
EECS1012
Net-centric Introduction

to Computing

M.S. Brown, EECS – York University 1

Lecture

JavaScript Events

EECS 1012

Acknowledgements

Contents are adapted from web lectures for “Web Programming Step by Step”, by M. Stepp, J. Miller, and V. Kirst.

Slides have been ported to PPT by Dr. Xenia Mountrouidou.

These slides have been edited for EECS1012, York University.

The contents of these slides may be modified and redistributed, please give appropriate credit.

(Creative Commons) Michael S. Brown, 2017.

Events and the Prototype Library2

Prototype Library

EECS1012

3

 Recall last lecture we introduced the Prototype

library

 For this lecture, we will often be processing JS

events using this library

 This means that we will need to link in the Prototype

library in our HTML files

<script src="https://ajax.googleapis.com/ajax/libs/prototype/1.7.0.0/prototype.js"
type="text/javascript"></script>

NOTE: You can copy the prototype library (it is a single JS file) to your local directory and

link it in too.

"This" keyword4

Consider a simple example (HTML)

CS380

5

<html>
<head>
<script src="example1.js" type="text/javascript"> </script>
</head>
<body>
<div id="box1" class="box">
Click Me.
</div>
<div id="box2" class="box">
Click Me Too.
</div>

</body>
</html> HTML

EECS 1012

id - box1 id - box2

Consider a simple example (JS)

EECS1012

6

window.onload = function() {
var box1 = document.getElementById("box1");
var box2 = document.getElementById("box2");
box1.onclick = changeText;
box2.onclick = changeText;

}

function changeText()
{
/* How do you know which box called this function? */
/* use the "this" variable */
this.innerHTML = "Boyah!";
} JS

Both elements use the same function – changeText()!

How can we know which element called the function?

id - box1 id - box2

The "this" keyword

 The variable "this" refers to the object that called

the current function.

EECS1012

7

function changeText()
{
/* How do you know which box called this function? */
/* use the "this" variable */
this.innerHTML = "Boyah!";
} JS

box1 box2

Inside the function, we can refer to the object that called it using the "this" variable.

If box1 was the one that called changeText(), the variable this is equal to:

this = document.getElementById("box1");
if box2 was the one that called changedText(), then the variable this is equal to:

this = document.getElementById("box2");

Another example (without this)

EECS1012

8 <fieldset>

<label><input id="huey" type="radio" name="ducks"

value="Huey" /> Huey</label>

<label><input id="dewey" type="radio" name="ducks"

value="Dewey" /> Dewey</label>

<label><input id="louie"type="radio" name="ducks"

value="Louie" /> Louie</label>

</fieldset> HTML

function processDucks() {

if ($("huey").checked) {

alert("Huey is checked!");

} else if ($("dewey").checked) {

alert("Dewey is checked!");

} else {

alert("Louie is checked!");

}

} JS
In this example, we examine each radio button to see which one is checked. Since

only one radio button can be checked at a time, the element is checked must be the

element that was just clicked caused this function to be called.

Another example (with this)

EECS1012

9

<fieldset>

<label><input id="huey" type="radio" name="ducks"

value="Huey" /> Huey</label>

<label><input id="dewey" type="radio" name="ducks"

value="Dewey" /> Dewey</label>

<label><input id="louie"type="radio" name="ducks"

value="Louie" /> Louie</label>

</fieldset> HTML

function processDucks() {

alert(this.value + " is checked!");

} JS

We can instead use the "this" keyword,

because it corresponds to the object

that just called the event. In this case,

we use the "value" attribute of the element

in our alert.

We have replaced the previous

slide's code with this more compact

code that uses the "this" variable.

Events10

Lots of events! Prototype style

abort blur change click dblclick error focus

keydown keypress keyup load mousedown mousemove mouseout

mouseover mouseup reset resize select submit unload

11

 the click event (onclick) is just one of many events

that can be handled

 problem: events are tricky and have

incompatibilities across browsers

 reasons: fuzzy W3C event specs; IE disobeying web

standards; etc.

 solution: Prototype includes many event-related

features and fixes

Event handlers the Prototype way

 to use Prototype's event features, you must attach the

handler using the DOM element

 object's observe method (added by Prototype)

 pass the event of interest and the function to use as

the handler

 handlers must be attached this way for Prototype's

event features to work

12

element.onevent = function;

element.observe("event", "function");

JS

// call the playNewGame function when the Play button

$("play").observe("click", playNewGame);

JS

The Event object

 Event handlers can accept an optional parameter to

represent the event that is occurring. Event objects

have the following properties / methods:

13

function name(event) {

// an event handler function ...

} JS

method / property name description

type
what kind of event, such as "click" or

"mousedown"

element()
the element on which the event

occurred

stop() cancels an event

stopObserving() removes an event handler

Mouse events

click

user presses/releases mouse button on

this element

(note: click is used instead of onclick)

dblclick
user presses/releases mouse button

twice on this element

mousedown
user presses down mouse button on

this element

mouseup
user releases mouse button on this

element

CS380

14

EECS 1012

Mouse events

mouseover
mouse cursor enters this

element's box

mouseout
mouse cursor exits this element's

box

mousemove
mouse cursor moves around

within this element's box

CS380

15

EECS 1012

</head>

<body>

<div id="counter">

99 Falafels!

</div>

</body>

</html>

var count = 99; /* global variable */

window.onload = function() { /* set event to observe */

$("counter").observe("mouseover", countDown);

}

function countDown () { /* function to call */

count = count - 1;

$("counter").innerHTML = Count + " Falafels!";

}

Example – mouse over
16

Anytime the

mouse moves

over the div,

the countDown()

function is called.

Example 2 (mouse in and out)

EECS1012

17

window.onload = function() {

$("region").observe("mouseover", enterRegion);

$("region").observe("mouseout", exitRegion);

}

function enterRegion () {

$("region").innerHTML = " Mouse entered! ";

}

function exitRegion () {

$("region").innerHTML = " Mouse exited! ";

}

<body>

<div id="region">

Mouse here!

</div>

</body>

We are observing two

events – mouseover (enter)

and mouseexit.

Example 3 (using event and this)

EECS1012

18

window.onload = function() {

$("region").observe("mouseover", mouseEvent);

$("region").observe("mouseout", mouseEvent);

}

function mouseEvent (event) {

if (event.type == "mouseover") {

this.innerHTML = " Mouse entered! ";

}

else {

this.innerHTML = "Mouse exited! ";

}

}

<body>

<div id="region">

Mouse here!

</div>

</body>

We can also do this using the

event object. In this example,

both events call the mouseEvent

function. We can check the

event.type to see what event

was called.

Previous example details

EECS1012

19

function mouseEvent (event) {

if (event.type == "mouseover") {

this.innerHTML = " Mouse entered! ";

}

else {

this.innerHTML = "Mouse exited! ";

}

}

Notice that we have added an "event"

in the function parameter list.

The event object is passed automatically.

The event object (see slide 13) has several

attributes, one is "type" that returns the

type of event this is (e.g. click, mouseover, etc).

The example also uses the "this" variable which

access the element that called the function.

Mouse event object*

EECS1012

20

property/method description

clientX, clientY coordinates in browser window

screenX, screenY coordinates in screen

offsetX, offsetY coordinates in element (non-standard)

pointerX(),

pointerY()

coordinates in entire web page

isLeftClick() true if left button was pressed

*If an event object is created by a mouse event object, there are additional

properties in the event object as shown above.

Mouse event object

CS380

21

screenY

screenX

pointerX()

pointerY()

offsetX

offsetY

Example

EECS1012

22

<body>

<pre id="target">

</pre>

</body>

window.onload = function() {

$("target").observe("mousemove", showCoords);

};

function showCoords(event) {

$("target").innerHTML =

"offset: (" + event.offsetX + ", " + event.offsetY + ")\n"

+ "screen : (" + event.screenX + ", " + event.screenY + ")\n"

+ "client : (" + event.clientX + ", " + event.clientY + ")";

}

We can examine the

"event" object to see

information about the

mouse position.

Keyboard events

EECS1012

23

name description

keydown user presses a key while this element has

keyboard focus

keyup user releases a key while this element has

keyboard focus

keypress user presses and releases a key while this

element has keyboard focus

These events are generally used with HTML elements that lets the user type.

For example <input type="text"> elements </input>.

Other elements may not respond to keyboard events.

Example with keypress

EECS1012

24

<body>

<textarea id="target">

Add your text here.

</textarea>

</body>

window.onload = function() {

$("target").observe("keydown", keyPress);

};

function keyPress(event) {

$("target").innerHTML = "";

$("target").stopObserving("keydown");

}

Once the key is pressed,

we delete the text (setting

it to empty string "") and

then stop observing this

event.

Form Submit25

We can even submit using JS!

EECS1012

26

window.onload = function() {

$("mybutton").onclick = submitCheck; };

function submitCheck() {

if ($("query").value == "") {

alert("Please enter text for pressing submit!");

}

else {

$("myForm").submit();

}

}

<body>

<form id="myForm" action="http://www.google.com" method="get">

<input id="query" type="text" name="q" maxlength="10">

<button id="mybutton" type="button"> Submit JS </button>

</form>

</body>

Once the button is clicked,

we can check conditions

before submitted (e.g. is

the "query" value not an

empty string "".

We use the form element

to perform the submit().

IMPORTANT: In this case, it is necessary to tell

HTML the button type is "button", otherwise

the default type will be "submit". If it is

submit, the button itself will submit the

document, however, we want to perform

the submit using JS.

Timers27

Timers

EECS1012

28

We can set a "timer"

object to call a function

after waiting a specified

amount of time.

After 5 minutes,

call function X.

Only calls this

function one time.

We can set a "timer"

object to repeatedly call

a function after waiting a

specified amount of time.

setTimeout(..)

repeat!

setInterval(..)

Keep calling

function X every

5 minutes.

Timers can set to call functions

EECS1012

29

method description

setTimeout(function, delayMS); arranges to call given function after

given delay in ms

setInterval(function, delayMS); arranges to call function repeatedly

every delayMS ms

clearTimeout(timerID);

clearInterval(timerID);

stops the given timer so it will not call

its function

Example – change images

EECS1012

30

<body>

<p> Some of my favorite foods </p>

</body>

var i=0;

timerId = 0;

window.onload = function() {

timerId = setInterval(changeImage, 1000);

}

function changeImage() {

var images = ["dosa.jpg", "falafel.jpg", "pide.jpg", "malaxiangguo.jpg"];

$("food").src = images[i]; /* change the source of the image to a new image */

i++;

if (i > 3) {

i = 0;

}

}

Set interval timer to

call "changeImage" every

1000 milliseconds (which is

1second)

Version 2 - Adding in mouse events.

EECS1012

31

<body>

<p> Some of my favorite foods </p>

</body>

var i=0;
timerId = 0;
window.onload = function() /* when the timer is set, it returns and ID */
timerId = setInterval(changeImage, 1000); /* save id to var */

$("food").observe("mouseover", enterRegion);/* register mouse events – enter */
$("food").observe("mouseout", exitRegion); /* mouse - exit */
$("food").observe("click", changeImage); /* mouse - click */
}

function enterRegion () { /* if we enter the image, clear the event */
clearTimeout(timerId); /* this stops it from changing */

} /* timerID variable is passed to the clear func */

function exitRegion () {
timerId = setInterval(changeImage, 100); /*if we exit, set the timer! */

} /*record the new timers id */

More complex example

EECS1012

32

.. continue from previous slide ..

/* NOTICE – we set the timer to automatically call this function, we also set the "click" event

to call this function */

function changeImage() {

var images = ["dosa.jpg", "falafel.jpg", "pide.jpg", "malaxiangguo.jpg"];

$("food").src = images[i]; /* change the source of the image to a new image */

i++;

if (i > 3) {

i = 0;

}

}

This JS program stops the timer when the mouse enters the element. If the user clicks,

it changes the image. When the mouse leaves the element, the timer is set

again.

A global variable is used to keep track of the timers ID. This ID is necessary when

we remove the timer.

Recap

 The power of JavaScript is reacting to events

 There are many events beyond just "click"

 Putting these together we can make very interactive

webpages

 We can also validate data before "submit" via

forms

 Timers can be used to create events

EECS1012

33

Cool example

EECS1012

34

<html>

<head>

<script src="prototype.js" type="text/javascript"> </script>

<script src="example8.js" type="text/javascript"> </script>

<link rel="stylesheet" type="text/css" href="example8.css">

</head>

<body>

<div id="cardarea">

<div id="card">

<p> Abdel Zhang

Web Developer

York University

azhang@aol.com | 647-555-5555 </p>

</div>

</div>

<p id="hi">Click on card to move it.</p>

</form>

</body>

</html>

#cardarea {

width: 1000px;

height: 500px;

border: 3px solid black;

background-color: silver;

position: relative;

}

#card {

border: 1px black solid;

width: 250px;

height: 140px;

background-color: white;

color: blue;

padding: 5px;

position: absolute;

}

HTML
CSS

Note that the position attribute

has been set for both divs.

Cool example

EECS1012

35

Result of HTML page + CSS.

EECS1012

36

Final (awesome) example

/* Global variables */

var moving = false; /* is the card moving or not? */

window.onload = function() {

$("card").observe("mousedown", cardMouseDown);

$("card").observe("mousemove", cardMouseMove);

$("card").observe("mouseup", cardMouseUp);

$("card").style.left = 0; /* sets the position of the card */

$("card").style.top = 0; /* this is part of its CSS */

/* the position is "absolute" with respect to its *

/* container div - see CSS on previous slide */

};

….

Create some global variables.

We will use these later.

Set up event functions (using

Prototype library).

Set the left and top attributes.

These correspond to the position

attribute in CSS.

EECS1012

37

Final (awesome) example

/* Called when the user presses down the mouse button.

Moves the clicked square to the top and starts moving it. */

function cardMouseDown(event) {

moving = true;

this.style.backgroundColor = "lightgrey";

$("card").style.left = (event.pointerX() - 125) + "px";

$("card").style.top = (event.pointerY() - 70) + "px";

}

/* Called when the user lifts the mouse button. Stops dragging. */

function cardMouseUp(event) {

moving = false;

this.style.backgroundColor = "white";

}

….

When the mouse is clicked on the

card, set moving to true and

change the cards background

(using "this"). Sets the

card’s left and top position to

be the current mouse position

minus 125 and 70 because

the card is 300x140. This will

center the card.

When the button is released,

it will call this mouseUp event.

Set moving to false, and reset

the background to white.

EECS1012

38

Final (awesome) example

// Called when the user moves the mouse. Drags a square if

// the mouse button is being held down.

function cardMouseMove(event) {

if (moving)

{

$("card").style.left = (event.pointerX() - 125) + "px";

$("card").style.top = (event.pointerY() - 70) + "px";

}

}

If we are "moving", then set the

card's left and top to be the

current mouse (X,Y). We subtract

125 and 70 to shift the box to be

centered around the mouse.

The card size is 300x140 pixels.

Final (awesome) example

EECS1012

39

function cardMouseDown(event) {

moving = true;

this.style.backgroundColor = "lightgrey";

$("card").style.left = (event.pointerX() - 125) + "px";

$("card").style.top = (event.pointerY() - 70) + "px";

}

moving=true;

event.PointerX() -> 200

event.PointerY() -> 100

**We will move the card by changing its top and left style position.

EECS1012

40

function cardMouseDown(event) {

moving = true;

this.style.backgroundColor = "lightgrey";

$("card").style.left = (event.pointerX() - 125) + "px";

$("card").style.top = (event.pointerY() - 70) + "px";

}

moving=true;

event.PointerX()

event.PointerY()

event.PointerX()-125

event.PointerY()-70

Final (awesome) example

EECS1012

41

function cardMouseMove(event) {

if (moving)

{ this.style.background = "lightgrey";

$("card").style.left = (event.pointerX() - 125) + "px";

$("card").style.top = (event.pointerY() - 70) + "px";

}

}

moving=true;

event.PointerX()

event.PointerY()

event.PointerX()-125

event.PointerY()-70

**While the mouse moves, keep updating the position of the card.

Recap

 This last example draws from knowledge on . .

 how HTML works

 how CSS works (e.g. position attributes)

 how JavaScript works

 cleverness

 Now . . . do your own awesome stuff!

EECS1012

42

