | 41.23 42.44 34.12 | 36.88 | 33.31 34.48 37.22 | 40.21 | 36.48 37.66
AICC [48] 42.04 | 44.51 | 40.57 42.07 35.66 | 39.21 | 34.34 35.86 38.21 | 41.33 | 36.83 38.34
DMCNN 39.86 | 4297 | 39.18 40.37 36.50 | 39.34 | 35.21 36.62 37.85 | 40.79 | 36.79 38.12
DMCNN-VD | 43.28 | 46.10 | 41.99 43.45 39.69 | 4253 | 37.76 39.45 41.13 | 43.96 | 39.45 41.05

Paper showed that Deep SR-ResNet is a good DNN for demosiacing too.




More recent approach

Considers the following:

(1) Demosaicing is hardest in high-frequency areas

Liu et al CVPR21 [Huawei]

Predicting
hard regions

Joint Demosaicing and Denoising with Self Guidance

Lin Liu'? Xu Jia?* Jianzhuang Liu?> Qi Tian?
!CAS Key Laboratory of GIPAS, University of Science and Technology of China
2Noah’s Ark Lab, Huawei Technologies (2) G reen C h ann el
play important parts in the modern camera image process-

most reliable (since
ing. Recently, some neural networks have shown the effec- H IW

we have a lot of green)
tiveness in joint demosaicing and denoising (JDD). Most Ground Truth MATLAB FlexISP

of them first decompose a Bayer raw image into a four- PSNR: 30.31 PSNR: 30.34
channel RGGB image and then feed it into a neural net- |

work. This practice ignores the fact that the green chan- IW

ing values in the input image. In addition, as regions of dif- Kokinnos 7 Deepjoint ADMM
ferent frequencies suffer different levels of degradation in PSNR: 32.42 PSNR: 32.35 PSNR: 32.39

Abstract

Usually located at the very early stages of the compu-
tational photography pipeline, demosaicing and denoising

nels are sampled at a double rate compared to the red and
the blue channels. In this paper, we propose a self-guidance
network (SGNet), where the green channels are initially es-
timated and then works as a guidance to recover all miss-




Demosiacing with "self guidance”
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Produces nice visual results

ADMM FlexISP CDM* Kokkinos Deepjoint SGNet Ground truth

Self-guidance NET



Use deep learning for hard problems

shutter duration/ISO (gain)/focus parameters ———— Bayer processing routines
. Black level . 3As . E : E
Defectlve‘plxel » correction/ ‘ Lens sha.dmg » Auto-exposure » White- » S »: NOIS.e .
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Photo-finishing routines

The highlighted components are camera pipeline steps that are challenging and areas Al can make
notable gains:

AWVB (illumination estimation)

Demosaicing

Noise reduction

Super-resolution



Non-deep-learning noise reduction

* One of the best-performing methods was based on non-local means (2007).
* Block-matching with 3D filtering [BM3D]
* It is slow, but works well.

Dabov et al TIP'07

Image denoising by sparse 3D transform-domain
collaborative filtering

Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian, Senior Member, IEEE

Abstract— We propose a novel image denoising strategy based
on an enhanced sparse representation in transform domain. The
enhancement of the sparsity is achieved by grouping similar
2D image fragments (e.g. blocks) into 3D data arrays which
we call "groups”. Collaborative filtering is a special procedure
developed to deal with these 3D groups. We realize it using the
three successive steps: 3D transformation of a group, shrinkage
of the transform spectrum, and inverse 3D transformation. The
result is a 3D estimate that consists of the jointly filtered grouped
image blocks. By attenuating the noise, the collaborative filtering
reveals even the finest details shared by grouped blocks and
at the same time it preserves the essential unique features of
each individual block. The filtered blocks are then returned to
their original positions. Because these blocks are overlapping,
for each pixel we obtain many different estimates which need to
be combined. Aggregation is a particular averaging ]lmcedlln-
which is exploited to take ge of this redund A
significant improvement is obtained by a specially develnpﬂl
collaborative Wiener filtering. An algorithm based on this novel
denvising strategy and its efficient |mplemel|ta|um are presented
in full detail: an i to color-i ising is also
developed. The experimental results demonitrate that this com-
putationally scalable algorithm achieves state-of-the-art denoising
performance in terms of both peak signal-to-noise ratio and
subjective visual quality.

Index Terms— image denoising, sparsity, adaptive grouping,
block-matching, 3D transform shrinkage.

1. INTRODUCTION

LENTY of denoising methods exist, originating from
Pvarinus disciplines such as probability theory, statistics,
partial differential equations, linear and nonlinear filtering,
spectral and multlresnlutlun analysis. All these methods rely
on some explicit or implicit assumptions about the true (noise-

Because such details are typically abundant in natural images
and convey a significant portion of the information embedded
therein, these transforms have found a significant application
for image denoising. Recently, a number of advanced denois-
ing methods based on multiresolution transforms have been
developed, relying on elaborate statistical dependencies be-
tween coefficients of typically overcomplete (e.g. translation-
invariant and multiply-oriented) transforms. Examples of such
image denoising methods can be seen in [1], [2], [3], [4].

Not limited to the wavelet techniques, the overcomplete
representations have traditionally played an important role
in improving the restoration abilities of even the most basic
transform-based methods. This is manifested by the sliding-
window transform-domain image denoising methods [5], [6]
where the basic idea is to apply shrinkage in local (windowed)
transform domain. There, the overlap between successive win-
dows accounts for the overcompleteness, while the transform
itself is typically orthogonal, e.g. the 2D DCT.

However, the overcompleteness by itself is not enough
to compensate for the meffective shrinkage 1f the adopted
transform cannot attain a sparse representation of certain
image details. For example, the 2D DCT is not effective
in representing sharp transitions and singularities, whereas
wavelets would typically perform poorly for textures and
smooth transitions. The great variety in natural images makes
impossible for any fixed 2D transform to achieve good sparsity
for all cases. Thus, the commonly used orthogonal transforms
can achieve sparse representations only for particular image
patterns.

The adaptive principal components of local image patches

For small reference patch R, find similar patches.
Average the patches.



DNN for denoising (DnDNN)

Zhang eta. TIP'l7

Beyond a Gaussian Denoiser: Residual Learning of
Deep CNN for Image Denoising

Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang

Abstract—Discriminative model learning for image denoising
has been recently attracting considerable attentions due to its
favorable denoising performance. In this paper, we take one
step forward by investigating the construction of feed-forward
denoising convolutional neural networks (DnCNNs) to embrace
the progress in very deep architecture, learning algorithm, and
regularization method into image denoising. Specifically, residual
learning and batch normalization are utilized to speed up the
training process as well as boost the denoising performance.
Different from the existing discriminative denoising models which
usually train a specific model for additive white Gaussian noise
{AWGN) at a certain noise level, our DnCNN model is able
to handle € ian denoising with n noise level (ie.,
blind Gaussian denoising). With the residual learning strategy,
DnCNN v removes the latent clean image in the hidden
layers. This property motivates us to train a single DnCNN
model to tackle with several general image denoising tasks such
as Gaussian denoising, single image super-resolution and JPEG
image deblocking. Our extensive experiments demonstrate that
our DnCNN model can not only exhibit high effectiveness in
several general image denoising tasks, but also be efficiently
implemented by benefiting from GPU computing.

Index Ter: Image Denoisi C
works, Residual Learning, Batch Normalization

Neural Net-

1. INTRODUCTION

Image denoising is a classical yet still active topic in low
level vision since it is an indispensable step in many practical
applications. The goal of image denoising is to recover a clean
image x from a noisy observation ¥ which follows an image
degradation model y = x + v. One common assumption is
that v is additive white Gaussian noise (AWGN) with standard

random field (MRF) models [10], [11]. [!2]. In particular, the
NSS models are popular in state-of-the-art methods such as
BM3D [2], LSSC [1]. NCSR [0] and WNNM [13].

Despite their high denoising quality, most of the image
prior-based methods typically suffer from two major draw-
backs. First, those methods generally involve a complex op-
timization problem in the testing stage, making the denoising
process time-consuming [6], [17]. Thus, most of the prior-
based methods can hardly achieve high performance without
sacrificing computational efficiency. Second. the models in
general are non-convex and involve several manually chosen
parameters, providing some leeway to boost denoising perfor-
mance.

To overcome the limitations of prior-based approaches,
several discriminative learning methods have been recently
developed to learn image prior models in the context of
truncated inference procedure. The resulting models are able to
get rid of the iterative optimization procedure in the test phase.
Schmidt and Roth [ 1] proposed a cascade of shrinkage fields
(CSF) method that unifies the random field-based model and
the unrolled half-quadratic optimization algorithm into a single
learning framework. Chen et al. [1 5], [10] proposed a trainable
nonlinear reaction diffusion (TNRD) model which learns a
maodified fields of experts [ | 7] image prior by unfolding a fixed
number of gradient descent inference steps. Some of the other
related work can be found in [17], [15]. Although CSF and
TNRD have shown promising results toward bridging the gap
between computational efficiency and denoising quality, their

performance are inherently restricted to the specified forms of
ioe To b iGo i i 4 din CCE apd TADD

Noisy Image

Conv + RelLU
\ 4
Conv + BN + RelLU
Conv + BN + RelLU
Conv + BN + RelLU
Conv

- Straight-forward network based on deep residual learning
(Kim SR-ResNet).

- Introduced batch normalization to the network.

- Predicts the residual noise layer.

Residual Image




DnCNN

result

Methods BM3D WNNM EPLL MLP CSF TNRD DnCNN-S DnCNN-B
o=15 31.07 31.37 31.21 - 31.24 31.42 31.73 31.61
o =25 28.57 28.83 28.68 2896 | 28.74 28.92 29.23 29.16
o =50 25.62 25.87 25.67 26.03 - 25.97 26.23 26.23

- Method trained on synthetic noise data.
- Beats BM3D and is much faster.
- BM3D does not require training data!

"\?‘ﬂ .
i
|
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Need for real denoising dataset

Abdelhamed et al CVPR 2018

A High-Quality Denoising Dataset for Smartphone Cameras

Abdelrahman Abdelhamed

York University Microso

kamel@eecs.yorku.ca

Abstract

The last decade has seen an astronomical shift from
imaging with DSLR and point-and-shoot cameras to imag-
ing with smartphone cameras. Due to the small aperture
and sensor size, smartphone images have notably more
noise than their DSLR counterparts. While denoising for
smartphone images is an active research area, the research
community currently lacks a denoising image dataset rep-
resentative of real noisy images from smartphone cameras
with high-quality ground truth. We address this issue in
this paper with the following contributions. We propose a
systematic procedure for estimating ground truth for noisy
images that can be used to benchmark denoising perfor-
mance for smartphone cameras. Using this procedure, we
have captured a dataset — the Smartphone Image Denoising
Dataset (SIDD) — of ~30,000 noisy images from 10 scenes
under different lighting conditions using five representative
smartphone cameras and generated their ground truth im-
ages. We used this dataset to benchmark a number of de-
noising algorithms. We show that CNN-based methods per-
form better when trained on our high-quality dataset than
when trained using alternative strategies, such as low-1S0O
images used as a proxy for ground truth data.

Stephen Lin
ft Research

Michael S. Brown
York University

com mbrownéeecs.york

(@) Noisy image (ISO 800)  (b) Low-ISO image (ISO 100)

-~
pyo=69% 10 h=39x10%
B=1x10 B=1x10"
o =084 4 4 =063 :

(¢) Ground truth using [ °] (d) Our ground truth

Figure 1: An example scene imaged with an LG G4 smart-
phone camera: (a) a high-ISO noisy image; (b) same scene
captured with low ISO — this type of image is often used as
ground truth for (a); (¢) ground truth estimated by [ 7] (d)
our ground truth. Noise estimates (3, and 3, for noise level
function and o for Gaussian noise — see Section 3.2) indi-
cate that our ground truth has significantly less noise than
both (b) and (c). Images shown are processed in raw-RGB,
while sSRGB images are shown here to aid visualization.

dataset is essential both to focus attention on denoising of

SIDD: Smartphone Image
Denoising Dataset

-30,000 images

-5 cameras

-160 scene instances
-15 ISO settings
-Direct current lighting
-Three illuminations

Interesting finding

- When trained on synthetic only, BM3D beat DnCNN
- When trained on real data, DnCNN wins

- Implies noise models in literature are not accurate



Denoising contest at CVPR"20

NTIRE denoising contest at CYPR'20

Abdelrahman Abdelhamed
Yue Cao Zhilu Zhang
Wendong Chen Changyuan Wen
Zhihong Pan Baopu Li Teng Xi
Jingtuo Liu Junyu Han Errui Ding
Shuai Liu Ziyao Zong Nan Nan
Shuangquan Wang Dongwoon Bai
Changyeop Shin Sungho Kim
Yuchen Fan Thomas Huang
Yuzhi Zhao Marcin Mozejko
Michat Szafraniuk
Fengshuo Hu
Jang-Hwan Choi
Hwechul Cho Priya Kansal
Jiangxin Yang Yanlong Cao
Ioannis Marras Thomas Tanay

Yunhua Lu
Magauiya Zhussip

Han-Soo Choi Kyungmin Song
Chunxia Lei Bin Liu
Abstract

This paper reviews the NTIRE 2020 challenge on real
image denoising with focus on the newly introduced dataset,
the proposed methods and their results. The challenge is
a new version of the previous NTIRE 2019 challenge on
real imave denoisine that was based on the SIDD bench-

Mahmoud Afifi
Wangmeng Zuo
Meng Liu
Yanwen Fan
Songhyun Yu
Chenghua Li
Jungwon Lee
Pengliang Tang
Zhihao Li
Tomasz Latkowski
Krzysztof Trojanowski
Sujin Kim

Sabari Nathan
Siliang Tang
Gregory Slabaugh
Shusong Xu
Rajat Gupta

NTIRE 2020 Challenge on Real Image Denoising:
Dataset, Methods and Results

Michael S. Brown
Jiye Liu
Yunchao Zhang
Gang Zhang
Jechang Jeong
Long Bao
Kyeongha Rho

Radu Timofte
Xiaoling Zhang
Shuailin Lv

Xiyu Yu

Bumjun Park

Zengli Yang
Youngjung Kim
Yiyun Zhao Yugian Zhou
Wei Liu Qiong Yan
Lukasz Treszczotko
Pablo Navarrete Michelini
Jaayeon Lee
Jong Hyun Kim
Xiwen Lu Yaqi Wu
Matteo Maggioni
Youliang Yan Myungjoo Kang
Xiaomu Lu Tingniao Wang
Vineet Kumar

Nisarg A. Shah

Yanhong Wu
Wonjin Kim
Azamat Khassenov
Zhangyu Ye
Yanpeng Cao

1. Introduction

Image denoising is a fundamental and active research
area (e.g., [ ]) with a long-standing history in
computer vision (e.g.. | ). A primary goal of image
denoising is to remove or correct for noise in an image, ei-
ther for aesthetic purposes, or to help improve other down-

SSIM
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- Winning solutions (Baidu) relied on neural

- Samsung method used a U-net + multi-scale residual
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ISPs with multi-frame (burst) imaging



Why multi-frame!

* Two primary applications where is currently multi-frame is
used

* Low-light imaging (or "night mode" or "extended ISO")
* High-dynamic-range (HDR) imaging

* Many ISP now support multi-frame image.

* Possible to do super-res with multi-frame.
* For time sake, | won't discuss those methods



ISP with multi-frame

shutter duration/ISO (gain)/focus parameters —— Bayer processing routines Low-light
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(JPEG/HEIC) space (sRGB, P3) : resolution manipulation | | CIE XYZ/ProPhoto
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Photo-finishing routines 220



ISP with multi-frame
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Vlew-ﬁm?er or 'Color mapping to : Image resizing/ Add Local and global Geng‘eral and i Color space
compression/file display-referred color super- . . . selective color transform to
. . grain/noise tone-mapping , ) :
(JPEG/HEIC) space (sRGB, P3) : resolution manipulation | | CIE XYZ/ProPhoto
E Multi-frame/ Mu'ti-frame/ E .................................................................................
| Burst unit Burst unit
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Low-light imaging

ISP ISP

Align
and -

merge

) ISP

| Synthetic
long exposure

g 3
1 A

Single short exposure (burst)

Low-light imaging is essentially a noise-reduction problem.



Multi-frame for low-light

Early work on low-light image

is from Samsung SAIT

Moon et al — ICCE 2013

A Fast Low-Light Multi-Image Fusion
with Online Image Restoration

Young-Su Moon, Shi-Hwa Lee, Yong-Min Tai, and Junguk Cho
Samsung Advanced Institute of Technology, Samsung Electronics, Korea

Abstract—This paper presents a new low-light multi-frame
fusion algorithm to get a bright and clear shot even under dark
conditions. To this end, using multiple short-exposure images and
one proper-exposure blurry image as an input, a new hierarchical
block-wise temporal noise filtering is done. Finally, an online
image restoration of the denoising result is conducted along with
the blurry image input. Test results on real low-light scene show
its effectiveness like fast processing speed and satisfactory visual
quality.

I. INTRODUCTION

Digital camera photos taken under a low-light condition
reveal significant image artifacts such as motion blur by long-
exposure shooting or strong noise corruption by High-ISO
setting. Furthermore, as camera sensor’s resolution increases,
such artifacts are getting worse due to lack of incoming lights
on each sensor cell.

Ta ealve it manv recearch woarle have heen ctitidied In a

shooting mode need to be geometrically aligned. To achieve
this effectively, global image motion between a reference
short-exposure input image and other short-exposure input
images is estimated with a fast and effective method using a
translation model [4]. For convenience, the first short-
exposure input image is selected as the reference. Since actual
image motion between the input frames is complicated,
subsequent block-based local motion estimation is required.

Multiple short-exposure A proper-exposure
noisy shots blurry shot

| MultiResolutuion Temporal Denoising

| Online Image Restoration (OIR)

Result shot

Proposed alighment
(1) Works on a Laplacian
pyramid.
(2) global motion alignment
(3) local motion correction
(4) Temporal fusion
(to avoid ghosting)

Result of the proposed algo. when N =3




Hassinoff et al SIGGRAPH'I6 (Google)

Burst for low-light and HDR

Burst photography for high dynamic range and low-light imaging
on mobile cameras

Samuel W. Hasinoff
Jonathan T. Barron

Dillon Sharlet
Florian Kainz
Google Research

Andrew Adams
Marc Levoy

Ryan Geiss
Jiawen Chen

Figure 1: A comparison of a conventional camera pipeline (left, middle) and our burst photography pipeline (right) running on the same
cell-phone camera. In this low-light setting (about 0.7 lux), the conventional camera pipeline underexposes (left). Brightening the image
(middle) reveals heavy spatial denoising, which results in loss of detail and an unpleasantly blotchy appearance. Fusing a burst of images

increases the signal-to-noise ratio, making aggressive spatial denoising unnecessary. We encourage the reader to zoom in. While our pipeline

excels in low
artifact-free, s

ght and high-dvnamic-range scenes (for an example of the latter see figure 10), it is computationally efficient and reliably
it can be deployed on a mobile camera and used as a substitute for the conventional pipeline in almost all circumstances. For

readability the figure has been made uniformly brighter than the original photographs.

Abstract

Cell phone cameras have small apertures, which limits the number
of photons they can gather, leading to noisy images in low light.
They also have small sensor pixels, which limits the number of
electrons each pixel can store, leading to limited dynamic range. W
describe a computational photography pipeline that captures, ali
and merges a burst of frames to reduce noise and increase dynamic
range. Our system has several key features that help make it robust
and efficient. First, we do not use bracketed exposures. Instead,
we capture frames of constant exposure, which makes alignment

Keywords: computational photography, high dynamic range

hodoloo » C sl

Concepts: +C;

puti pho-
tography: Image processing:

1 Introduction

The main technical impediment to better photographs is lack of light.
In indoor or night-time shots. the scene as a whole may provide
insufficient light. The standard solution is either to apply analog or
digital gain, which amplifies noise, or to lengthen exposure time,

No deep learning — this paper describes a fast/robust alignment
estimation based on bilateral fitter.

Robust merging is guided by a reference frame.
All is done in the Bayer/RAWV frame.

g ) T 1 i ]

b =

L S S,

(a) Reference frame (b) Temporal mean (¢) Robust merge

(b) Intermediate alignment fields

(a) Image pair

with alionmons

High-dynamic-range is in terms of bit depth.This paper claims
the denoising/fusion can upsample from |0bit to |2bit.
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Multi-frame for low light
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Senhar et al TIP 2021

1

Burst Photography for Learning to Enhance
Extremely Dark Images

Ahmet Serdar Karadeniz, Erkut Erdem, Aykut Erdem

Abstract—Capturing images under extremely low-light con-
ditions poses significant challenges for the standard camera
pipeline. Images become too dark and too noisy, which makes
traditional enhancement techniq Imost impossible to apply.
Recently, learning-based approaches have shown very promising
results for this task since they have substantially more expressive
capabilities to allow for improved quality. Motivated by these
studies, in this paper, we aim to leverage burst photography
to boost the performance and obtain much sharper and more
accurate RGB images from extremely dark raw images. The
backbone of our proposed framework is a novel coarse-to-fine
network architecture that generates high-quality outputs progres-
sively. The coarse network predicts a low-resolution, denoised
raw image, which is then fed to the fine network to recover fine-
scale details and realistic textures. To further reduce the noise
level and improve the color accuracy, we extend this network
to a permutation invariant structure so that it takes a burst of
low-light images as input and merges information from multiple
images at the feature-level. Our experiments demonstrate that
our approach leads to perceptually more pleasing results than
the state-of-the-art methods by producing more detailed and
considerably higher quality images.

Each encoder is at a different
— L _____ resolution scale.

SID (5) [28]

Maharjan et al. (5) [29]

:

Learns a multi-scale burst encoder/decoder framework.
Input is RAWY, output is sSRGB.

Zamir et al. (8) [30]

Index Terms—computational photography, low-light imaging,
image denoising, burst images.

Ma etal. (8} [36] Ours (8) Ground Truth Ours (5)

Fig. 1: A sample result obtained with our proposed burst- 225
based extremely low-light image enhancement method. The
Capturing images in low-light conditions is a challenging standard camera output and its scaled version are shown at

I. INTRODUCTION




Google pixel phones multi-frame

——-—l—j|_

a) RAW Input Burst

d) Alignment Vectors

; —|LE|

b) Local Gradients

Wronski et al SIGGRAPH 2019

[cs.CV] 8 May 2019

Handheld Multi-Frame Super-Resolution

BARTLOMIE] WRONSKI, IGNACIO GARCIA-DORADO, MANFRED ERNST, DAMIEN KELLY, MICHAEL
KRAININ, CHIA-KAI LIANG, MARC LEVOY, and PEYMAN MILANFAR, Google Research

Fig. 1. We present a multi-frame super-resol Igorithm that the need for demosaicing in a camera pipeline by merging a burst of raw images.
We show a comparison to a method that merges frames containing the same-color channels together first. and is then followed by demosaicing (top). By
contrast, our method (bottom) creates the full RGB directly from a burst of raw images. This burst was captured with a hand-held mobile phone and processed
on device. Note in the third (red) inset that the demosaiced result exhibits aliasing (Moiré), while our result takes advantage of this aliasing, which changes on
every frame in the burst, to produce a merged result in which the aliasing is gone but the cloth texture becomes visible.

0 . - S M. L AN N I - - R S A - £~ SR~ N R - -

c) Kernels

"
'

g) Accumulation

h) Merged Result

f) Motion Robustness

Not necessarily for low-light, but does
target RAWV.

This paper uses multiple frames and very
small camera motion (from hand tremors)
to perform demosaicing and
super-resolution. By exploiting motion,
they can fill in missing Bayer data too.



ISP with multi-frame

shutter duration/ISO (gain)/focus parameters —— Bayer processing routines Low-light
Black level 3As :
o i White- .
Defectlve.plxel » correction/ ‘ Lens sha.dlng » Auto-exposure » - »‘ Demosaicing » Align
correction . correction Auto-focus balance
Normalization Auto-white-balance
| )

Multi-frame/
Burst unit Fuse

View-finder or Color mapping to : Image resizing/ Add Local and slobal General and Color space
compression/file ‘ display-referred color ‘ super- ‘ rain/noise q cone-ma g i selective color ‘ transform to
(JPEG/HEIC) space (sRGB, P3) i resolution 8 PPINg 1| manipulation | | CIE XYZ/ProPhoto
| | e
| Multi-frame/ | Multi-frame/ | |
| Burst unit |Burst unit | ;
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High dynamic range imaging

\ —4 stops -2 stops +2 stops +4 stops )

An f-stop adjusts the amount of light that falls

on the sensor generally by a factor of 2.

So,a +1 f-stop increases the amount of light

by two times. An -1 f-stop reduces the amount

of light by /2. We assume the ISO is not adjusted.

This is often called an Exposure Value adjustment.

Change of EV is a change in stop.
; ; P Fused result Fused result + local tone mapping



Mertens et al — Pacific Graphics 2007

Exposure fusion

Exposure Fusion

Tom Mertens! Jan Kautz?

!'Hasselt University — EDM
transationale Universiteit Limburg
Belgium

Abstract

We propose a technique for fusing a bracketed exposure
sequence into a high quality image, without converting to
HDR first. Skipping the physically-based HDR assembly
step simplifies the acquisition pipeline. This avoids camera
response curve calibration and is computationally efficient.
It also allows for including flash images in the sequence.
Qur technique blends multiple exposures, guided by simple
quality measures like saturation and contrast. This is done
in a multiresolution fashion to account for the brightness
variation in the sequence. The resulting image quality is
comparable to existing tone mapping operators.

1. Introduction

Digital cameras have a limited dynamic range, which is
lower than one encounters in the real world. In high dy-
namic range scenes, a picture will often turn out to be under-
or overexposed. A bracketed exposure sequence [5, 17, 26]
allows for acquiring the full dynamic range, and can be
turned into a single high dynamic range image. Upon dis-
play, the intensities need to be remapped to match the typ-
icallv low dvnamic rance of the disnlav device throueh a

Frank Van Reeth!

2University College London
UK

(a) Exposure bracketed sequence

T AR S

(b) Fused result

Figure 1. Demonstration of exposure fusion. A
multi-exposure sequence is assembled di-
rectly into a high quality image, without con-
verting to HDR first. No camera-specific

Input Images Image - Laplacian Pyramid

Weight Map - Gaussian Pyramid

Final Image

Simple method that fused multiple exposed (and rendered)
images to a single 'fused' output.

Works on Laplacian pyramid.
Proposed heuristics for determining weights for fusion.

- Namely: saturation, contrast, "exposedness" at each level

229



(b) Ogden et al. [19]

Exposure fusion

(c) Burtet al. [4]

(d) Our technique

Exposure fusion gave spectacular
results compared to existing
methods in 2007.

Simple algorithm

makes it suitable

for real-time deployment
on device.
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DNN-based multi-frame HDR

Kalantari and Ramanoorthi SIGGRAPH'[7 Paper e>.(amined three strategies. o
(1) Multi-frame and CNN to predict final HDR.

(2) Multi-frame and CNN to predict blending weights, then HDR.

(3) Multi-frame and CNN to predict blending weights and align
misaligned regions

>, | Found that (#2) is the best; (3) works for small motions.

Deep High Dynamic Range Imaging of Dynamic Scenes

NIMA KHADEMI KALANTARI, University of California, San Diego

Aligned Images 1) Direct

- sl =

Fig.6

LDR images Our TonemaDR Image Kang (40.02 dB) Sen (46.12 dB) Qurs (48.88 dB) Ground Truth
Fig. 1. We propose a learning-based approach to produce a high-quality HDR image (shown in middle) given three differently exposed LDR images of a

dynamic scene (shown on the left). We first use the optical flow method of Liu [2009] to align the images with low and high exposures to the one with medium Esimated
exposure, which we call the reference image (shown with blue border). Note that, we use reference to refer to the LDR image with the medium exposure,
which is different from the ground truth HDR image. Our learning system generates an HDR image, which is aligned to the reference image. but contains HDR METQQT HDR lmage

information from the other two images. For example, the details on the table are saturated in the reference image, but are visible in the image with the shorter
exposure. The method of Kang et al. [2003] is able to recover the saturated regions, but contains some minor artifacts. However, the patch-based method of
Sen et al. [2012] is not able to properly reproduce the details in this region because of extreme motion. Moreover, Kang et al’s method introduces alignment
artifacts which appear as tearing in the bottom inset. The method of Sen et al. produces a reasonable result in this region, but their result is noisy since they A[igned |mages
heavily rely on the reference image. Our method produces a high-quality result, better than other approaches both visually and numerically. See Sec. 4 for

details about the process of obtaining the input LDR and ground truth HDR images. The full images as well as comparison against a few other approaches are 2 2
shown in the supplementary materials. The differences in the results presented throughout the paper are best seen by zooming into the electronic version.

2) Weight Estimator (WE)

CNN Alpha Blend
Fig. 6 ‘ a » Eq.6

Producing a high dynamic range (HDR) image from a set of images with ACM Reference format:
different exposures is a challenging process for dy namic scenes. A category Nima Khademi Kalantari and Ravi Ramamoorthi. 2017. Deep High Dynamic
of existing techniques first register the input images to a reference image and Range Imaging of Dynamic Scenes. ACM Trans. Graph. 36, 4, Article 144 Blending Estimated
then merge the aligned images into an HDR image. However. the artifacts (July 2017), 12 pages. b
of the registration usually appear as ghosting and tearing in the final HDR DOI: hitp-//dx.doi.org/10.1145/3072959.3073609 HDR Merger WEIg ts HDR ]mage
images. In this paper. we propose a leaming-based approach to address
this problem for dynamic scenes. We use a convolutional neural network = . =
(CNN) as our learning model and present and compare three different system 1 INTRODUCTION A||g ned Images 3) WEIght and Image Estimator (WIE)
architectures to model the HDR merge process. Furthermore, we create a Standard digilal cameras l)’pically take imagcs with under/over- -
large dataset of input LDR images and their corresponding ground truth exposed regions because of their sensors’ limited dynamic range. Aloha Blend
HDR images to train our system. We demonstrate the performance of our The most common way to capture high dynamic range (HDR) images CNN » » pha Blen
system by producing high-quality HDR images from a set of three LDR Y 25 Zzt - ? - \ Fig 6 Eq. 6
5 using these cameras is to take a series of low dynamic range (LDR) 5
images. Experimental results show that our method consistently produces by % 3

images at different exposures and then merge them into an HDR
image [Debevec and Malik 1997]. This method produces spectacular
images for tripod mounted cameras and static scenes, but generates
results with ghosting artifacts when the scene is dynamic or the HDR Merger
camera is hand-held.

Generally, this problem can be broken down into two stages: 1)
aligning the input LDR images and 2) merging the aligned images
tography: into an HDR image. The problem of image alignment has been
extensively studied and many powerful optical flow algorithms

better results than several state-of-the-art approaches on challenging scenes.

Blending Refined Estimated
Weights Aligned HDR Image

CCS Concepts: « Ci ing methodologies — Ci pho-




Summary

* Deep learning is good at addressing hard ISP components
* Demosiacing, denoising, AWB, super-resolution (digital zoom)
* These are components that are ill-posed problems (many-to-one solutions)

* Hand-crafted solutions still work well
* GANs shows promise for visual results (not necessarily benchmarks)

* Many current SOTA solutions are based on neural architecture search
(NAS)
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Replacing the conventional ISP

Conventional

RAW Image Signal
input Processor
(ISP)

Replace with a single DNN

RAW

input DNN

Replace with modular DNNs

DNNI » DNN2 ‘ DNN3

RAW
input
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Single DNN replacement



Modeling camera rendering with a DNN

Nam and Kim CVPR'l7

Modelling the Scene Dependent Imaging in Cameras
with a Deep Neural Network

Seonghyeon Nam
Yonsei University

shnnam@yonsel.ac.kr

Abstract

We present a novel deep learning framework that models
the scene dependent image processing inside cameras. Of-
ten called as the radiometric calibration, the process of re-
covering RAW images from processed images (JPEG format
in the sRGB color space) is essential for many computer vi-
sion tasks that rely on physically accurate radiance values.
All previous works rely on the deterministic imaging model
where the color transformation stays the same regardless of
the scene and thus they can only be applied for images taken
under the manual mode. In this paper, we propose a data-
driven approach to learn the scene dependent and locally
varying image processing inside cameras under the auto-
mode. Our method incorporates both the global and the
local scene context into pixel-wise features via multi-scale
pyramid of learnable histogram layers. The results show
that we can model the imaging pipeline of different cameras
that operate under the automode accurately in both direc-

Seon Joo Kim
Yonsei University

seonjookim@yonsei.ac.kr

{a) Manual mode (b) Auto-mode
Figure 1. Difference of two images captured (a) under the manual
mode and (b) under the auto-mode. The RAW images of both (a)
and (b) are identical. In (b), the brightness/contrast and the colors
were enhanced automatically by the camera.

- The paper is motivated by "reversing"
the ISP from sRGB to RAW

- Addresses the scene-dependent nature
of ISPs for radiometric calibration

- However, the framework can be used
for "forward rendering" (RAW to sRGB)

- This work is often overlooked due to the
focus on radiometric calibration
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Modeling camera with DNN

Inputimage

This paper works on image patches
and is trained per camera.

To encode local context information,
a learnable histogram feature is used
and polled at different scales.

1

(a) Learnable histogram (b) Multi-scale pyramid pooling layers

Conv Conv Conv

The local histogram feature provides

spatial context for converting from
RAW to sRGB (or sRGB to RAW).

"‘ Output Image (c) In-network patch extraction in training time
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Modeling camera with DNN

GROUND TRUTH OURS SRCNN [¥] ERROR (OURS) ERROR (SRCNN [=])

0.15

0.1

0.05
4 0

Results of rendering RAWV to sRGB.
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ISP replacement to mimic better camera

CVPRW'l9 (NTIRE workshop)

Replacing Mobile Camera ISP with a Single Deep Learning Model

Luc Van Gool

vangool@vision.ee.ethz.ch

Radu Timofte

timofter@vision.ee.ethz.ch

Andrey Ignatov

andrey@vision.ee.ethz.ch

ETH Zurich, Switzerland

Abstract

As the popularity of mobile photography is growing con-
stantly, lots of efforts are being invested now into build-
ing complex hand-crafted camera ISP solutions. In this
work, we demonstrate that even the most sophisticated ISP
pipelines can be replaced with a single end-to-end deep
learning model trained without any prior knowledge about
the sensor and optics used in a particular device. For this,
we present PyNET, a novel pyramidal CNN architecture
designed for fine-grained image restoration that implicitly
learns to perform all ISP steps such as image demosaicing,
denoising, white balancing, color and contrast correction,
demoireing, etc. The model is trained to convert RAW Bayer
data obtained directly from mobile camera sensor into pho-
tos captured with a professional high-end DSLR camera,
making the solution independent of any particular mobile
ISP implementation. To validate the proposed approach on
the real data, we collected a large-scale dataset consisting
of 10 thousand full-resolution RAW-RGB image pairs cap-
tured in the wild with the Huawei P20 cameraphone (12.3
MP Sony Exmor IMX380 sensor) and Canon 5D Mark IV
DSLR. The experiments demonstrate that the proposed so-

Raw Input
(smartphone)

-ll ll || i II ; II ll o
II Il T II ¥ II o

Uses U-net structure
(called "PyNet" for pyramid Net)

Input Output
ll l I Level 1

Processed

output
(DSLR)
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ISP replacement to mimic better camera

‘:’p'.. I T

Huawei P20 RAW - Visualized Huawei P20 ISP Canon 5D Mark IV
. Nl . o TR % 3 E;}.\ R S R O WNETER O TR G

Training images
RAW from smartphone

sRGB from DSLR
Images are misaligned!

Images are globally aligned, and then patch wise aligned.

Additional perceptual loss (VGG) is included in training at different U-
net scales.
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ISP replacement to mimic better camera

BlackBerry KeyOne RAW Image (Visualized)

24|



"Learning to see in the dark”

This paper is essentially a learned ISP.
However, it learns to process noisy RAW to clean sRGB.

Chen et al CVPR 2018 Short

May 2018

.01934v1 [cs.CV] 4

Learning to See in the Dark

Chen Chen Qifeng Chen
uIucC Intel Labs

(a) Camera output with ISO 8,000

(b) Camera output with ISO 409.600 (c) Our result from the raw data of (a)

Jia Xu Vladlen Koltun
Intel Labs Intel Labs

Figure 1. Extreme low-light imaging with a convolutional network. Dark indoor environment. The illuminance at the camera is < 0.1
lux. The Sony a7S II sensor is exposed for 1/30 second. (a) Image produced by the camera with ISO 8.000. (b) Image produced by the
camera with ISO 409.600. The image suffers from noise and color bias. (c) Image produced by our convolutional network applied to the

raw sensor data from (a).
Abstract

Imaging in low light is challenging due to low pho-
ton count and low SNR. Short-exposure images suffer from
noise, while long exposure can induce blur and is often
impractical. A variety of denoising, deblurring, and en-
hancement techniques have been proposed, but their effec-
tiveness is limited in extreme conditions, such as video-rate
imaging art night. To support the development of learning-

cal means to increase SNR in low light, including opening
the aperture, extending exposure time, and using flash. But
each of these has its own characteristic drawbacks. For ex-
ample, increasing exposure time can introduce blur due to
camera shake or object motion.

The challenge of fast imaging in low light is well-
known in the computational photography community. but
remains open. Researchers have proposed techniques for
denoisine. deblurrine. and enhancement of low-liecht im-

exposure

Carefully
captured
low exposure

Image Signal
Processor
(ISP)

Image Signal
Processor
(ISP)

Learned
denoiser +
ISP rendering




"Learning to see in the dark”

. Amplification Ratio

W
HxWx1 7 Hx W3

wax
22

R e

Black Level

Bayer Raw . . Output RGB
U-net articture is used.

Key to this paper is the careful alignment of data.

Results show for
very low-light cases
so significant
performance.

(a) Traditional pipeline (b) ... followed by BM3D
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CRISPnet (color reproduction ISP)

Souza and Heidrich, Arxv 2021

CRISPnet: Color Rendition ISP Net

Matheus Souza and Wolfgang Heidrich

King Abdullah University of Science and Technology (KAUST),
Thuwal, Saudi Arabia
{matheus.medeirosdesouza,wolfgang.heidrich}@kaust.edu.sa

Abstract. Image signal processors (ISPs) are historically grown legacy
software systems for reconstructing color images from noisy raw sensor
measurements. They are usually composited of many heuristic blocks
for denoising, demosaicking, and color restoration. Color reproduction in
this context is of particular importance, since the raw colors are often
severely distorted, and each smart phone manufacturer has developed
their own characteristic heuristics for improving the color rendition, for
example of skin tones and other visually important colors.

In recent years there has been strong interest in replacing the historically
grown ISP systems with deep learned pipelines. Much progress has been
made in approximating legacy 1SPs with such learned models. However,
so far the focus of these efforts has been on reproducing the structural
features of the images, with less attention paid to color rendition.

Here we present CRISPnet, the first learned ISP model to specifically
target color rendition accuracy relative to a complex, legacy smart phone
[SP. We achieve this by utilizing both image metadata (like a legacy
ISP would), as well as by learning simple global semantics based on
image classification — similar to what a legacy ISP does to determine
the scene type. We also contribute a new ISP image dataset consisting
of both high dynamic range monitor data, as well as real-world data,
both captured with an actual cell phone ISP pipeline under a variety of
lighting conditions, exposure times, and gain settings.

Keywords: image signal processor; image restoration; color rendition.

IRGBGE R H2x W/2x 4

Reconstruction Branch

Y

Ny

/RGBERHX Wx3

N 2x (Convolutional 3x + LeakyRelLU)
lg: Max-Pooling
W Channel-wise Product
w .
Upsample+Concatenation

Linear Layer

Convolution 1x

5x Residual Blocks

4

LQQQud

XCIT

Bilinear Interpolation | Ipe R 368 x 480 x 3

Downsample

H Global Semantics Branch

Monolithic ISP with focus on high-quality color rendering
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CRISPNet

Reconstruction Branch

Motivation is that one day we will have RAW
images from an smartphone, but no

hardware to render it, so a DNN will be used -
instead. The paper refers to this as legacy ISPs.

IRGBGERH/ZXW/2X4 IRGBERHXWXQ

!

2x (Convolutional 3x + LeakyRelU)
(=7 Max-Pooling
(—7) Channel-wise Product
(1) Upsample+Concatenation
(=J) Linear Layer
(1) Convolution 1x

(=) 5x Residual Blocks
& xar

1eRHXW LA
. . . | wer® I P
Some interesting ideas: SEe Lo
(1) WB (from RAW) is injected
into network layers.

ion | Ipe R 368X 480x 3

Global Semantics Branch

(2) Global semantics is also
incorporated into architecture.

Training data is Apple iPhone images. Results against
This DNN essentially learns other DNN ISPs.
to "render" RAWV like Apple.
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A two stage DNN-based ISP



Two stage ISP

Liang, Cao, Zhang — TIP 2021

r—- -~ 1 I T
CameraNet: A Two-Stage Framework for | Bad pixel removal | | Demosaicking
| Dark/white level Nor- | I \[; hite balance
1 1 | malization | | Denoising
Effective Camera ISP Learning ,\ malizatic | sl DoOERE s
I s | |
Zhetong Liang, Jianrui Cai"', Zisheng Cao", and Lei Zhang", Fellow, IEEE TFA i 5 | Data preparation | = : | Restore-Net
s e T : : (E[ Almage | T | RGGB sub-images _ _ __ ___ _____
amera RGB space Camera color space ®

Abstraci— Traditional image signal processing (ISP) pipeline
consists of a set of cascaded image processing modules onboard a
camera to reconstruct a high-quality sSRGB image from the sensor

The traditional ISP is usually designed as a set of hand-
crafted modules, each of which addresses a specific task [1].
For instance, a 3D lookup table is typically employed for

raw data. Recently, some methods have been proposed to learn a - . R £

convolutional neural network (CNN) to improve the performance the color enhancement task [2]. In most traditional ISP sRGB eamma |

of traditional ISP. However, in these works usually a CNN is models, the modules are designed in a divide-and-conquer l T D, S |

directly trained to accomplish the ISP tasks without considering manner (i.e., splitting the ISP into a set of modules and I onq mapping . |

much the correlation among the different components in an ISP, developing them independently), while little attention has | Detail & color ad_]uslment |

As a result, the quality of reconstructed images is barely satisfac- .0, paid to design them as a whole [3]. Moreover, it is '| Other enhancement tasks

tory in challenging scenarios such as low-light imaging. In this . . = L. L |

paper, we firstly analyze the correlation among the different ulme—consummg to tune each module for high image qtla]lty | 3 ‘ | s

tasks in an ISP, and categorize them into two weakly correlated ~Since the best output of one module may not result in the 5 I Enhance-Net I .

groups: restoration and enhancement. Then we design a two-stage  desired quality of the final output. Besides the standard ISP ReSlored ln]age | i Enhanced "Tlage

network, called CameraNet, to progressively learn the two groups
of ISP tasks. In each stage, a ground truth is specified to supervise
the subnetwork learning, and the two subnetworks are jointly
fine-tuned to produce the final output. Experiments on three
benchmark datasets show that the proposed CameraNet achieves
consistently compelling reconstruction quality and outperforms
the recently proposed ISP learning methods.

Index Terms—Image signal processing, image restoration,
image enhancement, convolutional neural networks.

[. INTRODUCTION

HE raw image data captured by camera sensors
are typically red, green and blue channel-mosaiced
irradiance signals containing noise, less vivid colors

pipeline. there are also some ISP methods designed for burst
imaging in the literature [4], [5]. However, these methods
are subject to the effectiveness of image alignment tech-
niques [6], which may generate ghost artifacts caused by object
motion.

Recently, it has been shown that the performance of
some image processing tasks, such as denoising [7], [8],
white balance [9], [10], color demosaicking [11]. [12], color
enhancement [13]-[15], etc, can be significantly improved by
deep learning techniques. In these methods, a convolutional
neural network (CNN) is trained with a task-specific dataset
that contains image pairs for supervised learning. Inspired
by these methods, an intuitive idea is that we can train a
subnetwork for each subtask of the ISP pipeline, and then

Intermediate color space

Proposes a "restore-net" and "enhance-net".

sRGB color space
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CameralNet considers real ISP stages

Bayer processing routines

"I Black level 3As ) .
i i Lens shadin ; White- .. Noise
Defectlve.plxel » correction/ ‘ ding Auto-exposure Demosaicing .
| : correction N lizati correction Auto-focus balance reduction
: 1 ormalization Auto-white-balance
Sensor

v T T T s

Vlew-ﬁnqer or .Color mapping to ¢ | Image resizing/ Add Local and global Gem’aral and . Color space
compression/file display-referred color super- Fain/noise one-mabin selective color | gl transform to
(JPEG/HEIC) space (sRGB, P3) i resolution & pPIng manipulation i| CIE XYZ/ProPhoto

Photo-finishing routines
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CameralNet — Training data preparation

Demosaicking
in software

Restoration
ground truth

I

|

- |

Raw image |
I

U S S eSO PP .. il o L s Y s e U S

Exposure & contrast

2! & 2 o 1 Y S
Color manipulation Tone mapping adjusment

Enhancement
ground truth

Details are not very clear, but Photoshop is claimed to be used to process RAWV to denoised RAW.

Lightroom is used to generate enhanced images. Assumed trained per sensor type.
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CameraNet

Sub-pixel
conv

Output
—)

* It
| 52 | 256

e oy

RestoreNet/EnhanceNet share
similar structure.

______________________ | EnhanceNet uses a dilated

| Processingblock mE— N nvolution.
Processing block [N r " 2+ Max pooling | convolutio

‘ Strided-upsampling
o

I

I

. . |
Skip connection |
I

I

|

Conv+LRelLU
Conv+LRelU
Conv+LRelLl

!
Dilated Conv
+LRelU

Dilate

ilated Conv
+LRelU
L
Dilated Conv
+LRellU

Restore-Net Enhance-Net

Fig. 4. The structure of UNet-like Restore-Net and Enhance-Net modules in the proposed CameraNet system.
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Results

(a) Raw image (b) Result by one-stage setting (c) Result by two-stage setting (d) Groundtruth
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Three stage DNN-based ISP



inner of the night ph

otography challenge (2022)

NTIRE 2022 Challenge on Night Photography Rendering

Egor Ershov Alex Savchik Denis Shepelev Nikola Bani¢ Michael S. Brown
Radu Timofte Karlo Koscevi¢ Michael Freeman Vasily Tesalin Dmitry Bocharov
Illya Semenkov Marko Subasi¢ Sven Loncari¢ Arseniy Terekhin Shuai Liu
Chaoyu Feng Hao Wang Ran Zhu Yonggiang Li Lei Lei Zhihao Li SiYi
Ling-Hao Han Ruigi Wu Xin Jin Chunle Guo Furkan Kinh Sami Mentes
Baris Ozcan Furkan Kirag Simone Zini Claudio Rota Marco Buzzelli
Simone Bianco Raimondo Schettini Wei Li Yipeng Ma Tao Wang Ruikang Xu
Fenglong Song Wei-Ting Chen Hao-Hsiang Yang Zhi-Kai Huang Hua-En Chang
Sy-Yen Kuo Zhexin Liang Shangchen Zhou Ruicheng Feng Chongyi Li
Xiangyu Chen Binbin Song Shile Zhang Lin Liu Zhendong Wang
Dohoon Ryu Hyokyoung Bae Taesung Kwon Chaitra Desai Nikhil Akalwadi
Amogh Joshi Chinmayee Mandi Sampada Malagi Akash Uppin
Sai Sudheer Reddy Ramesh Ashok Tabib Ujwala Patil Uma Mudenagudi

Abstract

This paper reviews the NTIRE 2022 challenge on night
photography rendering. The challenge solicited solutions
that processed RAW camera images captured in night
scenes to produce a photo-finished output image encoded
in the standard RGB (sRGB) space. Given the subjec-
tive nature of this task, the proposed solutions were eval-
uated based on the mean opinions of viewers asked to judge
the visual appearance of the results. Michael Freeman,
a world-renowned photographer, further ranked the solu-
tions with the highest mean opinion scores. A total of 13
teams competed in the final phase of the challenge. The
proposed methods provided by the participating teams rep-
resent state-of-the-art performance in nighttime photogra-
phy. Results from the various teams can be found here:

lighting environment present in night photography makes
it unclear which of the illuminants should be taken into ac-
count during the correction of scene colors, see Figure 1.
In addition, tone curves and similar photo-finishing strate-
gies used to process daytime images may not be appropriate
for night photography. Moreover, common image metrics
(e.g.. SSIM [57] and LPIPS [59]) may not be suitable for
night images. Finally, there is significantly less published
research focused on image processing for night photogra-
phy [3¥]. As a result, there are fewer “best practices” re-
garding night photography than daytime photography. Be-
cause of that, the main motivation of this challenge was to
encourage the research targeting night photography. The
following sections describe the NTIRE challenge and solu-
tions for the various teams.

This challenge is one of the NTIRE 2022 associated
challenges: spectral recovery [©]. spectral demosaicing [*],
perceptual image quality assessment [20], inpainting [10],
efficient super-resolution [ 7], learning the super-resolution

NEWS AND UPDATES

- Toloka was used to evaluate results.

'NDERING

Welcome to the "Night Photography” challenge part of the NTIRE workshop at CVPR 2022.

- Teams were asked to process night RAW images to sRGB

- Professional photographer Michael Freeman also evaluated.

- Winning team was from Xiaomi (net slide)
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FlexISP

Liu et al NTIRE22/CVPRW?22 (Xiaomi) - Winner for Night Photography challenge

- Results were far better than competitors

Deep-FlexISP: A Three-Stage Framework for Night Photography Rendering

Shuai Liu  Chaoyu Feng Xiaotao Wang Hao Wang Ran Zhu Yonggiang Li Lei Lei

Xiaomi Inc., China I t d d 3 t ISP
{liushuai21, fengchaoyu, wangxiaotac, wanghao35, zhuran, liyonggiang, leileil}@xiaomi.com = n ro uce a— -s a—ge

Abstract

Night photography rendering is challenging due to im-
ages’ high noise level, less vivid color, and low dynamic
range. In this work, we propose a three-stage cascade
framework named Deep-FlexISPE, which decomposes the
ISP into three weakly correlated sub-tasks: raw image de-
noising, white balance, and Bayer to SRGB mapping. for
the following considerations. Firs, task decomposition can
enhance the learning ability of the framework and make it
easier to converge. Second, weak correlation sub-tasks do
not influence each other too much, so the framework has a
high degree of freedom. Finally, noise, color, and brigh-
ness are essential for night photographs. Our framework
can flexibly adjust different styles according to personal
preferences with the vital learning ability and the degree of
freedom. Compared with the other Deep-ISP methods, our
proposed Deep-FlexISP shows state-of-the-art performance
and achieves first place in people’s choice and photogra-
pher’s choice in NTIRE 2022 Night Photography Render
Challenge.

1. Introduction
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Night photography is a challenging task due to several
reasons. First, the low light condition will cause high-level
noise in the raw image. Second, it is hard to estimate the




FlexISP

Custom denoiser. Training data unclear
(possibly in-house Xiaomi denoiser used
to generate ground truth).

Network was conditioned in noise level.
Allowing adjustment. Denoising INetwork

N A8

“ ’ I convolution
P o residual block

input raw | denoised raw

avg pool

'
' de-convolution

element-wise
sum

F4C was used for white-balance. color-corrected raw

Two networks were used, each - f
predicting biased results towards warm/cold w

White Balance Network

demosaic

‘ CCM mapping

SqueezeNet
backbone

ground truth. User can "slide"
between results.

element-wise
multiply

output sSRGB

- channel-wise

multiply
m

Bayer to SRGB Nerwork

(lightroom?) at different levels.
Users could "slide" between results.

Images were manually adjusted | Li‘
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Baseline was a simple
software ISP given
to participants.

PyNet is single
DNN method.

HERN
(Enhancement
network)

FlexISP.

(d) Ours Deep-FlexISP 256
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RAWV to bit

Jeong and Jung - ECCV'22

RAWtoBit: A Fully End-to-end Camera ISP
Network

Wooseok Jeong and Seung-Won Jung*

Department of Electrical Engineering, Korea University, Seoul, Korea
{661wesd, swjung83}@korea.ac.kr

Abstract. Image compression is an essential and last processing unit in
the camera image signal processing (ISP) pipeline. While many studies
have been made to replace the conventional ISP pipeline with a single
end-to-end optimized deep learning model, image compression is barely
considered as a part of the model. In this paper, we investigate the de-
signing of a fully end-to-end optimized camera ISP incorporating image
compression. To this end, we propose RAWtoBit network (RBN) that
can effectively perform both tasks simultaneously. RBN is further im-
proved with a novel knowledge distillation scheme by introducing two
teacher networks specialized in each task. Extensive experiments demon-
strate that our proposed method significantly outperforms alternative
approaches in terms of rate-distortion trade-off.

Encoder/Decoder (sRGB)
[compression]
ISP-Net

Comp-Net
sRGB
RAW-—» —» sSRGB

Quantization,
RAW to SRGB entropy coding *
(a)

ISP+Comp-Net

St -

Quannzmxon_. :
entropy coding > Bitstream

Combined RAW to sRGB
with encoder.
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sRGB —»

RAW —»

RAW —»

r

RAW to bit

ISP teacher

— sRGB

RBN v
—» sRGB
= ——
' Quantization, entropy coding
Compression
teacher
— RAW

Quantization, entropy C{l'dingrl Bitstream |

Paper shows that a knowledge distillation strategy
is best to learn the RAW to sRGB with bit encoder.

(a) Ground-truth (b) CS (32.25dB/0.0231bpp) (¢) CSHIT (31.98dB/0.0233bpp)

(d) US (32.84dB/0.0310bpp) (e) RBN (33.75dB/0.0216bpp) (f) RBN+KD (34.59dB/0.0223bpp)
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DNN-based ISP considerations and challenges



Training data

* It is important to remember that RAVV images are sensor-specific
* This means we often need to train ISPs (and ISP modules) per sensor
* Modern smartphones can have 3-4 different sensors
* Capturing training data can be overwhelming for camera engineers

* Care is required when capturing training data

* Many of the low-light/HDR papers, the real contribution is the carefully captured
training data

* Again, this needs to be captured "per" sensors

* Single stage ISPs have limited "tune-ability"
* Conventional IPS are designed to be tunable
* DNNs are often tuned by changing the training data



Consideration for DNN-based ISP

* A conventional ISP is still required to produce training data

e Can we beat conventional ISPs?

SRS T o
6- White-balancing &

“alll 7. Black light subtraction, 3- Lens correction 4- Demosalcmg 5- Noise reduction Color space [MATs)
1- Reading raw Image Llnearlzatlon [2D Array(s)] [Func]
[Values or 1D LUT] "
""" — - i 7
/ [#]a]#] | ‘ 1/
) | « #|4|n « ! / | « « /
L/ # / !/
12- Gamma curve 11- Final color space 10- Tone curve 9- Color mani- 8- Exposure curve 7- Hue/Sat map
application [1D LUT] conversion [Mat] application [1D LUT] pulation [3D LUT] [EV value or 1D LUT] [3D LUT]

Current ISP workflow \

Team of Image Quality Engineers tune ISP parameters

to produce desired images. "'

raw output
I I

raw ,| output
2 software 2

raw ISP output
3 — 3

raw .| output
N N

Neural-ISP workflow

Team of Image Quality Engineers process

thousand of RAVV images with a

"software ISP" to produce training data?
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Tutorial summary

* Background on color and color spaces
* This topic mixes many disciplines
* Color constancy and terminology for illumination (e.g. color temperature)

* Overview of basic steps on camera pipeline
* Discussion of more modern multi-frame methods

* Discussion of some recent Al-based methods



Last slide (almost)

* | hope you have learned more about color and the in-camera rendering
pipeline.

* | encourage you to state your assumptions about your image's color space in
your research papers:

For example, replace this: "Our input 1s an RGB image ..."
to: "Our mput 1s an RGB 1mage encoded in standard RGB..."

* Such a small clarification in your paper will greatly help other researchers.
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And of course...

N L

“The Standard Observers”
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