
EECS 1012: LAB #5 –JavaScript DOM (Oct 29-Nov 2, 2018)

1. Read the lab instructions in this document and take the pre-lab quiz for Lab #5 -- the TAs will not mark
your lab if you do not show them you have not scored 100% on the pre-lab quiz.

Please have a look at the examples posted here for JavaScript DOM. These examples come directly from
the lecture notes and will be useful for completing this lab.

2. GOALS & OUTCOMES FOR THIS LAB

- To learn and apply more JavaScript programming
- To learn how to perform unobtrusive JS
- To learn how to use the DOM

3. LAB 5– Four (4) Tasks

[Task 1] – Image src manipulation using JavaScript.

[Task 2] – Changing style using JavaScript. (JS code should be unobtrusive)

[Task 3] –.Accessing multiple items using the DOM. (JS code should be unobtrusive)

[Task 4] – Creating and deleting elements. (JS code should be unobtrusive)

Further details to all tasks are provided below. Note, you are free to use the prototype library, but refrain
from using JQuery (if you know it). On the 2nd in-lab test, we will give you access to the prototype library
only, so learn to use it.

4. SUBMISSIONS

1) [Manual verification by a TA]
As with the previous labs, when you have completed all tasks, ask the TA to come and verify your code and
output.

2) Moodle submission
You will see an assignment submission link for Lab5 on Moodle.

1) Create a folder named “Lab5” and copy all of your files into it. Compress this file and upload the
compressed file to Moodle. To upload, please follow the instructions in the following video that we used
for Lab 1:
https://www.youtube.com/watch?v=stEOh6ntV5o

http://www.eecs.yorku.ca/~mbrown/EECS1012/week8_resources.html
https://www.youtube.com/watch?v=stEOh6ntV5o

TASK 1. Task 1 involves eight files: task1.html, task1.js, and six images: light_0-5.jpg. The image

light_0.jpg shows 5 light bulbs all turned off. The images light_1.jpg through light_5.jpg corresponds to a

light being turned on (e.g. light_2.jpg is an image of the 2nd light turned on).

Your task it to modify task1.html to include 5 buttons as shown below. Each time a button is selected it, it

should call a JS function that changes the image’s src to be the corresponding image that the light “turned

on”. Please put your name where it says “Put your name”.

The HTML file you are given has the following appearance (task1.html)

OPTIONAL TASK: The current task, each button’s innerHTML has the text “ON”. If you’d like an additional

challenge (for no additional points, please don’t ask) . . have your button’s text change when a button is

clicked. In this case, only have the text of the current light that is on say “ON”, all other buttons will have

the text “OFF”. (Please complete the other tasks before trying this optional functionality).

Modify your HTML code to allow your JavaScript code

to change the image.

You’ll also need to add in the five buttons using the

<button> </button> commands.

 There is a CSS defined for these buttons, but you’ll

need to modify the width of the buttons to fit. The

images width is 300 pixels.

You can solve this task anyway you like. For example,

one option is to have a separate function per button.

Another option would be to have a single function

and pass a parameter.

For this task, it is OK if you do not use unobtrusive

JS.

TASK 2. You have given an HTML and JavaScript file: task2.html and task2.js. Write unobtrusive JavaScript

code that adds the buttons shown below (Green, Blue, Mono, Sans Serif, Serif, Size++, Size--). Each time

the button is pressed it changes the text in the box to have the style associated with the button, for

example, clicking “Green” changes the text color green; clicking “Mono” changes the font to monospaced.

The default font size is 12pt. Each time “size++” is clicked, make add 1 to the current font size. Each time

“Size—“ is clicked, substract one from the current font size.

Your code should be unobtrusive, i.e. you need to use the “window.onload” event to link the buttons to

JS functions.

OPTIONAL: Add a “refresh” button that uses the location object to reload the page.

Task 3: [Accessing the DOM] You as given an HTML file, task3.html that has a poem inside a <div

id="poem">. Each line of the poem is a <p> tag. Modify the HTML page to add a button. When this

button is clicked, you need to retrieve all the paragraphs within the div and make their background

highlighted.

Write the corresponding JS code (in an unobtrusive manner) to link the button to a function that highlights

the paragraphs when clicked. The button should act as a “toggle”, that is, if the paragraphs are already

highlighted, then clicking the button unhighlight them. If the paragraphs aren’t highlighted, then clicking

the button highlights them. The button’s text should change to reflect this (see below). You can

introduce additional variables to make this work.

Add the following button.

When clicked, this button should call a

function that retrieves all paragraphs in

the <div id=”poem”> element and set their

background color to yellow.

The button should acts as a “toggle”.

When the paragraphs are highlighted,

clicking un-highlights them. Clicking again

makes them highlighted again. Note that

the button’s text changes.

Task 4: [Creating, Add, and Deleting DOM Nodes] You are given an files: task4.html and a task4.js.

An empty <div id=”output”> has been added in the HTML page. Your code should do the following:

(1) Modify your JS code such that when the button “ADD” button is clicked it will create a new paragraph

and add it to the <div> output. The contents of the paragraph should come from the text area that is

below the [ADD] button. See example below. Your JS code should be unobstrusive.

(2) If the “delete” button is pressed you need to delete a paragraph. The easiest is to delete the first

paragraph in the <div>, however, see if you can delete the last paragraph instead (there isn’t an example

this in the notes).

(3) If the user tries to delete when there are no paragraphs, create an “alert” (see example below).

(1) When the user clicks “ADD”, a

paragraph with the inputted text is added

to the end below.

(2) When the user clicked “Delete” remove

the paragraph. Delete the “top”

paragraph on DIV.

OPTIONAL: instead of removing the first

paragraph, remove the most recent

paragraph added (i.e. the last paragraph).

(3) If the user clicks “delete” but there are

no paragraphs in the <div>, create an

“alter” box that says “No paragraph to

delete!”

