
EECS 1012 – Practice Lab Test #2

INSTRUCTIONS

You will have 90 minutes to complete this lab test. When 90 minutes

have finished, you will be asked to stop and upload your files based on

the submission instructions. Do not turn off your computer, leave your

files all in the www directory, we will come by and mark

Edit the files in the www directory, you do not need to create any files.

Additional Files Provided

(1) HTML+FORMS, (2) CSS and (3) JavaScript - “Cheat sheet”

Tentative Grading Scheme

Task Marks

Task 1: Javscript + Forms 30%

Task 2: JavaScript Basic 15%

Task 3: JavaScript DOM 25%

Task 4: JavaScript Events 30%

Total 100%

mbrown
Text Box
There is also a video showing you the behaviour of the tasks.

Task 1 (FORMS and PHP): files - task1.html, task1.css, and task1.js.

You only need to modify the task1.js, however, you are allowed to modify all files if you want. Your task is to validate

the input as it is typed in. Where appropriate, use a suitable regular expression to check the input. See the boxes below

to explain what is allowed as input. When the submit button is pressed, check to see if all fields have been validated as

correct. (Note – you do not need to submit the form, only change the color of the button).

This is the HTML file with no JavaScript. Please

look at the HTML file carefully to see the layout

and the IDs of the elements.

Write your name here.

This field should match the following pattern:

First letter A or C, followed by four numbers, followed

by any letter. The input can only be 6 characters.

This field has to be one of the strings

shown above (CAN, MEX, ..).

Input can be upper or lower case. Input should match the following

pattern: start with a dollar sign, followed

by one or more numbers. Then followed

by an optional dot, followed by 0 or more

numbers.

When the user clicks the submit button, if all fields are valid,

then change the button's background color to "lightblue". If any

of the fields are not validate, then change the button to

"mistyrose" (see image above this one). [NOTE: You don't need

to submit the form!]

When an input is valid, change the

background color to "lightblue",

otherwise, change it to "mistyrose".

When the page loads, set up all

event observations. Change the

background of all input

backgrounds to the color

"mistyrose".

HINT: When validating that all inputs are correct, you can

check to see if the color of the background are lightblue. For

example: (replace element name with the appropriate id]

$("[element name]").style.backgroundColor == "lightblue"

Task 2: (Javascript) – files: task2.html and task2.js.

 Your task is to implement a simple number pad emulator using Javascript as shown below.

 <div id="pad">

 <div id="entry"></div>

 <button id="7">7</button><button id="8">8</button><button id="9">9</button>

 <button id="4">4</button><button id="5">5</button><button id="6">6</button>

 <button id="1">1</button><button id="2">2</button><button id="3">3</button>

 <button id="0">0</button><button id="back">Delete</button>

 </div>

The “delete” button is the trickiest part since we have not seen how to do this in Java Script. However, it is pretty easy
to do. Consider you have a string s. There is a method “slice” that can remove the last character. See code:

var s = “string”;

var new_s = null;

new_s = s.slice(0, -1); (new_s now equals “strin”)

When delete is pressed, get the innerHTML of the entry div, set this to a variable.
For example (using prototype)
var s = $(“entry”).innerHTML;

If s isn’t the empty string, then set the $(“entery”).innerHTML = s.slice(0,-1);

When a key is pressed, update the div’s (id=

entry)innerHTML to add in the value of

the button just pressed.

Hint: Use the string concatenate operator

to add the innerHTML of the button

pressed.

For example, button id=3’s innHTML is “3”.

So, div’s innerHTML = div’s innerHTML +

button id’s innerHTML. (where + is the

string concatenate operator).

The delete button is the hardest example. It

requires you remove the last character of a

string. See info below on how to do this.

Task 3: Javascript (DOM + Events) - task3.html and task3.js, this task is modeled after Lab 7’s task #2.

Write the Javascript code that allows the user to type in text that is added to an ordered list.

Create two buttons (add item and delete last) that allows the user to add the item when pressed or delete the last item

added.

There should be an optional “Delete #” button, followed by a text input. This will delete the item # inputted by the

user.

Also, if the user clicks in the text input under “enter item to add”, you should delete any existing text value that may

already be there. Think carefully about how to do this. It is pretty easy, but we haven’t done an example like this in

any of the prior labs.

The user has added

three items to the list. If “delete item” is pressed, the

value in the text field is

retrieved (and converted to

an integer) and used to delete

the item with that number

from the list. For example,

above item #2 was deleted.

If the user “clicks” on the text

field to add, any existing text

should be deleted.

Task 4: Javascript (Events) - task4.html and task4.js (and images 01.png – 08.png).

Your task is to write a very simple “slot” machine that loops through 8 images. When the user moves their mouse over

the “bar” div, the images should start to change. When the user moves the mouse off the “bar”, the images should

stop. If the images are the same, you should let the user know they “won” (in the results header), otherwise “they

lost”.

 <div id="machine">

<h3 id="result">Spin</h3>

<div id="bar">Move on spin</div>

 </div>

See examples in the Additional Resources for the JS Event's lecture.

If the user moves on the “spin” bar, the

images should start to change.

First: set the “result” text to “spin”

Also, set two different intervalTimers with

slightly different times (e.g. 50ms and 75ms).

One timer changes img1, the other timer

changes img2.

Change the bar’s background to “grey” and

change the text as shown above.

The interval should call functions that changes

each image. Keep two global index variables (i

and j) to keep track of what image is being

displaced (e.g. i for the left img1, j for img2)

When the mouse is moved off the bar, cancel

the interval timers. This will stop the images.

Check to see if the two images are the same

(you can do this by checking to see if the index

variables i and j are the same).

If they are the same, change the <h3>

innerHTML to be “You Win”, otherwise to

“You Lose”.

	Untitled
	Untitled

