
INFINITE STATES VERIFICATION IN GAME-THEORETIC LOGICS

SLAWOMIR KMIEC

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES
IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF COMPUTER SCIENCE

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
YORK UNIVERSITY

TORONTO, ONTARIO
MAY 2013

INFINITE STATES VERIFICATION IN
GAME-THEORETIC LOGICS

by Slawomir Kmiec

a thesis submitted to the Faculty of Graduate Studies of York Uni-
versity in partial fulfilment of the requirements for the degree of

MASTER OF COMPUTER SCIENCE
c© 2013

Permission has been granted to: a) YORK UNIVERSITY LI-
BRARIES to lend or sell copies of this dissertation in paper, mi-
croform or electronic formats, and b) LIBRARY AND ARCHIVES
CANADA to reproduce, lend, distribute, or sell copies of this thesis
anywhere in the world in microform, paper or electronic formats
and to authorise or procure the reproduction, loan, distribution or
sale of copies of this thesis anywhere in the world in microform,
paper or electronic formats.

The author reserves other publication rights, and neither the thesis
nor extensive extracts for it may be printed or otherwise reproduced
without the author’s written permission.

INFINITE STATES VERIFICATION IN GAME-THEORETIC LOGICS

by Slawomir Kmiec

By virtue of submitting this document electronically, the author certifies that this is a true electronic equiv-
alent of the copy of the thesis approved by York University for the award of the degree. No alteration of the
content has occurred and if there are any minor variations in formatting, they are as a result of the coversion
to Adobe Acrobat format (or similar software application).

Examination Committee Members:

1. Yves Lespérance (supervisor)

2. Zbigniew Stachniak (supervisory committee member)

3. Jonathan Ostroff (Dean’s representative)

4. Marin Litoiu (outside CSE member)

Abstract

Many practical problems where the environment is not in the system’s control such as service orchestration
and contingent and multi-agent planning can be modelled in game-theoretic logics. This thesis demonstrates
that the verification techniques based on regression and fixpoint approximation introduced in De Giacomo,
Lespérance and Pearce [DLP10] do work on several game-theoretic problems. De Giacomo, Lespérance and
Pearce [DLP10] emphasize that their study is essentially theoretical and call for complementing their work
with experimental studies to understand whether these techniques are effective in practical cases. Several
example problems with varying properties have been developed and, although not exhaustive nor complete,
our results nevertheless demonstrate that the techniques work on some problems. Our results show that the
methods introduced in [DLP10] work for infinite domains where very few verification methods are available
and allow reasoning about a wide range of game problems. Our examples also demonstrate the use of a
rich language for specifying temporal properties proposed in [DLP10]. While classical model checking is
well known and utilized, it is mostly restricted to finite-state models. A important aspect of the work is
the demonstration of the use and effectiveness of characteristic graphs (Claßen and Lakemeyer [CL08]) in
verifying properties of games in infinite domains. A special-purpose programming language GameGolog
proposed in De Giacomo, Lespérance and Pearce [DLP10] allows such game-theoretic systems to be specified
procedurally at a high-level of abstraction. We show its practicality to model game structures in a convenient
way that combines declarative and procedural elements. We provided examples to show the verification of
GameGolog specifications using characteristic graphs. This thesis also proposes a refinement to the formalism
in [DLP10] to incorporate action constraints as a mechanism to incorporate user strategies and for the
modeller to supply heuristic guidance in temporal property verification. It also presents an implementation
of evaluation-based fixpoint verifier that handles Situation Calculus game structures, as well as GameGolog
specifications, for temporal property verification in the initial or a given situation. The verifier supports
player action constraints.

iv

Acknowledgements

The author wishes to thank several people. It would not have been possible to write this thesis without
the help and support of the kind people around me, to only some of whom it is possible to give particular
mention here. I would like to thank my wife, Beata, for her love, kindness, support and great patience at
all times she has shown during the past years it has taken me to finalize this thesis. This thesis would not
have been possible without the help, support and patience of my supervisor, Prof. Yves Lespérance, not to
mention his advice and unsurpassed knowledge of the field. Besides my supervisor, I would like to thank the
rest of my thesis committee: Prof. Zbigniew Stachniak, Prof. Jonathan Ostroff, and Prof. Marin Litoiu,
for their encouragement, insightful comments, and hard questions. The good advice and support of the
members of the examination committee has been invaluable, for which I am extremely grateful.

v

Table of Contents

Abstract iv

Acknowledgements v

Table of Contents vi

1 Introduction 1
1.1 Overview . 1
1.2 Thesis Focus . 2
1.3 Thesis Motivation . 3
1.4 Thesis Contributions . 3
1.5 Outline . 5

2 Background 7
2.1 Representing Dynamic Worlds . 8

2.1.1 The Situation Calculus . 8
2.1.2 Basic Action Theories . 11

2.2 Reasoning about Action . 15
2.3 High-Level Languages . 16

2.3.1 Complex Actions . 16
2.3.2 Golog and ConGolog . 17
2.3.3 GameGolog . 23

2.4 Characteristic Graphs . 26
2.5 Game Structures . 28

2.5.1 Basic Action Theory Models . 29
2.5.2 Situation Calculus Game Structures . 32
2.5.3 GameGolog Theories . 37

2.6 Expressing Properties of Systems in Game-Theoretic Logics 39
2.6.1 Alternating-time Temporal Logic (ATL) . 40
2.6.2 Alternating-time µ-Calculus (AMC) . 43
2.6.3 L-Logic . 46
2.6.4 Lp-Logic . 48

2.7 Verification of Properties of Systems in Game-Theoretic Logics 49
2.7.1 Symbolic Manipulation . 49
2.7.2 τ(Ψ) Procedure for L-Logic Formulas . 50
2.7.3 JΨK Procedure for Lp-Logic Formulas . 53

2.8 Other Verification Methods . 56
2.8.1 Theorem Proving . 56
2.8.2 Model Checking . 57
2.8.3 Bounded Model Checking . 58
2.8.4 Program Synthesis . 59

vi

2.8.5 Infinite-States Domains . 59

3 Symbolic Manipulation-Based Verification of Properties of Game Structures 61
3.1 Light World (LW) . 62

3.1.1 Situation Calculus Game Structure Axiomatization of LW Domain 62
3.1.2 Possibility of Winning . 67
3.1.3 Existence of a Winning Strategy . 75

3.2 Oil Lamp World (OLW) . 84
3.2.1 Situation Calculus Game Structure Axiomatization of OLW Domain 84
3.2.2 Possibility of Winning . 88

3.3 In-Line Tic-Tac-Toe (TTT1D) . 94
3.3.1 Situation Calculus Game Structure Axiomatization of TTT1D Domain 95
3.3.2 Possibility of Winning . 100
3.3.3 Existence of a Winning Strategy . 110

3.4 Mark Down (MD) . 113
3.4.1 Situation Calculus Game Structure Axiomatization of MD Domain 114
3.4.2 Possibility of Winning . 118
3.4.3 Existence of a Winning Strategy . 127

3.5 Mark Up (MU) . 136
3.5.1 Situation Calculus Game Structure Axiomatization of MU Domain 136
3.5.2 Possibility of Winning . 140
3.5.3 Existence of a Winning Strategy . 152

3.6 Discussion . 162

4 Characteristic Graph-Based Verification of Properties of GameGolog Structures 166
4.1 Light World (LW) . 166

4.1.1 GameGolog Program of the LW Game . 167
4.1.2 Characteristic Graph of the LW Game . 167
4.1.3 Possibility of Winning . 168
4.1.4 Existence of a Winning Strategy . 175

4.2 Discussion . 180

5 Automated Evaluation-Based Verification of Properties of Game Theories 182
5.1 Verifier for Basic Action Theory Game Structures . 182
5.2 Verifier for Basic Action Theory Game Structures with Constraints 189
5.3 Verifier for GameGolog-Expressed Game Structures . 194
5.4 Discussion . 200

6 Conclusions and Future Work 203
6.1 Conclusion . 203
6.2 Future Work . 207

Bibliography 209

Appendices 214

A Verifier for Basic Action Theory Game Structures 214
A.1 Prolog Code . 214
A.2 Tic-Tac-Toe Game Axiomatization in Prolog . 216
A.3 Tic-Tac-Toe Game Property Tests . 218

vii

B Verifier for Basic Action Theory Game Structures with Action/Strategy Constraints 221
B.1 Prolog Code . 221
B.2 Tic-Tac-Toe Game Axiomatization in Prolog . 223
B.3 Tic-Tac-Toe Game Property Tests . 225

C Verifier for GameGolog-Expressed Game Structures 228
C.1 Prolog Code . 228
C.2 Tic-Tac-Toe GameGolog Axiomatization in Prolog . 230
C.3 Tic-Tac-Toe Game Property Tests . 233

viii

1 Introduction

1.1 Overview

Many types of problems, from contingent and multi-agent planning to process/service orchestration, can be

viewed as games, where one or more agents try to ensure that certain objectives (or in general, properties)

hold no matter how the environment and other agents behave. Often a strategy can be determined from

verification that allows the agents to ensure that the property holds. Our framework supports reasoning about

game structures – any type of multi-agent problem that requires strategic thinking. The purpose of the work

put forward by this thesis is to contribute to the advancement of knowledge representation and reasoning

in the area of reasoning about action and processes, and to develop techniques for process verification and

synthesis. Many practical problems such as service orchestration and contingent and multi-agent planning

can be closely modelled in game-theoretic logics. In such systems, some agents cannot be controlled and thus

the systems can naturally be views as games. Here game-theoretic logics allow specifying properties to verify

on the system. A special-purpose programming language GameGolog (De Giacomo, Lespérance and Pearce

[DLP10]) has been proposed to allow such systems to be specified procedurally at a high-level of abstraction.

GameGolog programs can be described by characteristic graphs (Claßen and Lakemeyer [CL08]), which are

used to compactly represent all the possible configurations that a GameGolog program may visit during its

execution. Such action theories, their GameGolog programs and their characteristic graphs can be examined

for several high-level properties that can be defined based on alternating-time temporal logic (ATL) (Alur,

Henzinger and Kupferman [AHK02]). While classical model checking is well known and utilized, it is

mostly restricted to finite-state models and affected by how large the state space is. Currently there is very

1

little work dealing with infinite-state domains (Claßen and Lakemeyer [CL08]). The approach proposed

by this thesis allows and supports infinite-state domains. The objective of the this thesis is to show that

several new techniques based on regression and fixpoint approximation (De Giacomo, Lespérance and Pearce

[DLP10]) do work on non-trivial game theories with infinite state space. Also verification techniques based

on evaluation and fixpoint approximation are implemented and evaluated with respect to their effectiveness

in property verification for such game theoretic logics.

1.2 Thesis Focus

The work described by this thesis is based on and focuses on the framework of De Giacomo, Lespérance

and Pearce [DLP10]. One of the main points of this thesis is to examine the viability symbolic compu-

tation techniques in verifying alternating-time µ-calculus temporal properties. Some attention is devoted

to the special-purpose programming language GameGolog (De Giacomo, Lespérance and Pearce [DLP10])

that allows game-like environments to be specified procedurally at a high-level of abstraction. GameGolog

semantics is also employed to axiomatise such environments in a formalism in which typical temporal prop-

erties can also be expressed. Such GameGolog constructs and their characteristic graphs are examined

for several high-level properties that can be defined based on alternating-time temporal logic (ATL) (Alur,

Henzinger and Kupferman [AHK02]), also for infinite-state domains. The objective is to show that new

techniques based on regression and fixpoint approximation proposed by De Giacomo, Lespérance and Pearce

[DLP10] do work on non-trivial game theories with infinite-state space. Also verification techniques based

on evaluation and fixpoint approximation are implemented and evaluated with respect to their effectiveness

in property verification for such game theoretic logics. Other implementation work is performed and tests

are done to examine the viability of using GameGolog, and to fully or partially specify strategies and to see

how temporal property verification results change if opponent strategies are known.

In particular this thesis puts the focus on:

2

• the process of modelling and verifying game structures as proposed in [DLP10],

• using an ATL-like language for specifying properties to be verified as proposed in [DLP10],

• the use of GameGolog to conveniently specify and verify game structures as proposed in [DLP10],

• the symbolic-computation verification techniques for alternating-time µ-Calculsus as proposed in [DLP10],

and

• evaluation-based verification techniques implemented in Prolog.

1.3 Thesis Motivation

De Giacomo, Lespérance and Pearce [DLP10] emphasize that their study is essentially theoretical and they

acknowledge that completeness guarantees will only be available for very specific cases (finite states or

structures that allow quantifier elimination). They called for complementing their work with experimental

studies to understand whether these techniques, especially those based on the labelling of characteristic

graphs, are effective in practical cases. This thesis shows that concrete problems can be specified in the

framework and that fixpoint convergence in a finite number of steps based on the techniques of [DLP10] does

occur in many cases with or without a specification of the initial state. It also describes cases where fixpoint

approximation does not converge in a finite number of steps. The thesis shows the viability and practicality

of the techniques. For infinite-state verification one cannot expect completeness in the general case. The

additional goal is to prove that GameGolog is of value and works for some real-world problems.

1.4 Thesis Contributions

The work presented in this thesis is intended to be a demonstration that the techniques introduced in De

Giacomo, Lespérance and Pearce [DLP10] do work on several problems with infinite state space. Several

example problems with varying properties have been developed and, although not exhaustive nor complete,

3

our results nevertheless show that the techniques work on some problems. A important point of the work

is the use of characteristic graphs (Claßen and Lakemeyer [CL08]) in verifying properties of games which

can help in dealing with complex infinite domains. Additionally this thesis proposes a refinement to the

formalism in [DLP10] to incorporate player action/strategy constraints and to subsequently to perform

temporal property verification under such constraints. Also, an implementation of evaluation-based verifier

has been conducted and employed to verify some temporal properties on some examples.

The key contributions can be listed as:

• demonstration that the verification techniques based on regression and fixpoint approximation intro-

duced in [DLP10] do work on several interesting problems; we provide examples to show verification of

Situation Calculus game structures (Chapter 3); the sample domains that we developed involve infinite

domains, and our results show that the methods introduced in [DLP10] work for infinite domains,

where very few verification methods are available, and allow reasoning about a wide range of game

problems; our examples also demonstrate the use of a rich language for specifying temporal properties

proposed in [DLP10]; we also found problems where the technique does not work and we extend the

method to consider some additional knowledge about the initial situation to make the method work;

• demonstration of the use and effectiveness of characteristic graphs (Claßen and Lakemeyer [CL08])

in verifying properties of games in infinite domains; we also show the practicality of the GameGolog

programming language to model game structures in a convenient way that combines declarative and

procedural elements; we provide an example to show verification of GameGolog specifications using

characteristic graphs (Chapter 4);

• an implementation of an evaluation-based fixpoint verifier that handles Situation Calculus game struc-

tures as well as GameGolog specifications for temporal property verification in the initial or a given

situation (Chapter 5); the system is tested on some sample game domains.

• a refinement to the formalism in [DLP10] to incorporate action constraints as a mechanism to incorpo-

4

rate user strategies and for the modeller to supply heuristic guidance in temporal property verification;

we provide a implementation of the framework by modifying our evaluation-based verifier to incorporate

player action constraints (Chapter 5).

Note that a paper summarizing the results of chapter 3 has been accepted for presentation at Tenth Inter-

national Workshop on Nonmonotonic Reasoning, Action and Change (NRAC 2013) in Beijing.

1.5 Outline

Chapter 2 provides the necessary background for understanding the research proposed by this thesis. It

explains how problems that require reasoning can be formalized using the Situation Calculus language

and Basic Action Theories. Next it talks about the most common tasks in reasoning about action such

as planning, projection and legality testing. It discusses complex actions and higher-level languages that

can represent such complex actions and model such environments in a procedural way. Following that,

characteristic graphs are introduced. Next some formalisms are introduced that allow us to model game-

type environments/problems, and also to express temporal properties that a game domain may have. Next,

some methods used in this thesis for verifying such temporal properties over game structures are explained.

This section also provides a brief review and discussion of existing work that is related to the research

presented in this thesis. It explains the similarities and highlights the differences to the methods researched

here. Finally existing verification methods are discussed that are alternative to the ones presented in this

thesis.

Chapter 3, 4 and 5 present the actual research results of this thesis. The work is built around the formalisms

and methods presented in De Giacomo, Lespérance and Pearce [DLP10]. It starts off by providing a

description of some representative game-theoretic problems with various characteristics. These problems

and some properties of interest are specified in the proposed formalisms. Then the verification techniques

from [DLP10] are employed and their feasibility examined. Next, a characteristic graph-based technique is

5

used on one of the examples and the results compared with the symbolic method. After that an evaluation-

based technique is explained and its Prolog implementation is presented. Additionally some extensions to the

mentioned techniques and formalisms are proposed to allow partial or full specification of agent strategies.

These extensions also allow us to examine the influence of possible existing strategies on the temporal

properties of game-theoretic problems and it can make the verification easier. This thesis also provides an

implementation and experimental verification of the proposed extensions.

Chapter 6 concludes by summarizing the work put forward by this thesis. It evaluates the results against the

initial objectives and compares our approach to others. I also presents some interesting ideas and problems

that could be researched in the future.

The thesis uses a consistent line of examples to illustrate the various concepts and techniques. The appendix

contains the code of the implementations developed to illustrate and to verify the researched techniques. It

also shows detailed results of the tests.

6

2 Background

This section provides the necessary background to set the context of the main research proposed by this

thesis. First it explains how problems that require reasoning can be formalized via the Situation Calculus

language and Basic Action Theories. Next it briefly talks about most common tasks in reasoning about

actions such as planning, projection and legality. This leads to introduction of complex actions and higher-

level languages that can represent such complex actions and model such environments in procedural ways.

Following that, characteristic graphs are introduced as a method to compactly represent the states that

a high-level program may visit during its execution. Next some formalisms are introduced that allow to

mode game-specific problems, and also some formalisms are introduced to express temporal properties that

a game-specific environment may have. Finally some methods used in this thesis of verifying such temporal

properties over game structures are explained.

Here is where the background for understanding the various chapters can be found. Chapter 3 requires

sections 2.5.2, 2.6.3, and 2.7.2. Chapter 4 requires sections 2.4, 2.5.3, 2.6.4, and 2.7.3. Chapter 5 requires

sections 2.5.3, 2.6.4, and 2.7.3.

The key sections of this chapter are as follows. Section 2.1 provides overall background on representing

dynamically changing worlds; it is needed especially in section 2.5. Section 2.2 explains the task of reasoning

about action and this is needed for understanding strategies.; it is needed especially in section 2.6. Section 2.3

explains the reasons and the semantics for the GameGolog programming language which is used in chapter

4 and 5. Section 2.4 introduces characteristic graphs which are used in chapter 4. Section 2.5 explains how

7

axiomatization of game structures is done and provides a few examples. Section 2.6 explains how temporal

properties can be expressed and provides a few examples; it is used in chapter 3. Section 2.7 explains how

the verification of temporal properties is performed in this thesis; it is used in chapter 3 and 4. Section 2.8

briefly presents other main verification methods; it is needed for chapter 5 and the conclusions in chapter 6.

2.1 Representing Dynamic Worlds

In order to reason about actions and dynamically changing worlds, a language was needed that would allow

to express such worlds and deal with actions performed in them. The situation calculus is a logical language

specifically designed for representing and reasoning about dynamically changing worlds. The situation cal-

culus id explained in the next subsection. Within the situation calculus, one can formulate action theories

that describe how the world changes as the result of the available actions. A specialization of action theories

called basic action theories has been proposed in Pirri and Reiter [PR99] and Reiter [Rei01]. Basic action

theories is a formalism that builds on the situation calculus to allow defining the laws describing the condi-

tions and effects of actions in the modelled worlds, and thus to reason about worlds that change as a result

of actions. Basic action theories are defined at the end of this section.

2.1.1 The Situation Calculus

The Situation Calculus (SitCalc) is a formalism for representing dynamically changing worlds in which all

changes are the result of named actions. Although it is a dialect of First-Order Logic, the situation calculus

is a second-order logic formalism. As such it is incomplete - there is no axiomatization of second-order

logic that will yield all the valid second-order sentences i.e. the valid sentences of second-order logic are not

recursively enumerable. Despite this it is sufficient and convenient for modelling problems that deal with

actions and planning.

There are two distinguished sorts of terms in the situation calculus: actions and situations.

8

All changes to the world are the result of actions. Actions are terms in the language Action terms are denoted

by α with possible subscripts to differentiate different action terms. Action variables are denoted by lower

case letters a with possible subscripts to differentiate different action variables. Action types, i.e. actions that

require a parameter, are denoted by upper case letters A with possible subscripts to differentiate different

action types. For example pickup(R,X) could be an action of a robot R picking an object X, walk(R, Y)

could be an action of a robot R walking to an object Y.

Situations represent possible world histories. Situations are terms in the language. The distinguished

constant S0 denotes the initial situation where no action has been performed. The distinguished function

symbol do is used to build sequences of actions such that do(a, s) denotes the successor situation which

resulted from performing action a in situation s.

Other elements in the language are: fluents and formulas.

Fluents are predicates or functions whose values may vary from situation to situation. Fluents represent

properties of the world in the current situation. Fluents are denoted by symbols that take a situation term

as their last argument. A distinguished predicate symbol Poss(a,s) is used to state that an action a may be

performed in a situation s.

Predicate logic formulas can be constructed from the elements of the language. Situation-suppressed formulas

are formulas in the language where all the situation arguments in fluents have been suppressed. This is useful

when reasoning about actions. The situation argument can be easily restored by adding it to all fluents. If φ

is a situation-suppressed formula then φ[s] denotes situation calculus formula obtained from φ by restoring

situation argument s into all fluents in φ. Situation calculus formula uniform in s is a situation calculus

formula where s is the only situation term appearing in such formula i.e. there is no do(. . .) construct in the

subject formula.

The formalism includes a set of domain independent foundational axioms Σ of:

9

• unique name axioms for situations

do(a1, s1) = do(a2, s2) ⊃ a1 = a2 ∧ s1 = s2

• minimum set axioms

(∀P).P (S0) ∧ (∀a, s)[P (s) ⊃ P (do(a, s))] ⊃ (∀s)P (s)

it describes the second-order induction and has the effect of limiting the sort situation to the smallest

set containing S0, and closed under the application of the function do an action and a situation

• initial situation constant S0

S0 ∈ Σ

• successor situation axioms via distinguished operator do

¬s @ S0

s @ do(a, s′) ≡ s @ s′ ∨ s = s′

where @ is a binary predicate symbol defining an ordering relation on situations [Rei01]

i.e. do(a, s) is the successor situation to situation s, which results from doing action a in situation s

NOTE: This thesis assumes that there is a finite number of action types in the considered domains.

SitCalc is a simple formalism and does not allow to represent many of the problems that are commonly

found in representing real-world. Some of the problems of SitCalc are:

• no time: it cannot express about how long actions take, or when they occur

• only known actions: no hidden exogenous actions, no unnamed events

• no concurrency: cannot express about doing two actions at once

• only discrete situations: no continuous actions, like pushing an object from A to B

• only hypothetical: cannot express that an action has occurred or will occur

10

• only primitive actions: no actions made up of other parts, like conditionals or iterations

EXAMPLE:

Simple Situation Calculus Model

Here is a simple situation calculus model of an environment where a robot can pick blocks and move them

between the floor and a table:

• primitive actions: pickup(x), putonfloor(x), putontable(x)

• fluents: Holding(x, s), OnTable(x, s), OnFloor(x, s)

• initial situation:

∀x. ¬Holding(x, S0)

OnTable(x, S0) ≡ x = A ∨ x = B

• some situations: do(putontable(A), do(pickup(A), S0))

situation where an object A was picked up and put on table

2.1.2 Basic Action Theories

Sets of formulas within the SitCalc language that describe how the world changes as a result of available

actions are called action theories. Basic action theories are special cases of action theories and were proposed

by Pirri and Reiter [PR99] and by Reiter [Rei01].

A basic action theory, denoted by D, is a union of the following disjoint sets of axioms:

D = Σ ∪ Dposs ∪ Dssa ∪ Dca ∪ DS0

where

Σ - foundational, domain independent, axioms of the situation calculus

11

Dposs - precondition axioms describing when actions can be legally performed

Dssa - successor state axioms describing how fluents change between situations

Dca - unique name axioms for actions and domain closure on action types

DS0
- axioms describing the fluents in the initial situation of the world

These sets of axioms are described and defined below.

The foundational, domain independent, set of axioms Σ is the same as that of the situation calculus.

The precondition axioms Dposs describing when actions can be legally performed are defined by a special

predicate Poss. The predicate Poss(a, s) is used to define if action a is executable in situation s. Poss(a, s)

defines the requirements that must be satisfied whenever the action can be executed in the given situation

and it uses fluents to do so. There is one precondition axiom per action i.e. the number of axioms is equal to

the number of actions |A|. A precondition axiom has a form of ”it is possible to do an action a iff a formula

of fluents holds”:

Poss(a(~x), s) ≡ Πa(~x, s)

where Πa(~x, s) is a first-order formula containing fluents and no do(. . .) construct appears in Πa

Successor state axioms Dssa describe how fluents change between situations. They encode the casual laws

of the modelled world. They replace the effect and frame axioms under unique action name assumption.

Effect axioms describe what changes (i.e. what becomes true and what becomes false) for each fluent as a

result of an action thus how actions affect the values of fluents. Effect axiom sentences are not very intuitive.

Frame axioms describe what is unchanged for each fluent as a result of an action. Frame axioms specify

fluents unaffected be performance of action. Just using the effect and frame axioms requires 2 axioms per

fluent per action and this can be a significant number. Additionally, any introduction of new fluents requires

12

several new effect and frame axioms and this may be prone to errors. On the other hand only one successor

state axiom is defined per fluent. If the number of actions in the subject theory is |A| and the number of

fluents is |F | then using |F | successor state axioms effectively replaces 2 ∗ |F |∗|A| effect and frame axioms.

Additionally if relatively few actions affect each fluent and if it can be assumed that effect axioms capture

complete conditions then we do not get fewer axioms at the expense of prohibitively long ones - the length of

a successor state axioms is roughly proportional to the number of actions which affect the truth value of the

fluent. For deterministic actions and given that an action is possible the effect axioms are in the following

normal form:

R+(~x, a, s) ⊃ F (~x, do(a, s)) - positive relational effect i.e. F becomes true if R+

R−(~x, a, s) ⊃ ¬F (~x, do(a, s)) - negative relational effect i.e. F becomes false if R−

R(~x, y, a, s) ⊃ f(~x, do(a, s)) = y - functional effect i.e. f takes a value y

where R is the first-order formula specifying conditions under which its action will have effect

Reiter [Rei01] proposes a systematic solution to effect and frame axiom multiplicity: new actions just require

effect axioms and the complete successor state axioms are generated and frame conditions are computed -

no accidental omission of frame axioms. The conversion from effect axioms to successor state axioms can be

done under the unique names assumption for actions and the completeness assumption i.e. that the normal

forms of the effect axioms characterize all the conditions under which an action a changes the value of fluent

F or function f . Given that an action is possible, the formula for obtaining successor state axioms from the

normal forms of the effect axioms is:

F (~x, do(a, s)) ≡ R+(~x, a, s) ∨ F (~x, s) ∧ ¬R−(~x, a, s) for relational fluents

f(~x, do(a, s)) = y ≡ R(~x, y, a, s) ∨ f(~x, s) = y ∧ ¬(∃y′.R(~x, y′, a, s)) for functional fluents

13

The unique name axioms Dca for actions and domain closure on action types is the assumption of unique

names for actions:

a(~x) 6= b(~y) where a and b are distinct actions

a(~x) = a(~y) ⊃ ~x = ~y

Finally the axioms DS0
describing the fluents in the initial situation of the world describe the state or value

of the fluents in the initial situation S0.

EXAMPLE:

Simple Action Theory

Here is a simple action theory that models an environment where a robot can pick blocks and move them

between the floor and a table:

• primitive actions: pickup(x), putonfloor(x), putontable(x)

• fluents: Holding(x, s), OnTable(x, s), OnFloor(x, s)

• action preconditions:

Poss(pickup(x), s) ≡ ∀z.¬Holding(z, s)

Poss(putonfloor(x), s) ≡ Holding(x, s)

Poss(putontable(x), s) ≡ Holding(x, s)

• successor state axioms:

Holding(x, do(a, s)) ≡ a = pickup(x) ∨Holding(x, s) ∧ a 6= putontable(x) ∧ a 6= putonfloor(x)

OnTable(x, do(a, s)) ≡ a = putontable(x) ∨OnTable(x, s) ∧ a 6= pickup(x)

OnFloor(x, do(a, s)) ≡ a = putonfloor(x) ∨OnFloor(x, s) ∧ a 6= pickup(x)

• initial situation:

14

∀x. ¬Holding(x, S0)

OnTable(x, S0) ≡ x = A ∨ x = B

2.2 Reasoning about Action

One of the typical tasks of reasoning about actions is planning. In general planning means to figure out what

to do to make an arbitrary condition true. A condition to be achieved is called a goal and the sequence of

actions that will make the goal true is called a plan.

Somewhat more formally the planning problem can be defined as follows: given an axiomatized initial

situation, and a goal statement, find an action sequence that will lead to a state in which the goal will be

true. The formal definition of the planning problem is:

given a formula Goal(s), find a sequence of actions a such that D |= Goal(do(~a, S0)) ∧ Legal(do(~a, S0))

where ~a = 〈a1, . . . , an〉

and do(~a, S0) is an abbreviation for do(an, do(an−1, . . . , do(a2, do(a1, S0)) . . .))

and Legal(~a, S0) is an abbreviation for Poss(a1, S0) ∧ Poss(a2, do(a1, S0)) ∧ . . . ∧ Poss(an, do(. . . , S0))

here a plan is some such sequence ~a

Here |= stands for second order entailment. But [Rei01] has shown that in many cases, planning and the

other reasoning tasks mentioned below can be performed using regression and first order reasoning.

Another typical task of reasoning about actions is the projection task. The projection task can be defined

as follows: given a sequence of actions, determine what would be true in the situation that results from

performing that sequence. To find out if R(s) would be true after performing ~a = 〈a1, . . . , an〉 in the initial

situation, we determine whether or not D |= R(do(an, do(an−1, . . . , do(a1, S0) . . .)))

The projection task asks if a condition would hold after performing a sequence of actions, but not whether

that sequence can in fact be properly executed. Therefore usually there is a requirement to perform the

15

legality task. We call a situation legal if it is the initial situation or the result of performing an ac-

tion whose preconditions are satisfied starting in a legal situation. In other words the legality task is

the task of determining whether a sequence of actions leads to a legal situation. To find out if the se-

quence ~a = 〈a1, . . . , an〉 can be legally performed in the initial situation, we determine whether or not

D|= Poss(ai, do(ai−1, . . . , do(a1, S0) . . .)) for every i such that 1 ≤ i ≤ n.

2.3 High-Level Languages

To represent and reason about complex actions or processes obtained by suitably executing atomic actions,

various so-called high-level programming languages have been defined, most notably Golog and its concurrent

extension ConGolog (De Giacomo, Yves Lespérance and Levesque [DLL00]). All these languages overcome

the main shortfalls of the classical situation calculus - they allow for complex actions. The next subsection

introduces complex actions and the reasons for them. Then the Golog programming language is described.

Golog is one of the most popular languages for planning problems and also it is the basis for other specialized

languages that are more task oriented. ConGolog is such a language and it introduces concurrency for

multi-agent interaction. ConGolog is also described in a subsection. The GameGolog language based on

ConGolog has been proposed (De Giacomo, Yves Lespérance and Pearce [DLP10]) to better model multi-

agent interaction problems as games and to represent game structures in a more procedural way while also

utilizing the situation calculus to specify the dynamic domain. GameGolog is explained at the end of this

section.

2.3.1 Complex Actions

The situation calculus deals with elementary actions and how they represented in situations and the state

of the fluents. As such the resulting framework can only deal with discrete progression within a predefined

sequence of elementary actions. This may be sufficient for some simple planning problems i.e. to find a

sequence of actions that will lead to a situation where desired objectives hold but not much more beyond

16

this. Hence some other types actions are necessary that better model real-world problems. Such complex

actions, as opposed to the simple elementary ones of the situation calculus, are needed to deal with:

• conditionals e.g. ff the car is in the driveway then drive else walk

• iterations e.g. while there is a block on the table, remove one

• non-deterministic choices e.g. pickup up some block and put it on the floor

• define such actions in terms of the primitive actions, and inherit their solution to the frame problem

The semantics of complex actions can be expressed via a distinguished predicate Do(a, s, s′), that says that a

possibly-complex action a when started in situation s may legally terminate in situation s′. Now the various

types of actions can be defined as:

• primitive actions: Do(A, s, s′) ≡ Poss(A, s) ∧ s′ = do(A, s)

• sequence: Do([A;B], s, s′) = ∃s”.Do(A, s, s”) ∧Do(B, s”, s′)

• conditionals: Do([ifφthenAelseB], s, s′) ≡ φ(s) ∧Do(A, s, s′)) ∨ ¬φ(s) ∧Do(B, s, s′)

• non-deterministic branch: Do([A|B], s, s′) = Do(A, s, s′) ∨Do(B, s, s′)

• non-deterministic choice: Do([πx.A], s, s′) = ∃x.Do(A, s, s′)

Several high-level languages have been defined to represent and reason about complex actions, and processes

obtained by suitably executing atomic actions. Some of these languages are described in the following

subsections.

2.3.2 Golog and ConGolog

Golog was proposed by Levesque, Reiter, Lespérance, Lin and Scherl [LRL+97]. Golog is short for ”Algol in

logic” and it is a programming language that generalizes conventional imperative programming and logic. It

17

includes the usual imperative constructs but also allows to model processes that require non-determinism. It

bottoms out not on operations on internal states (assignment statements, pointer updates) but on primitive

actions in the world. What the primitive actions do is user-specified by precondition and successor state

axioms and defined by logic similar to the basic action theories.

To ”execute” a Golog program A means to find a sequence of primitive actions such that performing them

starting in some initial situation s would lead to a situation s′ where the formula Do(A, s, s′) holds (as

explained in the preceding Complex Action subsection). In other words, given domain theory D and program

d, it is to find a sequence of actions a such that: D |= Do(d, S0, do(~a, S0)).

The Golog constructs are:

• primitive action: α

• test a condition: φ?

• sequence: (ρ1; ρ2)

• conditional: if φ then ρ1 else ρ2 endIf

• loop: while φ do ρ endWhile

• procedure definition: proc β(x) : ρ endProc

• procedure call: β(t)

• non-deterministic branch: (ρ1 | ρ2)

• non-deterministic choice of arguments: π x [ρ]

• non-deterministic iteration: ρ∗

It should be explained here how non-determinism is understood. Non-determinism is mean as some choice

which turns valid - somehow the program knows (maybe by trying all options) which choices turn valid. One

18

can think of non-deterministic execution as branching that goes in many copies at once and executions that

turn invalid are discarded.

NOTE: If what is known about the actions and the initial state can be expressed as Horn clauses, then Golog

evaluation can be done in Prolog.

EXAMPLE:

Simple Golog Program

Here is a simple Golog program that models an environment where a robot can pick blocks and move them

between the floor and a table:

• primitive actions: pickup(x), putonfloor(x), putontable(x)

• fluents: Holding(x, s), OnTable(x, s), OnFloor(x, s)

• action preconditions:

Poss(pickup(x), s) ≡ ∀z.¬Holding(z, s)

Poss(putonfloor(x), s) ≡ Holding(x, s)

Poss(putontable(x), s) ≡ Holding(x, s)

• successor state axioms:

Holding(x, do(a, s)) ≡ a = pickup(x) ∨Holding(x, s) ∧ a 6= putontable(x) ∧ a 6= putonfloor(x)

OnTable(x, do(a, s)) ≡ a = putontable(x) ∨OnTable(x, s) ∧ a 6= pickup(x)

OnFloor(x, do(a, s)) ≡ a = putonfloor(x) ∨OnFloor(x, s) ∧ a 6= pickup(x)

• initial situation:

∀x. ¬Holding(x, S0)

OnTable(x, S0) ≡ x = A ∨ x = B

• some complex actions:

19

proc ClearTable : while ∃b. OnTable(b) do π b [OnTable(b)? ; RemoveBlock(b)] endProc

proc RemoveBlock(x) : pickup(x) ; putonfloor(x) endProc

�

The key limitation of Golog were its lack of support for concurrent processes: the inability to program several

agents within a single Golog program and the inability to specify an agent’s behaviour using concurrent

processes. This made Golog inconvenient when it comes to program reactive or event-driven behaviours.

Concurrent Golog, in short ConGolog, was proposed by De Giacomo, Lespérance and Levesque [DLL00]

to overcome the mentioned limitations. ConGolog introduced concurrent processes with possibly different

priorities and concurrent processes as interleavings of the primitive actions.

Here are some of the features of ConGolog:

• ρ1 〉〉 ρ2

ρ1 has higher priority than ρ2; ρ2 executes only when ρ1 is done or blocked

• ρ‖

this construct is like non-deterministic iteration ρ∗,

but the instances of ρ are executed concurrently rather than in sequence

• 〈φ→ ρ〉

high-level interrupts - an interrupt has trigger condition φ and body ρ;

if interrupt gets control from higher priority processes and condition is true,

it triggers and body is executed; once body completes execution it may trigger again

• arbitrary exogenous actions

exogenous actions that can occur at random;

it is achieved by defining the Exo predicate: Exo(a) ≡ a = a1 ∨ · · · ∨ a = an

20

In De Giacomo, Yves Lespérance and Pearce [DLP10], which is the main focus of this thesis, the focus is

put on a subset of ConGolog which includes most constructs of ConGolog except for recursive procedures.

This subset is sufficient to model game structures and is used by this thesis. Let φ be a situation calculus

situation-suppressed formula, then a ConGolog program is any of the following (recursive) constructs:

• α - atomic action

• φ? - test for a condition

it provides for the ConGolog program to advance if formula φ holds;

it is not considered an action and nothing changes in the state after the test is passed

• ρ1 ; ρ2 - sequence

it provides for execution of ConGolog program ρ1 followed by execution of ConGolog program ρ2

• if φ then ρ1 else ρ2 - conditional

it provides for execution of ConGolog program ρ1

if formula φ holds otherwise it allows execution of ConGolog program ρ2

• while φ do ρ - while loop

it provides for executing ConGolog program ρ while formula φ holds

• ρ1 | ρ2 - non-deterministic branch

it provides for non-deterministic choice between ConGolog programs ρ1 and ρ2

• π x . ρ - non-deterministic choice of argument

it provides for execution of ConGolog program ρ for some non-deterministic choice

(in general unbounded) of legal binding for variable x;

[DLP10] requires that x occurs in some non-variable action term in ConGolog program ρ;

it is disallowed for x to occur only in tests or as an action itself;

effectively the construct acts as non-deterministic choice of action parameters;

21

it is assumed that each occurrence of this construct uses a unique fresh variable x

that no two occurrences of this construct use the same variable

• ρ∗ - non-deterministic iteration

it provides for non-deterministic number of iterations of ConGolog program ρ, possibly none

• ρ1 ‖ ρ2 - concurrent execution

it provides for concurrent execution of programs ρ1 and ρ2

and is interpreted as interleaving of programs ρ1 and ρ2

The semantic of ConGolog constructs can be specified formally as single-step transitions via two predicates

Trans(ρ, s, ρ′, s′) and Final(ρ, s) as defined in De Giacomo, Lespérance and Levesque [DLL00]. One can

interpret the predicate Trans(ρ, s, ρ′, s′) to hold if one step of program ρ in situation s can lead to situation

s′ and program ρ′ remaining for execution. You can interpret the predicate Final(ρ, s) to hold if program ρ

in situation s can legally terminate (is considered done, has nothing else to execute). The formal definitions

of Trans and Final as used in this thesis are from Sardina and De Giacomo [SD09]. They differ from the

usual ones [DLL00] in the definition of the test construct i.e. φ? does not yield any transition but is final

when satisfied. The definitions of Trans and Final are as follows:

Trans(α, s, δ′, s′) ≡ s′ = do(α, s) ∧ Poss(α, s) ∧ δ′ = True?

Trans(ϕ? , s, δ′, s′) ≡ False

Trans(δ1; δ2, s, δ
′, s′) ≡ Trans(δ1, s, δ′1, s′) ∧ δ′ = δ′1; δ2 ∨ Final(δ1, s) ∧ Trans(δ2, s, δ′, s′)

Trans(if ϕ then δ1 else δ2, s, δ
′, s′) ≡ ϕ[s] ∧ Trans(δ1, s, δ′, s′) ∨ ¬ϕ[s] ∧ Trans(δ2, s, δ′, s′)

Trans(while ϕ do δ, s, δ′, s′) ≡ ϕ[s] ∧ Trans(δ, s, δ′′, s′) ∧ δ′ = δ′′; (while ϕ do δ)

Trans(δ1|δ2, s, δ′, s′) ≡ Trans(δ1, s, δ′, s′) ∨ Trans(δ2, s, δ′, s′)

Trans(πx.δ, s, δ′, s′) ≡ ∃x.Trans(δ, s, δ′, s′)

22

Trans(δ∗, s, δ′, s′) ≡ Trans(δ, s, δ′′, s′) ∧ δ′ = δ′′; δ∗

Trans(δ1‖δ2, s, δ′, s′) ≡ Trans(δ1, s, δ′1, s′) ∧ δ′ = δ′1‖δ2 ∨ Trans(δ2, s, δ′2, s′) ∧ δ′ = δ1‖δ′2

Final(α, s) ≡ False

F inal(ϕ? , s) ≡ ϕ[s]

Final(δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Final(if ϕ then δ1 else δ2, s) ≡ ϕ[s] ∧ Final(δ1, s) ∨ ¬ϕ[s] ∧ Final(δ2)

Final(while ϕ do δ, s) ≡ ϕ[s] ∧ Final(δ, s′) ∨ ¬ϕ[s]

Final(δ1|δ2, s) ≡ Final(δ1, s) ∨ Final(δ2, s)

Final(πx.δ, s) ≡ ∃x.F inal(δ, s)

Final(δ∗, s) ≡ True

F inal(δ1‖δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

It should be noted that another programming language IndiGolog has been developed to yet better model

multi-agent interactions. IndiGolog extends ConGolog to support interleaved search and execution, to per-

form on-line sensing, and to allow detecting of exogenous actions.

2.3.3 GameGolog

GameGolog, a short form of Game Structure ConGolog, was proposed by Giacomo, Lespérance and Pearce

[DLP10]. It is intended as an alternative, more procedural, way of specifying game structures. In the

language all non-deterministic choices are made by some agent that has control in the situation and these

choices are recorded in the situation. Therefore the history of non-deterministic choices is recorded in the

situation. Also the agent that gets to act next is always specified. GameGolog programs are denoted by ρ

23

possibly with subscripts or superscripts. GameGolog is a variant of ConGolog programming language where

the non-deterministic constructs and the concurrency construct have been replaced by new constructs that

explicitly specify which agent is responsible for the non-deterministic choice. GameGolog new constructs

are:

• [agt ρ1 |ρ2]

non-deterministic branch that replaces ConGolog non-deterministic branch;

agent agt is responsible for making a non-deterministic choice to execute ρ1 or ρ2

i.e. the agent agt makes a choice whether to continue with ρ1 or with ρ2

• [agt πx. ρ]

non-deterministic choice of argument that replaces corresponding ConGolog construct;

agent agt is responsible for making a non-deterministic choice of argument x then ρ is executed

i.e. the agent agt makes a choice for the binding for variable x to continue with ρ

• [agt ρ∗]

non-deterministic iteration that replaces ConGolog non-deterministic iteration;

agent agt is responsible for making a non-deterministic choice of executing program ρ

or to terminate the iteration i.e. the agent agt makes a choice when to stop the iteration of ρ

• [agt ρ1 ‖ ρ2]

concurrency that replaces ConGolog concurrency construct;

the agent agt chooses how to interleave the execution of ρ1 and ρ2

In fact De Giacomo, Lespérance and Pearce [DLP10] show how any GameGolog program without the new

concurrency construct can be translated into ConGolog. For convenience the GameGolog language allows

to write [agt ρ] where ρ is a program that may mix GameGolog and ConGolog where agent agt controls all

the non-deterministic choices in ρ that are not already controlled by other agents. [DLP10] explains how

to get the standard GameGolog program from [agt ρ] notation.

24

The semantics of GameGolog constructs, similarly to ConGolog, can be specified formally as single-step

transitions via two predicates Trans(ρ, s, ρ′, s′) and Final(ρ, s) as defined in De Giacomo, Lespérance and

Levesque [DLL00] and already explained in the previous section. In fact these definitions are the same as

in ConGolog except for the new constructs:

Trans([agt ρ1| ρ2], s, ρ′, s′) ≡ s′ = do(left(agt), s) ∧ ρ′ = ρ1 ∨ s′ = do(right(agt), s) ∧ ρ′ = ρ2

the non-deterministic choice is recorded in the situation;

the agent may choose to go ”left” by performing left(agt) choice action and then execute ρ1

or the agent may choose to go ”right” by performing right(agt) choice action and then execute ρ2

Trans([agt πx. ρ], s, ρ′, s′) ≡ ∃x.s′ = pick(agt, x) ∧ ρ′ = ρ

the non-deterministic choice is recorded in the situation;

the agent makes a choice for binding of x by performing pick(agt, x) choice action and then

execute ρ for this binding of x

Trans([agt ρ∗], s, ρ′, s′) ≡ s′ = do(continue(agt), s)∧ρ′ = ρ; [agt ρ∗]∨s′ = do(stop(agt), s)∧ρ′ = True?

the non-deterministic choice is recorded in the situation;

agent may choose to continue iteration by performing continue(agt) choice action and execute ρ

or agent may choose to stop iteration by performing stop(agt) choice action and terminating

Trans([agt ρ1‖ρ2], s, ρ′, s′) ≡

s′ = do(left(agt), s) ∧ ρ′ = [agt ρ1〈|| ρ2] ∨ s′ = do(right(agt), s) ∧ ρ′ = [agt ρ1||〉 ρ2]

Final([agt ρ1| ρ2], s) ≡ False

F inal([agt πx.ρ], s) ≡ False

F inal([agt ρ∗], s) ≡ False

F inal([agt ρ1‖ρ2], s) ≡ False

25

EXAMPLE:

GameGolog Program of the TTT (Tic-Tac-Toe) Game

ρTTT =

while ¬Finished() do (

[X πr, c. move(X, r, c)];

if ¬Finished() then [O πr, c. move(O, r, c)] else True?

)

The program requires the Situation Calculus axiomatization of the game (provided in this thesis). ρTTT

simply alternates the moves of X and O, starting from X, until a player has won or the board no longer has

blanks and hence the fluent Finished() holds.

�

2.4 Characteristic Graphs

Characteristic graphs and verification methods based on characteristic graphs have been proposed by Claßen

and Lakemeyer [CL08]. De Giacomo, Lespérance and Pearce [DLP10] use a variant of characteristic graph

- characteristic graph for a Golog program. They employ characteristic graphs to compactly represent all

possible configurations that a GameGolog program may visit during its execution. The characteristic graph

of a Golog program ρ0 is a graph G where:

• the nodes are tuples of the form 〈ρ, χ〉

meaning that ρ is a possible remaining program during ρ0 execution

and χ characterizes the conditions under which ρ can terminate

• the initial node is 〈ρ0, χ0〉

26

• the edges are tuples of the form 〈π~x.α, ω〉

they represent single transitions between program configurations;

α is an action term with specific action type, it is not an action variable;

~x is a tuple of variables that may appear free in α and ω;

ω is a condition that must hold for the action π~x.α to be possible;

if ω is True then it can be omitted and the edge is labelled with just π~x.α;

π~x.α can be reduced to just term α if there are no variable bindings to be made;

in essence an edge represents a transition from configuration to configuration when

the binding for variable π~x is chosen and action α is performed in a situation where ω holds

EXAMPLE:

Characteristic Graph of the TTT (Tic-Tac-Toe) Game

The GameGolog program for the TTT game is given as:

ρTTT =

while ¬Finished() do (

[X πr, c. move(X, r, c)];

if ¬Finished() then [O πr, c. move(O, r, c)] else True?

)

The corresponding characteristic graph GTTT is:

27

Where:

• υ0 = 〈[X πr, c. move(X, r, c)]; [O πr, c. move(O, r, c)], F inished()〉

• υ1 = 〈[O πr, c. move(O, r, c)]; [X πr, c. move(X, r, c)]; [O πr, c. move(O, r, c)], F inished()〉

�

2.5 Game Structures

Several specifications have been proposed that model games in a natural way, allow us to specify games with

procedural constructs, and allow us to represent various properties in logic. These specifications also allow us

to express multi-agent interaction problems. The Game Description Language (GDL) by Genesereth, Love

and Pell [GLP05] provides a declarative specification language to represent discrete complete information on

games. But GDL does not provide for temporally extended game property representation and verification.

One formalism for representing games via logic is to employ the situation calculus and action theories

as introduced by Reiter [Rei01]. This thesis focuses on three such languages that have been utilized or

developed in De Giacomo, Lespérance and Pearce [DLP10]. The first one is the Basic Action Theory

formalism that is a generic situation calculus-based logical language that is possibly the simplest way to

represent an environment that requires reasoning about actions and situations. The second is the Situation

Calculus Game Structure formalism that is a specialization of the Situation Calculus and more conveniently

models agent interaction. The third is the GameGolog Theory formalism that utilizes Situation Calculus

Game Structure axiomatization of the world to model, but agent interaction is defined procedurally as

a GameGolog program. There are some other languages that can be used to represent game structures

although they have not been used in this thesis as they were not appropriate or required for the main

research presented here. These languages are described in the Other Related Work section of this thesis.

28

2.5.1 Basic Action Theory Models

The simplest formalisms to describe game problems are basic action theories. Basic action theories have

been defined in a previous section of this thesis but, as a reiteration, a basic action theory of a given game,

denoted by D, is a union of the following disjoint sets:

D = Σ ∪ Dposs ∪ Dssa ∪ Dca ∪ DS0

where

Σ - foundational, domain independent, axioms of the situation calculus

these have been defined in a previous section of this thesis

Dposs - precondition axioms describing when actions can be legally performed

these have been described in a previous section of this thesis and a defined according to the problem

being modelled

Dssa - successor state axioms describing how fluents change between situations

these have been described in a previous section of this thesis and a defined according to the problem

being modelled

Dca - unique name axioms for actions and domain closure on action types

these have been defined in a previous section of this thesis

DS0
- axioms describing the fluents in the initial situation of the world

these have been described in a previous section of this thesis and a defined according to the problem

being modelled

All the above axioms are defined and explained in a previous section of this thesis and the axioms that are

problem-specific are summarized below.

29

The precondition axioms Dposs describing when actions can be legally performed are defined by a special

predicate Poss. The predicate Poss(a, s) is used to define if action a is executable in situation s. Poss(a, s)

defines the requirements that must be satisfied whenever the action can be executed in the given situation

and it uses fluents to do so. Minor conditions, including unknown ones, are ignored.

Successor state axioms Dssa describe how fluents change between situations. They encode the casual laws

of the modelled world. They replace the effect and frame axioms under unique action name assumption.

Effect axioms describe what changes (i.e. what becomes true and what becomes false) for each fluent as a

result of an action thus how actions affect the values of fluents. Frame axioms describe what is unchanged

for each fluent as a result of an action i.e. frame axioms specify fluents unaffected be performance of action.

Reiter [Rei01] proposes a complete systematic solution to computing successor state axioms from effect

axioms while respecting implicit frame conditions. The conversion from effect axioms to successor state

axioms can be done under the unique names assumption for actions and the completeness assumption i.e.

that the normal forms of the effect axioms characterize all the conditions under which an action a changes

the value of fluent F or function f .

Finally the axioms DS0
describing the fluents in the initial situation of the world describe the state or value

of the fluents in the initial situation S0.

EXAMPLE:

Basic Action Theory Axiomatization of the TTT (Tic-Tac-Toe) Game

Fluents

• turn(s) - functional fluent indicating which agent is to take next action; the domain is the set of agents

• Cell(m, r, c, s) - relational fluent indicating if the content of a cell row r and column c is m

• Wins(p, s) ≡

∃c.Cell(p, 1, c, s) ∧ Cell(p, 2, c, s) ∧ Cell(p, 3, c, s) ∨

30

∃r.Cell(p, r, 1, s) ∧ Cell(p, r, 2, s) ∧ Cell(p, r, 3, s) ∨

Cell(p, 1, 1, s) ∧ Cell(p, 2, 2, s) ∧ Cell(p, 3, 3, s) ∨

Cell(p, 1, 3, s) ∧ Cell(p, 2, 2, s) ∧ Cell(p, 3, 1, s)

constructed fluent indicating if agent p is considered a winner

• Finished(s) ≡ ∃p.Wins(p, s) ∨ ∀r, c.InRange(r, c) ∧ ¬Cell(B, r, c, s)

constructed fluent indicating if there should be no more actions

• InRange(r, c) ≡ (r = 1 ∨ r = 2 ∨ r = 3) ∧ (c = 1 ∨ c = 2 ∨ c = 3)

situation invariant predicate for the domain of cells

• Agent(p) ≡ p = X ∨ p = O

situation invariant predicate for the domain of agents

Actions

• move(p, r, c) - agent p marks the cell row r and column c with mark p

Axioms Σ

Standard foundational domain-independent axioms of Situation Calculus.

Axioms Dposs

Precondition axioms, one per action, indicate when actions can be legally performed:

Poss(move(p, r, c), s) ≡ Agent(p) ∧ turn(s) = p ∧ InRange(r, c) ∧ Cell(B, r, c, s)

players can only move on blank cells

Axioms Dssa

Successor state axioms describing how the fluents change as a result of actions. They are derived from the

effect axioms.

31

Effect axioms in the normal form:

a = move(m, r, c, s) ⊃ Cell(m, r, c, do(a, s))

∃p.a = move(p, r, c, s) ⊃ ¬Cell(m, r, c, do(a, s))

¬turn(s) = p ⊃ turn(do(a, s)) = p

Derived successor state axioms (after simplification and domain closure assumption for actions):

Cell(m, r, c, do(a, s)) ≡ a = move(m, r, c, s) ∨ Cell(m, r, c, s) ∧ ∀p.a 6= move(p, r, c)

turn(do(a, s)) = p ≡ ¬turn(s) = p

Axioms Dca

Standard unique name axioms for actions and domain closure on action types.

Axioms DS0

Description of the initial situation:

turn(S0) = X

∀r, c.InRange(r, c) ∧ Cell(r, c, B, S0)

�

2.5.2 Situation Calculus Game Structures

Situation Calculus Game Structures, or SitCalc Game Structures for short, are a specialization of the situa-

tion calculus that allows to better model games. The language is similar in nature to Basic Action Theories

where some functions and predicates are distinguished and some format standardization is imposed. The

32

descriptions presented in this section follow those of De Giacomo, Lesperance and Pearce [DLP10] which are

in general similar to the typical descriptions in the literature. The main difference is that situation calculus

game structure in De Giacomo, Lesperance and Pearce [DLP10] refers to a situation calculus game theory

and not just single model.

In SitCalc Game Structures every action has an agent parameter and the distinguished function agent(a)

takes a parameter a which is an action and returns the agent of the action. The axioms for the agent function

are defined for every action type and by convention the agent parameter is the first argument of any action

type. It is assumed that there is a finite set Agents of agents who denoted by unique names. A distinguished

predicate Poss(a, s) specifies if an action a is physically possible (i.e. executable) in situation s. Actions

are divided into two groups: choice actions and standard actions. Choice actions model the decisions of

agents and they are assumed to have no effect on any fluent other than Poss, Legal, and Control. Choice

actions are always physically possible. Standard actions are the other non-choice actions. A distinguished

predicate Legals(s) is a stronger version of possibility / legality and models the game structure of interest.

It encapsulates the ability of an agent to execute actions and perform decisions according to the rules of

the game and it is axiomatized according to the game being modelled. It is required that Legal entails 3

properties:

1. Legal implies physically possible

Legal(s) ⊃ s = S0 ∨ ∃a, s′.s = do(a, s′) ∧ Poss(a, s′)

2. legal situations are result of an action performed in legal situations

Legal(s) ⊃ s = S0 ∨ ∃a, s′.s = do(a, s′) ∧ Legal(s′)

3. only one agent can act in a legal situation

Legal(do(a, s)) ∧ Legal(do(a′, s)) ⊃ agent(a) = agent(a′)

The distinguished predicate Control(agt, s) is a convenience predicate that holds if an agent can act in a

33

given legal situation:

Control(agt, s)
.
= ∃a.Legal(do(a, s)) ∧ agent(a) = agt

As a result of the constraints on the predicate Legal it follows that the predicate Control holds for only one

agent in a given legal situation. To model games where several agents can act simultaneously a round-robin

choice actions among the agents involved can be used. To model games where several agents want to act

non-deterministically but one player can succeed in performing his actions an extra player can be introduced

who is in charge of making the ”non-deterministic” decisions i.e. that player will decide which agent will

actually act among the agents that may act and this decision will automatically be recorded in the situation.

It is worth noting that the state of the game in situation s is captured by the fluents.

A situation calculus game structures, denoted by DGS , is a union of the following disjoint sets:

DGS = Σ ∪ Dposs ∪ Dssa ∪ Dca ∪ DS0
∪ Dlegal

where

Σ - foundational, domain independent, axioms of the situation calculus (as in Basic Action Theories)

Dposs - precondition axioms describing when actions can be physically performed

Dssa - successor state axioms describing how fluents change (as in Basic Action Theories)

Dca - unique name axioms for actions and domain closure on action types (as in Basic Action Theories)

DS0
- axioms describing the fluents in the initial situation of the world (as in Basic Action Theories)

Dlegal - axioms for predicates Legal and Control, and for function agent()

EXAMPLE:

SitCalc Game Structure Axiomatization of the TTT (Tic-Tac-Toe) Game

Fluents

34

• Cell(m, r, c, s) - relational fluent indicating if the content of a cell row r and column c is m

• turn(s) - functional fluent indicating the agent that is to take next action

• InRange(r, c) ≡ (r = 1 ∨ r = 2 ∨ r = 3) ∧ (c = 1 ∨ c = 2 ∨ c = 3)

situation invariant predicate for the domain of cells

• Agent(p) ≡ p = X ∨ p = O

situation invariant predicate for the domain of agents

• Wins(p, s) ≡

∃c.Cell(p, 1, c, s) ∧ Cell(p, 2, c, s) ∧ Cell(p, 3, c, s) ∨

∃r.Cell(p, r, 1, s) ∧ Cell(p, r, 2, s) ∧ Cell(p, r, 3, s) ∨

Cell(p, 1, 1, s) ∧ Cell(p, 2, 2, s) ∧ Cell(p, 3, 3, s) ∨

Cell(p, 1, 3, s) ∧ Cell(p, 2, 2, s) ∧ Cell(p, 3, 1, s)

constructed fluent indicating if agent p is considered a winner

• Completed(s)
.
= ∀r, c.InRange(r, c) ∧ Cell(m, r, c, s) ⊃ m 6= B

(convenience) formula abbreviation

• Finished(s)
.
= Completed(s) ∨Wins(X, s) ∨Wins(O, s)

(convenience) formula abbreviation

Actions

• move(p, r, c) - agent p marks the cell row r and column c with mark p

Axioms Σ

Standard foundational domain-independent axioms of Situation Calculus.

Axioms Dposs

Precondition axioms, one per action, indicate when actions can be legally performed:

35

Poss(move(p, r, c), s) ≡ Agent(p) ∧ InRange(r, c) ∧ Cell(B, r, c, s)

players can only move on blank cells

Axioms Dssa

Successor state axioms describing how the fluents change as a result of actions. They are derived from the

effect axioms.

Effect axioms in the normal form:

a = move(m, r, c, s) ⊃ Cell(m, r, c, do(a, s))

∃p.a = move(p, r, c, s) ⊃ ¬Cell(m, r, c, do(a, s))

¬turn(s) = p ⊃ turn(do(a, s)) = p

Derived successor state axioms (after simplification and domain closure assumption for actions):

Cell(m, r, c, do(a, s)) ≡ a = move(m, r, c, s) ∨ Cell(m, r, c, s) ∧ ∀p.a 6= move(p, r, c)

turn(do(a, s)) = p ≡ ¬turn(s) = p

Axioms Dca

Standard unique name axioms for actions and domain closure on action types.

Axioms DS0

Description of the initial situation:

∀r, c.InRange(r, c) ∧ Cell(r, c, B, S0)

turn(S0) = X

Legal(S0)

36

Axioms Dlegal

Axioms for predicates Legal and Control, and for function agent(). They define the rules of the game:

Legal(do(a, s)) ≡ Legal(s) ∧ turn(s) = p ∧ ∃a.agent(a) = p ∧ Poss(a, s)

Control(agt, s)
.
= ∃a.Legal(do(a, s)) ∧ agent(a) = agt

agent(move(m, r, c)) = m

�

2.5.3 GameGolog Theories

The semantics of GameGolog constructs (those shared from ConGolog and those changed ones in GameGolog

as described in one of the previous sections of this thesis) can be defined using axioms for predicates Trans

and Final. A GameGolog theory is denoted DGG. The definitions of the Trans and Final are as given in

section 2.3 and the axioms for the replaced constructs are as follows:

Trans([agt ρ1|ρ2], s, ρ′, s′) ≡ s′ = do(left(agt), s) ∧ ρ′ = ρ1 ∨ s′ = do(right(agt), s) ∧ ρ′ = ρ2

the non-deterministic choice is recorded in the situation;

the agent may chose to go ”left” by performing left(agt) choice action and then executes ρ1

or the agent may chose to go ”right” by performing right(agt) choice action and then executes ρ2

Trans([agt πx.ρ], s, ρ′, s′) ≡ ∃x.s′ = pick(agt, x) ∧ ρ′ = ρ

the non-deterministic choice is recorded in the situation;

the agent makes a choice for binding of x by performing pick(agt, x) choice action

and then executes ρ for this binding of x

Trans([agt ρ∗], s, ρ′, s′) ≡ s′ = do(continue(agt), s)∧ρ′ = ρ; [agt ρ∗]∨s′ = do(stop(agt), s)∧ρ′ = True?

the non-deterministic choice is recorded in the situation;

37

the agent makes a choice of continuing the iteration by performing continue(agt) choice action

and then executes ρ or the agent makes a choice to stop the iteration by performing stop(agt)

choice action and terminating

Trans([agt ρ1‖ρ2], s, ρ′, s′) ≡

s′ = do(left(agt), s) ∧ ρ′ = [agt ρ1〈|| ρ2] ∨ s′ = do(right(agt), s) ∧ ρ′ = [agt ρ1||〉 ρ2]

Trans([agt ρ1 〈|| ρ2], s, ρ′, s′) ≡ Trans(ρ1, s, ρ′1, s) ∧ ρ′ = [agt ρ′1||ρ2]

Trans([agt ρ1 ||〉 ρ2], s, ρ′, s′) ≡ Trans(ρ2, s, ρ′2, s) ∧ ρ′ = [agt ρ1||ρ′2]

Final([agt ρ1|ρ2], s) ≡ False

F inal([agt πx.ρ], s) ≡ False

F inal([agt ρ∗], s) ≡ False

F inal([agt ρ1‖ρ2], s) ≡ False

F inal([agt ρ1 〈|| ρ2], s) ≡ Final(ρ1, s) ∧ Final(ρ2, s)

Final([agt ρ1 ||〉 ρ2], s) ≡ Final(ρ1, s) ∧ Final(ρ2, s)

The semantics of GameGolog and the GameGolog program represent the meaning of Legal in a game struc-

ture. Legal situations are those that can be reached from the initial situation by performing transitions on

the program ρ0 that models the subject game structure. Legal, and likewise Final, can be defined as:

Legal(s) ≡ ∃ρ′.T rans∗(ρ0, S0, ρ
′, s)

Final(s) ≡ ∃ρ′.T rans∗(ρ0, S0, ρ
′, s) ∧ Final(ρ′, s)

Theories of this form where Legal, and optionally Final, is defined by GameGolog programs are called

GameGolog theories and are denoted DGGT .

38

EXAMPLE:

GameGolog Theory Axiomatization of the TTT (Tic-Tac-Toe) Game

The GameGolog Theory axiomatization DGGT of the TTT (Tic-Tac-Toe) Game uses all the same axioms as

the Basic Action Theory for the TTT Game (already provided in this thesis) with the addition GameGolog

semantics axioms DGG and the following axioms:

ρTTT =

while ¬Finished() do (

[X πr, c. move(X, r, c)];

if ¬Finished() then [O πr, c. move(O, r, c)] else True?

)

Legal(s) ≡ ∃ρ′.T rans∗(ρTTT , S0, ρ
′, s)

Final(s) ≡ ∃ρ′.T rans∗(ρTTT , S0, ρ
′, s) ∧ Final(ρ′, s)

2.6 Expressing Properties of Systems in Game-Theoretic Logics

Several specifications have been proposed that model games in natural ways. Some of these formalisms allow

us to specify games with procedural constructs, as well as, allow us to represent various temporal properties

in logic. Several properties and characteristics of games have been identified and proven useful. These can

be very high level properties of good equity (i.e. all players have a chance to win the game), liveness (i.e.

all requests will eventually be handled), or the existence of winning strategy (i.e. a player can ensure to

win eventually). Additionally a critical characteristic of a representation is the ability to support incomplete

specifications of the application domain i.e. when action theories do not have to have a single model. These

properties can be expressed in formalisms such as alternating-time temporal logic (ATL) (Alur, Henzinger

and Kupferman [AHK02]), or the L-language of De Giacomo, Lespérance and Pearce [DLP10] which uses

39

the alternating time µ-calculus and provides a rich grammar for representing various important properties.

Such temporal properties can subsequently be verified via model checking or other methods like those that

are proposed by De Giacomo, Lespérance and Pearce [DLP10] and that are researched by this thesis. In

De Giacomo, Lespérance and Pearce [DLP10] complex temporal dynamic properties can be expressed using

least and greatest fixpoint constructions and it is shown how one can formally verify (via regression and

fixpoint approximation) that a formula of their logic is satisfied in a situation calculus-based game structure.

This technique can be automated easily but does not always terminate - it is sound but not complete.

2.6.1 Alternating-time Temporal Logic (ATL)

Alternating-time Temporal Logic (ATL) has been proposed by Alur, Henzinger, and Kupferman [AHK02].

is a temporal logic i.e. it is logic used to describe rules and symbolism for representing and reasoning about,

propositions quantified in terms of time. In temporal logic questions can have truth value that can vary

in time and hence time quantification can often be used to eliminate this dependency. Temporal logic has

found an important application in formal verification, where it is used to express the important operating

requirements of hardware or software systems.

ATL Syntax

The temporal logic ATL (Alternating-time Temporal Logic) is defined with respect to a set Π of propositions

and a finite set Σ = {1, . . . , k} of players. An ATL formula is one of the following:

(S1) p, for proposition p ∈ Π

(S2) ¬ϕ and ϕ1 ∨ ϕ2, where ϕ, ϕ1, and ϕ2 are ATL formulas

(S3) 〈〈A〉〉 © ϕ, 〈〈A〉〉�ϕ, or 〈〈A〉〉ϕ1Uϕ2, where A ∈ Σ is a set of players, and ϕ, ϕ1, and ϕ2 are ATL

formulas

40

The operator 〈〈 〉〉 is a path quantifier parameterized by sets of players. © (”next”), � (”always”), and U

(”until”) are temporal operators. Additional Boolean connectives are defined, for example 〈〈A〉〉♦ϕ is for

〈〈A〉〉trueUϕ.

Definition of Strategy

Before the semantics of ATL can be properly explained it is helpful to define the notion of strategies. This

will be done using a very generic definition of a game structure. This generic definition of a game structure

is not used to define game problems researched in this thesis and just gives enough formalism to define some

of the concepts used later in this subsection. Consider a game structure S = 〈k,Q,Π, π, d, σ〉 where:

• k a natural number of players, let the players be identified by numbers 1, · · · , k

• finite set Q of states

• finite set Π of propositions

• for each state q ∈ Q, a set π(q) ⊂ Π of propositions true in q

• for each player a ∈ {1, · · · , k} and each state q ∈ Q, a natural number da(q) ≥ 1 of moves available at

state q to player a; given a state q ∈ Q, D(q) is the set {1, . . . , d1(q)} × · · · × {1, . . . , dk(q)}

• σ is the transition function where for each state q ∈ Q and each vector 〈j1, · · · , jk〉 of moves available

to players a = 1, · · · , k then σ(q, j1, · · · , jk) ∈ Q is a state that results from q by each player making

a move ja

A strategy for player a ∈ Σ is a function fa that maps every nonempty finite state sequence λ ∈ Q+

to a natural number such that if the last state of λ is q, then fa(λ) ≤ da(q). Thus, the strategy fa for

player a determines for every finite prefix λ of a computation a move fa(λ) for player a. The outcome

of FA = {fa|a ∈ A} from state q is the set out(q, FA) computations λ = q0, q1, . . . if q0 = q and for all

41

positions i ≥ 0, there is a move vector 〈j1, . . . , jk〉 ∈ D(qi) such that ja = fa(λ[0, i]) for all players ainA,

and σ(qi, j1, . . . , jk) = qi+1.

ATL Semantics

The semantics of ATL is defined recursively as follows, where q |= ϕ means that state q ∈ Π satisfies ATL

formula ϕ:

• q |= p iff p ∈ π(q), for propositions q ∈ Π

• q |= ¬ϕ iff q 2 ϕ

• q |= ϕ1 ∨ ϕ2 iff q |= ϕ1 or q |= ϕ2

• q |= 〈〈A〉〉 © ϕ iff there exists a set FA of strategies, one for each player in A, such that for all

computations λ ∈ out(q, FA) and all positions i ≥ 0, we have λ[i] |= ϕ

• q |= 〈〈A〉〉�ϕ iff there exists a set FA of strategies, one for each player in A, such that for all compu-

tations λ ∈ out(q, FA), we have λ[1] |= ϕ

• q |= 〈〈A〉〉ϕ1Uϕ2 iff there exists a set FA of strategies, one for each player in A, such that for all

computations λ ∈ out(q, FA), there exists a position i ≥ 0 such that λ[i] |= ϕ2 and for all positions

0 ≥ j ≥ i and λ[j] |= ϕ1

It is often useful to express an ATL formula in a dual form. It uses JAK quantifier for a set A of players.

While 〈〈A〉〉ϕ means that the players in A can cooperate to make ϕ true (they can ”enforce” ϕ), the dual

formula JAKϕ means that the players in A cannot cooperate to make ϕ false (they cannot ”avoid” ϕ). In

turn-based synchronous and turn-based asynchronous game structures the players in A can enforce a set Λ

of computations iff the players in Σ−A cannot avoid Λ.

42

2.6.2 Alternating-time µ-Calculus (AMC)

Alternating-time µ-Calculus (AMC) has been proposed by Alur, Henzinger, and Kupferman [AHK02] as an

extension of µ-Calculus as proposed by E. Allen Emerson [Eme96]. AMC is a temporal logic i.e. it is logic

used to describe rules and symbolism for representing and reasoning about, propositions quantified in terms

of time. In temporal logic questions can have truth value that can vary in time and hence time quantification

can often be used to eliminate this dependency.

AMC Syntax

The temporal logic AMC (Alternating-time µ-Calculus) is defined with respect to a set Π of propositions, a

set V of propositional variables (for modal/second order quantification), and a set Σ = {1, . . . , k} of players.

An AMC formula is one of the following:

• p, for proposition p ∈ Π

• X, for variable X ∈ V

• ¬ϕ or ϕ1 ∨ ϕ2, where ϕ, ϕ1, and ϕ2 are AMC formulas

• 〈〈A〉〉 © ϕ, where A ⊆ Σ is a set of players, and ϕ is an AMC formula

• µX.ϕ is the least fixpoint operator, where ϕ is an AMC formula in which all free occurrences of X fall

under even number of negations

The operator 〈〈 〉〉 is a path quantifier parameterized by sets of players which is the main change as compared

to E. Allen Emerson [Eme96] where the next-time operator © is quantified by existential or universal path

quantifier.

For example µX.p ∨ 〈〈Σ〉〉X says that p eventually holds along some path from the current state, or more

formally that the current state is in the least set of states that are fixed points of ϕ(X) = p ∨ 〈〈Σ〉〉X

43

Some abbreviations are proposed by Alur, Henzinger, and Kupferman [AHK02] which are constructed from

the elements of the language:

• the dual: JAK© ϕ = ¬〈〈A〉〉 © ¬ϕ

• ∃ = 〈〈Σ〉〉

• ∀ = JΣK

• greatest fixpoint: νX.ϕ = ¬µX.¬ϕ

AMC Semantics

Before the semantics of AMC can be properly explained it is helpful to provide some definitions. This will

be done using a very generic definition of a game structure as used in the background section on ATL. This

generic definition of a game structure is not used to define game problems researched in this thesis and

just gives enough formalism to define some of the concepts used later in this subsection. Consider a game

structure S = 〈k,Q,Π, π, d, σ〉 where:

• k a natural number of players, let the players be identified by numbers 1, · · · , k

• finite set Q of states

• finite set Π of propositions

• for each state q ∈ Q, a set π(q) ⊂ Π of propositions true in q

• for each player a ∈ {1, · · · , k} and each state q ∈ Q, a natural number da(q) ≥ 1 of moves available at

state q to player a; given a state q ∈ Q, D(q) is the set {1, . . . , d1(q)} × · · · × {1, . . . , dk(q)}

• σ is the transition function where for each state q ∈ Q and each vector 〈j1, · · · , jk〉 of moves available

to players a = 1, · · · , k then σ(q, j1, · · · , jk) ∈ Q is a state that results from q by each player making

a move ja

44

• let’s consider Σ = {1, · · · , k} to be the set of players

A valuation V is a function from the propositional variables V to subsets of Q. For valuation V, a propositional

variable X, and a set ρ ⊆ Q of states, let V[X := ρ] be a valuation that maps X to ρ and agrees with V on

all other variables. An AMC formula ϕ is interpreted as a mapping ϕS from valuations to state sets. Let

ϕS(V) denote the set of states that satisfies the AMC formula ϕ under the valuation V in the structure S.

Then the semantics of AMC is the mappings ϕS defined recursively as follows:

• for a proposition p ∈ Π, we have pS(V) = {q ∈ Q | p ∈ π(q)}

• for a propositional variable X ∈ V , we have XS(V) = V(X)

• (¬ϕ)S(V) = Q− ϕS(V)

• (ϕ1 ∨ ϕ2)S(V) = ϕS1 (V) ∪ ϕS2 (V)

• (〈〈A〉〉 © ϕ) = {q ∈ Q | for every player a ∈ A, there exists a move ja ∈ {1, . . . , da(q)}

such that for all players b ∈ Σ−A and moves jb ∈ {1, . . . , db(q)},

we have σ(q, j1, . . . , jk) ∈ ϕS(V)}

• (µX.ϕ)S(V) =
⋂
{ρ ⊆ Q | ϕS(V[X := ρ]) ⊆ ρ}

Looking at an AMC formula µX.ϕ, and given a valuation V, the subformula ϕ can be viewed as a function

hSϕ,V that maps each state set ρ ⊆ Q to the state set ϕS(V[X := ρ]). By the standard fixed-point theory

(µX.ϕ)S(V) has a least fixpoint, namely,
⋂
{ρ ⊆ Q | ϕS(V[X := ρ]) ⊆ ρ} which can be computed by

interactive approximation:

(µX.ϕ)S(V) =
⋃
i≥0(h+ Sϕ,V)i([false])

A sentence of AMC is a formula that that contains no free occurrences of propositional variables.

45

2.6.3 L-Logic

De Giacomo, Lespérance and Pearce [DLP10] propose a specific logic, called L-logic, to express properties of

game structures. It is convenient to logically express temporal properies of Basic Action Theory-axiomatized

game structures. It is inspired by ATL (Alur, Henzinger and Kupferman [AHK02]) and it is based on µ-

calculus (Park [Par76]). It focuses on µ-calculus over game structures as initiated in Bradfield and Stirling

[BS07].

The key element of the L-logic is the 〈〈G〉〉 © ϕ operator defined as follows:

〈〈G〉〉 © ϕ
.
=

(∃agt ∈ G. Control(agt, now) ∧ ∃a. agent(a) = agt ∧ Legal(do(a, now)) ∧ ϕ[do(a, now)]) ∨

(∀agt /∈ G. Control(agt, now) ∧ ∀a. agent(a) = agt ∧ Legal(do(a, now)) ⊃ ϕ[do(a, now)])

This operator in essence defines whether a formula φ can hold after one more action as follows. If the

coalition G of agents is in control in current situation then all we need is some action of some agent in

coalition G that will make the formula φ hold after such action. If the coalition G of agents is not in control

in current situation then what we need is that regardless of action (for all) and regardless of agent (for all)

not in coalition G that the formula φ holds after such action. Control was defined in section 2.5.2.

The whole logic L can be defined as follows. Let φ be a situation-suppressed situation calculus uniform

formula and let Z be a predicate variable of a given arity then a formula Ψ in language L(also called L-

formula) is any of the following (recursive) constructs:

φ – a situation-suppressed situation calculus uniform formula is a formula of L

Z(~x) – predicate variable of a given arity is a formula in L

Ψ1 ∧Ψ2 – conjunction of language L-formulas Ψ1 and Ψ2 is a formula in L

Ψ1 ∨Ψ2 – disjunction of language L-formulas Ψ1 and Ψ2 is a formula in L

46

∃x.Ψ – existential quantification of of language L-formula Ψ is a formula in L

∀x.Ψ – universal quantification of of language L-formula Ψ is a formula in L

〈〈G〉〉 ©Ψ – next of language L-formula Ψ, as defined above, is a formula in L

[[G]]©Ψ – the dual of 〈〈G〉〉 ©Ψ (i.e. [[G]]©Ψ ≡ ¬〈〈G〉〉 © ¬Ψ) is a formula in L

µZ(~x).Ψ(Z(~x)) – the least fixpoint operator from the µ-calculus is a formula in L

Ψ(Z(~x)) is the notation to emphasize that Z(~x) may occur free, i.e. not quantified by µ or ν in Ψ

νZ(~x).Ψ(Z(~x)) – the greatest fixpoint operator from the µ-calculus is a formula in L

Ψ(Z(~x)) is the notation to emphasize that Z(~x) may occur free, i.e. not quantified by µ or ν in Ψ

Language L allows to express arbitrary temporal/dynamic properties.

For example a strategy to achieve ϕ(~x) by group G, where ϕ(~x) is a situation suppressed formula with free

variables ~x, can be defined by the following least fixpoint construction:

〈〈G〉〉♦ϕ(~x)
.
= µZ(~x). ϕ(~x) ∨ 〈〈G〉〉 © Z(~x)

〈〈G〉〉♦ϕ(~x)
.
= µZ(~x). ϕ(~x) ∨ 〈〈G〉〉 © Z(~x)

Similarily an ability to maintain a propert ϕ(~x) by group G, where ϕ(~x) is a situation suppressed formula

with free variables ~x, can be defined by the following greatest fixpoint construction:

〈〈G〉〉�ϕ(~x)
.
= νZ(~x).ϕ(~x) ∧ 〈〈G〉〉 © Z(~x)

The property that there is a path where ϕ(~x) holds next, where ϕ(~x) is a situation suppressed formula with

free variables ~x, can be defined as the set of all agents can ensure that ϕ(~x) holds next:

∃© ϕ(~x)
.
= 〈〈Agents〉〉 © ϕ(~x)

The property that there is a path where ϕ(~x) holds in the future, where ϕ(~x) is a situation suppressed

formula with free variables ~x, can be defined as the set of all agents has a strategy to achieve ϕ(~x):

∃♦ϕ(~x)
.
= 〈〈Agents〉〉♦ϕ(~x)

47

2.6.4 Lp-Logic

De Giacomo, Lespérance and Pearce [DLP10] propose program-constraint logic for game structure properties

denoted Lp. The language allows to define temporal properties of game structures by incorporating the DGG

axioms for the GameGolog-based Legal predicate of the game being modeled and utilizing the axioms for

GameGolog semantics.

Similarly to L-language 〈〈G〉〉©ϕ operator, the program-constrained�G�©ϕ operator is defined in terms

of GameGolog program semantics as follows:

�G�© ϕ
.
=

(∃agt ∈ G, a.∃ρ′. agent(a) = agt ∧ Trans(ρnow, now, ρ′, do(a, now)) ∧ ϕ[ρ′, do(a, now)]) ∨

(∀agt /∈ G, a.∃ρ′. (agent(a) = agt ∧ Trans(ρnow, now, ρ′, do(a, now)) ⊃ ϕ[ρ′, do(a, now)])

A formula Ψ̂ in Lp logic is related to an L-formula from L logic (as described earlier) by suppressing the current

situation argument now and the assumption of a suppressed argument of the current program ρnow still to

execute in situation now. It should be noted that if the initial situation S0 and the GameGolog program

ρ0 for the problem of interest are given then ρS for situation S is functionally determined. Following the

theorem from De Giacomo, Lespérance and Pearce [DLP10] we have that for every GameGolog theory DGGT

and associated program ρ0, and L-formula Ψ, the corresponding Lp formula Ψ̂ is such that:

DGGT |= ∀ρ, s.Trans∗(ρ0, S0, ρ, s) ⊃ (Ψ[s] ≡ Ψ̂[ρ, s])

EXAMPLE:

Example Temporal Property in LP Logic of the TTT (Tic-Tac-Toe) Game

The GameGolog Theory axiomatization DGGT of the TTT (Tic-Tac-Toe) Game uses all the same axioms as

the Basic Action Theory for the TTT Game (already provided in this thesis) with the addition GameGolog

semantics axioms DGG and the following axioms:

48

ρTTT =

while ¬Finished() do (

[X πr, c. move(X, r, c)];

if ¬Finished() then [O πr, c. move(O, r, c)] else True?

)

Legal(s) ≡ ∃ρ′.T rans∗(ρTTT , S0, ρ
′, s)

Final(s) ≡ ∃ρ′.T rans∗(ρTTT , S0, ρ
′, s) ∧ Final(ρ′, s)

DGGT |= ∀ρ, s.Trans∗(ρ0, S0, ρ, s) ⊃ (Ψ[s] ≡ Ψ̂[ρ, s])

The property of having a strategy to achieve ϕ(~x) by group G, where ϕ(~x) is a situation suppressed formula

with free variables ~x, can be defined by the following least fixpoint construction:

�G�♦ϕ(~x)
.
= µZ(~x). ϕ(~x) ∨�G�© Z(~x)

�

2.7 Verification of Properties of Systems in Game-Theoretic Logics

2.7.1 Symbolic Manipulation

De Giacomo, Lespérance and Pearce [DLP10] propose the method to verify if formulas of logic L are satisfied

in a situation calculus-based game structure. The method is based on 3 elements: regression in situation

calculus (Pirri abd Reiter [PR99]), the fixpoint approximation, and classical Knaster and Tarski results

[Tar55]. The method makes the assumption of finite set of action types and agents which is the case for

typical games structures. Regression is needed to keep the computed formulas to be situation-uniform i.e.

to talk about the same situation by eliminating the do function. In principle regression is to utilize successor

state axioms to replace the do situation calculus constructs.

The method is based on the observation that least fixpoint approximation of a formula can be sometimes

49

computed by the general technique of fixpoint approximation (Knaster and Tarski [Tar55])

Z0
.
= Ψ(False)

Z1
.
= Ψ(Z0)

Z2
.
= Ψ(Z1)

. . .

where all of Zi are situation suppressed formulas that talk about the same situation and the computation

may require situation calculus regression to achieve that.

To verify an L-formula Ψ in situation S is to check if the formula holds in situation S. Now if DGS is a

situation calculus game structure and S is a situation, then

if for some i DGS |= Zi+1[S] ≡ Zi[S] then DGS |= µZ.Ψ(Z)[S]

and therefore verification of L-formula is equivalent to translating the L-formula to a situation calculus

situation-uniform formula and checking if this formula holds in a given situation.

2.7.2 τ(Ψ) Procedure for L-Logic Formulas

De Giacomo, Lespérance and Pearce [DLP10] propose a procedure to verify if formulas of logic L are satisfied

in a situation calculus-based game structure. This recursive procedure τ(Ψ) tries to compute a first-order

formula uniform in current situation now and that is equivalent to Ψ:

• τ(φ) = φ

where φ is an arbitrary situation-suppressed situation calculus uniform formula

• τ(Z) = Z

where Z is a predicate variable

• τ(Ψ1 ∧Ψ2) = τ(Ψ1) ∧ τ(Ψ2)

• τ(Ψ1 ∨Ψ2) = τ(Ψ1) ∨ τ(Ψ2)

50

• τ(∃x.Ψ) = ∃x.τ(Ψ)

• τ(∀x.Ψ) = ∀x.τ(Ψ)

• τ(〈〈G〉〉 ©Ψ) = R(〈〈G〉〉 © τ(Ψ))

where R represents regression operation and 〈〈G〉〉 ©Ψ is regressible if Ψ is regressible

• τ([[G]]©Ψ) = ¬R(〈〈G〉〉 © τ(NNF (¬Ψ)))

where NNF stands for negation normal form of ¬Ψ with the provison that for variables NNF (Z)
.
= Z

• τ(µZ.Ψ) = lfpZ.τ(Ψ)

where lfpZ.Ψ is the formula R resulting from the least fixpoint procedure:

R := False;

Rnew := Ψ(False);

while (Dca 6|= R ≡ Rnew) {

R := Rnew;

Rnew := Ψ(R);

}

The procedure tests if R ≡ Rnew under unique name and domain closure assumptions for actions in

DGS . In general there is no guarantee that the procedure will ever stop i.e. that Dca |= Ri ≡ Ri+1,

but if it does then DGS |= Ri[S] ≡ µZ.Ψ(Z)[S] and Ri is first-order and uniform in S.

Also DGS |= Ri[S0] iff DS0
∪ Dca |= Ri[S0] that is if DS0

∪ Dca |= Ri[S0] then DGS |= µZ.Ψ(Z)[S0].

This means that the task of verifying a fixpoint formula in the situation calculus is reduced to verifying

a first-order formula.

• τ(νZ.Ψ) = gfpZ.τ(Ψ)

where gfpZ.Ψ is the formula R resulting from the greatest fixpoint procedure:

R := True;

Rnew := Ψ(True);

51

while (Dca 6|= R ≡ Rnew) {

R := Rnew;

Rnew := Ψ(R);

}

the procedure tests if R ≡ Rnew under unique name and domain closure assumptions for actions in

DGS . In general there is no guarantee that the procedure will ever stop i.e. that Dca |= Ri ≡ Ri+1,

but if it does then DGS |= Ri[S] ≡ µZ.Ψ(Z)[S] and Ri is first-order and uniform in S.

Also DGS |= Ri[S0] iff DS0
∪ Dca |= Ri[S0] that is if DS0

∪ Dca |= Ri[S0] then DGS |= νZ.Ψ(Z)[S0].

This means that the task of verifying a fixpoint formula in the situation calculus is reduced to verifying

a first-order formula.

Now if DGS is situation calculus game structure and Ψ is an L-formula then if the algorithm τ terminates

then

DGS |= Ψ[S0] iff DS0
∪ Dca |= τ(Ψ)[S0]

It should benoted that for the least fixpoint formula 〈〈G〉〉♦ϕ the fixpoint approximations are:

Z0
.
= φ ∨ 〈〈G〉〉 © False i.e. Z0

.
= φ

Z1
.
= φ ∨ 〈〈G〉〉 © Z0

Z2
.
= φ ∨ 〈〈G〉〉 © Z1

. . .

In procedure τ the regression is applied at each step of the computation of the approximate so the formulas

Zi[S] are equivalent to the corresponding formulas Ri[S]:

R0
.
= φ

R1
.
= φ ∨R[〈〈G〉〉 ©R0]

R2
.
= φ ∨R[〈〈G〉〉 ©R1]

. . .

The formulas Ri[S] are equivalent to the corresponding formulas Zi[S] the difference between formula Ri[S]

52

and formula Zi[S] is that in Ri[S] the only situation term that appears is S whereas Zi[S] may have S and

other situation terms that may be up to i steps in the future.

2.7.3 JΨK Procedure for Lp-Logic Formulas

De Giacomo, Lespérance and Pearce [DLP10] propose a procedure to verify if formulas of logic Lp are

satisfied in a GameGolog game structure. The procedure is based on regression (Pirri abd Reiter [PR99]),

fixpoint approximation, and characteristic graphs verification methods proposed by Claßen and Lakemeyer

[CL08].

When looking at characteristic graphs, which have been described earlier in this thesis, and the nature of

game problems it can be observed that for GameGolog characteristic graph G all outgoing edges of every

node v will be labelled by actions of same agent. That agent controls the node and the agent of the node

can be denoted as agent(v). Now the technique is based on recursive procedure denoted JΨK that labels

nodes of characteristic graph G for any Lp-formula Ψ. An assumption is made that free variables occurring

in formulas to be checked are distinct from those occurring in GameGolog program ρ0 that are quantified

by the π construct. Also if the procedure JΨK terminates then it produces labelling set Z = {〈v, φ〉|v ∈ G}

of nodes in the graph G where φ are first-order formulas and this labelling can be used to check whether the

property of interest Ψ holds. The procedure uses a few definitions that need to be introduced first:

• JϕK .
= {〈v, ϕ〉|v ∈ G} where ϕ is any first-order formula

• Z1 and Z2
.
= {〈v, φ1 ∧ φ2〉|〈v, φ1〉 ∈ Z1, 〈v, φ2〉 ∈ Z2}

• Z1 or Z2
.
= {〈v, φ1 ∨ φ2〉|〈v, φ1〉 ∈ Z1, 〈v, φ2〉 ∈ Z2}

• exists x.Z .
= {〈v,∃x.φ〉|〈v, φ〉 ∈ Z}

• all x.Z .
= {〈v,∀x.φ〉|〈v, φ〉 ∈ Z}

53

• Pre(G,Z)
.
= {

〈v, φ〉|v ∈ G, where

if agent(v) ∈ G then

φ =
∨
v
π~x:α,ω−→ v′∈G,(v′,φ′)∈Z

∃~x.ω(~x) ∧R(φ′(do(α, now)))

and if agent(v) /∈ G then

φ =
∨
v
π~x:α,ω−→ v′∈G,(v′,φ′)∈Z

∃~x.ω(~x) ∧∧
v
π~x:α,ω−→ v′∈G,(v′,φ′)∈Z

∀~x.ω(~x) ⊃ R(φ′(do(α, now)))

}

• Pre(G,Z)
.
= {〈v,NNF(¬φ)〉|〈v, φ〉 ∈ Pre(G,Z)}

• lfpZ.Ψ(Z), where Ψ(Z) denotes an parametrized expression in which Z occurs as a parameter (possi-

bly together with other parameters), stands for the result of the following procedure (in which Z 6= Znew

is an abbreviation for Dca 6|=
∧
〈v,ϕ〉∈Z,〈v,ϕnew〉∈Zold ϕ ≡ ϕnew):

Z := JFalseK;

Znew := JΨ(Z)K;

while (Z 6= Znew){

Z := Znew;

Znew := JΨ(Z)K

}

• gfpZ.Ψ(Z), where Ψ(Z) denotes a parametrized expression in which Z occurs as a parameter, stands

for the result of the following procedure:

Z := JTrueK;

Znew := JΨ(Z)K;

while (Z 6= Znew){

Z := Znew;

Znew := JΨ(Z)K

54

}

The general labelling procedure JΨK for any Lp formula Ψ on a characteristic graph G is as follows:

• JϕK as defined earlier where ϕ is first-order formula

• JZK .
= Z where Z is any labeling

• JΨ1 ∧Ψ2K
.
= JΨ1K and JΨ2K

• JΨ1 ∨Ψ2K
.
= JΨ1K or JΨ2K

• J∃x.ΨK .
=exists x.JΨK

• J∀x.ΨK .
=all x.JΨK

• J�G�©ΨK .
= Pre(G, JΨK)

• J[[G]]©ΨK .
= Pre(G, JΨK)

• JµZ.Ψ(Z)K .
= lfpZ.JΨ(Z)K

• JνZ.Ψ(Z)K .
= gfpZ.JΨ(Z)K

Based on a theorem from De Giacomo, Lespérance and Pearce [DLP10], when JΨK terminates, the uniform

formulas that label the nodes in the resulting labeling can be used to check whether Ψ holds:

For every Lp-formula Ψ, if JΨK terminates and 〈v, ϕ〉, with v = 〈ρ, χ〉, is in the returned set,

then for all situation terms s, DGGT |= Ψ[ρ, s] ≡ ϕ[s].

For every Lp-formula Ψ, if JΨK terminates and 〈v0, ϕ〉, with v = 〈ρ0, χ0〉, is in the returned set,

then DGGT |= Ψ[ρ0, S0] iff DS0
∪ Dca |= ϕ[S0].

55

2.8 Other Verification Methods

There is an increasing interest in producing proofs of correctness of systems by automated means. Formal

methods [Mon01] and [BBS09] are a set of mathematically-based techniques for the specification, development

and verification of software and hardware systems. Automated verification techniques fall into two general

categories. The first category is the automated theorem proving, in which a system attempts to produce a

formal proof from scratch, given a description of the system, a set of logical axioms, and a set of inference

rules. The second category is model checking, in which a system verifies certain properties by means of an

exhaustive search of all possible states that a system could enter during its execution. Model checkers can

quickly get bogged down in checking millions of uninteresting states if not given a sufficiently abstract model.

Quite often they make a pronouncement of truth, yet give no explanation of that truth and also there is

the problem of ”verifying the verifier” (if the program which aids in the verification is itself unproven, there

may be reason to doubt the soundness of the produced results). In general, existing verification methods

require significant manual preparations and time to produce, use low-level specifications of the systems, and

most are are limited to finite state structures. The following sections briefly explain the main verification

methods that can be used in verifying temporal properties of game problems.

2.8.1 Theorem Proving

Theorem proving approaches to verification are in competition to our approach but they are not mainstream

today. There is not much work on game-theoretic logic theorem proving in general. Some of the theorem

proving techniques used these days are based on first-order resolution with unification and follow the work

of [Hoa69], while some others such as [BKM95] are based on mathematical induction. The work involved

in producing a good proof requires a high level of mathematical sophistication and expertise and standard

theorem proving approaches are difficult to automate completely [KMM00] and [Mil06].

Currently many applications use Satisfiability Modulo Theory (SMT) [Ume10] which has its roots in au-

56

tomated theorem proving. SMT greatly relies on the SAT technology and can be seen as an extension of

SAT solving. In essence in SMT an instance of the Boolean satisfiability problem (SAT) has some of the

binary variables replaced by predicates over a suitable set of non-binary variables. SMT is the problem of

determining whether an SMT formula is satisfiable.

2.8.2 Model Checking

While theorem proving uses axioms and can work with possibly incomplete specification for property ver-

ification, model checking uses models and requires complete specification. Non-symbolic model checking

techniques [CE81] explore program states and state transitions by performing an enumeration. In practice

they are often hampered by severe “state space explosion” – a situation where the state space grows dramat-

ically with the evaluation of state transitions. To tame this problem, symbolic algorithm research [McM92]

gained focus and an example of such research for temporal logics is the work of Lomuscio and Penczek

[LP12]. In symbolic model checking, sets of states (a state represented as a vector of state variables) are

manipulated rather than individual states. These sets are encoded as formulas that are satisfied if and only

if the subject states belong to the represented set (for example a formula x1 ∨ x2 ∨ x3 would represent 7

states in an 8 state space with 3 variables). Symbolic representation of sets of states can be much more suc-

cinct then the corresponding enumeration. State exploration is performed via the symbolic transformation

of the mentioned set representations. The power of symbolic techniques comes from significant advances

in the performance of constraint solvers. These solvers underline symbolic checking technologies [CABN97]

where the system model and the property to verify are turned into a formula which satisfiability needs to be

checked in the end. Temporal properties and fixpoint computations become iterative formula manipulations.

For finite state systems the verification and falsification results are guaranteed. Here the formulas can be

represented and evaluated as binary decision diagrams (BDDs) [Ake78] providing efficient implementations.

Still, to construct BDDs manual intervention may be required, as some Boolean operations and existential

quantification can be quadratic in the size of the BDD, and the size of the BDD is sensitive to the variable

57

ordering and in the wost case can be exponential in the number of variables. This is the symbolic analogue to

the state space explosion problem. Some of the popular symbolic model checkers are: SPIN [Hol03], NUSMV

[CCGR00], and Java Pathfinder [Hav99]. A leading example of a symbolic model checker for multi-agent

systems is MCMAS (Lomuscio, Qu and Raimondi [LQR09]). Two general references on model checking are

Clarke et al. [CGP01] and Baier and Katoen [BK08].

2.8.3 Bounded Model Checking

Bounded Model Checking (Biere [Bie09]), acronymed as BMC, uses symbolic representation for sets of states

and the transition relation in the form of Boolean logic formulas. Just like symbolic model checkers, BMC

operates on symbolic (as opposed to concrete) representations. For temporal logic properties, instead of

computing fixpoints, it unrolls the transition relation up to certain fixed bound and searches for violations

(counter examples) of the property within such unrolled formula. The search is performed as a propositional

satisfiability problem and is using modern SAT and Satisfiability Modulo Theory (SMT) solvers [Ume10]

that have become quite efficient. It can be shown that if a temporal property holds for a finite state transition

system then then it also holds for that system using bounded semantics for some bound k, so if we keep

increasing the bound we will find a path that satisfies the formula if such path exists. Now if there is no

solution then the procedure would not terminate but quite often we can define the diameter of the transition

system so that the property holds if and only if it is not violated on a path bounded by the diameter (for

example for the Tic-Tac-Toe game the maximum number of consecutive moves is 9 and therefore it could be

assumed as the diameter of its transition system). In bounded model checking the falsification of a property

can be guaranteed and verification of a property can be guaranteed if we know the binding diameter of

the system. It needs to be noted that variable domains need to be bounded otherwise would not be able

to convert the problems to Boolean SAT. It is also worth noting that bounded model checking usually

finds counterexamples fast (due to the depth-first approach of SAT solvers) and it finds counterexamples of

minimal length which makes such counterexamples more easily understandable. BMC also does not require

58

the manual intervention that was needed in constructing BDDs for symbolic model checking.

2.8.4 Program Synthesis

Another direction in verification is design synthesis from a temporal logic specification (Piterman, Pnueli

and Sa’ar [PPS06]). The ability to synthesize a program from a given specification that includes the desired

temporal properties can be considered a proof that such program exhibits the desired temporal properties.

Although the general complexity of such synthesis can be doubly exponential, in Piterman, Pnueli and Sa’ar

[PPS06] a more efficient technique is proposed for a special type of temporal formulas – the General Reactivity

(1) formulas. Although it is a restricted class of temporal logic formulas, this type of formulas addresses a

large number of practical problems. In Piterman, Pnueli and Sa’ar [PPS06] the realizablility of the synthesis

of a temporal formula is reduced to the decision of a winner in games. Two player games are considered that

are played between a system and an environment, and the goal of the system is to satisfy the specification

regardless of the actions of the environment. The game is solved by attempting to decide whether the system

has a strategy that guarantees winning. If the environment can win then the system is unrealizable. If the

system is guaranteed to win then the winning strategy is synthesized into an implementation. It should be

noted that in the presence of incomplete information about the initial situation, getting synthesis techniques

out of verification techniques is much more complex. Strategies not only need to exists (as guaranteed by

verification), but also need to be epistemically feasible, i.e. the agent performing a strategy needs to have

sufficient information to actually make all the choices needed for its execution.

2.8.5 Infinite-States Domains

To deal with verification in infinite-states domains, methods based on fixpoint approximation and character-

istic graphs have been proposed by Claßen and Lakemeyer [CL08]. There, a concept of characteristic graphs

is proposed as a way to represent all possible configurations that a program written in Golog to represent

a multi-agent interaction may visit. A characteristic graph is constructed for a given program where nodes

59

represent program configurations and edges are labelled with actions and conditions under which these ac-

tions can be taken. There is no need to ground the program configurations and transitions to obtain its

characteristic graph. Conditions involving temporal operators are then tested by computing fixpoint with

respect to these graphs, using methods adapted from symbolic model checking. They also provide an au-

tomated method to verify typical program properties. However their specification language is not a game

structure logic. Interesting methods for specifying game structures in a logical and procedural manner have

been also proposed and potential verification techniques have been outlined by De Giacomo, Lespérance and

Pearce [DLP10]. In there, a logical framework for specifying and solving game theoretic problems based on

the situation calculus and the ConGolog agent programming language is proposed. Also a new programming

language GameGolog is proposed to allow better modelling of game-like or multi-agent interaction problems

using a procedural formalism. Additionally a language based on the µ-calculus, game-theoretic path quan-

tifiers, and first-order logic for specifying program properties is proposed. They also devise techniques for

the verification of properties over game structures by using fixpoint approximation, as well as, verification of

properties over GameGolog programs by using characteristic graphs. These techniques apply to incomplete

specifications of game structures and infinite-states domains.

60

3 Symbolic Manipulation-Based Verification of Properties of
Game Structures

This section presents the first part of the research conducted for this thesis. Several game domains have been

developed that have various levels of complexity and are representative of problems for which game logics

are used. These domains range from simple setups such as arrays of controlable lights to simple infinite

state variants of typical games such as a version of tic-tac-toe played on an infinite vector of cells. Many

involve incomplete specification of the initial state. The purpose of such diversity is twofold: to have a range

of problems that the techniques will be tested on, and to determine the effectiveness of the techniques for

problems of varying characteristics. These domains have then been modelled in game theories in the situation

calculus, as well as, in GameGolog. The symbolic fixpoint approximation method (De Giacomo, Lespérance

and Pearce [DLP10]) has been applied on the created problems to examine if it works in verifying ATL-type

properties of finite and infinite-states game structures. This has been done on complete and incomplete

game theories (classes of games) and the fixpoint evaluation convergence has been examined to extract the

required conditions and strategies for verifying desired properties.

The developed games have an infinite state space. For the majority of them the verification procedure applied

to the selected temporal properties, i.e., the possibility of winning and the existence of a winning strategy

for one player, converges to a fixpoint in a small finite number of steps and we can show the successive

approximations become equivalent without using the initial state axioms, i.e., without any knowledge of

the initial state. In one case we did need to use our knowledge of the initial situation to get the fixpoint

approximation to terminate in a finite number of steps; without such knowledge, the fixpoint approximation

61

formulas keep growing covering more situations indefinitely. The formulas obtained by the fixpoint procedures

show what needs to be true in the initial situation if the given properties are to hold.

3.1 Light World (LW)

In this section we verify some temporal properties using the fixpoint approximation method of De Giacomo,

Lespérance and Pearce [DLP10] with one small modification: when checking whether the two successive

approximates are equivalent, we assume that we have a suitable axiomatization of the integers DZ in addition

to the unique names and domain closure axioms for actions (as our game domain involves one light that may

be on or not for every integer). 1

The Light World (LW) game that we have designed involves an infinite row of lights – one for each

integer. A light can be on or off. A light has a switch that can be flipped and will turn the light off if it was

on or it will turn the light on if it was off. There are 2 players X and O in the game. Players take turns

and initially it is player X’s turn. The goal of player X is to have lights 1 and 2 on in which case player X

wins. It is possible for the game to go on forever and the goal cannot be reached: player O keeps switching

off light 1 or light 2 (depending which one happens to be on) and in the initial situation both lights 1 and 2

are off.

3.1.1 Situation Calculus Game Structure Axiomatization of LW Domain

The Situation Calculus Game Structure Axiomatization is defined as:

DLWGS = Σ ∪ DLWposs ∪ DLWssa ∪ DLWca ∪ DLWS0
∪ DLWLegal ∪ DZ

where DZ is a suitable axiomatization of the integers as discussed earlier.

1Our axioms and the properties we attempt to verify only use a very simple part of integer arithmetic [End72] and [Ham82].
It should be possible to generate the proofs using the decidable theory of Presburger arithmetic after encoding integers as pairs
of natural numbers in the standard way. Most theorem proving systems include sophisticated solvers for dealing with formulas
involving integer constraints and it should be possible to use these to perform the reasoning about integers that we require.

62

Fluents

• On(t, s) - predicate fluent indicating whether the light t is on in situation s

• turn(s) - functional fluent indicating which agent is to take the next action, with its domain being the

agent set {X,O}

Derived Fluents

• Wins(p, s)
.
= Legal(s) ∧On(1, s) ∧On(2, s)

• Finished(s)
.
= ∃p. Wins(p, s)

This fluent is not used in this chapter but later in Chapter 4.

Actions

• flip(p, t) - agent p flips the switch of light t

Precondition Axioms DLWposs

These are precondition axioms, one per action, specifying when an action can physically be performed:

• Poss(flip(p, t), s) ≡ Agent(p)

Successor State Axioms DLWssa

These are successor state axioms specifying how the fluents change as a result of actions:

• On(t, do(a, s)) ≡ ¬On(t, s) ∧ ∃p.a = flip(p, t) ∨On(t, s) ∧ ∀p.a 6= flip(p, t)

• turn(do(a, s)) = p ≡ p = O ∧ turn(s) = X ∨ p = X ∧ turn(s) = O

63

Initial State Axioms DLWS0

These describe the initial situation:

• turn(S0) = X

• On(5, S0)

• Legal(S0)

Legal Moves Axioms DLWlegal

These encode the rules of the game:

• agent(flip(p, t)) = p

• Control(p, s) .
= ∃a.Legal(do(a, s)) ∧ agent(a) = p

• Legal(do(a, s)) ≡ Legal(s) ∧ ∃p, t. Agent(p) ∧ turn(s) = p ∧ a = flip(p, t)

Unique Name and Domain Closure Axioms for Actions DLWca

These describe the uniqueness of action names and the fact that the domain of actions s closed:

• ∀a. { ∃p, t. a = flip(p, t)}

• ∀p, p′, t, t′. { flip(p, t) = flip(p′, t′) ⊃ p = p′ ∧ t = t′ }

• ∀p. { Agent(p) ≡ (p = X ∨ p = O)}

• X 6= O

The complete theory also includes the foundational axioms Σ of the Situation Calculus. It can be noticed

that this is clearly an infinite state domain as the set of light that can be turned on or off is infinite.

64

Propositions and Lemmas

We derived the following propositions, some of which are used in later proofs:

P 3.1.1. Regression for concrete cases for the turn functional fluent.

DLWca |= R(turn(do(flip(X, t), s)) = X) ≡ False

DLWca |= R(turn(do(flip(O, t), s)) = X) ≡ turn(s) = O

DLWca |= R(turn(do(flip(X, t), s)) = O) ≡ turn(s) = X

DLWca |= R(turn(do(flip(O, t), s)) = O) ≡ False

P 3.1.2. Regression of a concrete case for the On fluent.

DLWca ∪ DZ |= R(On(v, do(flip(p, t), s))) ≡ ¬On(v, s) ∧ t = v ∨On(v, s) ∧ t 6= v

P 3.1.3. Regression of a concrete case for the Legal fluent.

DLWca |= R(Legal(do(flip(p, t), s))) ≡ Legal(s) ∧ turn(s) = p

In this domain, for groups G = {X} and G = {X,O} ensuring that ϕ holds next can be established by

considering only the flip(t) actions as the following lemmas show:

L 3.1.1. Regression of the concrete case of the ∃© ϕ definition based on domain closure.

DLWca |= R(∃© ϕ[s]) ≡

Legal(s) ∧ turn(s) = X ∧R(∃t.ϕ[do(flip(X, t), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(∃t.ϕ[do(flip(O, t), s)])

Proof Sketch: this is the case of the 〈〈G〉〉 © ϕ operator where all agents (X and O) are in the

coalition G, leaving no agent outside the coalition. Then by the definition of 〈〈G〉〉©ϕ from [DLP10]

R(〈〈G〉〉 © ϕ)
.
=

(
∨
agt∈GR(Control(agt, s)) ∧

∨
a∈A ∃~x. agent(a(~x)) = agt ∧

R(Legal(do(a(~x), s))) ∧R(ϕ(do(a(~x), s)))) ∨

(
∨
agt/∈GR(Control(agt, s)) ∧

∧
a∈A ∀~x. agent(a(~x)) = agt ∧

65

R(Legal(do(a(~x), s))) ⊃ R(ϕ(do(a(~x), s))))

≡

(
∨
agt∈GR(Control(agt, s)) ∧

∨
a∈A ∃~x. agent(a(~x)) = agt ∧

R(Legal(do(a(~x), s))) ∧R(ϕ(do(a(~x), s)))) ∨

≡ by enumerating the agents and R for Control(agt, s) and the definition of the agent function

Control(X, s) ∧
∨
a∈A ∃t. a = flip(X, t) ∧R(Legal(do(a, s))) ∧R(ϕ(do(a, s))) ∨

Control(O, s) ∧
∨
a∈A ∃t. a = flip(O, t) ∧R(Legal(do(a, s))) ∧R(ϕ(do(a, s))))

≡ by FOL and combining the quantifiers

Control(X, s) ∧ ∃t. R(Legal(do(flip(X, t), s))) ∧R(ϕ(do(flip(X, t), s))) ∨

Control(O, s) ∧ ∃t. R(Legal(do(flip(O, t), s))) ∧R(ϕ(do(flip(O, t), s))))

≡ by definition of Control and P3.1.3

Legal(s) ∧ turn(s) = X ∧ ∃t. Legal(s) ∧ turn(s) = X ∧R(ϕ(do(flip(X, t), s))) ∨

Legal(s) ∧ turn(s) = O ∧ ∃t. Legal(s) ∧ turn(s) = O ∧R(ϕ(do(flip(O, t), s)))

≡ by FOL

Legal(s) ∧ turn(s) = X ∧R(∃t.ϕ(do(flip(X, t), s))) ∨

Legal(s) ∧ turn(s) = O ∧R(∃t.ϕ(do(flip(O, t), s)))

L 3.1.2. Regression of the concrete case of the 〈〈{X}〉〉 © ϕ definition based on domain closure.

DLWca |= R(〈〈{X}〉〉 © ϕ[s]) ≡

Legal(s) ∧ turn(s) = X ∧R(∃t.ϕ[do(flip(X, t), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(∀t.ϕ[do(flip(O, t), s)])

Proof Sketch: this is the case of the 〈〈G〉〉 © ϕ operator where agent X is in the coalition G,

leaving agent O outside the coalition. Then by the definition of 〈〈G〉〉 © ϕ from [DLP10]

R(〈〈G〉〉 © ϕ)
.
=

(
∨
agt∈GR(Control(agt, s)) ∧

∨
a∈A ∃~x. agent(a(~x)) = agt ∧

R(Legal(do(a(~x), s))) ∧R(ϕ(do(a(~x), s)))) ∨

66

(
∨
agt/∈GR(Control(agt, s)) ∧

∧
a∈A ∀~x. agent(a(~x)) = agt ∧

R(Legal(do(a(~x), s))) ⊃ R(ϕ(do(a(~x), s))))

≡ by enumerating the agents and R for Control(agt, s)

Control(X, s) ∧
∨
a∈A ∃~x. agent(a(~x)) = X ∧R(Legal(do(a(~x), s))) ∧R(ϕ(do(a(~x), s))) ∨

Control(O, s) ∧
∧
a∈A ∀~x. agent(a(~x)) = O ∧R(Legal(do(a(~x), s))) ⊃ R(ϕ(do(a(~x), s)))

≡ by enumerating the actions and the definition of the agent function

Control(X, s) ∧ ∃t.R(Legal(do(flip(X, t), s))) ∧R(ϕ(do(flip(X, t), s))) ∨

Control(O, s) ∧ ∀t.R(Legal(do(flip(O, t), s))) ⊃ R(ϕ(do(flip(O, t), s)))

≡ by definition of Control

Legal(s) ∧ turn(s) = X ∧ ∃t.R(Legal(do(flip(X, t), s))) ∧R(ϕ(do(flip(X, t), s))) ∨

Legal(s) ∧ turn(s) = O ∧ ∀t.R(Legal(do(flip(O, t), s))) ⊃ R(ϕ(do(flip(O, t), s)))

≡ by P3.1.3

Legal(s) ∧ turn(s) = X ∧ ∃t.Legal(s) ∧ turn(s) = X ∧R(ϕ(do(flip(X, t), s))) ∨

Legal(s) ∧ turn(s) = O ∧ ∀t.(Legal(s)turn(s) = O ∧ ⊃ R(ϕ(do(flip(O, t), s))))

≡ by FOL

Legal(s) ∧ turn(s) = X ∧R(∃t.ϕ(do(flip(X, t), s))) ∨

Legal(s) ∧ turn(s) = O ∧R(∀t.ϕ(do(flip(O, t), s))))

3.1.2 Possibility of Winning

The property that it is possible for X to eventually win can be represented by the following formula:

∃♦Wins(X)
.
= µZ.Wins(X) ∨ ∃© Z

We begin by applying the De Giacomo et al. [DLP10] method and try to show that successive approximates

are equivalent using only the unique name and domain closure axioms for actionsDLWca and the axiomatization

of the integers DZ :

67

DLWca ∪ DZ |= ∃♦Wins(X)

This formula can be verified by employing the [DLP10] method using regression and fixpoint approximation,

until we converge. The technique does not always converge and this needs to be checked as we proceed. The

regressed approximations are as follows:

DLW
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(∃© False) ≡ by lemma L3.1.1

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.False) ∨

Legal(s) ∧ turn(s) = O ∧R(∃t.False)

≡

Legal(s) ∧On(1, s) ∧On(2, s)

This approximation evaluates to true if s is legal and such that X is winning in s already (in no steps). These

are situations where light 1 and light 2 are on.

DLW
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(∃©R0) ≡ by lemma L3.1.1

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.R0[do(flip(X, t), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(∃t.R0[do(flip(O, t), s)])

≡ by R0 substitution of ≡ from previous step

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.(

Legal(do(flip(X, t), s)) ∧On(1, do(flip(X, t), s)) ∧On(2, do(flip(X, t), s)))) ∨

Legal(s) ∧ turn(s) = O ∧R(∃t.(

Legal(do(flip(O, t), s)) ∧On(1, do(flip(O, t), s)) ∧On(2, do(flip(O, t), s))))

68

≡ by P3.1.2 and P3.1.3

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(Legal(s) ∧ turn(s) = X ∧

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2)) ∨

Legal(s) ∧ turn(s) = O ∧ ∃t.(Legal(s) ∧ turn(s) = O ∧

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))

≡ by FOL and combining line 2/3 and 3/4

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧

∃t.((¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))

≡ by distribution of ∧

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧ ∃t.(¬On(1, s) ∧ t = 1 ∧ ¬On(2, s) ∧ t = 2) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧ ∃t.(On(1, s) ∧ t 6= 1 ∧ ¬On(2, s) ∧ t = 2) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧ ∃t.(¬On(1, s) ∧ t = 1 ∧On(2, s) ∧ t 6= 2) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧ ∃t.(On(1, s) ∧ t 6= 1 ∧On(2, s) ∧ t 6= 2)

≡ by: inconsistent line 2 as 1 6= 2, by FOL and elimination of quantifiers

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(1, s) ∧ ¬On(2, s) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧ ¬On(1, s) ∧On(2, s) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(1, s) ∧On(2, s)

≡ by FOL (line 4 subsumed by line 1, line 2 and 4 combined, line 3 and 4 combined)

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(1, s) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(2, s)

≡ by R0 substitution of ≡ from previous step

69

R0(s) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(1, s) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(2, s)

This approximation evaluates to true if s is legal and such that X can win in at most 1 step. These are legal

situations where player X wins already or one of lights 1 or 2 is on (X or O can turn the other light at the

next step).

DLW
ca ∪ DZ |= R2(s)

.
= Wins(X, s) ∨R(∃©R1) ≡ by lemma L3.1.1

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.R1[do(flip(X, t), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(∃t.R1[do(flip(O, t), s)])

≡ by R1 substitution of ≡ from previous step

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.(

R0(do(flip(X, t), s)) ∨

Legal(do(flip(X, t), s)) ∧ (turn(do(flip(X, t), s)) = X ∨ turn(do(flip(X, t), s)) = O) ∧

On(1, do(flip(X, t), s)) ∨

Legal(do(flip(X, t), s)) ∧ (turn(do(flip(X, t), s)) = X ∨ turn(do(flip(X, t), s)) = O) ∧

On(2, do(flip(X, t), s))

Legal(s) ∧ turn(s) = O ∧R(∃t.(

R0(do(flip(O, t), s)) ∨

Legal(do(flip(O, t), s)) ∧ (turn(do(flip(O, t), s)) = X ∨ turn(do(flip(O, t), s)) = O) ∧

On(1, do(flip(O, t), s)) ∨

Legal(do(flip(O, t), s)) ∧ (turn(do(flip(O, t), s)) = X ∨ turn(do(flip(O, t), s)) = O) ∧

On(2, do(flip(O, t), s)))

70

≡ by splitting the quantifiers and reorganization

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.R0(do(flip(X, t), s)) ∨

Legal(s) ∧ turn(s) = O ∧R(∃t.R0(do(flip(O, t), s)) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.Legal(do(flip(X, t), s)) ∧

(turn(do(flip(X, t), s)) = X ∨ turn(do(flip(X, t), s)) = O) ∧On(1, do(flip(X, t), s)) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.Legal(do(flip(X, t), s)) ∧

(turn(do(flip(X, t), s)) = X ∨ turn(do(flip(X, t), s)) = O) ∧On(2, do(flip(X, t), s)) ∨

Legal(s) ∧ turn(s) = O ∧R(∃t.Legal(do(flip(O, t), s)) ∧

(turn(do(flip(O, t), s)) = X ∨ turn(do(flip(O, t), s)) = O) ∧On(1, do(flip(O, t), s)) ∨

Legal(s) ∧ turn(s) = O ∧R(∃t.Legal(do(flip(O, t), s)) ∧

(turn(do(flip(O, t), s)) = X ∨ turn(do(flip(O, t), s)) = O) ∧On(2, do(flip(O, t), s)))

≡

— by R1 substitution of ≡ from previous step (second step of equivalence proof for R1(s) on p.68)

— by P3.1.1, P3.1.2 and P3.1.3

R1(s) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.Legal(s) ∧ turn(s) = X ∧

(False ∨ turn(s) = X) ∧ (¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.Legal(s) ∧ turn(s) = X ∧

(False ∨ turn(s) = X) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2) ∨

Legal(s) ∧ turn(s) = O ∧ ∃t.Legal(s) ∧ turn(s) = O ∧

(turn(s) = O ∨ False) ∧ (¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∨

Legal(s) ∧ turn(s) = O ∧ ∃t.Legal(s) ∧ turn(s) = O ∧

(turn(s) = O ∨ False) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2)

≡ by FOL

R1(s) ∨

71

Legal(s) ∧ turn(s) = X ∧ ∃t.(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2) ∨

Legal(s) ∧ turn(s) = O ∧ ∃t.(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∨

Legal(s) ∧ turn(s) = O ∧ ∃t.(¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2)

≡ by by splitting the quantifier and quantifier elimination

R1(s) ∨

Legal(s) ∧ turn(s) = X ∧ ¬On(1, s) ∨

Legal(s) ∧ turn(s) = X ∧On(1, s) ∨

Legal(s) ∧ turn(s) = X ∧ ¬On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(2, s) ∨

Legal(s) ∧ turn(s) = O ∧ ¬On(1, s) ∨

Legal(s) ∧ turn(s) = O ∧On(1, s) ∨

Legal(s) ∧ turn(s) = O ∧ ¬On(2, s) ∨

Legal(s) ∧ turn(s) = O ∧On(2, s)

≡ by combining lines 2/3/4/5 and 6/7/8/9

R1(s) ∨

Legal(s) ∧ turn(s) = X ∨

Legal(s) ∧ turn(s) = O

≡ by R1 substitution of ≡ from previous step

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(1, s) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∨

Legal(s) ∧ turn(s) = O

≡ by FOL (line 2 subsumed by 4/5, line 3 subsumed by 4/5)

Legal(s) ∧On(1, s) ∧On(2, s) ∨

72

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O)

This approximation evaluates to true if s is such that X can win in at most 2 steps. Here it is true if player

X is winning already or for all legal situations where it is one of the player’s turn (as one step can turn light

1 on and the second step can turn light 2 on).

DLW
ca ∪ DZ |= R3(s) ≡Wins(X, s) ∨R(∃©R2) ≡ by lemma L3.1.1

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.R2[do(flip(X, t), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(∃t.R2[do(flip(O, t), s)])

≡ by R2 substitution of ≡ from previous step

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.

Legal(do(flip(X, t), s)) ∧On(1, do(flip(X, t), s)) ∧On(2, do(flip(X, t), s)) ∨

Legal(do(flip(X, t), s)) ∧ turn(do(flip(X, t), s)) = X ∨

Legal(do(flip(X, t), s)) ∧ turn(do(flip(X, t), s)) = O

) ∨

Legal(s) ∧ turn(s) = O ∧R(∃t.

Legal(do(flip(O, t), s)) ∧On(1, do(flip(O, t), s)) ∧On(2, do(flip(O, t), s)) ∨

Legal(do(flip(O, t), s)) ∧ turn(do(flip(O, t), s)) = X ∨

Legal(do(flip(O, t), s)) ∧ turn(do(flip(O, t), s)) = O)

≡ by distributing ∧ over ∨ and reorganization

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s)∧ turn(s) = X ∧R(∃t.Legal(do(flip(X, t), s))∧On(1, do(flip(X, t), s))∧On(2, do(flip(X, t), s)))∨

Legal(s)∧ turn(s) = O∧R(∃t.Legal(do(flip(O, t), s))∧On(1, do(flip(O, t), s))∧On(2, do(flip(O, t), s)))∨

Legal(s) ∧ turn(s) = X ∧R(∃t.Legal(do(flip(X, t), s)) ∧ turn(do(flip(X, t), s)) = X) ∨

73

Legal(s) ∧ turn(s) = X ∧R(∃t.Legal(do(flip(X, t), s)) ∧ turn(do(flip(X, t), s)) = O) ∨

Legal(s) ∧ turn(s) = O ∧R(∃t.Legal(do(flip(O, t), s)) ∧ turn(do(flip(O, t), s)) = X) ∨

Legal(s) ∧ turn(s) = O ∧R(∃t.Legal(do(flip(O, t), s)) ∧ turn(do(flip(O, t), s)) = O)

≡ by R1 substitution of ≡ from previous steps for lines 1/2/3, and P3.1.2, P3.1.3 for lines 4/5/6/7

R1(s) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.Legal(s) ∧ turn(s) = X ∧ False ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∨

Legal(s) ∧ turn(s) = O ∧ ∃t.Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∨

Legal(s) ∧ turn(s) = O ∧ ∃t.Legal(s) ∧ turn(s) = O ∧ False

≡ by FOL and quantifier elimination

R1(s) ∨

Legal(s) ∧ turn(s) = X ∨

Legal(s) ∧ turn(s) = O

≡ by R1 substitution of ≡ from previous step

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(1, s) ∨

Legal(s) ∧ (turn(s) = X ∨ turn(s) = O) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∨

Legal(s) ∧ turn(s) = O

≡ by FOL (line 2 subsumed by 4/5, line 3 subsumed by 4/5)

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∨

Legal(s) ∧ turn(s) = O

Thus the fixpoint expansion procedure converges in the 4th step as we have:

74

DLWca ∪ DZ |= R2(s) ≡ R3(s)

And therefore by Theorem 1 of [DLP10]:

DLWGS ∪ DZ |= ∃♦Wins(X)[s] ≡ Legal(s) ∧ {On(1, s) ∧On(2, s) ∨ turn(s) = X ∨ turn(s) = O}

It follows by the initial state axioms that DLWGS ∪ DZ |= ∃♦Wins(X)[S0], i.e., the goal may eventually be

reached from the initial situation as it is legal and it is player X’s turn.

3.1.3 Existence of a Winning Strategy

The existence of a strategy to ensure Wins(X) by group G = {X} can be represented by the following

formula:

〈〈{X}〉〉♦Wins(X)
.
= µZ. Wins(X) ∨ 〈〈{X}〉〉 © Z

We begin by applying the De Giacomo et al. [DLP10] method and try to show that successive approximates

are equivalent using only the unique name and domain closure axioms for actions DLWca :

DLWca ∪ DZ |= 〈〈{X}〉〉♦Wins(X)

This formula can be verified by employing the [DLP10] method using regression and fixpoint approximation,

until we converge. As discussed previously, the technique does not always converge in a finite number of

steps and this needs to be checked as we proceed. The regressed approximations are as follows:

DLW
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 © False) ≡ by lemma L3.1.2

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.False) ∨

Legal(s) ∧ turn(s) = O ∧R(∀t.False)

75

≡

Legal(s) ∧On(1, s) ∧On(2, s)

This approximation evaluates to true if s is such that X is winning in s already (in no steps) i.e. these are

situations where lights 1 and 2 are already on.

DLW
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R0) ≡ by lemma L3.1.2

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.R0[do(flip(X, t), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(∀t.R0[do(flip(O, t), s)])

≡ by R0 substitution of ≡ from previous step

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.(

Legal(do(flip(X, t), s)) ∧On(1, do(flip(X, t), s)) ∧On(2, do(flip(X, t), s)))) ∨

Legal(s) ∧ turn(s) = O ∧R(∀t.(

Legal(do(flip(O, t), s)) ∧On(1, do(flip(O, t), s)) ∧On(2, do(flip(O, t), s))))

≡ by P3.1.1 and P3.1.2 and P3.1.3

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(Legal(s) ∧ turn(s) = X ∧

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2)) ∨

Legal(s) ∧ turn(s) = O ∧ ∀t.(Legal(s) ∧ turn(s) = O ∧

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))

≡ by FOL

Legal(s) ∧On(1, s) ∧On(2, s) ∨

76

Legal(s) ∧ turn(s) = X ∧ ∃t.(

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2)) ∨

Legal(s) ∧ turn(s) = O ∧ ∀t.(

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))

≡ by distribution of ∧

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(¬On(1, s) ∧ t = 1 ∧ ¬On(2, s) ∧ t = 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(¬On(1, s) ∧ t = 1 ∧On(2, s) ∧ t 6= 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(On(1, s) ∧ t 6= 1 ∧ ¬On(2, s) ∧ t = 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(On(1, s) ∧ t 6= 1 ∧On(2, s) ∧ t 6= 2) ∨

Legal(s) ∧ turn(s) = O ∧ ∀t.(

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))

≡ by quantifier elimination and FOL, by 1 6= 2 of DZ

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧ ¬On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(1, s) ∧ ¬On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = O ∧ ∀t.(

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))

≡ by FOL (line 2 and 4 combined, line 3 and 4 combined)

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(1, s) ∨

Legal(s) ∧ turn(s) = O ∧ ∀t.(

77

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))

≡ by splitting ∀ into cases and DZ

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(1, s) ∨

Legal(s) ∧ turn(s) = O ∧ ∃t.(t = 1 ∧

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2)) ∧

Legal(s) ∧ turn(s) = O ∧ ∃t.(t = 2 ∧

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2)) ∧

Legal(s) ∧ turn(s) = O ∧ ∀t.((t < 1 ∨ t > 2) ∧

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))

≡ by FOL and quantifier elimination

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(1, s) ∨

Legal(s) ∧ turn(s) = O ∧ ∃t.(¬On(1, s) ∧On(2, s)) ∧

Legal(s) ∧ turn(s) = O ∧ ∃t.(On(1, s) ∧ ¬On(2, s)) ∧

Legal(s) ∧ turn(s) = O ∧ ∀t.(On(1, s) ∧On(2, s))

≡ by quantifier elimination

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(1, s) ∨

Legal(s) ∧ turn(s) = O ∧ ¬On(1, s) ∧On(2, s) ∧

Legal(s) ∧ turn(s) = O ∧On(1, s) ∧ ¬On(2, s) ∧

78

Legal(s) ∧ turn(s) = O ∧On(1, s) ∧On(2, s)

≡ by FOL (lines 4, 5, and 6 clearly contradictory) and reorganization

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(1, s) ∨

Legal(s) ∧ turn(s) = X ∧On(2, s)

This approximation evaluates to true if s is such that X can win in at most 1 step i.e. these are situations

where lights 1 and 2 are already on or one of lights 1 or 2 is on and it is player X’s turn (X can then turn

the other light at the next step).

DLW
ca ∪ DZ |= R2(s) ≡Wins(X, s) ∨R(〈〈{X}〉〉 ©R1) ≡ by lemma L3.1.2

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.R1[do(flip(X, t), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(∀t.R1[do(flip(O, t), s)])

≡ by R1 substitution of ≡ from previous step

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧R(∃t.(

Legal(do(flip(X, t), s)) ∧On(1, do(flip(X, t), s)) ∧On(2, do(flip(X, t), s)) ∨

Legal(do(flip(X, t), s)) ∧ turn(do(flip(X, t), s)) = X ∧On(1, do(flip(X, t), s)) ∨

Legal(do(flip(X, t), s)) ∧ turn(do(flip(X, t), s)) = X ∧On(2, do(flip(X, t), s)))) ∨

Legal(s) ∧ turn(s) = O ∧R(∀t.(

Legal(do(flip(O, t), s)) ∧On(1, do(flip(O, t), s)) ∧On(2, do(flip(O, t), s)) ∨

Legal(do(flip(O, t), s)) ∧ turn(do(flip(O, t), s)) = X ∧On(1, do(flip(O, t), s)) ∨

Legal(do(flip(O, t), s)) ∧ turn(do(flip(O, t), s)) = X ∧On(2, do(flip(O, t), s))))

79

≡ by P3.1.1 and P3.1.2 and P3.1.3

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(

Legal(s) ∧ turn(s) = X ∧On(1, do(flip(X, t), s)) ∧On(2, do(flip(X, t), s)) ∨

Legal(s) ∧ turn(s) = X ∧ False ∧On(1, do(flip(X, t), s)) ∨

Legal(s) ∧ turn(s) = X ∧ False ∧On(2, do(flip(X, t), s))) ∨

Legal(s) ∧ turn(s) = O ∧ ∀t.(

Legal(s) ∧ turn(s) = O ∧On(1, do(flip(O, t), s)) ∧On(2, do(flip(O, t), s)) ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O∧On(1, do(flip(O, t), s)) ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O∧On(2, do(flip(O, t), s)))

≡ by FOL

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(On(1, do(flip(X, t), s)) ∧On(2, do(flip(X, t), s)))∨

Legal(s) ∧ turn(s) = O ∧ ∀t.(

On(1, do(flip(O, t), s)) ∧On(2, do(flip(O, t), s)) ∨

On(1, do(flip(O, t), s)) ∨

On(2, do(flip(O, t), s)))

≡ by FOL (line 4 subsumed by line 5 and 6)

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(On(1, do(flip(X, t), s)) ∧On(2, do(flip(X, t), s)))∨

Legal(s) ∧ turn(s) = O ∧ ∀t.(

On(1, do(flip(O, t), s)) ∨

On(2, do(flip(O, t), s)))

≡ by P3.1.2

80

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))∨

Legal(s) ∧ turn(s) = O ∧ ∀t.(

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∨ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))

≡ by distribution of ∧ and splitting of the ∃ quantifier

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(¬On(1, s)∧t = 1 ∧ ¬On(2, s)∧t = 2)∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(¬On(1, s) ∧ t = 1 ∧ (On(2, s) ∧ t 6= 2)∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(On(1, s) ∧ t 6= 1 ∧ ¬On(2, s) ∧ t = 2)∨

Legal(s) ∧ turn(s) = X ∧ ∃t.(On(1, s) ∧ t 6= 1 ∧ (On(2, s) ∧ t 6= 2)∨

Legal(s) ∧ turn(s) = O ∧ ∀t.(

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∨ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))

≡ by FOL and elimination of the ∃ quantifier, by 1 6= 2 of DZ

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧ ¬On(1, s) ∧ (On(2, s)∨

Legal(s) ∧ turn(s) = X ∧On(1, s) ∧ ¬On(2, s)∨

Legal(s) ∧ turn(s) = X ∧On(1, s) ∧ (On(2, s)∨

Legal(s) ∧ turn(s) = O ∧ ∀t.(

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∨ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))

≡ by FOL (line 2 and 4 combined, line 3 and 4 combined)

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(2, s)∨

Legal(s) ∧ turn(s) = X ∧On(1, s)∨

81

Legal(s) ∧ turn(s) = O ∧ ∀t.(

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∨ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))

≡ by splitting ∀ into cases and DZ

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(2, s)∨

Legal(s) ∧ turn(s) = X ∧On(1, s)∨

Legal(s) ∧ turn(s) = O ∧ ∃t.(t = 1 ∧

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∨ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2)) ∧

Legal(s) ∧ turn(s) = O ∧ ∃t.(t = 2 ∧

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∨ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2)) ∧

Legal(s) ∧ turn(s) = O ∧ ∀t.((t < 1 ∨ t > 2) ∧

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∨ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))

≡ by FOL and quantifier elimination

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(2, s)∨

Legal(s) ∧ turn(s) = X ∧On(1, s)∨

Legal(s) ∧ turn(s) = O ∧ (¬On(1, s) ∨On(2, s)) ∧

Legal(s) ∧ turn(s) = O ∧ (On(1, s) ∨ ¬On(2, s)) ∧

Legal(s) ∧ turn(s) = O ∧ (On(1, s) ∨On(2, s))

≡ by splitting line 6 disjunction

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(2, s)∨

Legal(s) ∧ turn(s) = X ∧On(1, s)∨

Legal(s) ∧ turn(s) = O ∧ (¬On(1, s) ∨On(2, s)) ∧

82

Legal(s) ∧ turn(s) = O ∧ (On(1, s) ∨ ¬On(2, s)) ∧

Legal(s) ∧ turn(s) = O ∧On(1, s) ∨

Legal(s) ∧ turn(s) = O ∧ (¬On(1, s) ∨On(2, s)) ∧

Legal(s) ∧ turn(s) = O ∧ (On(1, s) ∨ ¬On(2, s)) ∧

Legal(s) ∧ turn(s) = O ∧On(2, s)

≡ by FOL

Legal(s) ∧On(1, s) ∧On(2, s) ∨

Legal(s) ∧ turn(s) = X ∧On(1, s)∨

Legal(s) ∧ turn(s) = X ∧On(2, s)

Thus the fixpoint expansion procedure converges in the 3rd step as we have:

DLWca ∪ DZ |= R1(s) ≡ R2(s)

And therefore by Theorem 1 of [DLP10]:

DLWGS ∪ DZ |= 〈〈{X}〉〉♦Wins(X)[s] ≡ R1(s)

It follows by the initial state axioms that

DLWGS ∪ DZ |= ¬〈〈{X}〉〉♦Wins(X)[S0]

i.e., there is no winning strategy for X in the initial situation S0.

However we have that

DLWGS ∪ DZ |= 〈〈{X}〉〉♦Wins(X)[S1]

where S1 = do(flip(O, 3), do(flip(X, 1), S0))

i.e., there is a winning strategy for X in the situation S1 where X has first turned light 1 on and

83

then O has turned light 3 on, as X can turn on light 2 next.

3.2 Oil Lamp World (OLW)

The De Giacomo et al. [DLP10] fixpoint iteration method tries to detect convergence by checking if the

i-th approximate is equivalent to the i+ 1-th approximate using only the unique name and domain closure

axioms for actions (to which we have added the axiomatization of the integers). In this section we give an

example where this method does not converge in a finite number of steps. However, we also show that if we

use some additional facts that are entailed by the complete theory (including the initial state axioms) when

checking if successive approximates are equivalent, we do get convergence in a finite number of steps.

The Oil Lamp World (OLW) is a variant of the Light World (LW) Domain discussed in the previous

section. It also involves an infinite row of lamps one for each integer. A lamp can be on or off. A lamp

has an igniter that can be flipped and will turn the lamp on if the lamp immediately to the right is on, i.e.,

flipping an igniter in lamp t will turn it on if lamp t+ 1 is on. There is only one acting agent. The goal of

player X is to have lamp 1 on in which case player X wins. It is possible for the game go on forever without

the goal being reached: for example if player X keeps switching some lamp other than lamp 1 on and off

repeatedly.

3.2.1 Situation Calculus Game Structure Axiomatization of OLW Domain

The Situation Calculus Game Structure Axiomatization is defined as:

DOLWGS = Σ ∪ DOLWposs ∪ DOLWssa ∪ DOLWca ∪ DOLWS0
∪ DZ

where DZ is a suitable axiomatization of integers.

Fluents

84

• On(t, s) - predicate fluent indicating whether the lamp t is on in situation s

Derived Fluents

• Wins(p, s)
.
= Legal(s) ∧On(1, s)

This fluent indicates if the agent X has won.

• Finished(s)
.
= ∃p. Wins(p.s)

This fluent is not used in this chapter but later in Chapter 4.

Actions

• flip(p, t) - agent p flips the igniter on lamp t

Precondition Axioms DOLWposs

These are precondition axioms, one per action, specifying when an action can physically be performed:

• Poss(flip(p, t), s) ≡ Agent(p)

Successor State Axioms DOLWssa

These are successor state axioms specifying how the fluents change as a result of actions:

• On(t, do(a, s)) ≡ ∃p.{a = flip(p, t) ∧On(t+ 1, s)} ∨On(t, s)

We assume that once a lamp is turned on it remains on.

Initial State Axioms DOLWS0

These describe the initial situation S0:

85

• Legal(S0)

• On(3, S0)

Unique Name and Domain Closure Axioms for Actions DOLWca

These describe the uniqueness of action names and the fact that the domain of actions s closed:

• ∀a. { ∃p, t. a = flip(p, t) }

• ∀p, p′, t, t′. { flip(p, t) = flip(p′, t′) ⊃ p = p′ ∧ t = t′ }

• ∀p. { Agent(p) ≡ p = X}

Legal Moves Axioms DOLWlegal

These encode the rules of the game:

• agent(flip(p, t)) = p

• Control(p, s) .
= ∃a.Legal(do(a, s)) ∧ agent(a) = p

• Legal(do(a, s)) ≡ Legal(s) ∧ ∃t. a = flip(X, t)

The complete theory also includes the foundational axioms Σ of the Situation Calculus. It can be noticed

that this is clearly an infinite state domain as the set of lamps that can be turned on is infinite.

Propositions and Lemmas

We derived the following propositions, some of which are used in later proofs:

P 3.2.1. Regression for concrete case for the On fluent.

DOLWca |= R(On(v, do(do(flip(X, t), s))) ≡ On(t+ 1, s) ∧ t = v ∨On(v, s)

86

P 3.2.2. Regression for concrete case for the Legal fluent.

DOLWca |= R(Legal(do(flip(X, t), s))) ≡ Legal(s)

In this domain, the possibility that ϕ holds next can be established by considering only the flip(X, t) actions

as the following lemma shows:

L 3.2.1. Regression for the concrete case of the ∃© ϕ definition based on domain closure.

DOLWca |= R(∃© ϕ[s]) ≡ Legal(s) ∧R(∃t. ϕ[do(flip(X, t), s)])

We can show by induction on situations that in this domain, if a lamp is on initially, it remains on in all

situations:

L 3.2.2. The persistence of the On fluent.

DOLWGS ∪ DZ |= ∀t. {On(t, S0) ⊃ ∀s. On(t, s)}

Proof: By induction on situations. Take an arbitrary t and assume the antecedent. Then the base case

On(t, S0) trivially follows. Suppose that On(t, s) holds. Then it follows by the SSA that On(t, do(a, s)).

Thus by the principle of induction on situations [Rei01], ∀s.On(t, s).

Also, if no lamps are on initially, than no lamp will ever be on:

L 3.2.3. Absence of any light persist

DOLWGS ∪ DZ |= {∀t. ¬On(t, S0)} ⊃ ∀s∀t. ¬On(t, s)

Proof: By induction on situations. Assume the antecedent for all t. Then the base case ∀t.¬On(t, S0) trivially

follows. Suppose that ∀t.¬On(t, s) holds. Then it follows by the SSA that ∀t.¬On(t, do(a, s)). Thus by the

principle of induction on situations [Rei01], ∀s∀t.¬On(t, s).

L 3.2.4. Legality of every situation.

DOLWGS |= ∀s. Legal(s)

87

Proof: By induction on situations. The base case Legal(S0) trivially follows from DS0
. Suppose that Legal(s)

holds. Then it follows by the SSA and the domain closure for actions that Legal(do(a, s)). Thus by the

principle of induction on situations [Rei01], ∀s.Legal(s).

3.2.2 Possibility of Winning

The property that it is possible for X to eventually win can be represented by the following formula:

∃♦Wins(X)
.
= µZ.{ Wins(X) ∨ ∃© Z }

We begin by applying the De Giacomo et al. [DLP10] method and try to show that successive approxi-

mates are equivalent using only the unique name and domain closure axioms for actions DOLWca and the

axiomatization of the integers DZ :

DOLWca ∪ DZ |= ∃♦Wins(X)

This formula can be verified by employing the [DLP10] method using regression and fixpoint approximation,

until we converge. The technique does not always converge and this needs to be checked as we proceed. The

approximations are as follows:

DOLW
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(∃© False) ≡ by L 3.2.1

Legal(s) ∧On(1, s) ∨

Legal(s) ∧R(∃t. False)

≡

Legal(s) ∧On(1, s)

This approximation evaluates to true if s is such that X is winning in s already (in no steps) i.e. these are

situations where lamp 1 is on.

DOLW
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(∃©R0) ≡ by L 3.2.1

88

Legal(s) ∧On(1, s) ∨

Legal(s) ∧R(∃t. R0[do(flip(X, t), s)])

≡ by R0 substitution of ≡ from previous step

Legal(s) ∧On(1, s) ∨

Legal(s) ∧R(∃t. Legal(do(flip(X, t), s)) ∧On(1, do(flip(X, t), s)))

≡ by P3.2.1, P3.2.2

Legal(s) ∧On(1, s) ∨

Legal(s) ∧ ∃t. Legal(s)∧(On(t+ 1, s)∧t = 1 ∨On(1, s))

≡ by FOL

Legal(s) ∧On(1, s) ∨

Legal(s) ∧ (On(2, s) ∨On(1, s))

≡ by distribution of ∧

Legal(s) ∧On(1, s) ∨

Legal(s) ∧On(2, s) ∨

Legal(s) ∧On(1, s)

≡ by FOL (line 1 subsumes line 3)

Legal(s) ∧On(1, s) ∨

Legal(s) ∧On(2, s)

This approximation evaluates to true if s is such that X can win in at most 1 step i.e. these are situations

where lamp 1 is on or lamp 2 is on (and X can turn lamp 1 on at the next step).

DOLW
ca ∪ DZ |= R2(s)

.
= Wins(X, s) ∨R(∃©R1) ≡ by L 3.2.1

Legal(s) ∧On(1, s) ∨

Legal(s) ∧R(∃t. R1[do(flip(X, t), s)])

≡ by R1 substitution of ≡ from previous step

Legal(s) ∧On(1, s) ∨

89

Legal(s) ∧R(∃t. (

Legal(do(flip(X, t), s)) ∧On(1, do(flip(X, t), s)) ∨

Legal(do(flip(X, t), s)) ∧On(2, do(flip(X, t), s))))

≡ by P3.2.1, P3.2.2

Legal(s) ∧On(1, s) ∨

Legal(s) ∧ ∃t. (

Legal(s) ∧ (On(t+ 1, s)∧t = 1 ∨On(1, s)) ∨

Legal(s) ∧ (On(t+ 1, s)∧t = 2 ∨On(2, s)))

≡ by FOL

Legal(s) ∧On(1, s) ∨

Legal(s) ∧ (On(2, s) ∨On(1, s)) ∨ (On(3, s) ∨On(2, s))

≡ by FOL and distribution of ∧

Legal(s) ∧On(1, s) ∨

Legal(s) ∧On(2, s) ∨

Legal(s) ∧On(1, s) ∨

Legal(s) ∧On(3, s)

≡ by FOL (line 1 subsumes line 3)

Legal(s) ∧On(1, s) ∨

Legal(s) ∧On(2, s) ∨

Legal(s) ∧On(3, s)

This approximation evaluates to true if s is such that X can win in at most 2 steps i.e. these are situations

where lamp 1 is on or lamp 2 is on (and X can turn lamp 1 on at the next step) or lamp 3 is on (and X can

turn lamp 2 on at the next step and lamp 1 at the following step).

DOLW
ca ∪ DZ |= R3(s)

.
= Wins(X, s) ∨R(∃©R2) ≡ by L 3.2.1

Legal(s) ∧On(1, s) ∨

90

Legal(s) ∧R(∃t. R2[do(flip(X, t), s)])

≡ by R2 substitution of ≡ from previous step

Legal(s) ∧On(1, s) ∨

Legal(s) ∧R(∃t. (

Legal(do(flip(X, t), s)) ∧On(1, do(flip(X, t), s)) ∨

Legal(do(flip(X, t), s)) ∧On(2, do(flip(X, t), s)) ∨

Legal(do(flip(X, t), s)) ∧On(3, do(flip(X, t), s))))

≡ by P3.2.1, P3.2.2

Legal(s) ∧On(1, s) ∨

Legal(s) ∧ ∃t. (

Legal(s) ∧ (On(t+ 1, s) ∧ t = 1 ∨On(1, s)) ∨

Legal(s) ∧ (On(t+ 1, s) ∧ t = 2 ∨On(2, s)) ∨

Legal(s) ∧ (On(t+ 1, s) ∧ t = 3 ∨On(3, s)))

≡ by FOL

Legal(s) ∧On(1, s) ∨

Legal(s) ∧ (On(2, s) ∨On(1, s)) ∨On(3, s) ∨On(2, s) ∨On(4, s) ∨On(3, s))

≡ by FOL and distribution of ∧

Legal(s) ∧On(1, s) ∨

Legal(s) ∧On(2, s) ∨

Legal(s) ∧On(1, s) ∨

Legal(s) ∧On(3, s) ∨

Legal(s) ∧On(4, s)

≡ by FOL (line 1 subsumes line 3)

Legal(s) ∧On(1, s) ∨

Legal(s) ∧On(2, s) ∨

Legal(s) ∧On(3, s) ∨

91

Legal(s) ∧On(4, s)

This approximation evaluates to true if s is such that X can win in at most 3 steps i.e. these are situations

where lamp 1 is on or lamp 2 is on (X can turn lamp 1 on at the next step) or lamp 3 is on (X can turn

lamp 2 on at the next step and lamp 1 at the following step) or lamp 4 is on (X can turn lamp 3 on at the

next step and lamp 2 and 1 at the following steps).

The subsequent results can be generalized to the following formula:

DOLW
ca ∪DZ |= Ri ≡ Legal(s) ∧

∨
1≤j≤i+1 On(j, s)

Proof: The proof is by induction. The base case is R0 and it holds by the calculation for R0 above. Let’s

assume that for some i it holds that DOLW
ca ∪ DZ |= Ri ≡ Legal(s) ∧

∨
1≤j≤i+1On(j, s), and let’s prove

DOLW
ca ∪DZ |= Ri+1 ≡ Legal(s) ∧

∨
1≤j≤i+2On(j, s) as follows:

DOLWca ∪ DZ |= Ri+1(s)
.
= Wins(X, s) ∨R(∃©Ri) ≡ by L 3.2.1

Legal(s) ∧On(1, s) ∨

Legal(s) ∧R(∃t. Ri[do(flip(X, t), s)])

≡ by R0 substitution of ≡ from I.H.

Legal(s) ∧On(1, s) ∨

Legal(s) ∧R(∃t. Legal(do(flip(X, t), s)) ∧
∨

1≤j≤i+1On(j, do(flip(X, t), s)))

≡ by P3.2.1, P3.2.2

Legal(s) ∧On(1, s) ∨

Legal(s) ∧ ∃t. Legal(s) ∧
∨

1≤j≤i+1{On(t+ 1, s) ∧ t = j ∨On(j, s)}

≡ by FOL

Legal(s) ∧On(1, s) ∨

Legal(s) ∧ ∃t.
∨

1≤j≤i+1{On(t+ 1, s) ∧ t = j} ∨
∨

1≤j≤i+1On(j, s)

≡ by FOL (line 1 subsumed by 2) and reorganization

92

Legal(s) ∧ (
∨

1≤j≤i+1On(j, s) ∨ ∃t.
∨

1≤j≤i+1{On(t+ 1, s) ∧ t = j})

≡ by FOL

Legal(s) ∧ (
∨

1≤j≤i+1On(j, s) ∨
∨

1≤j≤i+1{∃t. On(t+ 1, s) ∧ t = j})

≡ by FOL

Legal(s) ∧ (
∨

1≤j≤i+1On(j, s) ∨
∨

1≤j≤i+1{On(j + 1, s)})

≡ by FOL

Legal(s) ∧ (
∨

1≤j≤i+1On(j, s) ∨
∨

2≤j≤i+2On(j, s))

≡ by FOL

Legal(s) ∧
∨

1≤j≤i+2On(j, s)

Is there a convergence in a finite number of steps? No.

We can observe that for all natural numbers i, DOLW
ca ∪DZ 6|= Ri ≡ Ri+1, since one can always construct a

model of DOLW
ca ∪DZ where every light is off except light i+ 2.

Will there be a convergence if we use additional facts entailed by the whole theory ? Yes.

The proof is by 2 cases.

Case 1: If there is a lamp k that is on in the initial situation S0, i.e. On(k, S0) then by L3.2.2 that lamp

will be on in any situation s. Then it follows that for any natural numbers i, j, i ≤ j:

DOLWca ∪ DZ ∪ {On(i+ 1, S0), L3.2.2} |= Rj ≡ Legal(s)

In essence, X can eventually win in any legal situation where some lamp n is known to be on.

It follows that:

DOLWca ∪ DZ ∪ {On(n, S0), L3.2.2} |= Rn−1 ≡ Rn

Thus the fixpoint approximation method converges in a finite number of steps if we use the facts that some

93

lamp n is known to be on initially and that a lamp that is on initially remains on forever.

By Theorem 1 of [DLP10] and L3.2.4 we have that if there is a lamp n that is known to be on then:

DOLWca ∪ DZ ∪ {On(n, S0), L3.2.2, L3.2.4} |= ∀s.∃♦Wins(X)[s] ≡ Legal(s)

Case 2: If there are no lamps that on in the initial situation S0, i.e. ∀k. ¬On(k, S0) then by L3.2.3 no lamp

will be on in any situation s. In this case

DOLWca ∪ DZ ∪ {∀k. ¬On(k, S0), L3.2.3} |= R0 ≡ False

DOLWca ∪ DZ ∪ {∀k. ¬On(k, S0), L3.2.3} |= R1 ≡ False

therefore

DOLWca ∪ DZ ∪ {∀k. ¬On(k, S0), L3.2.3} |= R0 ≡ R1 and the procedure converges in the second step.

By Theorem 1 of [DLP10] we have:

DOLWca ∪ DZ ∪ {∀k. ¬On(k, S0), L3.2.3} |= ¬∃♦Wins(X)[s]

In our axiomatization it follows by the initial state axioms that DOLWGS |= ∃♦Wins(X)[S0], i.e., player can

eventually win from the initial situation as it is legal and there is a lamp that is on.

3.3 In-Line Tic-Tac-Toe (TTT1D)

In this section we look at an example that is more like a traditional game. We apply the De Giacomo et al.

[DLP10] fixpoint iteration method to verify some temporal properties, and the method does converge in a

finite number of steps for these examples.

The In-Line Tic-Tac-Toe (TTT1D) game that we have designed involves an infinite vector of cells one for

each integer. The cells are initially blank and may be marked with X or O. There are 2 pointers maintained

in the game: the left marking position and the right marking position. Initially the left marking position

points at cell number 0 and the right marking position points at cell number 1. There are 2 players X and O

94

and they can mark the cells with their mark at the right marking position, or at the left marking position. If

the mark is done at the left marking position then that left marking position is decreased by 1. If the mark

is done at the right marking position then that right marking position is increased by 1. Initially it is player

X’s turn. Players take turns. The goal of player X is to have 3 consecutive cells marked with X to the right

of the left marking position or to the left of the left marking position in which case X wins, and similarly for

player O. A sample sequence of moves could be as follows: X at 1, O at 0, X at 2, O at -1, X at 3 and the

game is over, the goal is reached to the left of the right marking position [O−1O0X1X2X3]. It is possible for

the game to go on forever and player O can prevent the player X from winning: player O needs to mark at

the right marking position if player X did so in the previous move and to mark at the left marking position if

X did so in the previous move. An example of such scenario would be: [O−1X0X1O2X3O4] where X marks

1, O marks 2, X marks 3, O marks 4, X marks 0, O marks -1 and on and on. Please note that this version

of the game permits a player X to win after player O reached a winning situation in the past.

3.3.1 Situation Calculus Game Structure Axiomatization of TTT1D Domain

The Situation Calculus Game Structure Axiomatization is defined as:

DTTT1D
GS = Σ ∪ DTTT1D

poss ∪ DTTT1D
ssa ∪ DTTT1D

ca ∪ DTTT1D
S0

∪ DZ

where DZ is a suitable axiomatization of integers.

Fluents

• curn(s) - functional fluent indicating the latest left marking position, domain of integer numbers

• curp(s) - functional fluent indicating the latest right marking position, domain of integer numbers

• turn(s) - functional fluent indicating which agent is to take the next action, with its domain being the

agent set {X,O}

• cell(k, s) - functional fluent indicating the content of cell k, domain of {B,X,O}

95

Derived Fluents

• Wins(p, s)
.
=

∃k(Legal(s) ∧ curn(s) = k − 2 ∧ cell(k − 1, s) = p ∧ cell(k, s) = p ∧ cell(k + 1, s) = p ∨

Legal(s) ∧ curp(s) = k + 2 ∧ cell(k + 1, s) = p ∧ cell(k, s) = p ∧ cell(k − 1, s) = p)

• Finished(s)
.
= Wins(X, s)

This fluent is not used in this chapter but later in Chapter 4.

Actions

• markn(p) - agent p marks the current left marking position with p and reduces the current left marking

position by 1

• markp(p) - agent p marks the current right marking position with p and increases the current right

marking position by 1

Precondition Axioms DTTT1D
poss

These are precondition axioms, one per action, specifying when an action can physically be performed:

• Poss(markn(p), s) ≡ True

• Poss(markp(p), s) ≡ True

Successor State Axioms DTTT1D
ssa

These are successor state axioms specifying how the fluents change as a result of actions:

• curn(do(a, s)) = k ≡ curn(s) = k + 1 ∧ ∃p.{a = markn(p)} ∨ curn(s) = k ∧ ∀p.{a 6= markn(p)}

96

• curp(do(a, s)) = k ≡ curp(s) = k − 1 ∧ ∃p.{a = markp(p)} ∨ curp(s) = k ∧ ∀p.{a 6= markn(p)}

• cell(k, do(a, s)) = p ≡

a = markp(p) ∧ curp(s) = k ∨ a = markn(p) ∧ curn(s) = k ∨

cell(k, s) = p ∧ ¬ ∃p′.{a = markp(p′) ∧ curp(s) = k} ∧ ¬ ∃p′.{a = markn(p′) ∧ curn(s) = k}

• turn(do(a, s)) = p ≡ agent(a) = X ∧ p = O ∧ turn(s) = X ∨ agent(a) = O ∧ p = X ∧ turn(s) = O

Initial State Axioms DTTT1D
S0

These describe the initial situation:

• curn(S0) = 0

• curp(S0) = 1

• turn(S0) = X

• Legal(S0)

Legal Moves Axioms DTTT1D
legal

These encode the rules of the game:

• agent(markn(p)) = p

• agent(markp(p)) = p

• Control(p, s) .
= ∃a.Legal(do(a, s)) ∧ agent(a) = p

• Legal(do(a, s)) ≡ Legal(s) ∧ ∃p.{ turn(s) = p ∧ (a = markn(p) ∨ a = markp(p)) }

Unique Name and Domain Closure Axioms for Actions DTTT1D
ca

These describe the uniqueness of action names and the fact that the domain of actions s closed:

97

• ∀a. { ∃p. a = markn(p) ∨ ∃p. a = markp(p) }

• ∀p, p′. { markn(p) 6= markp(p′) }

• ∀p, p′. { markn(p) = markn(p′) ⊃ p = p′ }

• ∀p, p′. { markp(p) = markp(p′) ⊃ p = p′ }

• ∀p. { Agent(p) ≡ (p = X ∨ p = O)}

• X 6= O

The complete theory also includes the foundational axioms Σ of the Situation Calculus. It can be noticed

that this is clearly an infinite state domain as the set of positions that can be marked is infinite.

Propositions and Lemmas

We derived the following propositions, some of which are used in later proofs:

P 3.3.1. Transformation of the Wins fluent.

DTTT1D
ca ∪ DZ |= Wins(p, s) ≡ ∃k(

Legal(s) ∧ cell(k − 1, s) = p ∧ cell(k, s) = p ∧ cell(k + 1, s) = p ∧ curn(s) = k − 2 ∨

Legal(s) ∧ cell(k − 1, s) = p ∧ cell(k, s) = p ∧ cell(k + 1, s) = p ∧ curp(s) = k + 2)

P 3.3.2. Regression for concrete cases for the turn fluent.

DTTT1D
ca |= R(turn(do(a, s)) = X) ≡ agent(a) = O ∧ turn(s) = O

DTTT1D
ca |= R(turn(do(a, s)) = O) ≡ agent(a) = X ∧ turn(s) = X

P 3.3.3. Regression for concrete cases for the curn fluent.

DTTT1D
ca ∪ DZ |= R(curn(do(markn(p), s) = k) ≡ curn(s) = k + 1

DTTT1D
ca ∪ DZ |= R(curn(do(markp(p), s) = k) ≡ curn(s) = k

P 3.3.4. Regression for concrete cases for the curp fluent.

98

DTTT1D
ca ∪ DZ |= R(curp(do(markn(p), s) = k) ≡ curp(s) = k

DTTT1D
ca ∪ DZ |= R(curp(do(markp(p), s) = k) ≡ curp(s) = k − 1

P 3.3.5. Regression for concrete cases for the Control fluent.

DTTT1D
ca |= R(Control(X, s)) ≡ Legal(s) ∧ turn(s) = X

DTTT1D
ca |= R(Control(O, s)) ≡ Legal(s) ∧ turn(s) = O

P 3.3.6. Regression for concrete cases for the Legal fluent.

DTTT1D
ca |= R(Legal(do(markn(p), s))) ≡ Legal(s) ∧ turn(s) = p

DTTT1D
ca |= R(Legal(do(markp(p), s))) ≡ Legal(s) ∧ turn(s) = p

P 3.3.7. Regression for concrete cases for the cell fluent.

DTTT1D
ca |= R(cell(k, do(markn(X), s)) = X) ≡ curn(s) = k ∨ cell(k, s) = X

DTTT1D
ca |= R(cell(k, do(markn(O), s)) = O) ≡ curn(s) = k ∨ cell(k, s) = O

DTTT1D
ca |= R(cell(k, do(markp(X), s)) = X) ≡ curp(s) = k ∨ cell(k, s) = X

DTTT1D
ca |= R(cell(k, do(markp(O), s)) = O) ≡ curp(s) = k ∨ cell(k, s) = O

DTTT1D
ca |= R(cell(k, do(markn(O), s)) = X) ≡ curn(s) 6= k ∧ cell(k, s) = X

DTTT1D
ca |= R(cell(k, do(markp(O), s)) = X) ≡ curp(s) 6= k ∧ cell(k, s) = X

P 3.3.8. Relation between functional fluents curn and curp based on DTTT1D
GS .

DTTT1D
GS |= ∀s. curn(s) < curp(s)

Proof: the proof is by induction on the situation. For the base case S0 we have curn(S0) < curn(S0).

Let’s assume curn(s) < curn(s) holds for some situation s. The successor situation to s is

do(markn(p), s) or do(markp(p), s) where p is O or X. In the first case curn(do(makn(p), s)) =

curn(s)− 1 and curp(do(makn(p), s)) = curp(s), and thus by these and by

the inductive assumption curn(do(makn(p), s)) < curn(s) < curp(s) = curp(do(makn(p), s)).

In the second case curn(do(makp(p), s)) = curn(s) and curp(do(makp(p), s)) = curp(s) + 1,

thus with inductive assumption curn(do(makn(p), s)) = curn(s) < curp(s) < curp(do(makn(p), s)).

This completes the proof that in any situation s led from S0 we have that curn(s) < curp(s).

99

P 3.3.9. Player O influence on Wins fluent (follows from propositions above).

DTTT1D
ca ∪ DTTT1D

S0
|= Wins(X, do(markn(O), s)) ⊃Wins(X, s)

DTTT1D
ca ∪ DTTT1D

S0
|= Wins(X, do(markp(O), s)) ⊃Wins(X, s)

In this domain, for groups G = {X} and G = {X,O} ensuring that ϕ holds next can be established by

considering only the markn and markp actions as the following lemmas show:

L 3.3.1. Regression of the concrete case of the ∃© ϕ definition based on domain closure.

DTTT1D
ca |= R(∃© ϕ[s]) ≡

Legal(s) ∧ turn(s) = X ∧R(ϕ[do(markn(X), s)])∨

Legal(s) ∧ turn(s) = X ∧R(ϕ[do(markp(X), s)])∨

Legal(s) ∧ turn(s) = O ∧R(ϕ[do(markn(O), s)])∨

Legal(s) ∧ turn(s) = O ∧R(ϕ[do(markp(O), s)])

L 3.3.2. Regression of the concrete case of the 〈〈{X}〉〉 © ϕ definition based on domain closure.

DTTT1D
ca |= R(〈〈{X}〉〉 © ϕ[s]) ≡

Legal(s) ∧ turn(s) = X ∧R(ϕ[do(markn(X), s)])∨

Legal(s) ∧ turn(s) = X ∧R(ϕ[do(markp(X), s)])∨

Legal(s) ∧ turn(s) = O ∧R(ϕ[do(markn(O), s)]) ∧R(ϕ[do(markp(O), s)])

3.3.2 Possibility of Winning

The property that it is possible for X to eventually win can be represented by the following formula:

∃♦Wins(X)
.
= µZ.Wins(X) ∨ ∃© Z

We begin by applying the De Giacomo et al. [DLP10] method and try to show that successive approxi-

mates are equivalent using only the unique name and domain closure axioms for actions DTTT1D
ca and the

axiomatization of the integers DZ :

100

DTTT1D
ca ∪ DZ |= ∃♦Wins(X)

This formula can be verified by employing the [DLP10] method using regression and fixpoint approximation,

until we converge. The technique does not always converge and this needs to be checked as we proceed. The

proof is very long and tedious and there are numerous cases to deal with. The reason for this is that we

cannot use the fact that curn is always less than curp and that the cells that are between them are non-

blank and that the other cells are blank, which are consequences of the initial state axioms. More details

are available in the on-Line appendix http://www.cse.yorku.ca/~skmiec, but here the first few steps and

last few steps are collected. The approximations are as follows:

DTTT1D
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(∃© False) ≡ by lemma L 3.3.1

∃k(Legal(s) ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curn(s) = k − 2) ∨

∃k(Legal(s) ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧R(False) ∨

Legal(s) ∧ turn(s) = X ∧R(False) ∨

Legal(s) ∧ turn(s) = O ∧R(False) ∨

Legal(s) ∧ turn(s) = O ∧R(False)

≡

Legal(s) ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2)

This approximation evaluates to true if s is such that X is winning in s already (in no steps), i.e., these are

situations where there are 3 X marks in a row on either side.

DTTT1D
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(∃©R0) ≡ by lemma L 3.3.1

Legal(s) ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

101

http://www.cse.yorku.ca/~skmiec

Legal(s) ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧R(R0[do(markn(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧R(R0[do(markp(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(R0[do(markn(O), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(R0[do(markp(O), s)])

≡ by R0 from the previous step

Legal(s) ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ Legal(do(markn(X), s)) ∧R(∃k(curn(do(markn(X), s)) = k − 2 ∧

cell(k−1, do(markn(X), s)) = X∧cell(k, do(markn(X), s)) = X∧cell(k+1, do(markn(X), s)) = X))∨

Legal(s) ∧ turn(s) = X ∧ Legal(do(markn(X), s)) ∧R(∃k(cell(k − 1, do(markn(X), s)) = X ∧

cell(k, do(markn(X), s)) = X ∧ cell(k+ 1, do(markn(X), s)) = X ∧ curp(do(markn(X), s)) = k+ 2))∨

Legal(s) ∧ turn(s) = X ∧ Legal(do(markp(X), s)) ∧R(∃k(curn(do(markp(X), s)) = k − 2 ∧

cell(k−1, do(markp(X), s)) = X∧cell(k, do(markp(X), s)) = X∧cell(k+1, do(markp(X), s)) = X))∨

Legal(s) ∧ turn(s) = X ∧ Legal(do(markp(X), s)) ∧R(∃k(cell(k − 1, do(markp(X), s)) = X ∧

cell(k, do(markp(X), s)) = X ∧ cell(k+ 1, do(markp(X), s)) = X ∧ curp(do(markp(X), s)) = k+ 2))∨

Legal(s) ∧ turn(s) = O ∧ Legal(do(markn(O), s)) ∧R(∃k(curn(do(markn(O), s)) = k − 2 ∧

cell(k−1, do(markn(O), s)) = X∧cell(k, do(markn(O), s)) = X∧cell(k+1, do(markn(O), s)) = X))∨

Legal(s) ∧ turn(s) = O ∧ Legal(do(markn(O), s)) ∧R(∃k(cell(k − 1, do(markn(O), s)) = X ∧

cell(k, do(markn(O), s)) = X ∧ cell(k+ 1, do(markn(O), s)) = X ∧ curp(do(markn(O), s)) = k+ 2))∨

Legal(s) ∧ turn(s) = O ∧ Legal(do(markp(O), s)) ∧R(∃k(curn(do(markp(O), s)) = k − 2 ∧

cell(k−1, do(markp(O), s)) = X ∧ cell(k, do(markp(O), s)) = X ∧ cell(k+1, do(markp(O), s)) = X))∨

Legal(s) ∧ turn(s) = O ∧ Legal(do(markp(O), s)) ∧R(∃k(cell(k − 1, do(markp(O), s)) = X ∧

cell(k, do(markp(O), s)) = X ∧ cell(k + 1, do(markp(O), s)) = X ∧ curp(do(markp(O), s)) = k + 2))

≡ by P 3.3.6, P 3.3.3, P 3.3.4, P 3.3.7

102

Legal(s) ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 1 ∧ (curn(s) = k − 1 ∨ cell(k − 1, s) = X) ∧

(curn(s) = k ∨ cell(k, s) = X) ∧ (curn(s) = k + 1 ∨ cell(k + 1, s) = X)) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k((curn(s) = k − 1 ∨ cell(k − 1, s) = X) ∧ (curn(s) = k ∨ cell(k, s) = X) ∧

(curn(s) = k + 1 ∨ cell(k + 1, s) = X) ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ (curp(s) = k − 1 ∨ cell(k − 1, s) = X) ∧ (curp(s) = k ∨

cell(k, s) = X) ∧ (curp(s) = k + 1 ∨ cell(k + 1, s) = X)) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k((curp(s) = k − 1 ∨ cell(k − 1, s) = X) ∧ (curp(s) = k ∨ cell(k, s) = X) ∧

(curp(s) = k + 1 ∨ cell(k + 1, s) = X) ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k(curn(s) = k − 1 ∧ curn(s) 6= k − 1 ∧ cell(k − 1, s) = X ∧ curn(s) 6= k ∧

cell(k, s) = X ∧ curn(s) 6= k + 1 ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k(curn(s) 6= k − 1 ∧ cell(k − 1, s) = X ∧ curn(s) 6= k ∧ cell(k, s) = X ∧

curn(s) 6= k + 1 ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k(curn(s) = k − 2 ∧ curp(s) 6= k − 1 ∧ cell(k − 1, s) = X ∧ curp(s) 6= k ∧

cell(k, s) = X ∧ curp(s) 6= k + 1 ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k(curp(s) 6= k − 1 ∧ cell(k − 1, s) = X ∧ curp(s) 6= k ∧ cell(k, s) = X ∧

curp(s) 6= k + 1 ∧ cell(k + 1, s) = X ∧ curp(s) = k + 1)

≡ by FOL (eliminate contradiction and simplification)

Legal(s) ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k((curn(s) = k − 1 ∨ cell(k − 1, s) = X) ∧ (curn(s) = k ∨ cell(k, s) = X) ∧

(curn(s) = k + 1 ∨ cell(k + 1, s) = X) ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ (curp(s) = k − 1 ∨ cell(k − 1, s) = X) ∧

103

(curp(s) = k ∨ cell(k, s) = X) ∧ (curp(s) = k + 1 ∨ cell(k + 1, s) = X)) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k(curn(s) 6= k − 1 ∧ cell(k − 1, s) = X ∧ curn(s) 6= k ∧

cell(k, s) = X ∧ curn(s) 6= k + 1 ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k(curn(s) = k − 2 ∧ curp(s) 6= k − 1 ∧ cell(k − 1, s) = X ∧

curp(s) 6= k ∧ cell(k, s) = X ∧ curp(s) 6= k + 1 ∧ cell(k + 1, s) = X)

≡ by subsumption (line 7 by 2, line 8 by 1) and reordering, and distribution or ∧

Legal(s) ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 1 ∧ curn(s) = k ∧ curn(s) = k + 1 ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 1 ∧ curn(s) = k ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 1 ∧ cell(k, s) = X ∧ curn(s) = k + 1 ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(cell(k − 1, s) = X ∧ curn(s) = k ∧ curn(s) = k + 1 ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(cell(k − 1, s) = X ∧ curn(s) = k ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curn(s) = k + 1 ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ curp(s) = k − 1 ∧ curp(s) = k ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ curp(s) = k − 1 ∧ curp(s) = k ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ curp(s) = k − 1 ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ curp(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ curp(s) = k ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ curp(s) = k ∧ cell(k + 1, s) = X) ∨

104

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

≡ by subsumption (line 8/19 by 3, line 12 by 2, line 20 and 1) and removal of contradictions

Legal(s) ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(cell(k − 1, s) = X ∧ curn(s) = k ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curn(s) = k + 1 ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ curp(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ curp(s) = k ∧ cell(k + 1, s) = X)

≡ by R0 from the previous step

R0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curn(s) = k + 1 ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(curn(s) = k − 2 ∧ curp(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(cell(k − 1, s) = X ∧ curn(s) = k ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ curp(s) = k ∧ cell(k + 1, s) = X)

This approximation evaluates to true if s is such that X can win in at most 1 step, i.e., these are situations

where there are 3 X marks in a row on either side, or there are 2 X marks in a row on either side and it is

player X’s turn (X can put the third X mark at the next step), or there are 2 X marks separated by a cell

in any of the marking positions and it is player X’s turn (X can put the third X mark at the next step).

DTTT1D
ca ∪ DZ |= R2(s)

.
= Wins(X, s) ∨R(∃©R1) ≡ by lemma L 3.3.1

105

(the proof is similar to R1 and the details are available at http://www.cse.yorku.ca/~skmiec)

≡

Legal(s) ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curn(s) = k + 1 ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(curn(s) = k − 2 ∧ curp(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(cell(k − 1, s) = X ∧ curn(s) = k ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ curp(s) = k ∧ cell(k + 1, s) = X)

Legal(s) ∧ turn(s) = O ∧ ∃k.(curp(s) < k − 1 ∧ curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 1 ∧ k + 1 < curn(s)) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curn(s) < k − 1 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ k + 1 < curp(s)) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ k + 1 = curn(s) ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curn(s) = k + 2 ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curn(s) = k − 1 ∧ curp(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curn(s) = k − 2 ∧ curp(s) = k − 2 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X)

This approximation evaluates to true if s is such that X can win in at most 2 steps.

. . .

(the proofs for steps R3 to R8 are available at http://www.cse.yorku.ca/~skmiec)

. . .

DTTT1D
ca ∪ DZ |= R9(s)

.
= Wins(X, s) ∨R(∃©R8) ≡ by lemma L 3.3.1

106

http://www.cse.yorku.ca/~skmiec
http://www.cse.yorku.ca/~skmiec

(the proof is similar to R1 and the details are available at http://www.cse.yorku.ca/~skmiec)

≡

Legal(s) ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ curp(s) < curn(s)− 2 ∨

Legal(s) ∧ turn(s) = X ∧ curp(s) = curn(s)− 2 ∨

Legal(s) ∧ turn(s) = X ∧ curp(s) = curn(s)− 1 ∨

Legal(s) ∧ turn(s) = X ∧ curp(s) = curn(s) ∨

Legal(s) ∧ turn(s) = X ∧ curn(s) < curp(s) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(curp(s) = k − 1 ∧ curn(s) = k ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(cell(k − 1, s) = X ∧ curp(s) = k ∧ curn(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 2 ∧ curn(s) = k + 3) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(curp(s) = k − 3 ∧ curn(s) = k − 2 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(curp(s) < k − 1 ∧ curn(s) = k ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k.(cell(k − 1, s) = X ∧ curp(s) = k ∧ k + 1 < curn(s)) ∨

Legal(s) ∧ turn(s) = O ∧ curp(s) < curn(s)− 3

Legal(s) ∧ turn(s) = O ∧ curp(s) = curn(s)− 2

Legal(s) ∧ turn(s) = O ∧ curp(s) = curn(s)− 1 ∨

Legal(s) ∧ turn(s) = O ∧ curn(s) = curp(s) ∨

Legal(s) ∧ turn(s) = O ∧ curn(s) < curp(s) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curp(s) < k − 1 ∧ curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 1 ∧ k + 1 < curn(s)) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curn(s) < k − 1 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨

107

http://www.cse.yorku.ca/~skmiec

Legal(s) ∧ turn(s) = O ∧ ∃k.(curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ k + 1 < curp(s)) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ k + 1 = curn(s) ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curn(s) = k + 2 ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curn(s) = k − 1 ∧ curp(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curn(s) = k − 2 ∧ curp(s) = k − 2 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X)

Legal(s) ∧ turn(s) = O ∧ ∃k.(cell(k − 1, s) = X ∧ curp(s) = k ∧ curn(s) = k + 2) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curn(s) < k − 1 ∧ cell(k − 1, s) = X ∧ curp(s) = k) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 2 ∧ curn(s) = k + 4) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curp(s) = k − 3 ∧ curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(cell(k − 1, s) = X ∧ curp(s) = k ∧ k + 2 < curn(s)) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curp(s) = k − 2 ∧ curn(s) = k ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curn(s) = k ∧ cell(k + 1, s) = X ∧ k + 1 < curp(s)) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 1 ∧ curn(s) = k + 3) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curp(s) = k − 4 ∧ curn(s) = k − 2 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = O ∧ ∃k.(curp(s) < k − 2 ∧ curn(s) = k ∧ cell(k + 1, s) = X)

This approximation evaluates to true if s is such that X can win in at most 9 steps.

DTTT1D
ca ∪ DZ |= R10(s)

.
= Wins(X, s) ∨R(∃©R9) ≡ by lemma L 3.3.1

(the proof is similar to R1 and the details are available at http://www.cse.yorku.ca/~skmiec)

≡

Legal(s)

This approximation evaluates to true if s is such that X can win in at most 10 steps.

DTTT1D
ca ∪ DZ |= R11(s)

.
= Wins(X, s) ∨R(∃©R10) ≡ by lemma L 3.3.1

108

http://www.cse.yorku.ca/~skmiec

(the proof is similar to R1 and the details are available at http://www.cse.yorku.ca/~skmiec)

≡

Legal(s)

This approximation evaluates to true if s is such that X can win in at most 11 steps. Here is an interesting

fact – indeed it may take up to 11 steps to win the game even if the agents cooperate. If we have no

restrictions (and here we reason about all games) that curn(S) ≤ curp(S) then we can imagine an initial

situation Sx like “pBBn” where n represents the cell pointed to by curn(Sx), p represents the cell pointed

to by curp(Sx), and B represents blank cell. This is a situation Sx where the cell pointed to by the “right”

marking position is followed by two blank cells and that is followed by a cell pointed to by the “left” marking

position. If in a such configuration if it is player O’s turn then indeed it will require 11 steps to win the

game as player actions interfere and overwrite the other player’s markings.

Thus the fixpoint expansion procedure converges in the 11th step as we have:

DTTT1D
ca ∪ DZ |= R10(s) ≡ R11(s)

And therefore by Theorem 1 of [DLP10]:

DTTT1D
GS |= ∃♦Wins(X)[s] ≡ R10(s) ≡ Legal(s)

It follows by the initial state axioms that DTTT1D
GS |= ∃♦Wins(X)[S0], i.e., X may eventually win in the

initial situation as it is legal.

Note: the method converges more quickly and the proof becomes much easier if you add P 3.3.8 to the set

of axioms used by the method.

109

http://www.cse.yorku.ca/~skmiec

3.3.3 Existence of a Winning Strategy

The existence of a strategy to ensure Wins(X) by group G = {X} can be represented by the following

formula:

〈〈{X}〉〉♦Wins(X)
.
= µZ. Wins(X) ∨ 〈〈{X}〉〉 © Z

We begin by applying the De Giacomo et al. [DLP10] method and try to show that successive approximates

are equivalent using axioms DTTT1D
GS without foundational axioms Σ:

DTTT1D
GS \ Σ |= 〈〈{X}〉〉♦Wins(X)

This formula can be verified by employing the [DLP10] method using regression and fixpoint approximation,

until we converge. The technique does not always converge and this needs to be checked as we proceed.

The symbolic manipulations are quite numerous and more details are available in the on-line appendix

http://www.cse.yorku.ca/~skmiec, but here the results are collected. The approximations are as follows:

DTTT1D
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 © False)

≡ by lemma L 3.3.2

∃k(Legal(s) ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curn(s) = k − 2) ∨

∃k(Legal(s) ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧R(False) ∨

Legal(s) ∧ turn(s) = X ∧R(False) ∨

Legal(s) ∧ turn(s) = O ∧R(False) ∧R(False)

≡

Legal(s) ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∨

Legal(s) ∧ ∃k(cell(k − 2, s) = X ∧ cell(k − 1, s) = X ∧ cell(k, s) = X ∧ curp(s) = k + 1)

This approximation evaluates to true if s is such that X is winning in s already (in no steps), i.e., these are

110

http://www.cse.yorku.ca/~skmiec

situations where there are 3 X marks in a row on either side.

DTTT1D
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R0)

(the proof is by FOL, L3.3.2, P3.3.2, P3.3.6, P3.3.3, P3.3.4, P3.3.7)

≡

Legal(s) ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curn(s) = k − 2) ∨

Legal(s) ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃kcell(k − 2, s) = X ∧ cell(k − 1, s) = X ∧ curp(s) = k) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(cell(k − 2, s) = X ∧ cell(k − 1, s) = X ∧ curn(s) = k ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ curp(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(cell(k − 2, s) = X ∧ curn(s) = k − 1 ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X) ∧ curp(s) = k ∧ cell(k + 1, s) = X)

This approximation evaluates to true if s is such that X can win in at most 1 step, i.e.,

As in R0 and if its X’s turn then if XX on right of curn, or XX on left of curp, or configurations: XnXp, or

XXnp, or npXX, or nXpX, where n is curn and p is curp.

DTTT1D
ca ∪ DZ |= R2(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R1)

(the proof is by FOL, L3.3.2, P3.3.2, P3.3.6, P3.3.3, P3.3.4, P3.3.7)

≡

Legal(s) ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curn(s) = k − 2) ∨

Legal(s) ∧ ∃k(cell(k − 1, s) = X ∧ cell(k, s) = X ∧ cell(k + 1, s) = X ∧ curp(s) = k + 2) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = X ∧ ∃kcell(k − 2, s) = X ∧ cell(k − 1, s) = X ∧ curp(s) = k) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(cell(k − 2, s) = X ∧ cell(k − 1, s) = X ∧ curn(s) = k ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ curp(s) = k − 1 ∧ cell(k, s) = X ∧ cell(k + 1, s) = X) ∨

111

Legal(s) ∧ turn(s) = X ∧ ∃k(cell(k − 2, s) = X ∧ curn(s) = k − 1 ∧ cell(k, s) = X ∧ curp(s) = k + 1) ∨

Legal(s) ∧ turn(s) = X ∧ ∃k(curn(s) = k − 2 ∧ cell(k − 1, s) = X) ∧ curp(s) = k ∧ cell(k + 1, s) = X) ∨

Legal(s) ∧ turn(s) = O ∧

∃m.(curn(s) < m− 2 ∧ cell(m− 2, s) = X ∧ cell(m− 1, s) = X ∧ curp(s) = m) ∧

∃n.(curn(s) = n ∧ cell(n+ 1, s) = X ∧ cell(n+ 2, s) = X ∧ n+ 2 < curp(s))

This approximation evaluates to true if s is such that X can win in at most 2 step.

DTTT1D
ca ∪ DZ |= R3(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R2)

(the proof is by FOL, L3.3.2, P3.3.2, P3.3.6, P3.3.3, P3.3.4, P3.3.7)

≡ R2

This approximation evaluates to true if s is such that X can win in at most 3 step.

Thus the fixpoint expansion procedure converges in the 3rd step as we have:

DTTT1D
ca ∪ DZ |= R2(s) ≡ R3(s)

And therefore by Theorem 1 of [DLP10]:

DTTT1D
GS |= 〈〈{X}〉〉♦Wins(X)[s] ≡ R2(s)

It follows by the initial state axioms that DTTT1D
GS |= ¬〈〈{X}〉〉♦Wins(X)[S0] i.e., there is no winning

strategy for X in the initial situation. But DTTT1D
GS |= 〈〈{X}〉〉♦Wins(X)[S1]

where S1 = do(markn(O), do(markp(X), do(markn(O), do(markp(X), S0)))) i.e., there is a winning strategy

for X in a situation where X marked twice on the left and O marked twice on the right.

112

3.4 Mark Down (MD)

In this section we specify another simple game and apply the De Giacomo et al. [DLP10] fixpoint iteration

method to verify some temporal properties. If we apply the method as originally specified and only use

the unique name and domain closure axioms for actions (to which we have added the axiomatization of the

integers), we don’t get convergence in a finite number of steps. But if use add some additional facts entailed

by the whole theory, then we do get convergence in a finite number of steps.

The Mark Down (MD) game that we have designed involves an infinite vector of cells, one for each

integer. There is a pointer maintained in the game, which we call the current position. Initially the current

position is set to +∞. There are 2 players in the game: X and O. Players take turns and initially it is player

X’s turn. The actions are move1 to decrease the current position by 1 if the current position is not +∞,

move2 to decrease the current position by 2 if the current position is not +∞, and action init(p, n) that is

only allowed for X and when the current position is +∞, i.e. in the initial position. The action init(p, n) sets

the current position to an integer of choice between some given constants MinInit and MaxInit defined by

the game. For these constatnts it is true that 3 ≤MinInit < MaxInit and MaxInit 6= +∞. Player O can

never make a move when the current position is +∞. The goal of player X is to reach a state where the

current position is 1 (after player X’s turn) in which case player X wins, and similarly for player O. A sample

sequence of moves for a game where MinInit = 3 and MaxInit = 5 could be as follows: X performs init(4)

and the current position is set to 4, O performs move2 and the current position is set to 2, X performs

move1 and the current position is set to 1 and X wins. It is possible for the game go on forever without the

goal being reached. An example of such scenario for a game where MinInit = 3 and MaxInit = 5 would

be as follows: X performs init(4) and the current position is set to 4, O performs move2 and the current

position is set to 2, X performs move2 and the current position is set to 0, the actions beyond this do not

matter as the current position can only decrease and it cannot reach cell 1.

113

3.4.1 Situation Calculus Game Structure Axiomatization of MD Domain

The Situation Calculus Game Structure Axiomatization is defined as:

DMD
GS = Σ ∪ DMD

poss ∪ DMD
ssa ∪ DMD

Legal ∪ DMD
ca ∪ DMD

S0
∪ DZ

where DZ is a suitable axiomatization of integers

Fluents

• cur(s) - functional fluent indicating the latest marking position, whose domain is the integers and +∞

• turn(s) - functional fluent indicating which agent is to take the next action, with its domain being the

agent set {X,O}

Derived Fluents

• Wins(p, s)
.
= Legal(s) ∧Agent(p) ∧ cur(s) = 1 ∧ ∃p′. Agent(p′) ∧ turn(s) = p′ ∧ p 6= p′

Actions

• init(p, n) - agent p sets the current position to be n

• move1(p) - agent p reduces the current position by 1

• move2(p) - agent p reduces the current position by 2

Precondition Axioms DMD
poss

These are precondition axioms, one per action, specifying when an action can physically be performed:

• Poss(init(p, n), s) ≡ cur(s) = +∞∧MinInit ≤ n ≤MaxInit ∧Agent(p)

114

• Poss(move1(p), s) ≡ cur(s) 6= +∞∧Agent(p)

• Poss(move2(p), s) ≡ cur(s) 6= +∞∧Agent(p)

Successor State Axioms DMD
ssa

These are successor state axioms specifying how the fluents change as a result of actions:

• cur(do(a, s)) = k ≡ cur(s) = +∞∧ ∃p. a = init(p, k)

∨ cur(s) = k + 1 ∧ ∃p. a = move1(p) ∨ cur(s) = k + 2 ∧ ∃p. a = move2(p)

• turn(do(a, s)) = p ≡ p = O ∧ turn(s) = X ∨ p = X ∧ turn(s) = O

Initial State Axioms DMD
S0

These describe the initial situation:

• cur(S0) = +∞

• turn(S0) = X

• Legal(S0)

• MinInit = 3

• MaxInit = 1000

Legal Moves Axioms DMD
legal

These encode the rules of the game:

• agent(init(p, n)) = p

• agent(move1(p)) = p

115

• agent(move2(p)) = p

• Control(p, s) .
= ∃a.Legal(do(a, s)) ∧ agent(a) = p

• Legal(do(a, s)) ≡ Legal(s) ∧ {

a = init(X,n) ∧MinInit ≤ n ≤MaxInit ∧ cur(s) = +∞∨

∃p. a = move1(p) ∧ turn(s) = p ∧ cur(s) 6= +∞∨

∃p. a = move2(p) ∧ turn(s) = p ∧ cur(s) 6= +∞}

Unique Name and Domain Closure Axioms for Actions DMD
ca

These describe the uniqueness of action names and the fact that the domain of actions s closed:

• ∀a. { ∃p, n. a = init(p, n) ∨ ∃p. a = move1(p) ∨ ∃p. a = move2(p) }

• ∀n, p, p′. { init(p, n) 6= move2(p′) }

• ∀n, p, p′. { init(p, n) 6= move2(p′) }

• ∀p, p′. { move1(p) 6= move2(p′) }

• ∀p, p′. { move1(p) = move1(p′) ⊃ p = p′ }

• ∀p, p′. { move2(p) = move2(p′) ⊃ p = p′ }

• ∀p, p′, n, n′. { init(p, n) = init(p′, n′) ⊃ p = p′ ∧ n = n′ }

• ∀p. { Agent(p) ≡ (p = X ∨ p = O)}

• X 6= O

• 3 ≤MinInit ≤MaxInit ∧MaxInit 6= +∞

• ∀n. n 6= +∞ , where n ranges over the set of integers

116

The complete theory also includes the foundational axioms Σ of the Situation Calculus. It can be noticed

that this is clearly an infinite state domain as the set of positions that can be visited is infinite.

Propositions and Lemmas

We derived the following propositions, some of which are used in later proofs:

P 3.4.1. The concrete case of the Wins fluent.

DMD
ca |= Wins(X, s) ≡ Legal(s) ∧ turn(s) = O ∧ cur(s) = 1

P 3.4.2. Regression of concrete cases of the turn fluent.

DMD
ca |= R(turn(do(a, s)) = X) ≡ turn(s) = O

DMD
ca |= R(turn(do(a, s)) = O) ≡ turn(s) = X

P 3.4.3. Regression of concrete cases of the cur fluent.

DMD
ca ∪ DZ |= R(cur(do(init(p, n), s) = k) ≡ n = k

DMD
ca ∪ DZ |= R(cur(do(move1(p), s) = k) ≡ cur(s) = k + 1

DMD
ca ∪ DZ |= R(cur(do(move2(p), s) = k) ≡ cur(s) = k + 2

P 3.4.4. Regression of concrete cases for the Legal fluent.

DMD
ca |= R(Legal(do(init(O,n), s)) ≡ False

DMD
ca |= R(Legal(do(init(X,n), s)) ≡ Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞

∧MinInit ≤ nleqMaxInit

DMD
ca |= R(Legal(do(move1(p), s))) ≡ Legal(s) ∧ turn(s) = p ∧ cur(s) 6= +∞

DMD
ca |= R(Legal(do(move2(p), s))) ≡ Legal(s) ∧ turn(s) = p ∧ cur(s) 6= +∞

DMD
ca |= R(Legal(do(move1(p), s))) ⊃ cur(s) 6= +∞

DMD
ca |= R(Legal(do(move2(p), s))) ⊃ cur(s) 6= +∞

P 3.4.5. Concrete cases for the Control fluent from DMD
legal.

DMD
ca |= Control(X, s) ≡ Legal(s) ∧ turn(s) = X ∨ cur(s) = +∞

DMD
ca |= Control(O, s) ≡ Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞

117

In this domain, for groups G = {X} or G = {X,O} ensuring that ϕ holds next can be established by

considering only the init, move1 and move2 actions as the following lemmas show:

L 3.4.1. Regression of the concrete case of the ∃© ϕ definition based on domain closure.

DMD
ca |= R(∃© ϕ[s]) ≡

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧

∃n. MinInit ≤ n ≤MaxInit ∧R(ϕ[do(init(X,n), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(ϕ[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(ϕ[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(ϕ[do(move1(O), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(ϕ[do(move1(O), s)])

L 3.4.2. Regression of the concrete case of the 〈〈{X}〉〉 © ϕ definition based on domain closure.

DMD
ca |= R(〈〈{X}〉〉 © ϕ[s]) ≡

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧

∃n. MinInit ≤ n ≤MaxInit ∧R(ϕ[do(init(X,n), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(ϕ[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(ϕ[do(move2(X), s)]) ∨

Legal(s)∧ turn(s) = O∧ cur(s) 6= +∞∧R(ϕ[do(move1(O), s)])∧R(ϕ[do(move2(O), s)])

3.4.2 Possibility of Winning

The property that it is possible for X to eventually win can be represented by the following formula:

∃♦Wins(X)
.
= µZ.{ Wins(X) ∨ ∃© Z }

We begin by applying the De Giacomo et al. [DLP10] method and try to show that successive approx-

imates are equivalent using only the unique name and domain closure axioms for actions DMD
ca and the

axiomatization of the integers DZ :

118

DMD
ca ∪ DZ |= ∃♦Wins(X)

This formula can be verified by employing the [DLP10] method using regression and fixpoint approximation,

until we converge. The technique does not always converge and this needs to be checked as we proceed. The

approximations are as follows:

DMD
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(∃© False) ≡ by P 3.4.1, L 3.4.1 and FOL

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1

This approximation evaluates to true if s is such that X is winning in s already (in no steps) i.e. these are

situations where the current position is 1 and now it is player O’s turn.

DMD
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(∃©R0) ≡ by P 3.4.1, L 3.4.1 and FOL

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧

∃n. MinInit ≤ n ≤MaxInit ∧R(R0[do(init(X,n), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R0[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R0[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(R0[do(move1(O), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(R0[do(move1(O), s)])

≡ by R0 from previous step and P 3.4.2, P 3.4.3, P 3.4.4

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧

∃n. MinInit ≤ n ≤MaxInit ∧

R(Legal(do(init(X,n), s))) ∧ turn(s) = X ∧ n = 1 ∨ contradiction for n

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 2 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧

119

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 3 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧

R(Legal(do(move1(O), s))) ∧ turn(s) = X ∧R(cur(do(move1(O), s)) = 1) ∨ contradiction

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧

R(Legal(do(move1(O), s))) ∧ turn(s) = X ∧R(cur(do(move1(O), s)) = 1) contradiction

≡ by FOL

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) = 2 ∨ cur(s) = 3)

This approximation evaluates to true if s is a legal situation such that X can win in at most 1 step. These

are legal situations where the current position is 1 and now it is player O’s turn or the current position is 2

or 3 and it is player X’s turn (X can perform move1 or move2 to win).

DMD
ca ∪ DZ |= R2(s)

.
= Wins(X, s) ∨R(∃©R1) ≡ by P 3.4.1, L 3.4.1 and FOL

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧

∃n. MinInit ≤ n ≤MaxInit ∧R(R1[do(init(X,n), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R1[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R1[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(R1[do(move1(O), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(R1[do(move1(O), s)])

≡ by R1 from previous step and P 3.4.2, P 3.4.3, P 3.4.4

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃n. MinInit ≤ n ≤MaxInit ∧R(

Legal(do(init(X,n), s)) ∧ turn(s) = X ∧ n = 1 ∨ contradiction on n

Legal(do(init(X,n), s)) ∧ turn(s) = O ∧ cur(do(init(X,n), s)) = 2 ∨ contradiction

Legal(do(init(X,n), s)) ∧ turn(s) = O ∧ cur(do(init(X,n), s)) = 3) ∨ contradiction

120

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 2 ∨

Legal(do(move1(X), s)) ∧ turn(s) = O ∧ cur(do(move1(X), s)) = 2 ∨ contradiction

Legal(do(move1(X), s)) ∧ turn(s) = O ∧ cur(do(move1(X), s)) = 3) ∨ contradiction

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 3 ∨

Legal(do(move2(X), s)) ∧ turn(s) = O ∧ cur(do(move2(X), s)) = 2 ∨ contradiction

Legal(do(move2(X), s)) ∧ turn(s) = O ∧ cur(do(move2(X), s)) = 3) ∨ contradiction

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(

Legal(do(move1(O), s)) ∧ turn(s) = X ∧ cur(do(move1(O), s)) = 1 ∨ contradiction

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 3 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 4) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(

Legal(do(move2(O), s)) ∧ turn(s) = X ∧ cur(do(move1(O), s)) = 1 ∨ contradiction

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 4 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 5)

≡ by FOL

Legal(s) ∧ turn(s) = X ∧ (cur(s) = 2 ∨ cur(s) = 3) ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) = 1 ∨ cur(s) = 3 ∨ cur(s) = 4 ∨ cur(s) = 5)

This approximation evaluates to true if s is legal and such that X can win in at most 2 steps. These are

situations where the current position is 1 and now it is player O’s turn or the current position is 2 or 3 and

it is player X’s turn (X can perform move1 or move2 to win) or the current position is 3 or 4 or 5 and now

it is player O’s turn (O can take an action to allow X to finish in the next turn).

DMD
ca ∪ DZ |= R3(s)

.
= Wins(X, s) ∨R(∃©R2) ≡ by P 3.4.1, L 3.4.1 and FOL

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

121

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧

∃n. MinInit ≤ n ≤MaxInit ∧R(R2[do(init(X,n), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R2[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R2[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(R2[do(move1(O), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(R2[do(move1(O), s)])

≡ by R2 from previous step and P 3.4.2, P 3.4.3, P 3.4.4

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃n. MinInit ≤ n ≤MaxInit ∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = O ∧ (n = 2 ∨ n = 3) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = X ∧ (n = 1 ∨ n = 3 ∨ n = 4 ∨ n = 5)

) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧

(cur(s) = 3 ∨ cur(s) = 4) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧

(cur(s) = 2 ∨ cur(s) = 4 ∨ cur(s) = 5 ∨ cur(s) = 6)

) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧

(cur(s) = 4 ∨ cur(s) = 5) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧

(cur(s) = 3 ∨ cur(s) = 5 ∨ cur(s) = 6 ∨ cur(s) = 7)

) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧

122

(cur(s) = 3 ∨ cur(s) = 4) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧

(cur(s) = 2 ∨ cur(s) = 4 ∨ cur(s) = 5 ∨ cur(s) = 6)

) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧

(cur(s) = 4 ∨ cur(s) = 5) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧

(cur(s) = 3 ∨ cur(s) = 5 ∨ cur(s) = 6 ∨ cur(s) = 7)

)

≡ by FOL

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ 3 ≤MinInit ≤MaxInit ∧MinInit ≤ 5 ∨

Legal(s) ∧ turn(s) = X ∧ (2 ≤ cur(s) ≤ 7) ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) = 1 ∨ 3 ≤ cur(s) ≤ 5)

This approximation evaluates to true if s is legal such that X can win in at most 3 steps. The intuitive

interpretation follows from how the 2 players can cooperate or if the game constants are such that MinInit

is less or equal 5 (then there exists an initial move that the game can be won in up to 3 steps).

DMD
ca ∪ DZ |= R4(s)

.
= Wins(X, s) ∨R(∃©R3) ≡ by P 3.4.1, L 3.4.1 and FOL

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧

∃n. MinInit ≤ n ≤MaxInit ∧R(R3[do(init(X,n), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R3[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R3[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(R3[do(move1(O), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(R3[do(move1(O), s)])

123

≡ by R3 from previous step and P 3.4.2, P 3.4.3, P 3.4.4

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃n. MinInit ≤ n ≤MaxInit ∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = O ∧ n = +∞∧

3 ≤MinInit ≤MaxInit ∧MinInit ≤ 5 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = O ∧ (2 ≤ n ≤ 7) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = X ∧ (n = 1 ∨ 3 ≤ n ≤ 5)

) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s)− 1 = +∞∧

3 ≤MinInit ≤MaxInit ∧MinInit ≤ 5 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧ (2 ≤ cur(s)− 1 ≤ 7) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ (cur(s)− 1 = 1 ∨ 3 ≤ cur(s)− 1 ≤ 5)

) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s)− 2 = +∞∧

3 ≤MinInit ≤MaxInit ∧MinInit ≤ 5 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧ (2 ≤ cur(s)− 2 ≤ 7) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ (cur(s)− 2 = 1 ∨ 3 ≤ cur(s)− 2 ≤ 5)

) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s)− 1 = +∞∧

3 ≤MinInit ≤MaxInit ∧MinInit ≤ 5 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ (2 ≤ cur(s)− 1 ≤ 7) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧ (cur(s)− 1 = 1 ∨ 3 ≤ cur(s)− 1 ≤ 5)

) ∨

124

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s)− 2 = +∞∧

3 ≤MinInit ≤MaxInit ∧MinInit ≤ 5 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ (2 ≤ cur(s)− 2 ≤ 7) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧ (cur(s)− 2 = 1 ∨ 3 ≤ cur(s)− 2 ≤ 5)

)

≡ by FOL

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ 3 ≤MinInit ≤MaxInit ∧MinInit ≤ 5 ∨

Legal(s) ∧ turn(s) = X ∧ 2 ≤ cur(s) ≤ 7

Legal(s) ∧ turn(s) = O ∧ (cur(s) = 1 ∨ 3 ≤ cur(s) ≤ 9)

This approximation evaluates to true if s legal and is such that X can win in at most 4 steps. The intuitive

interpretation follows from how the 2 players can cooperate or if the game constants are such that MinInit

is less or equal 5 (then there exists an initial move that the game can be won in up to 4 steps).

The subsequent results can be generalized (by induction) to the following formulas:

DMD
ca ∪ DZ |= R2i−1(s) ≡

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ 3 ≤MinInit ≤MaxInit ∧MinInit ≤ 4i− 3 ∨

Legal(s) ∧ turn(s) = X ∧ (2 ≤ cur(s) ≤ 4i− 1) ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) = 1 ∨ 3 ≤ cur(s) ≤ 4i− 3)

This approximation evaluates to true if s is legal and such that X can win in at most 2i+ 1 (odd) steps.

DMD
ca ∪ DZ |= R2i(s) ≡

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ 3 ≤MinInit ≤MaxInit ∧MinInit ≤ 4i− 3 ∨

Legal(s) ∧ turn(s) = X ∧ 2 ≤ cur(s) ≤ 4i− 1 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) = 1 ∨ 3 ≤ cur(s) ≤ 4i+ 1)

125

This approximation evaluates to true if s is legal and such that X can win in at most 2i (even) steps.

Is there a convergence in a finite number of steps? No.

The De Giacomo et al. [DLP10] iterative method for logical formula manipulation does not work using

only the unique name and domain closure axioms for actions DMD
ca and the axiomatization of the integers

DZ . It will not converge in a finite number of steps as it can be observed that for all natural numbers i,

DMD
ca ∪DZ 6|= Ri−1 ≡ Ri, since one can always construct a model of DMD

ca ∪DZ that will satisfy Ri and not

Ri−1.

Will there be a convergence if we use additional facts entailed by the whole theory ? Yes.

The procedure will converge if we consider the following lemma:

L 3.4.3. Existence of upper bound for fluent cur.

DMD
GS |= ∀s. cur(s) = +∞∨ cur(s) ≤MaxInit

Proof: We will prove by induction on situation. Indeed our base case is S0 and we have cur(S0) = +∞.

Now assume that for some situation si we have that cur(si) = +∞ ∨ cur(si) ≤ MaxInit. Based on the

domain closure for actions we have that the successor situations to si can only be do(init(p, n), si), or

do(move1(p), si), or do(move2(p), si) where p is X or O. Based on the inductive assumption and regression

we have that cur(do(init(n), si)) = n ≤MaxInit, and cur(do(move1(p), si)) = cur(si)−1 ≤MaxInit−1 ≤

MaxInit and cur(do(move2(p), si)) = cur(si)−2 ≤MaxInit−2 ≤MaxInit. Therefore ∀a. cur(do(a, s)) =

+∞∨ cur(do(a, s)) ≤MaxInit.

Since MaxInit is a constant defined in the game, let us consider an integer number x = d(MaxInit+ 3)/4e.

First, we can observe that MinInit ≤MaxInit ≤ 4x− 3 and thus based on L3.4.3 we also have that either

cur(s) = +∞ or cur(s) ≤ 4x − 3 holds. Likewise it holds that MinInit ≤ MaxInit ≤ 4x + 1 and also

cur(s) ≤ 4x+ 1. The two consecutive steps R2x−1 and R2x will simplify to:

126

DMD
ca ∪ DZ ∪ {L3.4.3} |= R2x−1(s) ≡

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∨

Legal(s) ∧ turn(s) = X ∧ 2 ≤ cur(s) ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) = 1 ∨ 3 ≤ cur(s))

DMD
ca ∪ DZ ∪ {L3.4.3} |= R2x(s) ≡

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∨

Legal(s) ∧ turn(s) = X ∧ 2 ≤ cur(s) ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) = 1 ∨ 3 ≤ cur(s))

Thus the fixpoint expansion procedure converges no later than in the step 2x as we have:

DMD
ca ∪ DZ ∪ {L3.4.3} |= R2x−1(s) ≡ R2x(s)

And therefore by Theorem 1 of [DLP10]:

DMD
GS |= ∃♦Wins(X)[s] ≡

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∨

Legal(s) ∧ turn(s) = X ∧ 2 ≤ cur(s) ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) = 1 ∨ 3 ≤ cur(s))

It follows by the initial state axioms that DMD
GS |= ∃♦Wins(X)[S0], i.e., the goal may eventually be reached

from the initial situation as it is legal and it is player X’s turn and cur(s) = +∞.

3.4.3 Existence of a Winning Strategy

The existence of a strategy to ensure Wins(X) by group G = {X} can be represented by the following

formula:

〈〈{X}〉〉♦Wins(X)
.
= µZ. Wins(X) ∨ 〈〈{X}〉〉 © Z

127

We begin by applying the De Giacomo et al. [DLP10] method:

DMD
ca ∪ DZ |= 〈〈{X}〉〉♦Wins(X)

The regressed approximations are as follows:

DMD
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 © False) ≡ by P 3.4.1, L 3.4.2 and FOL

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1

This approximation evaluates to true if s is such that X is winning in s already (in no steps). These are

situations where the current position is 1 and now it is player O’s turn.

DMD
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R0) ≡ by P 3.4.1, L 3.4.2 and FOL

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧

∃n. MinInit ≤ n ≤MaxInit ∧R(R0[do(init(X,n), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R0[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R0[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(R0[do(move1(O), s)]) ∧R(R0[do(move2(O), s)])

≡ by R0 from previous step and P 3.4.2, P 3.4.3, P 3.4.4

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃n. MinInit ≤ n ≤MaxInit ∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = X ∧ n = 1) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 2) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 3) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞

128

∧(Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 2)

∧(Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 3)

≡ by FOL

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) = 2 ∨ cur(s) = 3)

This approximation evaluates to true if s is legal and such that X can win in at most 1 step. These are

situations where the current position is 1 and now it is player O’s turn or the current position is 2 or 3 and

it is player X’s turn (X can perform move1 or move2 to win).

DMD
ca ∪ DZ |= R2(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R1) ≡ by P 3.4.1, L 3.4.2 and FOL

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧

∃n. MinInit ≤ n ≤MaxInit ∧R(R1[do(init(X,n), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R1[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R1[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(R1[do(move1(O), s)]) ∧R(R1[do(move2(O), s)])

≡ by R1 from previous step and P 3.4.2, P 3.4.3, P 3.4.4

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃n. MinInit ≤ n ≤MaxInit ∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = X ∧ n = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = O ∧ n = 2 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = O ∧ n = 3) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 2 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 3 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 4) ∨

129

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 3 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 4 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 5) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 2 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 3 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 4)

∧(

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 3 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 4 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 5)

≡ by FOL

Legal(s) ∧ turn(s) = O ∧ (cur(s) = 1 ∨ cur(s) = 4) ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) = 2 ∨ cur(s) = 3)

This approximation evaluates to true if s is legal and such that X can win in at most 2 steps. These are

situations where the current position is 1 and now it is player O’s turn or the current position is 2 or 3 and

it is player X’s turn (X can perform move1 or move2 to win) or the current position is 4 and now it is player

O’s turn (no matter what action player O takes player X can finish in the next turn).

DMD
ca ∪ DZ |= R3(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R2) ≡ by P 3.4.1, L 3.4.2 and FOL

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃n. MinInit ≤ n ≤MaxInit ∧R(R2[do(init(X,n), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R2[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R2[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(R2[do(move1(O), s)]) ∧R(R2[do(move2(O), s)])

130

≡ by R2 from previous step and P 3.4.2, P 3.4.3, P 3.4.4

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃n. MinInit ≤ n ≤MaxInit ∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = X ∧ n = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = X ∧ n = 4 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = O ∧ n = 2 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = O ∧ n = 3) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 2 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 5 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 3 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 4) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 3 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 6 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 4 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 5) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 2 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 5 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 3 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 4)

∧(

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 3 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧ cur(s) = 6 ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 4 ∨

131

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s) = 5)

≡ by FOL

Legal(s) ∧ turn(s) = O ∧ (cur(s) = 1 ∨ cur(s) = 4) ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) = 2 ∨ cur(s) = 3 ∨ cur(s) = 5 ∨ cur(s) = 6) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧MinInit ≤ 4 ≤MaxInit

This approximation evaluates to true if s is legal and such that X can win in at most 3 steps. These are

situations where the current position is 1 and now it is player O’s turn or the current position is 2 or 3 and it

is player X’s turn (X can perform move1 or move2 to win), or the current position is 4 and now it is player

O’s turn (no matter what action player O takes player X can finish in the next turn), or the MinInit and

MaxInit constants are such that X can mark cell 4 in the initial move and then it is player O’s turn (no

matter what action player O takes player X can finish in the next turn).

DMD
ca ∪ DZ |= R4(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R3) ≡ by P 3.4.1, L 3.4.2 and FOL

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃n. MinInit ≤ n ≤MaxInit ∧R(R3[do(init(X,n), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R3[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧R(R3[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧R(R3[do(move1(O), s)]) ∧R(R3[do(move2(O), s)])

≡ by R3 from previous step and P 3.4.2, P 3.4.3, P 3.4.4

Legal(s) ∧ turn(s) = O ∧ cur(s) = 1 ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃n. MinInit ≤ n ≤MaxInit ∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = X ∧ (n = 1 ∨ n = 4) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = O ∧ (n = 2 ∨ n = 3 ∨ n = 5 ∨ n = 6) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ turn(s) = O ∧ n = +∞∧MinInit ≤ 4 ≤MaxInit) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ (cur(s) = 2 ∨ cur(s) = 5) ∨

132

Legal(s)∧turn(s) = X∧cur(s) 6= +∞∧turn(s) = O∧(cur(s) = 3∨cur(s) = 4∨cur(s) = 6∨cur(s) = 7)∨

Legal(s)∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O∧ cur(s)−1 = +∞∧MinInit ≤ 4 ≤MaxInit)∨

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = X ∧ (cur(s) = 3 ∨ cur(s) = 6) ∨

Legal(s)∧turn(s) = X∧cur(s) 6= +∞∧turn(s) = O∧(cur(s) = 4∨cur(s) = 5∨cur(s) = 7∨cur(s) = 8)∨

Legal(s)∧ turn(s) = X ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(do(move2(X), s)) = +∞∧MinInit ≤ 4 ≤

MaxInit) ∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ (

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧ (cur(s) = 2 ∨ cur(s) = 5) ∨

Legal(s)∧turn(s) = O∧cur(s) 6= +∞∧turn(s) = O∧(cur(s) = 3∨cur(s) = 4∨cur(s) = 6∨cur(s) = 7)∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(s)− 1 = +∞∧MinInit ≤ 4 ≤MaxInit)

∧(

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = X ∧ (cur(s) = 3 ∨ cur(s) = 6) ∨

Legal(s)∧turn(s) = O∧cur(s) 6= +∞∧turn(s) = O∧(cur(s) = 4∨cur(s) = 5∨cur(s) = 7∨cur(s) = 8)∨

Legal(s) ∧ turn(s) = O ∧ cur(s) 6= +∞∧ turn(s) = O ∧ cur(do(move2(O), s)) = +∞∧MinInit ≤ 4 ≤

MaxInit)

≡ by FOL

Legal(s) ∧ turn(s) = O ∧ (cur(s) = 1 ∨ cur(s) = 4 ∨ cur(s) = 7) ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) = 2 ∨ cur(s) = 3 ∨ cur(s) = 5 ∨ cur(s) = 6) ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧MinInit ≤ 4 ≤MaxInit

This approximation evaluates to true if s is legal and such that X can win in at most 4 steps. The intuitive

interpretation becomes more complicated but it follows from how the 2 players can interact.

The subsequent results can be generalized (by induction) to the following formulas:

DMD
ca ∪ DZ |= R2i−1(s) ≡

133

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j < i ∧ cur(s) = 1 + 3j ∨

Legal(s) ∧ turn(s) = X ∧ 2 ≤ cur(s) ≤ 3i ∧ ∀j. 0 < j ≤ i ∧ cur(s) 6= 1 + 3j ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃j.0 < j < i ∧MinInit ≤ 1 + 3j ≤MaxInit

DMD
ca ∪ DZ |= R2i(s) ≡

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j ≤ i ∧ cur(s) = 1 + 3j ∨

Legal(s) ∧ turn(s) = X ∧ 2 ≤ cur(s) ≤ 3i ∧ ∀j. 0 < j ≤ i ∧ cur(s) 6= 1 + 3j ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃j.0 < j < i ∧MinInit ≤ 1 + 3j ≤MaxInit

This approximations evaluate to true if s is legal and such that X can win in at most 2i − 1 (odd) or 2i

(even) number of steps. These are situations where the current position is multiple of 3 plus 1 and now it is

player O’s turn, or the MinInit and MaxInit constants are such that X can mark cell that is multiple of 3

plus 1 in the initial move.

Is there a convergence in a finite number of steps? No.

The De Giacomo et al. [DLP10] iterative method for logical formula manipulation does not work using

only the unique name and domain closure axioms for actions DMD
ca and the axiomatization of the integers

DZ . It will not converge in a finite number of steps as it can be observed that for all natural numbers i,

DMD
ca ∪DZ 6|= Ri−1 ≡ Ri, since one can always construct a model of DMD

ca ∪DZ that will satisfy Ri and not

Ri−1.

Will there be a convergence if we use additional facts entailed by the whole theory ? Yes.

The procedure will converge if we add lemma L3.4.3 from the previous section to the axioms used by

the method. Since MaxInit is a constant defined in the game, let us consider an integer number x =

d(MaxInit− 1)/3e. First, we can observe that MinInit ≤MaxInit ≤ 3x+ 1 and thus based on L3.4.3 we

also have that either cur(s) = +∞ or cur(s) ≤ 3x + 1 holds. That is, it is false that we could have a legal

situation that cur(s) = 3x+ 1.

134

Based on this observation, the two consecutive steps R2x−1 and R2x will simplify to:

DMD
ca ∪ DZ ∪ {L3.4.3} |= R2x−1(s) ≡

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j < x ∧ cur(s) = 1 + 3j ∨

Legal(s) ∧ turn(s) = X ∧ 2 ≤ cur(s) ≤ 3x ∧ ∀j. 0 < j ≤ x ∧ cur(s) 6= 1 + 3j ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃j.0 < j < x ∧MinInit ≤ 1 + 3j ≤MaxInit

DMD
ca ∪ DZ ∪ {L3.4.3} |= R2x(s) ≡

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j < x ∧ cur(s) = 1 + 3j ∨

Legal(s) ∧ turn(s) = X ∧ 2 ≤ cur(s) ≤ 3x ∧ ∀j. 0 < j ≤ x ∧ cur(s) 6= 1 + 3j ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃j.0 < j < x ∧MinInit ≤ 1 + 3j ≤MaxInit

Thus the fixpoint expansion procedure converges no later than in the step 2x as we have:

DMD
ca ∪ DZ ∪ {L3.4.3} |= R2x−1(s) ≡ R2x(s)

And therefore by Theorem 1 of [DLP10]:

DMD
GS |= 〈〈{X}〉〉♦Wins(X)[s] ≡

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j < x ∧ cur(s) = 1 + 3j ∨

Legal(s) ∧ turn(s) = X ∧ 2 ≤ cur(s) ≤ 3x ∧ ∀j. 0 < j ≤ x ∧ cur(s) 6= 1 + 3j ∨

Legal(s) ∧ turn(s) = X ∧ cur(s) = +∞∧ ∃j. 0 < j < x ∧MinInit ≤ 1 + 3j ≤MaxInit

where x = d(MaxInit− 1)/3e

It follows by the initial state axioms that DMD
GS |= 〈〈{X}〉〉♦Wins(X)[S0], i.e., the goal can be ensured from

the initial situation as it is a legal situation and it is player X’s turn and MinInit ≤ 4 ≤MaxInit. On the

other hand, for an initial situation S1 where MinInit = 5 and MaxInit = 6 we cannot ensure that player

X can win since DMD
GS 6|= 〈〈{X}〉〉♦Wins(X)[S1].

135

3.5 Mark Up (MU)

In this section we specify another simple game that is similar to the MD game from the previous section

but where the current position can increase infinitely. The idea was to make MD more like a real game

where the players are actively kept involved trying to win the game. We then apply the De Giacomo et al.

[DLP10] fixpoint iteration method to verify some temporal properties. If we apply the method as originally

specified and only use the unique name and domain closure axioms for actions (to which we have added the

axiomatization of the integers), we don’t get convergence in a finite number of steps. But if use add some

additional facts entailed by the whole theory, then we do get convergence in a finite number of steps.

The Mark Up (MU) game that we have designed involves an infinite vector of cells one for each natural

number. There is a pointer maintained in the game and it is called the current position. Initially the current

position is set to 0. There are 2 players X and O in the game. Players take turns and initially it is player

X’s turn. The actions are move1 to increase the current position by 1 and move2 to increase the current

position by 2. The goal of player X is to reach a state where the current position is greater than 100 and

divided modulo 10 it is 0 (after player X’s turn) in which case player X wins, and similarly for player O. A

sample sequence of moves for a game could be as follows: X performs move1, then O and X perform move2

53 times, finally O performs move1 and X finishes the game by performing move2. It is possible for the

game go on forever and the goal cannot be reached. An example of such scenario for a game would be as

follows: X performs move1, then O and X perform only move2 actions.

3.5.1 Situation Calculus Game Structure Axiomatization of MU Domain

The Situation Calculus Game Structure Axiomatization is defined as:

DMU
GS = Σ ∪ DMU

poss ∪ DMU
ssa ∪ DMU

Legal ∪ DMU
ca ∪ DMU

S0
∪ DZ

where DZ is a suitable axiomatization of integers.

136

Fluents

• cur(s) - functional fluent indicating the latest marking position, whose domain is the integers

• turn(s) - functional fluent indicating which agent is to take the next action, with its domain being the

agent set {X,O}

Derived Fluents

• Wins(p, s)
.
= Legal(s) ∧ Agent(p) ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∧ ∃p′. Agent(p′) ∧ turn(s) =

p′ ∧ p 6= p′

Actions

• move1(p) - agent p increases the current position by 1

• move2(p) - agent p increases the current position by 2

Precondition Axioms DMU
poss

These are precondition axioms, one per action, specifying when an action can physically be performed:

• Poss(move1(p), s) ≡ True

• Poss(move2(p), s) ≡ True

Successor State Axioms DMU
ssa

These are successor state axioms specifying how the fluents change as a result of actions:

• cur(do(a, s)) = k ≡ cur(s) = cur(s) = k − 1 ∧ ∃p.a = move1(p) ∨ cur(s) = k − 2 ∧ ∃p.a = move2(p)

137

• turn(do(a, s)) = p ≡ p = O ∧ turn(s) = X ∨ p = X ∧ turn(s) = O

Initial State Axioms DMU
S0

These describe the initial situation:

• cur(S0) = 0

• turn(S0) = X

• Legal(S0)

Legal Moves Axioms DMU
legal

These encode the rules of the game:

• agent(move1(p)) = p

• agent(move2(p)) = p

• Control(p, s) .
= ∃a.Legal(do(a, s)) ∧ agent(a) = p

• Legal(do(a, s)) ≡ Legal(s) ∧ {∃p. a = move1(p) ∧ turn(s) = p ∨ ∃p. a = move2(p) ∧ turn(s) = p}

Unique Name and Domain Closure Axioms for Actions DMU
ca

These describe the uniqueness of action names and the fact that the domain of actions s closed:

• ∀a. { ∃p. a = move1(p) ∨ ∃p. a = move2(p) }

• ∀p, p′. { move1(p) 6= move2(p′) }

• ∀p, p′. { move1(p) = move1(p′) ⊃ p = p′ }

138

• ∀p, p′. { move2(p) = move2(p′) ⊃ p = p′ }

• ∀p. { Agent(p) ≡ (p = X ∨ p = O)}

• X 6= O

The complete theory also includes the foundational axioms Σ of the Situation Calculus. It can be noticed

that this is clearly an infinite state domain as the set of positions that can be visited is infinite.

Propositions and Lemmas

We derived the following propositions, some of which are used in later proofs:

P 3.5.1. Regression of the concrete case of the Wins fluent.

DMU
ca ∪ DZ |= R(Wins(X, s)) ≡ Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0

P 3.5.2. Regression of concrete cases of the turn fluent.

DMU
ca |= R(turn(do(a, s)) = X) ≡ turn(s) = O

DMU
ca |= R(turn(do(a, s)) = O) ≡ turn(s) = X

P 3.5.3. Regression of concrete cases of the cur fluent.

DMU
ca ∪ DZ |= R(cur(do(move1(p), s) = k) ≡ cur(s) = k − 1

DMU
ca ∪ DZ |= R(cur(do(move2(p), s) = k) ≡ cur(s) = k − 2

P 3.5.4. Regression of concrete cases for the Legal fluent.

DMU
ca ∪ DZ |= R(Legal(do(move1(p), s))) ≡ Legal(s) ∧ turn(s) = p

DMU
ca ∪ DZ |= R(Legal(do(move2(p), s))) ≡ Legal(s) ∧ turn(s) = p

P 3.5.5. Concrete cases for the Control fluent.

DMU
ca ∪ DZ |= Control(X, s) ≡ Legal(s) ∧ turn(s) = X

DMU
ca ∪ DZ |= Control(O, s) ≡ Legal(s) ∧ turn(s) = O

139

In this domain, for groups G = {X} and G = {X,O} ensuring that ϕ holds next can be established by

considering only the move1 and move2 actions as the following lemmas show:

L 3.5.1. Regression of the concrete case of the ∃© ϕ definition based on domain closure.

DMU
ca |= R(∃© ϕ[s]) ≡

Legal(s) ∧ turn(s) = X ∧R(ϕ[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧R(ϕ[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(ϕ[do(move1(O), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(ϕ[do(move2(O), s)])

L 3.5.2. Regression of the concrete case of the 〈〈{X}〉〉 © ϕ definition based on domain closure.

DMU
ca |= R(〈〈{X}〉〉 © ϕ[s]) ≡

Legal(s) ∧ turn(s) = X ∧R(ϕ[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧R(ϕ[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(ϕ[do(move1(O), s)]) ∧R(ϕ[do(move2(O), s)])

3.5.2 Possibility of Winning

The property that it is possible for X to eventually win can be represented by the following formula:

∃♦Wins(X)
.
= µZ.{ Wins(X) ∨ ∃© Z }

We begin by applying the De Giacomo et al. [DLP10] method and try to show that successive approx-

imates are equivalent using only the unique name and domain closure axioms for actions DMU
ca and the

axiomatization of the integers DZ :

DMU
ca ∪ DZ |= ∃♦Wins(X)

This formula can be verified by employing the [DLP10] method using regression and fixpoint approximation,

until we converge. The technique does not always converge and this needs to be checked as we proceed. The

140

approximations are as follows:

DMU
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(∃© False) ≡ by P 3.5.1, L 3.5.1 and FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0

This approximation evaluates to true if s is legal and such that X is winning in s already (in no steps).

These are situations where the current position is 0 away from a modulo 10 position above 100 and now it

is player O’s turn.

DMU
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(∃©R0) ≡ by P 3.5.1, L 3.5.1 and FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧R(R0[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧R(R0[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(R0[do(move1(O), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(R0[do(move2(O), s)])

≡ by R0 from previous step and P 3.5.2, P 3.5.3, P 3.5.4

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s)∧turn(s) = X∧(Legal(s)∧turn(s) = X∧100 < cur(s)+1∧(cur(s)+1) mod 10 = 0∧turn(s) = X)∨

Legal(s)∧turn(s) = X∧(Legal(s)∧turn(s) = X∧100 < cur(s)+2∧(cur(s)+2) mod 10 = 0∧turn(s) = X)∨

Legal(s)∧turn(s) = O∧(Legal(s)∧turn(s) = O∧100 < cur(s)+1∧(cur(s)+1) mod 10 = 0∧turn(s) = X)∨

Legal(s)∧turn(s) = O∧(Legal(s)∧turn(s) = O∧100 < cur(s)+2∧(cur(s)+2) mod 10 = 0∧turn(s) = X)

≡ by FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0

This approximation evaluates to true if s is legal and such that X can win in at most 1 step. These are

situations where the current position is 0 away from a modulo 10 position above 100 and now it is player

141

O’s turn or the current position is 1 or 2 away from modulo 10 position above 100 and it is player X’s turn

(X can perform move1 or move2 to win).

DMU
ca ∪ DZ |= R2(s)

.
= Wins(X, s) ∨R(∃©R1) ≡ by P 3.5.1, L 3.5.1 and FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧R(R1[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧R(R1[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(R1[do(move1(O), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(R1[do(move2(O), s)])

≡ by R1 from previous step and P 3.5.2, P 3.5.3, P 3.5.4

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0) ∨

Legal(s) ∧ turn(s) = X ∧ (

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0) ∨

Legal(s) ∧ turn(s) = O ∧ (

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0) ∨

Legal(s) ∧ turn(s) = O ∧ (

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

142

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0)

≡ by FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0

This approximation evaluates to true if s legal and is such that X can win in at most 2 steps. These are

situations where the current position is 0 away from a modulo 10 position above 100 and now it is player O’s

turn or the current position is between 1 and 2 away from modulo 10 position above 100 and it is player X’s

turn (X can perform move1 or move2 to win) or the current position is between 2 and 4 away from modulo

10 position above 100 and it is player O’s turn (players O and X can cooperate accordingly).

DMU
ca ∪ DZ |= R3(s)

.
= Wins(X, s) ∨R(∃©R2) ≡ by P 3.5.1, L 3.5.1 and FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧R(R2[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧R(R2[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(R2[do(move1(O), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(R2[do(move2(O), s)])

≡ by R2 from previous step and P 3.5.2, P 3.5.3, P 3.5.4

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0 ∨

143

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 5 ∧ (cur(s) + 5) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0

) ∨

Legal(s) ∧ turn(s) = X ∧ (

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 5 ∧ (cur(s) + 5) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 6 ∧ (cur(s) + 6) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0

) ∨

Legal(s) ∧ turn(s) = O ∧ (

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 5 ∧ (cur(s) + 5) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0

) ∨

Legal(s) ∧ turn(s) = O ∧ (

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 5 ∧ (cur(s) + 5) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 6 ∧ (cur(s) + 6) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

144

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0

)

≡ by FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 5 ∧ (cur(s) + 5) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 6 ∧ (cur(s) + 6) mod 10 = 0

This approximation evaluates to true if s is legal and such that X can win in at most 3 steps. These are

situations where the current position is 0 away from a modulo 10 position above 100 and now it is player

O’s turn, or the current position is between 1 and 6 away from modulo 10 position above 100 and it is player

X’s turn, or the current position is between 2 and 4 away from modulo 10 position above 100 and it is player

O’s turn.

The subsequent results can be generalized (by induction) to the following formulas:

DMU
ca ∪ DZ |= R2i−1(s) ≡

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ ∃j. 2 ≤ j ≤ 4i− 4 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 1 ≤ j ≤ 4i− 2 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0

This approximation evaluates to true if s is legal and such that X can win in at most 2i− 1 (odd) steps.

145

DMU
ca ∪ DZ |= R2i(s) ≡

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ ∃j. 2 ≤ j ≤ 4i ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 1 ≤ j ≤ 4i− 2 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0

This approximation evaluates to true if s is legal and such that X can win in at most 2i (even) steps.

Is there a convergence in a finite number of steps? No.

The De Giacomo et al. [DLP10] iterative method for logical formula manipulation does not work using

only the unique name and domain closure axioms for actions DMU
ca and the axiomatization of the integers

DZ . It will not converge in a finite number of steps as it can be observed that for all natural numbers i,

DMU
ca ∪DZ 6|= Ri−1 ≡ Ri, since one can always construct a model of DMU

ca ∪DZ that will satisfy R2i and

not R2i−1, e.g. where cur(s) = 4i for steps 2i− 1 and 2i.

Will there be a convergence if we use additional facts entailed by the whole theory ? Yes.

The procedure will converge if we consider the following lemma:

L 3.5.3. Existence of lower bound for fluent cur.

DMU
GS |= ∀s. 0 ≤ cur(s)

Proof: We will prove by induction on situation. Indeed our base case is S0 and we have 0 ≤ cur(S0) = 0.

Now assume that for some situation si we have that 0 ≤ cur(si). Based on the domain closure for actions

we have that the successor situations to si can only be do(move1(p), si), or do(move2(p), si) where p is X or

O. Based on the inductive assumption and regression we have that 0 ≤ cur(do(move1(p), si)) = cur(si) + 1

and 0 ≤ cur(do(move2(p), si)) = cur(si) + 2. Therefore ∀s, a. 0 ≤ cur(do(a, s)).

Let us consider the formulas R57 and R58 (57 and 58 were chosen so that i will become 29 and 4i is a number

that is more than 10 above 100 which greatly helps simplifying the generalized formulas):

146

DMU
ca ∪ DZ ∪ {L3.5.3} |= R57(s) ≡

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ ∃j. 2 ≤ j ≤ 112 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 1 ≤ j ≤ 114 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0

≡

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ ∃j. 2 ≤ j ≤ 102 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 3 < cur(s) ∧ (cur(s) + 103) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 4 < cur(s) ∧ (cur(s) + 104) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 5 < cur(s) ∧ (cur(s) + 105) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 6 < cur(s) ∧ (cur(s) + 106) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 7 < cur(s) ∧ (cur(s) + 107) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 8 < cur(s) ∧ (cur(s) + 108) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 9 < cur(s) ∧ (cur(s) + 109) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 10 < cur(s) ∧ (cur(s) + 110) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 11 < cur(s) ∧ (cur(s) + 111) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 12 < cur(s) ∧ (cur(s) + 112) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 1 ≤ j ≤ 100 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 1 < cur(s) ∧ (cur(s) + 101) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 2 < cur(s) ∧ (cur(s) + 102) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 3 < cur(s) ∧ (cur(s) + 103) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 4 < cur(s) ∧ (cur(s) + 104) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 5 < cur(s) ∧ (cur(s) + 105) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 6 < cur(s) ∧ (cur(s) + 106) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 7 < cur(s) ∧ (cur(s) + 107) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 8 < cur(s) ∧ (cur(s) + 108) mod 10 = 0 ∨

147

Legal(s) ∧ turn(s) = X ∧ − 9 < cur(s) ∧ (cur(s) + 109) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 10 < cur(s) ∧ (cur(s) + 110) mod 10 = 0

≡ by L3.5.3

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ ∃j. 2 ≤ j ≤ 102 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 103) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 104) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 105) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 106) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 107) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 108) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 109) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 110) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 111) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 112) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 1 ≤ j ≤ 100 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 101) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 102) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 103) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 104) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 105) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 106) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 107) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 108) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 109) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 110) mod 10 = 0

148

≡ by the fact that over consecutive 10 numbers one is 0 modulo 10

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ ∃j. 2 ≤ j ≤ 102 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ True ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 1 ≤ j ≤ 100 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ True

≡ by FOL (line 3 subsumes line 1 and 2, line 5 subsumes line 4)

Legal(s) ∧ turn(s) = X ∨ Legal(s) ∧ turn(s) = O

DMU
ca ∪ DZ ∪ {L3.5.3} |= R58(s) ≡

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ ∃j. 2 ≤ j ≤ 116 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 1 ≤ j ≤ 114 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0

≡

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ ∃j. 2 ≤ j ≤ 106 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 7 < cur(s) ∧ (cur(s) + 107) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 8 < cur(s) ∧ (cur(s) + 108) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 9 < cur(s) ∧ (cur(s) + 109) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 10 < cur(s) ∧ (cur(s) + 110) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 11 < cur(s) ∧ (cur(s) + 111) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 12 < cur(s) ∧ (cur(s) + 112) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 13 < cur(s) ∧ (cur(s) + 113) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 14 < cur(s) ∧ (cur(s) + 114) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 15 < cur(s) ∧ (cur(s) + 115) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 16 < cur(s) ∧ (cur(s) + 116) mod 10 = 0 ∨

149

Legal(s) ∧ turn(s) = X ∧ ∃j. 1 ≤ j ≤ 100 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 1 < cur(s) ∧ (cur(s) + 101) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 2 < cur(s) ∧ (cur(s) + 102) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 3 < cur(s) ∧ (cur(s) + 103) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 4 < cur(s) ∧ (cur(s) + 104) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 5 < cur(s) ∧ (cur(s) + 105) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 6 < cur(s) ∧ (cur(s) + 106) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 7 < cur(s) ∧ (cur(s) + 107) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 8 < cur(s) ∧ (cur(s) + 108) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 9 < cur(s) ∧ (cur(s) + 109) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 10 < cur(s) ∧ (cur(s) + 110) mod 10 = 0

≡ by L 3.5.3

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ ∃j. 2 ≤ j ≤ 106 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 107v mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 108) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 109) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 110) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 111) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 112) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 113) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 114) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 115) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 116) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 1 ≤ j ≤ 100 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 101) mod 10 = 0 ∨

150

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 102) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 103) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 104) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 105) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 106) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 107) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 108) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 109) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ (cur(s) + 110) mod 10 = 0

≡ by the fact that over consecutive 10 numbers one is 0 modulo 10

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ ∃j. 2 ≤ j ≤ 106 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ True ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 1 ≤ j ≤ 100 ∧ 100− j < cur(s) ∧ (cur(s) + j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = x ∧ True

≡ by FOL (line 3 subsumes line 1 and 2, line 5 subsumes line 4)

Legal(s) ∧ turn(s) = X ∨ Legal(s) ∧ turn(s) = O

Thus the fixpoint expansion procedure converges no later than in the step 58 as we have:

DMU
ca ∪ DZ ∪ {L3.5.3} |= R57(s) ≡ R58(s)

And therefore by Theorem 1 of [DLP10]:

DMU
GS |= ∃♦Wins(X)[s] ≡ Legal(s) ∧ turn(s) = X ∨ Legal(s) ∧ turn(s) = O

It follows by the initial state axioms that DMU
GS |= ∃♦Wins(X)[S0], i.e. the goal may eventually be reached

from the initial situation as it is legal and it is player X’s turn.

151

3.5.3 Existence of a Winning Strategy

The existence of a strategy to ensure Wins(X) by group G = {X} can be represented by the following

formula:

〈〈{X}〉〉♦Wins(X)
.
= µZ. Wins(X) ∨ 〈〈{X}〉〉 © Z

We begin by applying the De Giacomo et al. [DLP10] method:

DMU
ca ∪ DZ |= 〈〈{X}〉〉♦Wins(X)

The regressed approximations are as follows:

DMU
ca ∪ DZ |= R0(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 © False) ≡ by P 3.5.1, L 3.5.2 and FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0

This approximation evaluates to true if s legal and is such that X is winning in s already (in no steps).

These are situations where the current position is 0 away from a modulo 10 position above 100 and now it

is player O’s turn.

DMU
ca ∪ DZ |= R1(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R0) ≡ by P 3.5.1, L 3.5.2 and FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧R(R0[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧R(R0[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(R0[do(move1(O), s)]) ∧R(R0[do(move2(O), s)])

≡ by R0 from previous step and P 3.5.2, P 3.5.3, P 3.5.4

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s)∧turn(s) = X∧Legal(s)∧turn(s) = X∧turn(s) = X∧100 < cur(s)+1∧(cur(s)+1) mod 10 = 0∨

Legal(s)∧turn(s) = X∧Legal(s)∧turn(s) = X∧turn(s) = X∧100 < cur(s)+2∧(cur(s)+2) mod 10 = 0∨

152

Legal(s) ∧ turn(s) = O ∧

(Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0) ∧

(Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0)

≡ by FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0

This approximation evaluates to true if s is legal and such that X can win in at most 1 step. These are

situations where the current position is 0 away from a modulo 10 position above 100 and now it is player

O’s turn or the current position is 1 or 2 away from modulo 10 position above 100 and it is player X’s turn

(X can perform move1 or move2 to win).

DMU
ca ∪ DZ |= R2(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R1) ≡ by P 3.5.1, L 3.5.2 and FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧R(R1[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧R(R1[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(R1[do(move1(O), s)]) ∧R(R1[do(move2(O), s)])

≡ by R1 from previous step and P 3.5.2, P 3.5.3, P 3.5.4

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0) ∨

Legal(s) ∧ turn(s) = X ∧ (

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

153

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0) ∨

Legal(s) ∧ turn(s) = O

∧(

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0)

∧(

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0)

≡ by FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0

This approximation evaluates to true if s is legal and such that X can win in at most 2 steps. These are

situations where the current position is 0 away from a modulo 10 position above 100 and now it is player

O’s turn, or the current position is between 1 and 2 away from modulo 10 position above 100 and it is player

X’s turn (X can perform move1 or move2 to win), or the current position is 3 away from modulo 10 position

above 100 and it is player O’s turn (after players O’s move player X can finish the game).

DMU
ca ∪ DZ |= R3(s)

.
= Wins(X, s) ∨R(〈〈{X}〉〉 ©R2) ≡ by P 3.5.1, L 3.5.2 and FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧R(R2[do(move1(X), s)]) ∨

Legal(s) ∧ turn(s) = X ∧R(R2[do(move2(X), s)]) ∨

Legal(s) ∧ turn(s) = O ∧R(R2[do(move1(O), s)]) ∧R(R2[do(move2(O), s)])

154

≡ by R2 from previous step and P 3.5.2, P 3.5.3, P 3.5.4

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0) ∨

Legal(s) ∧ turn(s) = X ∧ (

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = X ∧ 100 < cur(s) + 5 ∧ (cur(s) + 5) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ turn(s) = O ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0) ∨

Legal(s) ∧ turn(s) = O ∧ (

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0)

∧(

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = X ∧ 100 < cur(s) + 5 ∧ (cur(s) + 5) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ turn(s) = O ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0)

≡ by FOL

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) ∧ cur(s) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ 100 < cur(s) + 3 ∧ (cur(s) + 3) mod 10 = 0) ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 1 ∧ (cur(s) + 1) mod 10 = 0 ∨

155

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 2 ∧ (cur(s) + 2) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 4 ∧ (cur(s) + 4) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ 100 < cur(s) + 5 ∧ (cur(s) + 5) mod 10 = 0

This approximation evaluates to true if s is legal and such that X can win in at most 3 steps. These are

situations where the current position is 0 away from a modulo 10 position above 100 and now it is player

O’s turn, or the current position is between 1 and 6 but not 3 or 6 away from modulo 10 position above 100

and it is player X’s turn, or the current position is 3 from modulo 10 position above 100 and it is player O’s

turn.

The subsequent results can be generalized (by induction) to the following formulas:

DMU
ca ∪ DZ |= R2i−1(s) ≡

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j < i ∧ 100− 3j < cur(s) ∧ (cur(s) + 3j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < i ∧ 100− 3j − 1 < cur(s) ∧ (cur(s) + 3j + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < i ∧ 100− 3j − 2 < cur(s) ∧ (cur(s) + 3j + 2) mod 10 = 0

This approximation evaluates to true if s is legal and such that X can win in at most 2i− 1 (odd) steps.

DMU
ca ∪ DZ |= R2i(s) ≡

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j ≤ i ∧ 100− 3j < cur(s) ∧ (cur(s) + 3j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < i ∧ 100− 3j − 1 < cur(s) ∧ (cur(s) + 3j + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < i ∧ 100− 3j − 2 < cur(s) ∧ (cur(s) + 3j + 2) mod 10 = 0

This approximation evaluates to true if s is legal and such that X can win in at most 2i (even) steps.

Is there a convergence in a finite number of steps? No.

The De Giacomo et al. [DLP10] iterative method for logical formula manipulation does not work using

only the unique name and domain closure axioms for actions DMU
ca and the axiomatization of the integers

156

DZ . It will not converge in a finite number of steps as it can be observed that for all natural numbers i,

DMU
ca ∪DZ 6|= Ri−1 ≡ Ri, since one can always construct a model of DMU

ca ∪DZ that will satisfy R2i and

not R2i−1, e.g. where cur(s) = 3i for steps 2i− 1 and 2i.

Will there be a convergence if we use additional facts entailed by the whole theory ? Yes.

The procedure will converge if we add lemma L3.5.3 from the previous section to the axioms used by the

method. Let us consider the formulas R87 and R88 (87 and 88 were chosen so that i will become 44 and 3i

is a number that is at least 30 above 100 which greatly helps simplifying the generalized formulas):

DMU
ca ∪ DZ ∪ {L3.5.3} |= R87(s) ≡

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j < 44 ∧ 100− 3j < cur(s) ∧ (cur(s) + 3j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 44 ∧ 100− 3j − 1 < cur(s) ∧ (cur(s) + 3j + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 44 ∧ 100− 3j − 2 < cur(s) ∧ (cur(s) + 3j + 2) mod 10 = 0

≡

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j < 34 ∧ 100− 3j < cur(s) ∧ (cur(s) + 3j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 2 < cur(s) ∧ (cur(s) + 102) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 5 < cur(s) ∧ (cur(s) + 105) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 8 < cur(s) ∧ (cur(s) + 108) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 11 < cur(s) ∧ (cur(s) + 111) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 14 < cur(s) ∧ (cur(s) + 114) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 17 < cur(s) ∧ (cur(s) + 117) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 20 < cur(s) ∧ (cur(s) + 120) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 23 < cur(s) ∧ (cur(s) + 123) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 26 < cur(s) ∧ (cur(s) + 126) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 29 < cur(s) ∧ (cur(s) + 129) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 34 ∧ 100− 3j − 1 < cur(s) ∧ (cur(s) + 3j + 1) mod 10 = 0 ∨

157

Legal(s) ∧ turn(s) = X ∧ − 3 < cur(s) ∧ (cur(s) + 103) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 6 < cur(s) ∧ (cur(s) + 106) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 9 < cur(s) ∧ (cur(s) + 109) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 12 < cur(s) ∧ (cur(s) + 112) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 15 < cur(s) ∧ (cur(s) + 115) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 18 < cur(s) ∧ (cur(s) + 118) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 21 < cur(s) ∧ (cur(s) + 121) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 24 < cur(s) ∧ (cur(s) + 124) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 27 < cur(s) ∧ (cur(s) + 127) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 30 < cur(s) ∧ (cur(s) + 130) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 44 ∧ 100− 3j − 2 < cur(s) ∧ (cur(s) + 3j + 2) mod 10 = 0

≡ by L3.5.3

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j < 34 ∧ 100− 3j < cur(s) ∧ (cur(s) + 3j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 102) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 105) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 108) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 111) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 114) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 117) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 120) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 123) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 126) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 129) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 34 ∧ 100− 3j − 1 < cur(s) ∧ (cur(s) + 3j + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 103) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 106) mod 10 = 0 ∨

158

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 109) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 112) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 115) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 118) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 121) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 124) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 127) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 130) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 44 ∧ 100− 3j − 2 < cur(s) ∧ (cur(s) + 3j + 2) mod 10 = 0

≡ by the fact that the numbers 102, 105, 108, 111, 114, 117, 120, 123, 126, and 129 one is 0 modulo 10

≡ by the fact that the numbers 103, 106, 109, 112, 115, 118, 121, 124, 127, and 130 one is 0 modulo 10

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j < 34 ∧ 100− 3j < cur(s) ∧ (cur(s) + 3j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ True ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 34 ∧ 100− 3j − 1 < cur(s) ∧ (cur(s) + 3j + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ True ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 44 ∧ 100− 3j − 2 < cur(s) ∧ (cur(s) + 3j + 2) mod 10 = 0

≡ by FOL (line 2 subsumes line 1, line 4 subsumes line 3 and 5)

Legal(s) ∧ turn(s) = X ∨ Legal(s) ∧ turn(s) = O

DMU
ca ∪ DZ ∪ {L3.5.3} |= R88(s) ≡

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j ≤ 44 ∧ 100− 3j < cur(s) ∧ (cur(s) + 3j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 44 ∧ 100− 3j − 1 < cur(s) ∧ (cur(s) + 3j + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 44 ∧ 100− 3j − 2 < cur(s) ∧ (cur(s) + 3j + 2) mod 10 = 0

≡

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j ≤ 34 ∧ 100− 3j < cur(s) ∧ (cur(s) + 3j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 5 < cur(s) ∧ (cur(s) + 105) mod 10 = 0 ∨

159

Legal(s) ∧ turn(s) = O ∧ − 8 < cur(s) ∧ (cur(s) + 108) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 11 < cur(s) ∧ (cur(s) + 111) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 14 < cur(s) ∧ (cur(s) + 114) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 17 < cur(s) ∧ (cur(s) + 117) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 20 < cur(s) ∧ (cur(s) + 120) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 23 < cur(s) ∧ (cur(s) + 123) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 26 < cur(s) ∧ (cur(s) + 126) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 29 < cur(s) ∧ (cur(s) + 129) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ − 32 < cur(s) ∧ (cur(s) + 132) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 34 ∧ 100− 3j − 1 < cur(s) ∧ (cur(s) + 3j + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 3 < cur(s) ∧ (cur(s) + 103) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 6 < cur(s) ∧ (cur(s) + 106) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 9 < cur(s) ∧ (cur(s) + 109) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 12 < cur(s) ∧ (cur(s) + 112) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 15 < cur(s) ∧ (cur(s) + 115) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 18 < cur(s) ∧ (cur(s) + 118) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 21 < cur(s) ∧ (cur(s) + 121) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 24 < cur(s) ∧ (cur(s) + 124) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 27 < cur(s) ∧ (cur(s) + 127) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ − 30 < cur(s) ∧ (cur(s) + 130) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 44 ∧ 100− 3j − 2 < cur(s) ∧ (cur(s) + 3j + 2) mod 10 = 0

≡ by L3.5.3

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j ≤ 34 ∧ 100− 3j < cur(s) ∧ (cur(s) + 3j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 105) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 108) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 111) mod 10 = 0 ∨

160

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 114) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 117) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 120) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 123) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 126) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 129) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ (cur(s) + 132) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 34 ∧ 100− 3j − 1 < cur(s) ∧ (cur(s) + 3j + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 103) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 106) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 109) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 112) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 115) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 118) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 121) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 124) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 127) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ (cur(s) + 130) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 44 ∧ 100− 3j − 2 < cur(s) ∧ (cur(s) + 3j + 2) mod 10 = 0

≡ by the fact that the numbers 105, 108, 111, 114, 117, 120, 123, 126, 129, and 132 one is 0 modulo 10

≡ by the fact that the numbers 103, 106, 109, 112, 115, 118, 121, 124, 127, and 130 one is 0 modulo 10

Legal(s) ∧ turn(s) = O ∧ ∃j. 0 ≤ j ≤ 34 ∧ 100− 3j < cur(s) ∧ (cur(s) + 3j) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = O ∧ True ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 34 ∧ 100− 3j − 1 < cur(s) ∧ (cur(s) + 3j + 1) mod 10 = 0 ∨

Legal(s) ∧ turn(s) = X ∧ True ∨

Legal(s) ∧ turn(s) = X ∧ ∃j. 0 ≤ j < 44 ∧ 100− 3j − 2 < cur(s) ∧ (cur(s) + 3j + 2) mod 10 = 0

161

≡ by FOL (line 2 subsumes line 1, line 4 subsumes line 3 and 5)

Legal(s) ∧ turn(s) = X ∨ Legal(s) ∧ turn(s) = O

Thus the fixpoint expansion procedure converges no later than in the step 88 as we have:

DMU
ca ∪ DZ ∪ {L3.5.3} |= R87(s) ≡ R88(s)

And therefore by Theorem 1 of [DLP10]:

DMU
GS |= 〈〈{X}〉〉♦Wins(X)[s] ≡ Legal(s) ∧ turn(s) = X ∨ Legal(s) ∧ turn(s) = O

It follows by the initial state axioms that DMU
GS |= 〈〈{X}〉〉♦Wins(X)[S0], i.e. there is a strategy for player

X from the initial situation as it is legal and it is player X’s turn.

3.6 Discussion

Several game domains have been developed that are quite representative of the type of problem that the

technique is trying to address. The presented example problems have varying properties, which although

not exhaustive and complete, still allow to evaluate if the techniques work on some problems in infinite

domains. The work is based on the assumption that all agents have the complete knowledge of the theory,

that actions are observable by all agents, and that there are no sensing actions that allow agents to gain

additional private knowledge. The technique supports incomplete specifications of the application domain

– the basic action theories do not need to have a single model. The results in this chapter demonstrate

that the verification technique based on symbolic manipulation for properties in our game-theoretic logic for

situation calculus game structures with infinite states actually does work on many domains and verification

problems. We show that in some cases we must use facts about the initial situation to get convergence in

a finite number of steps. Note that we require a suitable axiomatization DZ of the integers for some games

that use integer arithmetic.

162

The Light World (LW) game is an infinite state game structure with an infinite number of different models.

It is also a multi-player game so properties related to cooperative and adversarial versions were examined.

The verification of the possibility to win for the cooperative version of the game converges in a finite number

of steps just by first-order logic entailment using only unique name and domain closure axioms Dca and

the axiomatization of the integers DZ . From the converged formula we can deduce that it is possible to

achieve the goal in all legal situations. The verification of the existence of the winning strategy for the

adversarial version of the game converges in a finite number of steps just by first-order logic entailment using

only unique name and domain closure axioms Dca and the axiomatization of the integers DZ . From the

converged formula we can deduce that X can ensure that she/he will achieve the goal in some specific legal

situations, but not in the initial situation. So for this domain, the [DLP10] method as originally specified

works.

The Oil Lamp World (OLW) game is an infinite state game structure with an infinite number of different

models. It is a single player game so the possibility of winning is the property that is verified. We try to

verify the possibility of winning. In this case, the [DLP10] method, which only uses the simplest part of the

domain theory, the unique names and domain closure for action axioms, fails to converge in a finite number

of steps. But we also show that extending the method to use some selected facts about the initial situation

and some state constraints does allow us to get convergence in a finite number of steps.

The In-Line Tic-Tac-Toe (TTT1D) game is an infinite state game structure with an infinite number of

different models. It is also a multi-player game so properties related to cooperative and adversarial versions

were examined. Among all the games that we have developed, this is probably the most like a real game - it

is a natural simplification and extension to infinite space of the classic Tic-Tac-Toe game. The verification

of the possibility to win for the cooperative version of the game converges in a finite number of steps just by

first-order logic entailment using unique name and domain closure axioms Dca and a suitable axiomatization

DZ of integers without requiring any knowledge of the initial situation. However the proof is long and many

cases have to be handled. From the converged formula we can deduce that the goal may be achieved in all

163

legal situations. The verification of the existence of the winning strategy for the adversarial version of the

game also converges in a finite number of steps. From the converged formula we can deduce that X can

ensure that she/he will achieve the goal in some specific legal situations, but not in the initial situation.

The Mark Down (MD) game is an infinite state game structure with an infinite number of different models.

It is also a multi-player game so properties related to cooperative and adversarial versions were examined.

The verification of the possibility to win for the cooperative version of the game fails to converge in a finite

number of steps by first-order logic entailment using only unique name and domain closure axioms Dca and

the axiomatization DZ of integers. The convergence in a finite number of steps is achieved if we add some

facts from the initial situation. From the converged formula we can deduce that it is possible to achieve

the goal in some specific legal situations, and that there may be no possibility to achieve the goal in some

situations. The verification of the existence of the winning strategy for the adversarial version of the game

fails to converge in a finite number of steps by first-order logic entailment using only unique name and

domain closure axioms Dca and the axiomatization DZ of integers. But the convergence is achieved in a

finite number of steps if we add some facts from the initial situation. From the converged formula we can

deduce that X can ensure that she/he will achieve the goal in some specific legal situations including the

given initial situation.

The Mark Up (MU) game is an infinite state game structure with an infinite number of different models.

It is also a multi-player game so properties related to cooperative and adversarial versions were examined.

The verification of the possibility to win for the cooperative version of the game fails to converge in a finite

number of steps by first-order logic entailment using only unique name and domain closure axioms Dca and

the axiomatization DZ of integers. The convergence in a finite number of steps is achieved if we add some

facts from the initial situation. From the converged formula we can deduce that the goal may be achieved

in all legal situations. The verification of the existence of the winning strategy for the adversarial version of

the game fails to converge in a finite number of steps by first-order logic entailment using only unique name

and domain closure axioms Dca and the axiomatization DZ of integers. But the convergence is achieved in

164

a finite number of steps if we add some facts from the initial situation. From the converged formula we can

deduce that X can ensure that she/he will achieve the goal in all legal situations.

165

4 Characteristic Graph-Based Verification of Properties of
GameGolog Structures

As part of this thesis research we analyzed the feasibility and effectiveness of characteristic graph construction

in verification of game theories (De Giacomo, Lespérance and Pearce [DLP10]). The main point there was

to extend the technique of characteristic graphs to check ATL-type game-theoretic properties as presented

in the background section of this thesis. The game domains from chapter 3 have been used to evaluate the

characteristic graph approach to temporal property verification. It turns that with these two-player turn-

taking types of games the calculations and results were very similar to those of the symbolic manipulation-

based technique presented in chapter 3. As there was not much new that would be contributed by this method

based on the sample problems, our focus was put on selecting one representative problem and demonstrating

how the technique is used step-by-step. The objective was to create a tutorial that can be followed in future

research and used in characteristic graph calculation for other game-like problems.

4.1 Light World (LW)

The Light World (LW) example that was analyzed here is the same problem presented in chapter 3. It shows

that the characteristic graph technique works for this example and produces the same results as the symbolic

formula manipulation technique that was researched in section 3.1.

166

4.1.1 GameGolog Program of the LW Game

The GameGolog program for the LW (Light World) Game is given as:

ρLW =

while ¬Finished() do (

[X πt.flip(t)];

if ¬Finished() then

[O πt.flip(t)]

else

True?

)

4.1.2 Characteristic Graph of the LW Game

The characteristic graph GLW of the Light World (LW) problem for the program ρLW has two nodes as

the players take turns. The first vertex (for actions of player X) has the program ρLW left to run and can

terminate if the fluent Finished (defined as just the Wins fluent in the axiomatization) holds. The second

vertex (for actions of player O) has the step [O πt.flip(t)] and then program ρLW left to run and can also

terminate if the fluent Finished holds. The edges from vertex to vertex are labelled with actions of the

player of the vertex and are always possible. The graph is as follows:

167

Where:

• agent(υ0) = X i.e., υ0 is controlled by agent X that is actions from υ0 are possible iff turn(s) = X

• agent(υ1) = O i.e., υ1 is controlled by agent O that is actions from υ1 are possible iff turn(s) = O

• υ0 = 〈(ρLW , F inished()〉

• υ1 = 〈[O πt.flip(t)]; ρLW , F inished()〉

We also use the Situation Calculus game structure axiomatization of this problem as defined in chapter 3.

Here the Legal predicate is replaced by the axioms that use the GameGolog program ρLW as explained in

section 2.5.3. Now, Legal can be assumed to hold for all situations that respect the GameGolog program,

that is, all situations that result from running the program are implicitly legal, and therefore Legal can be

removed from the Wins predicate in particular.

4.1.3 Possibility of Winning

The property that it is possible for X to eventually win can be represented by the following formula:

168

∃♦Wins(X)
.
= µZ.Wins(X) ∨ ∃© Z

This can be verified by performing the De Giacomo et al. [DLP10] labelling method for characteristic graphs

(as explained in the background section of this thesis):

JµZ.Wins(X) ∨ ∃© ZK

We proceed by using regression and the labelling fixpoint approximation operation lfp. We try to show

that successive labellings are equivalent using only the unique name and domain closure axioms for actions

DLWca , and a suitable axiomatization of integers DZ . The technique does not always converge and this needs

to be checked as we proceed.

In the computations we will use the following lemma:

L 4.1.1. Concrete case of pre (labelling of ©, see section 2.7.3) definition for the LW domain.

pre ({X,O}, {〈υ0, φ0〉, 〈υ1, φ1〉}) = {

〈υ0,∃t. R(φ1(do(flip(X, t), s)))〉,

〈υ1,∃t. R(φ0(do(flip(O, t), s)))〉}

proof sketch: the lemma follows from the expansion of the definition of pre for GLW

L 4.1.2. Concrete case of the JWins(X, s)K.

JWins(X, s)K =

{〈υ0, On(1, s) ∧On(2, s)〉,

〈υ1, On(1, s) ∧On(2, s)〉}

proof sketch: the lemma follows from the definitions of the labelling operations from section 2.7.3

The fixpoint approximations of the operation lfp and the details of the labelling are explained next.

Z0(s) = JWins(X, s) ∨ ∃© FalseK =

JWins(X, s)K or pre ({X,O}, JFalseK)

169

Now,

JFalseK = by the definitions of the labelling operation from section 2.7.3

{〈υ0, False〉,

〈υ1, False〉}

pre ({X,O}, JFalseK) = by Lemma 4.1.1 and JFalseK above

{〈υ0, False〉,

〈υ1, False〉}

And thus,

Z0(s) = JWins(X, s) ∨ ∃© FalseK =

{〈υ0, On(1, s) ∧On(2, s)〉,

〈υ1, On(1, s) ∧On(2, s)〉}

The labels (for either node of the graph) of this approximation evaluate to true if s is such that X is winning

in s already (in no steps). These are situations where light 1 and light 2 are on.

Z1(s) = JWins(X, s) ∨ ∃©Z0K =

JWins(X, s)K or pre ({X,O},Z0)

Now,

pre ({X,O},Z0) = by Lemma 4.1.1 and Z0 from the previous step

{〈υ0,∃t. R(On(1, do(flip(X, t), s)) ∧On(2, do(flip(X, t), s)))〉,

〈υ1,∃t. R(On(1, do(flip(O, t), s)) ∧On(2, do(flip(O, t), s)))〉}

= by P3.1.2 and P3.1.3 from chapter 3 and FOL

{〈υ0,∃t. (

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧

170

(¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))〉,

〈υ1,∃t. (

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧

(¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))〉}

= by FOL (∨ over ∧)

{〈υ0,∃t. (

¬On(1, s) ∧ t = 1 ∧ ¬On(2, s) ∧ t = 2 ∨

¬On(1, s) ∧ t = 1 ∧On(2, s) ∧ t 6= 2 ∨

On(1, s) ∧ t 6= 1 ∧ ¬On(2, s) ∧ t = 2 ∨

On(1, s) ∧ t 6= 1 ∧On(2, s) ∧ t 6= 2)〉,

〈υ1,∃t. (

¬On(1, s) ∧ t = 1 ∧ ¬On(2, s) ∧ t = 2 ∨

¬On(1, s) ∧ t = 1 ∧On(2, s) ∧ t 6= 2 ∨

On(1, s) ∧ t 6= 1 ∧ ¬On(2, s) ∧ t = 2 ∨

On(1, s) ∧ t 6= 1 ∧On(2, s) ∧ t 6= 2)〉}

= by FOL (removal of contradiction and quantifier elimination)

{〈υ0, (

¬On(1, s) ∧On(2, s) ∨

On(1, s) ∧ ¬On(2, s) ∨

On(1, s) ∧On(2, s))〉,

〈υ1,∃t. (

¬On(1, s) ∧On(2, s) ∨

On(1, s) ∧ ¬On(2, s) ∨

On(1, s) ∧On(2, s))〉}

= by FOL (combining of line 2 and 4, 3 and 4, 6 and 8, line 7 and 8)

{〈υ0, On(1, s) ∨On(2, s)〉,

171

〈υ1, On(1, s) ∨On(2, s)〉}

And thus,

Z1(s) = JWins(X, s) ∨ ∃©Z0K =

JWins(X, s)K or pre ({X,O},Z0)

= by the definition of or

{〈υ0, On(1, s) ∧On(2, s) ∨On(1, s) ∨On(2, s)〉,

〈υ1, On(1, s) ∧On(2, s) ∨On(1, s) ∨On(2, s)〉}

= by FOL (subsumption of On(1, s) ∧On(2, s))

{〈υ0, On(1, s) ∨On(2, s)〉,

〈υ1, On(1, s) ∨On(2, s)〉}

The labels (for either node of the graph) of this approximation evaluate to true if s is such that the game

can be won in at most 1 step. These are legal situations where player X wins already or one of lights 1 or 2

is on (X or O can turn the other light at the next step).

Z2(s) = JWins(X, s) ∨ ∃©Z1K =

JWins(X, s)K or pre ({X,O},Z1)

Now,

pre ({X,O},Z1) = by Lemma 4.1.1 and Z1 from the previous step

{〈υ0,∃t. R(On(1, do(flip(X, t), s)) ∨On(2, do(flip(X, t), s)))〉,

〈υ1,∃t. R(On(1, do(flip(O, t), s)) ∨On(2, do(flip(O, t), s)))〉}

= by P3.1.2 and P3.1.3 and FOL

{〈υ0,∃t. ((¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∨ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))〉,

〈υ1,∃t. ((¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∨ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))〉}

= by FOL (∨ over ∧)

172

{〈υ0, (¬On(1, s) ∨On(1, s) ∨ ¬On(2, s) ∨On(2, s))〉,

{〈υ1, (¬On(1, s) ∨On(1, s) ∨ ¬On(2, s) ∨On(2, s))〉}

= by FOL (combining on line 2 and 3)

{〈υ0, T rue〉,

〈υ1, T rue〉}

And thus,

Z2(s) = JWins(X, s) ∨ ∃©Z1K =

JWins(X, s)K or pre ({X,O},Z1)

= by the definition of or

{〈υ0, On(1, s) ∧On(2, s) ∨ True〉,

〈υ1, On(1, s) ∧On(2, s) ∨ True〉}

= by FOL

{〈υ0, T rue〉,

〈υ1, T rue〉}

The labels (for either node of the graph) of this approximation evaluate to true if s is such that the game

can be won in at most 2 steps. Here it is true for all situations as one step can turn light 1 on and the second

step can turn light 2 on.

Z3(s) = JWins(X, s) ∨ ∃©Z2K =

JWins(X, s)K or pre ({X,O},Z2)

Now,

pre ({X,O},Z2) = by Lemma 4.1.1 and Z1 from the previous step

{〈υ0,∃t. R(True)〉,

〈υ1,∃t. R(True)〉}

173

=

{〈υ0, T rue〉,

{〈υ1, T rue〉}

And thus,

Z3(s) = JWins(X, s) ∨ ∃©Z2K =

JWins(X, s)K or pre ({X,O},Z2)

= by the definition of or

{〈υ0, On(1, s) ∧On(2, s) ∨ True〉,

〈υ1, On(1, s) ∧On(2, s) ∨ True〉}

= by FOL

{〈υ0, T rue〉,

〈υ1, T rue〉}

Thus the labelling fixpoint expansion procedure converges in the 4th step as we have:

DLWca |= Z2(s) = Z3(s)

And therefore by some reasoning about the program and Theorem 5 of [DLP10]:

DLW ′

GS \ Σ |= ∃♦Wins(X)[ρLW , s] ≡ True

where DLW ′

GS is DLWGS with Legal defined as a GameGolog program

By Theorem 6 of [DLP10] it follows by the initial state axioms that DLW ′

GS |= ∃♦Wins(X)[ρLW , S0], i.e.,

the goal may eventually be reached from the initial situation.

174

4.1.4 Existence of a Winning Strategy

The existence of a strategy to ensure Wins(X) by group G = {X} can be represented by the following

formula:

〈〈{X}〉〉♦Wins(X)
.
= µZ. Wins(X) ∨ 〈〈{X}〉〉 © Z

This can be verified by performing the De Giacomo et al. [DLP10] labelling method for characteristic graphs:

JµZ. Wins(X) ∨ 〈〈{X}〉〉 © ZK

We proceed by using regression and the labelling fixpoint approximation operation lfp. We try to show

that successive labellings are equivalent using only the unique name and domain closure axioms for actions

DLWca , and a suitable axiomatization of integers DZ . The technique does not always converge and this needs

to be checked as we proceed.

In the computations we will use the following lemma:

L 4.1.3. Concrete case of the pre (labelling of ©, see section 2.7.3) definition for the LW domain.

pre ({X}, {〈υ0, φ0〉, 〈υ1, φ1〉}) = {

〈υ0,∃t. R(φ1(do(flip(X, t), s)))〉,

〈υ1,∀t. R(φ0(do(flip(O, t), s)))〉}

proof sketch: the lemma follows from the expansion of the definition of pre for GLW

The fixpoint approximations of the operation lfp and the details of the labelling are explained next.

Z0(s) = JWins(X, s) ∨ 〈〈{X}〉〉 © FalseK =

JWins(X, s)K or pre ({X}, JFalseK)

Now,

175

JFalseK = by the definitions of the labelling operation from section 2.7.3

{〈υ0, False〉,

〈υ1, False〉}

pre ({X}, JFalseK) = by Lemma 4.1.3 and JFalseK above

{〈υ0, False〉,

〈υ1, False〉}

And thus,

Z0(s) = JWins(X, s) ∨ 〈〈{X}〉〉 © FalseK =

{〈υ0, On(1, s) ∧On(2, s)〉,

〈υ1, On(1, s) ∧On(2, s)〉}

The labels of this approximation evaluate to true if s is such that X is winning in s already (in no steps).

These are situations where light 1 and light 2 are on.

Z1(s) = JWins(X, s) ∨ 〈〈{X}〉〉 © Z0K =

JWins(X, s)K or pre ({X},Z0)

Now,

pre ({X},Z0) = by Lemma 4.1.3 and Z0 from the previous step

{〈υ0,∃t. R(On(1, do(flip(X, t), s)) ∧On(2, do(flip(X, t), s)))〉,

〈υ1,∀t. R(On(1, do(flip(O, t), s)) ∧On(2, do(flip(O, t), s)))〉}

= by P3.1.2 and P3.1.3 from chapter 3 and FOL

{〈υ0,∃t. (

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧

(¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))〉,

176

〈υ1,∀t. (

(¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧

(¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))〉}

= by FOL (∨ over ∧)

{〈υ0,∃t. (

¬On(1, s) ∧ t = 1 ∧ ¬On(2, s) ∧ t = 2 ∨

¬On(1, s) ∧ t = 1 ∧On(2, s) ∧ t 6= 2 ∨

On(1, s) ∧ t 6= 1 ∧ ¬On(2, s) ∧ t = 2 ∨

On(1, s) ∧ t 6= 1 ∧On(2, s) ∧ t 6= 2)〉,

〈υ1,∀t. (

¬On(1, s) ∧ t = 1 ∧ ¬On(2, s) ∧ t = 2 ∨

¬On(1, s) ∧ t = 1 ∧On(2, s) ∧ t 6= 2 ∨

On(1, s) ∧ t 6= 1 ∧ ¬On(2, s) ∧ t = 2 ∨

On(1, s) ∧ t 6= 1 ∧On(2, s) ∧ t 6= 2)〉}

= by FOL (removal of contradiction and quantifier elimination)

{〈υ0, (

¬On(1, s) ∧On(2, s) ∨

On(1, s) ∧ ¬On(2, s) ∨

On(1, s) ∧On(2, s))〉,

〈υ1,

¬On(1, s) ∧On(2, s) ∧ for t=1

On(1, s) ∧ ¬On(2, s) ∧ for t=2

On(1, s) ∧On(2, s)〉} for 2 < t

= by FOL (contradiction in lines 6 and 7, combining of line 2 and 4, 3 and 4, 6)

{〈υ0, On(1, s) ∨On(2, s)〉,

〈υ1, False〉}

177

And thus,

Z1(s) = JWins(X, s) ∨ 〈〈{X}〉〉 © Z0K =

JWins(X, s)K or pre ({X},Z0)

= by the definition of or

{〈υ0, On(1, s) ∧On(2, s) ∨On(1, s) ∨On(2, s)〉,

〈υ1, On(1, s) ∧On(2, s) ∨ False〉}

= by FOL (subsumption of On(1, s) land On(2, s))

{〈υ0, On(1, s) ∨On(2, s)〉,

〈υ1, On(1, s) ∧On(2, s)〉}

The labels (for either node of the graph) of this approximation evaluate to true if s is such that the game

can be won in at most 1 step. These are situations where player X wins already, or the next action is by

player X and one of lights 1 or 2 is on (X can turn on the other missing light).

Z2(s) = JWins(X, s) ∨ 〈〈{X}〉〉 © Z1K =

JWins(X, s)K or pre ({X},Z1)

Now,

pre ({X},Z1) = by Lemma 4.1.3 and Z1 from the previous step

{〈υ0,∃t. R(On(1, do(flip(X, t), s)) ∧On(2, do(flip(X, t), s)))〉,

〈υ1,∀t. R(On(1, do(flip(O, t), s)) ∨On(2, do(flip(O, t), s)))〉}

= by P3.1.2 and P3.1.3 and FOL

{〈υ0,∃t. ((¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1) ∧ (¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2))〉,

〈υ1,∀t. (¬On(1, s) ∧ t = 1 ∨On(1, s) ∧ t 6= 1 ∨ ¬On(2, s) ∧ t = 2 ∨On(2, s) ∧ t 6= 2)〉}

= by FOL (∨ over ∧ etc.)

{〈υ0, (

178

¬On(1, s) ∧On(2, s) ∨ t = 1

On(1, s) ∧ ¬On(2, s) ∨ t = 2

On(1, s) ∧On(2, s))〉, 2 < t

〈υ1,

(¬On(1, s) ∨On(2, s)) ∧ t = 1

(On(1, s) ∨ ¬On(2, s)) ∧ t = 2

(On(1, s) ∨On(2, s))〉} 2 < t

= by FOL (combining on line 2 and 4, 3 and 4, combining line 6 and 8, 7 and 8)

{〈υ0, On(2, s) ∨On(1, s)〉,

〈υ1, (On(2, s) ∧On(1, s))〉}

= by FOL

{〈υ0, On(1, s) ∨On(2, s)〉,

〈υ1, On(1, s) ∧On(2, s)〉}

And thus,

Z2(s) = JWins(X, s) ∨ 〈〈{X}〉〉 © Z1K =

JWins(X, s)K or pre ({X},Z1)

= by the definition of or

{〈υ0, On(1, s) ∧On(2, s) ∨On(1, s) ∨On(2, s)〉,

〈υ1, On(1, s) ∧On(2, s) ∨On(1, s) ∧On(2, s)〉}

= by FOL

{〈υ0, On(1, s) ∨On(2, s)〉,

〈υ1, On(1, s) ∧On(2, s)〉}

The labels (for either node of the graph) of this approximation evaluate to true if s is such that the game

can be won in at most 2 steps. These are situations where player X wins already, or the next action is by

179

player X and one of lights 1 or 2 is on (X can turn on the other missing light).

Thus the labelling fixpoint expansion procedure converges in the 3th step as we have:

DLWca |= Z1(s) = Z2(s)

And therefore by reasoning about the program and Theorem 5 of [DLP10] as we get:

DLW ′

GS \ Σ |= 〈〈{X}〉〉♦Wins(X)[ρLW , s] ≡ On(1, s) ∨On(2, s)

where DLW ′

GS is DLWGS with Legal defined as a GameGolog program

By the Theorem 6 of [DLP10] and by the initial state axioms it follows that:

DLW ′

GS |= ¬〈〈{X}〉〉♦Wins(X)[ρLW , S0]

i.e., there is no winning strategy for X in the initial situation S0 as Control(S0) = X

and none of the lights 1 or 2 is on.

However we have that

DLW ′

GS |= 〈〈{X}〉〉♦Wins(X)[ρLW , S1]

where S1 = do(flip(O, 3), do(flip(X, 1), S0))

i.e., there is a winning strategy for X in the situation S1 where X has first turned light 1 on and

then O has turned light 3 on, as X can turn on light 2 next.

4.2 Discussion

The first conclusion is that the characteristic graph method does work for some infinite domains. The

technique also supports incomplete specifications – the basic action theories do not need to have a single

model. For the selected example Light World (LW) game the verification of the possibility of winning and

the existence of the winning strategy converged in a finite number of steps just by first-order logic entailment

180

using only unique name and domain closure axioms Dca and the axiomatization of the integers, regardless of

the state in the initial situation. We also used the technique on game domains from chapter 3 to evaluate the

characteristic graph approach to temporal property verification. The usability of the method appears to be

very similar to the symbolic manipulation-based technique for simple games that have only 2 configurations.

For more complex games with several stages of play, GameGolog theories would likely provide substantial

advantages for verification as it appears that the characteristic graph method modularizes the computations

as the cases are broken up.

181

5 Automated Evaluation-Based Verification of Properties of
Game Theories

As part of this thesis research the feasibility and effectiveness of automated evaluation-based verification

of properties of game theories as per De Giacomo, Lespérance and Pearce [DLP10] was developed and

applied to verification of a sample game theory for the well-known Tic-Tac-Toe game. The main point was

to develop a technique that can automatically check ATL-type game-theoretic properties as presented in the

background section of this thesis. We provide several variants of the technique: a method based on Basic

Action Theories, a variant where constraints on actions of players can be specified, and a variant where the

game structure is given in the form of game’s GameGolog program.

5.1 Verifier for Basic Action Theory Game Structures

The code for the evaluation-based verifier is listed in the appendix A.1.

The technique presented in this section builds on the logic programming evaluator for SitCalc projection

queries developed by Reiter [Rei01] for initial state theories with the closed world assumption (which makes

them complete theories), that relies on regression. It uses Lloyd-Topor transformations to soundly reduce

the evaluation of complex First-Order projection queries to that of atomic projection queries. In our imple-

mentation we handle the the basic operator 〈〈G〉〉©ϕ[S] essentially by macro-expanding it into its situation

calculus definition and evaluating the result. It has been developed and implemented in Prolog and tested

on the classic Tic-Tac-Toe game theory expressed in the Situation Calculus using Prolog clauses. Here the

182

term “evaluation-based” refers to the use of evaluation instead of entailment to check state properties under

the conditions of complete theory (i.e. single model) and closed-world assumption.

In general the verifier checks if a given temporal property expressed in the L-Logic holds for a given situation.

It is equipped with the constructs to represent L-Logic formulas and the parsing and evaluation mechanism

to check if a formula holds. The verifier code is independent of any particular problem domain. It uses

the Basic Action Theory axiomatization of the modelled domain that is kept in a separate source file. The

evaluation is done according to the semantics of the L-Logic and is straightforward for the most part. The

main element of the evaluator is the evaluation of temporal terms (according to their definition) by using

the “next” operator 〈〈G〉〉 © ϕ, the µ operator fixpoint procedure, and regression. Here is the code for the

〈〈G〉〉 © ϕ operator:

%##

% "can ensure next" operator

% this macro expands according to SitCalc definition

%##

holds(next(G,F),S) :- !, (

incontrol(G,S), %*** group in control, any legal successor action ***

holds(exists_successor(G,F),S)

;

incontrol(-G,S), %*** anti-group in control, all legal successor actions ***

holds(forall_successors2(-G,F),S)).

%##### F holds in do(a,s) for some legal actions of group G #####

holds(exists_successor(G,F),S) :- !,

member(P,G), agent_action(P, A),

S1=do(A,S), legal(S1), holds(F,S1), !.

183

%##### F holds in do(a,s) for all legal actions of anti-group G #####

%##### (defined as negation of existential negative goal) #####

holds(forall_successors2(-G,F),S) :- !, not(holds(exists_successor2(-G,-F),S)).

%##### F holds in do(a,s) for some legal actions of anti-group G #####

holds(exists_successor2(-G,F),S) :- !,

agent(P), not(member(P,G)), agent_action(P, A),

S1=do(A,S), legal(S1), holds(F,S1), !.

%##

The [[G]]© ϕ[S] case is handled as ¬〈〈G〉〉 © ¬ϕ[S]. The µ operator is handled by using the same fixpoint

approximates method as used in chapter 3, except that we put a limit on the number of expansions and we

do not check for convergence – we simply check if the given situation S is in the successive approximates,

i.e. we check if the approximate evaluates to True for such S:

%##

% mu approximation

%##

%##### binding diameter reached (as in bounded model checking) #####

mu_approx(Z,F,Int,N,S) :- binding_diameter(Max), N>Max, !,

write(’binding diameter ’), write(N), write(’ reached - stop’), nl, !, fail.

%##### else: substitute and chech if it holds #####

mu_approx(Z,F,Int,N,S) :- subst(Z,Int,F,Fx), holds(Fx,S), !, output1(N,Fx).

%##### else: do next approximation macro-expansion #####

mu_approx(Z,F,Int,N,S) :- M is N+1, subst(Z,Int,F,Int2), !, mu_approx(Z,F,Int2,M,S).

%##

Checking of equivalence on arbitrary First-Order formulas could be quite complex and therefore a simpler

184

approach is taken. Looking at the form of the approximations and the definition of the operator©, it can be

observed that if any approximation evaluates to True for S then the next approximation will also evaluate to

True. Therefore the evaluation-based approach simply stops as soon as any approximation evaluates to True.

The downside is that it may never stop or will not stop even if the formulas of consecutive approximations

are equivalent but do not evaluate to True. One way to make sure the procedure stops is to put a limit

on the number of approximations that would be somehow natural for the game that is modelled. The idea

is similar to the binding diameter concept in bounded model checking (Biere [Bie09]). For some modelled

domains there will be no solutions beyond their binding diameter and for others it will be just a practical

safety mechanism to prevent infinite execution.

For example the operator 〈〈G〉〉♦ϕ employs the µ operator over the “next” operator © as follows:

Z1 = goal ∨ 〈〈G〉〉 © False, then compute Z1[S] and return success if it is True

Z2 = goal ∨ 〈〈G〉〉 © Z1, then compute Z2[S] and return success if it is True

. . .

Zlimit = goal ∨ 〈〈G〉〉 © Zlimit−1, then compute Zlimit[S] and return success if it is True

otherwise report failure

The code for 〈〈G〉〉♦ϕ corresponds to definition in alternating time µ-calculus [DLP10]:

%##

% "ensure eventually" operator (in terms of mu and next)

%##

holds(ensure-eventually(G,F),S) :- !, holds(mu(z,F v next(G,z)),S).

%##

185

EXAMPLE:

The complete Prolog code for the axiomatization and the results of the tests for the Tic-Tac-Toe game

(which is finite state) are given in the appendix A.2 and A.3. In the examples we verify the non-trivial

property of the existence of the winning strategy. The Basic Action Theory axiomatization of the game

[DLP10] provides the formula for the goal, the specification of the domain actions, and some other auxiliary

and optional predicates. It defines the fluents, their successor-state axioms, and also the state in the initial

situation S0. These axioms are quite simple with the possible exception of Legal that captures the rules of

the game of the player alternating moves:

%##

%##### the goal

wins(P,S) :- inline(C1,C2,C3), cell(P,C1,S), cell(P,C2,S), cell(P,C3,S), agent(P), legal(S).

%##

%##### holds if the situation is LEGAL (it can this situation be arrived at)

legal(s0) :- !.

legal(S) :- S = do(A,s0), agent_action(x,A), poss(A, s0), !. %%% X must play first

% alternate the actions: X’s action after O’s

legal(S) :- S = do(A1,S1), S1 = do(A2,S2), agent_action(x,A1), agent_action(o,A2),

poss(A1,S1), poss(A2,S2),not(finished(S1)), !.

% alternate the actions: O’s action after X’s

legal(S) :- S = do(A1,S1), S1 = do(A2,S2), agent_action(o,A1), agent_action(x,A2),

poss(A1,S1), poss(A2,S2),not(finished(S1)), !.

%##

%##### poss: possible (is it possible when given legal or not situation)

poss(mark(P,C),S) :- cell(b,C,S), agent(P), cell(C).

%##

186

%##### the initial situation - all cells in domain are b (blank)

cell(b,C,s0) :- cell(C).

%##

%##### successor state axiom(s)

cell(M,C,do(A,S)) :- A=mark(M,C) ; cell(M,C,S), not(A=mark(_,C)).

%##

The properties are verified by running L-Logic queries against the verifier and the Basic Action Domain

axiomatization of the game domain. Here is an example to check for the existence of a winning strategy

from a situation where some actions have already occurred:

?-holds(ensure-eventually([x],wins(x)),do(mark(x,2),do(mark(o,9),do(mark(x,1),do(mark(o,4),do(mark(x,5),s0)))))).

XX_

OX_

__O

trying ##### approximation 1 ---> wins(x) v next([x], false)

trying ##### approximation 2 ---> wins(x) v next([x], wins(x) v next([x], false))

trying ---> next([x],wins(x) v next([x], false))

---> for S = do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0)))))

trying ##### approximation 3 ---> wins(x) v next([x], wins(x) v next([x], wins(x) v next([x], false)))

trying ---> next([x],wins(x) v next([x], wins(x) v next([x], false))) ---> S=

do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0)))))

trying ---> next([x],wins(x) v next([x], false)) ---> S=

do(mark(o, 3), do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))))

> successor EXISTS for G ---> next([x],wins(x) v next([x], false)) ---> S=

do(mark(o, 3), do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))))

trying ---> next([x],wins(x) v next([x], false)) ---> S=

do(mark(o, 6), do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))))

> successor EXISTS for G ---> next([x],wins(x) v next([x], false)) ---> S=

do(mark(o, 6), do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))))

trying ---> next([x],wins(x) v next([x], false)) ---> S=

do(mark(o, 7), do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))))

> successor EXISTS for G ---> next([x],wins(x) v next([x], false)) ---> S=

do(mark(o, 7), do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))))

trying ---> next([x],wins(x) v next([x], false)) ---> S=

do(mark(o, 8), do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))))

> successor EXISTS for G ---> next([x],wins(x) v next([x], false)) ---> S=

do(mark(o, 8), do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))))

> successor FORALL for -G ---> next([x],wins(x) v next([x], wins(x) v next([x], false))) ---> S=

do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0)))))

> ##### approximation 3 holds --> wins(x) v next([x], wins(x) v next([x], wins(x) v next([x], false)))

Several situations have been tested for the existence of a winning strategy. The tests were done for 2 game

scenarios (s0 to s5, and sw0 to sw6) with the objective of finding out at which point the game is not settled.

There are two additional tests on an illegal situation and a game that cannot be won. In general the number

187

of approximations represents the maximum number of moves before the game can be won. A failure is

reported (if the limit was reached) when there is no strategy or the game cannot be won. The running time

increases non-linearly as more and more approximations need to be considered. The results (the number of

iterations and the running time in seconds or minutes) are:

s5 s4 s3 s2 s1 s0

XOO ### ### XOO ### ### XO. ### ### XO. ### ### X.. ### ### ...

X.. ### ### X.. ### ### X.. ### ### ... ### ### ... ### ### ...

X.. ### ### ... ### ### ... ### ### ... ### ### ... ### ### ...

1 appr 0s 2 appr 0s 5 appr 3s 6 appr 6s failed 2m failed 15m

for s2 can ensure winning and in at most 5 steps

for s0 can not ensure winning in up to 11 steps at which point the board is full thus there is no strategy

sw6 sw5 sw4 sw3 sw2 sw1 sw0

XXX ### ### XX. ### ### XX. ### ### X.. ### ### X.. ### ### ... ### ### ...

OX. ### ### OX. ### ### OX. ### ### OX. ### ### OX. ### ### OX. ### ### .X.

.OO ### ### .OO ### ### ..O ### ### ..O ### ### ... ### ### ... ### ### ...

1 appr 0s 2 appr 0s 3 appr 1s 4 appr 1s 5 appr 3s 6 appr 6s failed 1m

the tests s0 to s5 are for progressive stages of a game that starts in the corner

the tests sw0 to sw6 are for progressive stages of a game that starts in the centre

there is no strategy for X to guarantee winning in sw0 but there is one in sw1 where O made a mistake

illegal no-winning

XX. ### ### XX.

... ### ### XO.

... ### ### O..

5 appr 1s failed 0s

One of the tests is for an initial situation that is illegal with respect to the common rules of the game. Still

from the point of view of the situation calculus axiomatization, this is a legal game with just a particular

initial situation and this game has a winning strategy for player X. Also, another test is for an initial situation

where player X may not be able to win if the opponent plays it intelligently. Here no approximation will

evaluate to true and the program fails quickly as there are very few legal situations that result from that

initial situation.

We believe that our implementation is sound (assuming a proper Prolog interpreter is used). It is not

complete, in part for the same reasons that Prolog is not a complete reasoner for FOL. We leave the proof

of soundness for future work. It remains to be seen how well the verifier handles domains where the set of

actions is infinite. Also the reasoner can only reason about concrete situations. Still any starting situation

188

can be given as the initial situation to verify the property of interest in different circumstances and not only

S0. Also it is fully automatic and just requires a Basic Action Theory axiomatization of the game domain.

We leave more experimental evaluation for future work.

5.2 Verifier for Basic Action Theory Game Structures with Constraints

The code for the evaluation-based fixpoint evaluator with constraints is listed in the appendix B.1.

Quite often certain agent actions are known or preferred in particular situations. This could be due to

the strategy of the opponent being apparent or some well-known heuristics for the game. Capturing such

preferences into the game theory would allow to model more realistic types of agents and to gain efficiency

by cutting down on search. For the Tic-Tac-Toe game one might know that the opponent always tries to

mark the corners first and this knowledge might be sufficient to determine if there is a winning strategy

where there is none in the the general case. These “soft constraint”, that is the choices of action that are

taken if the actions are possible in a given situation, can cut down on the number of alternatives when the

“next” operator © is used in temporal property verification. A mechanism is needed for the game modeller

to supply state constraints in advance so that the reasoner program can use them during verification. These

could be in the form of rules or decision trees but since player’s preferred actions really depend on the current

state (i.e. the values of the fluents) and not on the history (it does not matter how we arrived at the decision

point), a function from situations to a set of actions appears appropriate to represent the constraints on the

behaviours of the players. During computation of the “next” operator © if the set of preferred actions for

the current situation is not empty then the legal actions of that set are used in the quantifiers, otherwise the

operator behaves as usual considering all legal actions. Of course if the function returns an empty set or all

of the actions then the effect is as if no constraining exists.

To implement soft constraints we propose to modify the “next” operator ©. We test for existence of any

agent constraints first and then use them if they are present otherwise quantify over the actions in the “old”

189

way. This applies to both the cases of the agents of coalition and agents of anti-coalition. The soft constraints

should be axiomatized specific to the problem being modelled as a predicate Preferred(p, a, s) that holds

if an action a is a preferred action for player p in situation s. Then the new “next” operator ©b is derived

from the standard operator © by introducing cases for when soft constraints are present and when they are

not. The new “next” operator ©b is defined as follows:

〈〈G〉〉 ©b ϕ
.
=

{∃agt ∈ G. Control(agt, now)} ∧ {∃a. Preferred(agt, a, now)∧ agent(a) = agt∧Legal(do(a, now))} ∧

(∃agt ∈ G. Control(agt, now) ∧ ∃a. Preferred(agt, a, now) ∧ agent(a) = agt

∧Legal(do(a, now)) ∧ ϕ[do(a, now)]) ∨

{∃agt ∈ G. Control(agt, now)}∧¬{∃a. Preferred(agt, a, now)∧agent(a) = agt∧Legal(do(a, now))}∧

(∃agt ∈ G. Control(agt, now) ∧ ∃a. agent(a) = agt ∧

∧Legal(do(a, now)) ∧ ϕ[do(a, now)]) ∨

{∃agt /∈ G. Control(agt, now)} ∧ {∃a. Preferred(agt, a, now)∧ agent(a) = agt∧Legal(do(a, now))} ∧

(∀agt /∈ G. Control(agt, now) ∧ ∀a. Preferred(agt, a, now) ∧ agent(a) = agt ∧

Legal(do(a, now)) ⊃ ϕ[do(a, now)]) ∨

{∃agt /∈ G. Control(agt, now)}∧¬{∃a. Preferred(agt, a, now)∧agent(a) = agt∧Legal(do(a, now))}∧

(∀agt /∈ G. Control(agt, now) ∧ ∀a. agent(a) = agt ∧

Legal(do(a, now)) ⊃ ϕ[do(a, now)])

It can be noticed that for the coalition agents if any preferred and legal actions exist then only the first

conjunct will be a factor, otherwise there are no preferred legal actions and only the second conjunct is a

factor. If the preferred actions include all actions then there is no difference between the first and the second

conjunct. The reasoning is analogous for the agents of the anti-coalition.

The only difference between the code of the constrained verifier and the generic verifier is in the predicates

performing the quantification – they have been duplicated to handle the cases of when soft constraints exist

190

and when they do not. We can switch easily between the constrained and unconstrained version - we can

simply define Preferred to be always false and the constrained version of the exists successor predicate

will always be ignored as it will always fail.

%##### F holds in do(a,s) for some PREFERRED actions of group G #####

holds(exists_successor(G,F),S) :-

member(P,G), preferred(P,A,S), agent_action(P, A),

S1=do(A,S), legal(S1), !, %% --> preferred action exists so commit to this version

member(PX,G), preferred(PX,AX,S), agent_action(PX, AX),

SX=do(AX,S), legal(SX), holds(F,SX), !.

%##### F holds in do(a,s) for some legal actions of group G #####

holds(exists_successor(G,F),S) :-

member(P,G), agent_action(P, A),

S1=do(A,S), legal(S1), holds(F,S1), !.

%##### F holds in do(a,s) for PREFERRED actions of anti-group G #####

holds(exists_successor2(-G,F),S) :-

agent(P), not(member(P,G)), preferred(P,A,S), agent_action(P, A),

S1=do(A,S), legal(S1), !, %% --> preferred action exists so commit to this version

agent(PX), not(member(PX,G)),

preferred(PX,AX,S), agent_action(PX, AX),

SX=do(AX,S), legal(SX), holds(F,SX), !.

%#### F holds in do(a,s) for some legal actions of anti-group G ####

holds(exists_successor2(-G,F),S) :-

agent(P), not(member(P,G)), agent_action(P, A),

S1=do(A,S), legal(S1), holds(F,S1), !.

191

EXAMPLE:

The complete Prolog code and the test results for the constrained axiomatization of the Tic-Tac-Toe game

are given in the appendix B.2 and B.3. In the examples we verify the same non-trivial property of the

existence of winning strategy. We now provide the axiomatization of the Preferred predicate in addition

to the Basic Action Theory axiomatization of the game which remains unchanged. The axiomatization for

the Preferred predicate for player O that prefers to grab corners early is:

%%

%%% SOFT CONSTRAINTS

%%

preferred(P,A,S) :- P=o, cell(b,1,S), A=mark(P,1). %% grab corners

preferred(P,A,S) :- P=o, cell(b,3,S), A=mark(P,3). %% grab corners

preferred(P,A,S) :- P=o, cell(b,7,S), A=mark(P,7). %% grab corners

preferred(P,A,S) :- P=o, cell(b,9,S), A=mark(P,9). %% grab corners

The properties are verified by running the same L-Logic queries as for the unconstrained version against the

verifier and the extended Basic Action Domain axiomatization of the game domain. Here is an example to

check for the existence of a winning strategy from a situation where some actions already occurred. Here it

is X’s turn and O prefers to grab available corners:

?-holds(ensure([x],wins(x)),do(mark(o,9),do(mark(x,1),do(mark(o,4),do(mark(x,5),s0))))).

X..

OX.

..O

trying ##### approximation 1 ---> wins(x) v next([x], false)

trying ##### approximation 2 ---> wins(x) v next([x], wins(x) v next([x], false))

next([x],wins(x) v next([x], false)) ---> for S =

do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))

trying ##### approximation 3 --->

wins(x) v next([x], wins(x) v next([x], wins(x) v next([x], false)))

next([x],wins(x) v next([x], wins(x) v next([x], false))) ---> for S =

do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))

next([x],wins(x) v next([x], false)) ---> for S =

do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0)))))

next([x],wins(x) v next([x], false)) ---> for S =

do(mark(x, 3), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0)))))

192

next([x],wins(x) v next([x], false)) ---> for S =

do(mark(x, 6), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0)))))

next([x],wins(x) v next([x], false)) ---> for S =

do(mark(x, 7), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0)))))

next([x],wins(x) v next([x], false)) ---> for S =

do(mark(x, 8), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0)))))

trying ##### approximation 4 --->

wins(x) v next([x], wins(x) v next([x], wins(x) v next([x], wins(x) v next([x], false))))

next([x],wins(x) v next([x], wins(x) v next([x], wins(x) v next([x], false)))) ---> for S =

do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))

next([x],wins(x) v next([x], wins(x) v next([x], false))) ---> for S =

do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0)))))

next([x],wins(x) v next([x], false)) ---> for S =

do(mark(o, 3), do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))))

next([x],wins(x) v next([x], false)) ---> for S =

do(mark(o, 7), do(mark(x, 2), do(mark(o, 9), do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))))

> ##### approximation 4 holds --->

wins(x) v next([x], wins(x) v next([x], wins(x) v next([x], wins(x) v next([x], false))))

In the above example the verification completes after 4 expansions, that is, X can ensure winning in up to 3

moves providing O follows the “grab corners first” strategy. Indeed the next move is X that cannot win in

just one move, the next move is O who will mark upper right or bottom left corner after that X can complete

the game.

The same situations as for the non-constrained verifier have been tested for the existence of the winning

strategy. In general the running time decreases significantly and some winning strategies now exist where

they did not in the non-constrained version of the game. The results (the number of iterations and the

running time in seconds or minutes) are:

s5 s4 s3 s2 s1 s0

XOO ### ### XOO ### ### XO. ### ### XO. ### ### X.. ### ### ...

X.. ### ### X.. ### ### X.. ### ### ... ### ### ... ### ### ...

X.. ### ### ... ### ### ... ### ### ... ### ### ... ### ### ...

1 appr 0s 2 appr 0s 5 appr 1s 4 appr 1s 5 appr 2s 6 appr 4s

sw6 sw5 sw4 sw3 sw2 sw1 sw0

XXX ### ### XX. ### ### XX. ### ### X.. ### ### X.. ### ### ... ### ### ...

OX. ### ### OX. ### ### OX. ### ### OX. ### ### OX. ### ### OX. ### ### .X.

.OO ### ### .OO ### ### ..O ### ### ..O ### ### ... ### ### ... ### ### ...

1 appr 0s 2 appr 0s 3 appr 0s 4 appr 0s 5 appr 1s 4 appr 1s 5 appr 2s

illegal no-winning

XX. ### ### XX.

... ### ### XO.

... ### ### O..

5 appr 1s failed 2s

Player X has strategies to win in several situations since the opponent will not be taking the required

193

counter-moves.

We believe that the verifier with soft constraints works – it allows to verify temporal properties in new

circumstances and can be also significantly faster that the generic version. We believe that the axiomatization

of the user preferences is quite straightforward and the encoding should not be difficult. Still the constrained

verifier inherits its other advantages and disadvantages from the generic verifier presented in the previous

section. We leave more experimental evaluation for future work.

5.3 Verifier for GameGolog-Expressed Game Structures

The code for the evaluation-based fixpoint evaluator for GameGolog-expressed game structures is listed in

the appendix C.1.

The technique presented in this section builds on the evaluator from section 5.1. An implementation in Prolog

has been developed that operates on game structures expressed in GameGolog to prove the feasibility of such

approach. Since a GameGolog program represents the structure of the game, the main idea was to employ

it to define what is legal in the game. The new verifier is very similar to the one described in section 5.1 and

the key difference is that now the game structure can be modelled in a more procedural and therefore more

natural way. The GameGolog definition of the game is used in the Legal predicate that occurs in the “next”

operator © when verifying properties. In essence the implementation shows the feasibility of GameGolog

to express game structures in proving game properties. The developed verifier understands the syntax and

semantics of GameGolog and operates on GameGolog structures to mimic their execution in order to verify

properties of games. As stipulated by [DLP10] the choices in the non-deterministic actions are recorded

in the situation during program execution. This way any situation during GameGolog program execution

allows us to exactly recreate the execution path. In our implementation we handle the axiomatization of

Legal as a star-composition of GameGolog single-step transitions as defined in [DLP10] and the background

section of this thesis. The legality of a situation is determined by the fact that it can be reached from S0 by

194

execution a number of steps of a GameGolog program ρ0:

LegalGG(s) ≡ ∃ρ′.T rans∗(ρ0, S0, ρ
′, s)

The verifier has been developed in Prolog and tested on the classic Tic-Tac-Toe game theory expressed in the

Situation Calculus using Prolog clauses. The code of the verifier is essentially the same as the generic verifier

from section 5.1 with the addition of the GameGolog single-step semantics of trans and final as explained

in the background section. The verifier still requires the basic action theory model for the verified game with

the Legal predicate being defined in terms of the GameGolog program of the game and the star-composition

of trans. In [DLP10] trans is built into the “next” operator © for improved efficiency, while here we only

try to extend the basic verifier by replacing the way the legality of the situation is defined using GameGolog.

In the future we plan to improve the verifier and implement the “next” operator © as defined in [DLP10]

and to compare the efficiencies of the evaluation. Here is the code for the trans, final, the star-composition

of trans:

%%

%% GAMEGOLOG SEMANTICS

%%

%% similar to Golog semantcs

%% parameter U specifies which agent controls nondeterministic actions in situation S

%% parameter UX specifies which agent controls nondeterministic actions in situation SX

:- op(200, fy, [?]). %% operator for domain

:- op(200, xfy, [of]). %% operator for domain

:- op(210, xfy, [:]). %% operator for sequence of actions

:- op(220, xfy, [@@]). %% operator for nd choice of action

trans(E,S,SX) :- trans(_U,E,S,_UX,_EX,SX).

trans(U,?P,SX,U,_EX,SX) :- !, fail. %% test

195

trans(U,?true : E,S,UX,EX,SX) :- !, trans(U,E,S,UX,EX,SX). %% performance improvement

trans(U,E1 : E2,S,UX,EX,SX) :- trans(U,E1,S,UX,EX1,SX), EX = (EX1 : E2). %% action sequence

trans(U,E1 : E2,S,UX,EX,SX) :- final(E1,S), trans(U,E2,S,UX,EX,SX). %% action sequence

trans(U,if(P,E1,E2),S,UX,EX,SX) :- holds(P,S), trans(U,E1,S,UX,EX,SX). %% if then else

trans(U,if(P,E1,E2),S,UX,EX,SX) :- not(holds(P,S)), trans(U,E2,S,UX,EX,SX). %% if then else

trans(U,while(P,E),S,UX,EX,SX):-%% while

holds(P,S), trans(U,E,S,UX,EX1,SX), EX = (EX1 : while(P,E)).

trans(U,E1 @@ E2,S,U,E1,do(left(U),S)). %% nd branch

trans(U,E1 @@ E2,S,U,E2,do(right(U),S)). %% nd branch

trans(U,pi(V of D,E),S,U,EX,SX) :- DP=..[D,VX], DP, poss(pick(U,VX),S),

SX = do(pick(U,VX),S), subst(V,VX,E,EX). %% nd choice of argument

trans(U,star(E),S,U,E : star(E),do(continue(U),S)). %% star

trans(U,star(E),S,U,?true,do(stop(U),S)). %% star

trans(_U,uc(UX1,E),S,UX,EX,SX) :- trans(UX1,E,S,UX,EX,SX). %% under control

trans(U,A,S,U,?true,do(A,S)) :- primitive_action(A),poss(A,S). %% primitive action

final(E,S) :- primitive_action(E),!,fail. %% primitive action

final(?P,S) :- holds(P,S). %% test

final(E1 : E2,S) :- final(E1,S), final(E2,S). %% sequence

final(if(P,E1,E2),S) :- holds(P,S), final(E1,S). %% if

final(if(P,E1,E2),S) :- not(holds(P,S)), final(E2,S). %% if

final(while(P,E),S) :- holds(P,S), final(E,S) ; not(holds(P,S)). %% while

final(E1 @@ E2,S) :- !, fail. %% nd branch - GG version

final(pi(V of D,E),S) :- !, fail. %% nd choice of argument - GG version

final(star(E),S) :- !, fail. %% star - GG version

% trans* (star composition of trans)

transs(U,E,s0,UX,EX,do(A,s0)) :- trans(U,E,s0,UX,EX,do(A,s0)).

196

transs(U,E,S,UX,EX,do(A,S1)) :- transs(U,E,S,U1,E1,S1), trans(U1,E1,S1,UX,EX,do(A,S1)).

The game axiomatization must define its GameGolog program and the Legal predicate in terms of this

GameGolog program and the star-composition of trans. It also needs to aximatize the additional actions

for recording non-deterministic choices. Such actual aximatization is shown in the example below.

Please note that in the verifier the implementation of the non-deterministic choice of argument actions

requires the enumeration of actions (for quantification). Our approach was to extend the definition of the

pick action to require the specification of the domain of the choice. Also please note that the ability to

constrain the actions of players exists in this approach as well by simply following the method from section

5.2. Alternatively the strategy could be given as another GameGolog program that can be run on the current

situation. Once it stops we could see what the next possible actions are and use them as the preferred actions.

We leave this for future work.

EXAMPLE:

The complete Prolog code and the test results for the GameGolog-expressed Tic-Tac-Toe game are given

in the appendix C.2 and C.3. In the examples we verify the same non-trivial property of the existence of

winning strategy. We provide the axiomatization of the Legal predicate in terms of star-composition of Trans

predicates and the GameGolog code of the game. The rest of the Basic Action Theory axiomatization of

the game remains unchanged with the addition of axiomatization for the new actions required to encode the

non-deterministic choices. The axiomatization for the new actions, the Legal predicate, and the GameGolog

program for Tic-Tac-Toe are:

%##### domain of actions #####

primitive_action(pick(P,C)) :- agent(P), cell(C).

primitive_action(stop(P)) :- agent(P).

primitive_action(continue(P)) :- agent(P).

197

%##### poss: possible #####

poss(pick(P,C),S) :- cell(b,C,S), agent(P), cell(C).

poss(stop(P),S).

poss(continue(P),S).

%##### agent_action - determine the agent of an action #####

agent_action(P,A) :- A = pick(P,C), agent(P), cell(C).

agent_action(P,A) :- A = stop(P), agent(P).

agent_action(P,A) :- A = continue(P), agent(P).

%##### definition LEGAL using trans* and GameGolog program #####

legal(S) :- proc(ttt,R0), transs(_U,R0,s0,_UX,_RX,S).

%%

%%% GameGolog (note: all bound variables must have unique names)

%%

proc(ttt,

while(-finished,

uc(x, pi(c1 of cell, mark(x,c1))) :

if(-finished,

uc(o, pi(c2 of cell, mark(o,c2))),

? true)

)

).

The properties are verified by running the same L-Logic queries as for the general version of the verifier

against the extended Basic Action Theory axiomatization of the game domain. Here is an example to check

for the existence of a winning strategy from a situation where some actions already occurred:

?-holds(ensure([x],wins(x)),

198

do(mark(o,3),do(pick(o,3),do(mark(x,4),do(pick(x,4),

do(mark(o,2),do(pick(o,2),do(mark(x,1),do(pick(x,1),s0))))))))).

XOO

X..

...

trying ##### approximation 1 ---> wins(x) v next([x], false)

trying ##### approximation 2 ---> wins(x) v next([x], wins(x) v next([x], false))

trying ---> next([x],wins(x) v next([x], false)) ---> for S=

do(mark(o, 3), do(pick(o, 3), do(mark(x, 4), do(pick(x, 4), do(mark(o, 2),

do(pick(o, 2), do(mark(x, 1), do(pick(x, 1), s0))))))))

trying ##### approximation 3 ---> wins(x) v next([x], wins(x) v next([x], wins(x) v next([x], false)))

trying ---> next([x],wins(x) v next([x], wins(x) v next([x], false))) ---> for S=

do(mark(o, 3), do(pick(o, 3), do(mark(x, 4), do(pick(x, 4), do(mark(o, 2), do(pick(o, 2),

do(mark(x, 1), do(pick(x, 1), s0))))))))

trying ---> next([x],wins(x) v next([x], false)) ---> for S=

do(pick(x, 5), do(mark(o, 3), do(pick(o, 3), do(mark(x, 4), do(pick(x, 4), do(mark(o, 2),

do(pick(o, 2), do(mark(x, 1), do(pick(x, 1), s0)))))))))

trying ---> next([x],wins(x) v next([x], false)) ---> for S=

do(pick(x, 6), do(mark(o, 3), do(pick(o, 3), do(mark(x, 4), do(pick(x, 4), do(mark(o, 2),

do(pick(o, 2), do(mark(x, 1), do(pick(x, 1), s0)))))))))

trying ---> next([x],wins(x) v next([x], false)) ---> for S=

do(pick(x, 7), do(mark(o, 3), do(pick(o, 3), do(mark(x, 4), do(pick(x, 4), do(mark(o, 2),

do(pick(o, 2), do(mark(x, 1), do(pick(x, 1), s0)))))))))

> successor EXISTS for G ---> next([x],wins(x) v next([x], false)) ---> for S=

do(pick(x, 7), do(mark(o, 3), do(pick(o, 3), do(mark(x, 4), do(pick(x, 4), do(mark(o, 2),

do(pick(o, 2), do(mark(x, 1), do(pick(x, 1), s0)))))))))

> successor EXISTS for G ---> next([x],wins(x) v next([x], wins(x) v next([x], false))) ---> for S=

do(mark(o, 3), do(pick(o, 3), do(mark(x, 4), do(pick(x, 4), do(mark(o, 2),

do(pick(o, 2), do(mark(x, 1), do(pick(x, 1), s0))))))))

> ##### approximation 3 holds ---> wins(x) v next([x], wins(x) v next([x], wins(x) v next([x], false)))

The same situations as for the generic verifier have been tested for the existence of the winning strategy. In

general the running time increases significantly and some verifications took several hours to fail. Additionally

the situation terms are now double the original size as each agent action is preceded with the pick action of

the non-deterministic choice of argument, as well as, test situations require explicit enumeration of the new

actions that encode the non-deterministic choices. We also needed to increase the binding diameter constant

as the situations are now longer. The results (the number of iterations and the running time in seconds or

minutes) are:

s5 s4 s3 s2 s1 s0

XOO ### ### XOO ### ### XO. ### ### XO. ### ### X.. ### ### ...

X.. ### ### X.. ### ### X.. ### ### ... ### ### ... ### ### ...

X.. ### ### ... ### ### ... ### ### ... ### ### ... ### ### ...

1 appr 0s 3 appr 7s 9 appr 10m 11 appr 36m failed v.long failed v.long

sw6 sw5 sw4 sw3 sw2 sw1 sw0

XXX ### ### XX. ### ### XX. ### ### X.. ### ### X.. ### ### ... ### ### ...

OX. ### ### OX. ### ### OX. ### ### OX. ### ### OX. ### ### OX. ### ### .X.

.OO ### ### .OO ### ### ..O ### ### ..O ### ### ... ### ### ... ### ### ...

1 appr 0s 3 appr 5s 5 appr 42s 7 appr 2m 9 appr 13m 11 appr 34m failed v.long

illegal no-winning

199

XX. ### ### XX.

... ### ### XO.

... ### ### O..

failed 10s failed 2.5m

We believe that the implementation is sound with respect to the GameGolog semantics (assuming a proper

Prolog interpreter is used) but we leave the proof of soundness for future work. The GameGolog-constrained

verifier works but inherits its advantages and disadvantages from the generic verifier presented in section 5.1.

It appears significantly slower and the requirement to record the non-deterministic choices in the situation

makes the situation terms double their size with respect to the generic versions. We believe that building

trans into the evaluation of the “next” operator as in [DLP10] should improve efficiency. We leave more

experimental evaluation (e.g. on infinite domain games) for future work.

5.4 Discussion

In this thesis we implemented and tested an automated verifier for Basic Action Theory game structures.

It performs evaluation-based verification of properties of game theories as per De Giacomo, Lespérance

and Pearce [DLP10]. The main point was to develop a technique that can automatically check ATL-type

game-theoretic properties. The evaluation-based fixpoint approximation technique for verification has been

implemented in Prolog. This implementation has been tested on the finite-state Tic-Tac-Toe game theory

expressed in the situation calculus and coded in Prolog. The verification is performed for the non-trivial

property of the existence of winning strategy.

Additionally a variant of the technique where constraints on actions of players can be specified has been

proposed, implemented and tested. Quite often it is known that some actions are known or preferred in

certain situations whether for the players of the coalition or the anti-coalition. Therefore a mechanism has

been developed for the game modeller to supply strategy or action constraints that are known in advance,

200

so that the developed reasoner program can use them where non-deterministic choices of action are made.

During computation of the operator © if the set for the current situation is not empty then it is used in

the quantifiers, otherwise the operator behaves as usual with no restrictions during quantification. These

soft constraint, that is the choices of action that are taken if the actions are possible in a given situation,

help the efficiency (for coalition players) or specify opponent’s strategy (if such is known) and cut down the

quantification when the operator © is used. This behaviour may represent a strategy or level of expertise

of the players. The constraints are supplied as a function from the current situation to a set of actions.

Finally a variant of the technique where the game structure is given in the form of game’s GameGolog program

has been proposed, implemented and tested. Since a GameGolog program represents the structure of the

game, it was used to define what is legal in the game. The key difference is that now the game structure can

be modelled in a more procedural and therefore more natural way. In essence the implementation developed

to show the feasibility of GameGolog to express game structures in proving game properties is similar to

the implementation proposed at the beginning of the section with the difference that the Legal predicate is

replaced with one that utilizes GameGolog single-step semantics as defined in the background section of this

thesis. In essence the developed evaluator understands the syntax and semantics of GameGolog and operates

on GameGolog structures to mimic their execution in order to verify properties of games. The verifier still

requires the basic action theory model for the verified game with the exception of the Legal predicate. Also

the ability to constrain the actions of players is also supported in this approach.

All the automatic methods follow the same principle as the symbolic manipulation method - they try to verify

that a formula in L language expressing the ATL-type game property holds. They employ the same algorithm

for which the key point is checking of convergence of the fixpoint, that is, if two consecutive approximations

are equivalent. Such test of equivalence on arbitrary formulas could be quite complex therefore a simpler

approach is taken - we check if any of the fixpoint expansions evaluate to true for the initial or a given

situation. The techniques may never stop even though the two consecutive approximations are equivalent

but do not evaluate to true. To deal with this, we have a limit on the number of approximations that would

201

be somehow natural for the game that is modelled and for which properties are verified. Here the term

“evaluation-based” refers to the use of evaluation instead of entailment to check state properties under the

conditions of complete theory (i.e. single model) and closed-world assumption. In the future work we plan

to test the technique on infinite domains and domains with infinitely many actions.

202

6 Conclusions and Future Work

This section provides a summary of the research conducted for this thesis. First a brief summary is provided,

next a brief recapitulation of the area of work, the problem, and the approach is given. Following this, we

discuss the thesis’s contributions. Finally an outline of possible future work that naturally arises from the

research in this thesis is given.

6.1 Conclusion

In brief, the work presented in this thesis is intended to be a demonstration that the techniques intro-

duced in De Giacomo, Lespérance and Pearce [DLP10] do work on verification problems with infinite state

space. The case studies performed indeed support the claim that this approach to verifying infinite state

systems actually works. The presented example problems have varying types of properties that, although

not exhaustive and complete, do allow us to evaluate if the techniques work on many interesting problems.

Another part of the thesis examines the use of characteristic graphs (Claßen and Lakemeyer [CL08]) in

verifying properties of games. Additionally the thesis proposes a refinement of the formalism to incorporate

player strategy/behaviour constraints (for example if the strategy of some of the players is known) and to

subsequently to perform temporal property verifications where such constraints may be given. Also, an

implementation of an evaluation-based verifier has been developed and employed to verify some temporal

properties of the classic tic-tac-toe game.

The research performed in this thesis is focused on problems that can be modelled as games. Many problems

203

– such as multi-agent games, contingent planning, multi-agent planning and process orchestration – can be

viewed as games where agents try to achieve certain objectives or make sure certain conditions hold no matter

how other agents behave. There has been some recent work on formalisms for specifying such game structures

and for specifying temporal properties that coalitions of agents can ensure in games. This work is mostly

based on Alternating-Time Temporal Logic (ATL), ATL* and the alternating-time mu-calculus (AMC)

(Alur, Henzinger, and Kupferman [AHK02]). Although they provide elegant and expressive languages for

properties that one might want to verify, such logics do not address how to specify a model of a game

structure over which the property is to be verified or how to specify strategies for agents to follow. The

work in De Giacomo, Lespérance and Pearce [DLP10] devises a formalism that can express the temporal

properties and the game structures using the same foundation based on a situation calculus axiomatization

which is very natural for this type of problems. It allows reasoning about game structures and multi-agent

interaction problems that require strategic thinking, not just games in conventional sense. It puts a focus on

verification and off-line synthesis, does not use probabilities and utilities, and provides a logical framework

for specifying game theoretic problems in natural way in a language that combines declarative and procedural

elements. This thesis is based on this research.

Expressing the ATL temporal ”group G ensures next ϕ” property (denoted 〈〈G〉〉©ϕ) as a formula in model

checking can be difficult. The results of model checking technology are quite low level and the technology

is restricted to finite states structures. It does not combine declarative and procedural elements – while for

many problems an action programming language would provide a natural specification language. Also it is

best if the property to check can be expressed in the same formalism as the problem, as the danger of loosing

something in translation and the risk of errors are reduced. De Giacomo, Lespérance and Pearce [DLP10]

do just that, but emphasize that their study is essentially theoretical and they predict that effectiveness

guarantees will only be available for very specific cases. They called for complementing their work with

experimental studies to understand whether these techniques, especially those based on the labelling of

characteristic graphs, are effective in practical cases. Also so far little work has been done for infinite

204

domains with the exception Claßen and Lakemeyer’s work [CL08].

This thesis addresses the questions mentioned above. It evaluates the new techniques introduced by De

Giacomo, Lespérance and Pearce [DLP10] on infinite domains. Based on the assumptions that all agents

have complete knowledge of the theory, that actions are observable by all agents, and that there are no sensing

actions that allow agents to gain additional private knowledge, this thesis follows their logical framework

for solving game theoretic problems. The framework supports incomplete specifications of the application

domain – the basic action theories do not need to have a single model. The framework also supports

infinite state settings. Their framework includes a new language GameGolog that is based on ConGolog

(De Giacomo, Lespérance, and Levesque [DLL00]) to specify precisely which agent can take action in any

game situation and what actions it can perform (a program in GameGolog can clearly and conveniently

specify the game structure) and uses the background situation calculus action theory. Their framework also

proposes a rich language for specifying temporal properties for game structures. This language uses first-

order quantification, mu-calculus, and game-theoretic path quantifiers. Several techniques for verifying such

temporal properties are proposed , as well. These techniques are: symbolic fixpoint approximation, labelling

on characteristic graphs (Claßen and Lakemeyer [CL08]), and the suggestion of an implementation that

can automatically perform a fixpoint approximation on finite state game structures. In the paper they also

discuss how constraints (for example forms of fairness) can be expressed and used in verifying properties.

The approach taken by this thesis was to develop some examples and test the algorithms introduced in De

Giacomo, Lespérance and Pearce [DLP10] on them.

Several game domains have been developed that are quite representative of the type of problem that the

technique is trying to address. Although the domains are rather simple, they have features present in

practical examples, and they do allow us to evaluate the method. Our experiments do confirm that the

method does work on several verification problems with infinite state space. We also identify some examples

where the method, which only uses the simplest part of the domain theory, the unique names and domain

closure for action axioms, fails to converge in a finite number of steps. We show that in some of these cases,

205

extending the method to use some selected facts about the initial situation and some state constraints does

allow us to get convergence in a finite number of steps. Finally, our example domains and properties should

be useful for evaluating other approaches to infinite state verification and synthesis.

We also evaluated the version of the [DLP10] verification method that uses characteristic graphs. In this

thesis we use graphs constructed by hand and the labellings are done by hand. It was observed that the sym-

bolic manipulation and characteristic graph labelling gave essentially analogous results for the corresponding

game structure verification.

The implementation of the evaluation-based fixpoint approximation is the most practical component of

the work presented in this thesis. It has been done in Prolog and it does handle game settings. Many

examples are provided and discussed. The Prolog implementation can be used to show whether a temporal

property is true in the initial or any given situation. The implementation can be given an upper limit on

the number of fixpoint expansions and this is for practical reasons since there is no guarantee the method

will terminate in general. Unlike the symbolic manipulation technique, this method works only on domains

with a finite number of actions and with complete theory for the initial situation (it checks whether the

initial situation satisfies the formulas produced by fixpoint iterations). The implemented program has been

refined to incorporate preferred actions. This allows us to incorporate constraints on the agent strategies

in playing the game and to evaluate the temporal properties of a game structure when such constraints are

present. These constraints can also be a mechanism for the modeller to supply heuristic guidance so that

the reasoner can use them to prove the fixpoint convergence in a more efficient and more practical way. The

constraints could be in a form of relations, decision trees, rules, or some other constructs. The work done for

this thesis additionally incorporates another implementation, also done in Prolog that handles a GameGolog

program specifying the game structure. GameGolog often proves convenient in modelling game problems; it

is a nice tool to express complex games. In essence a game structure expressed as a GameGolog program is

submitted to the property verifier.

206

The methods researched in this thesis work for infinite domains where very few methods are available in

verifying temporal properties. Although it has been shown that model checking techniques can be used

to verify that temporal properties hold in game structures and these techniques can be used to synthesize

strategies for agents in a coalition to ensure that properties hold, model checking approaches only work for

finite domains. Additionally, we tried to reason about all situations (without the theory for initial situations)

and we think that a finite state approach to perform similar analysis does not currently exist.

6.2 Future Work

The topic of this thesis is a very interesting area and there are a lot of questions that one could ask such

as what is practical and what is not, or is there a way to obtain winning strategies for temporal properties

that can be verified. A few questions and areas of future continued work that arose from the research in this

thesis and some very high level ideas are presented below.

One thing that could be done would be to research the possibility to automate the symbolic fixpoint ap-

proximation that for now are done manually due to the complexity of the calculus that needs to be used.

This would require some automated symbolic manipulation techniques for regression, simplification of the

resulting formulas, and checking if two subsequent formulas are equivalent. One more idea here would be

to employ stochastic satisfiability methods to do so. Also, one could investigate if some heuristic strategy

constraints and move guidance can be incorporated into the approximation computation to improve the

efficiency of the computation and to make the computation more practical.

Another idea would be to implement the technique for characteristic graph labelling - for a given characteristic

graph, GameGolog program of the game, the axiomatization, and the properties to be verified perform

automatic iterative labelling and check for convergence. During manual computation for the characteristic

graphs it was observed that the proofs in some cases were relatively straightforward and I think that it

should be possible to use a theorem prover with the right kind of strategy specified to do these problems in

207

practical way. It was also observed that for the examples chosen the fixpoint approximation formulas could

be simplified significantly at each step and the resulting formula was not growing exponentially. It would be

interesting to find out the types of problems that have this property as the verification of temporal properties

would be faster whereas the state space grows exponentially in the number of moves. Also, for simple games

where the program goes through 2 alternating moves, using symbolic or characteristic graph method did

not make a big difference in volume of computation. Here the characteristic graph and symbolic approach

seem to be doing the same thing. It would be interesting to look at slightly more complex problems where

there are more than 2 nodes and see if there is a relation in the amount of computation and if characteristic

graph approach provides some benefits during the verification. It would be interesting to see what happens

on games with many nodes and a more interesting structure (for example Wumpus World or Dungeons and

Dragons) and see if in some case it simplifies the proof.

Yet another set of ideas relates to the evaluation-based verification. The implementation could be reviewed

to perform equivalence or implication checking between consecutive iterations of the fixpoint approximation.

Currently it is just checked that the formula evaluates to true. This would truly capture the potential of

the technique and produce the converged formula that could be then used to examine the conditions for

the existence of a checked property. Since the implementation allows for constraints and guidance of player

moves, another idea would be to see what are the particular game heuristics that can make the technique

more efficient and more practical. With regards to the GameGolog version of the evaluator - the GameGolog

program that alternates between players could be split into 2 concurrent GameGolog programs for each

player where each is concerned with the behaviour of just that one player. On top of it the soft constraint

on the player moves could be also expressed as a GameGolog program which takes priority over the regular

player program. This approach could be examined if it works and if it brings any benefits.

One can also examine how to extract the conditions and the strategy to achieve the desired temporal

properties based on the convergence of the techniques. It appears that the converged formulas provide the

way to extract the strategy at the verification stage. Since each iteration is a regression step from the goal,

208

the number of approximations before convergence is the most number of actions in which the property can be

achieved. If there is a convergence (especially to true) then the formula gives us the conditions on all possible

situations for which the verified property exists - this can give us the strategy to achieve such property. In

case of winning a game, when playing the actual game if the actions are decided that the resulting situation

will make the convergence formula true then it is a non-loosing strategy (there is a way to ensure the win

after the move). This may still be a non-relevant action but if I can satisfy a formula from an earlier iteration

of approximation then it is a true strategy - as the number of steps to achieve the property lowers. In general

some future work would be to analyze if indeed one can devise general methods for conditions and strategies

for achieving properties and to implement it.

For practical purposes the framework proposed in De Giacomo, Lespérance and Pearce [DLP10] could also

be enhanced to allow probabilistic and utility measures to perform mini-max prioritization of actions. One

could also try to employ the research techniques for on-line game playing where there is no strategy in the

initial situation but as the game is played we want to make sure we make the moves or observe the opponent

making mistakes that would put us in a situation for which some the fixpoint approximation holds and now

we can ensure the win. There are several issues related to on-line playing that are not considered here such

as making sure that we do not take an action that ensures that the opponent can win, we need to worry

about efficiency and speed of the decision making, and the ability to use heuristics.

209

Bibliography

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. J.

ACM, 49(5):672–713, 2002.

[Ake78] S. B. Akers. Binary Decision Diagrams. IEEE Trans. Comput., 27(6):509–516, June 1978.

[BBS09] Paul P. Boca, Jonathan P. Bowen, and Jawed I. Siddiqi. Formal Methods: State of the Art and

New Directions. Springer, first edition, September 2009.

[Bie09] Armin Biere. Bounded Model Checking. In Handbook of Satisfiability, pages 457–481. 2009.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008.

[BKM95] Robert S. Boyer, Matt Kaufmann, and J Strother Moore. The Boyer-Moore Theorem Prover

and Its Interactive Enhancement, 1995.

[BS07] Julien Bradfield and Colin Stirling. Modal mu-calculi. In Handbook of Modal Logic, volume 3,

pages 721–756. Elsevier, 2007.

[CABN97] William Chan, Richard Anderson, Paul Beame, and David Notkin. Combining constraint solving

and symbolic model checking for a class of systems with non-linear constraints. In In Computer

Aided Verification, pages 316–327. Springer-Verlag, 1997.

[CCGR00] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new symbolic model checker.

International Journal on Software Tools for Technology Transfer, 2:2000, 2000.

210

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Synchronization Skeletons

Using Branching-Time Temporal Logic. In Logic of Programs, pages 52–71, 1981.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT Press, 2001.

[CL08] Jens Claßen and Gerhard Lakemeyer. A Logic for Non-Terminating Golog Programs. In Proc.

of KR’08, pages 589–599, 2008.

[DLL00] Giuseppe De Giacomo, Yves Lespérance, and Hector J. Levesque. ConGolog, A Concurrent

Programming Language Based on the Situation Calculus. AIJ, 121(1–2):109–169, 2000.

[DLP10] G. De Giacomo, Y. Lespérance, and A. R. Pearce. Situation Calculus-based Programs for Rep-

resenting and Reasoning about Game Structures. 2010.

[Eme96] E. Allen Emerson. Model Checking and the Mu-calculus. In Descriptive Complexity and Finite

Models, pages 185–214, 1996.

[End72] Herbert B. Enderton. A mathematical introduction to logic. Academic Press, 1972.

[GLP05] Michael R. Genesereth, Nathaniel Love, and Barney Pell. General Game Playing: Overview of

the AAAI Competition. AI Magazine, 26(2):62–72, 2005.

[Ham82] A.G. Hamilton. Numbers, Sets and Axioms: The Apparatus of Mathematics. Cambridge, 1982.

[Hav99] Klaus Havelund. Java PathFinder User Guide. NASA Ames Research, 1999.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. ACM, 12(10):576–580, 1969.

[Hol03] Gerard Holzmann. Spin model checker, the: primer and reference manual. Addison-Wesley

Professional, first edition, 2003.

[KMM00] Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-Aided Reasoning: An

Approach. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

211

[LP12] Alessio Lomuscio and Wojciech Penczek. Symbolic Model Checking for Temporal-Epistemic

Logic. In Logic Programs, Norms and Action, pages 172–195, 2012.

[LQR09] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: A Model Checker for the

Verification of Multi-Agent Systems. In Proc. of CAV’09, pages 682–688, 2009.

[LRL+97] Hector J. Levesque, Ray Reiter, Yves Lespérance, Fangzhen Lin, and Richard B. Scherl. GOLOG:

A Logic Programming Language for Dynamic Domains. JLP, 31:59–84, 1997.

[McM92] Kenneth Lauchlin McMillan. Symbolic model checking: an approach to the state explosion prob-

lem. PhD thesis, Pittsburgh, PA, USA, 1992. UMI Order No. GAX92-24209.

[Mil06] Dale Miller. Representing and Reasoning with Operational Semantics. pages 4–20. 2006.

[Mon01] Jean Francois Monin. Understanding Formal Methods. Springer-Verlag Inc., 2001.

[Par76] David Park. Finiteness is Mu-Ineffable. Theor. Comput. Sci., 3(2):173–181, 1976.

[PPS06] Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of Reactive(1) Designs. In Proc. of

VMCAI’06, pages 364–380, 2006.

[PR99] Fiora Pirri and Ray Reiter. Some Contributions to the Metatheory of the Situation Calculus. J.

ACM, 46(3):261–325, 1999.

[Rei01] Ray Reiter. Knowledge in Action. Logical Foundations for Specifying and Implementing Dynam-

ical Systems. The MIT Press, 2001.

[SD09] Sebastian Sardina and Giuseppe De Giacomo. Composition of ConGolog Programs. In Proc. of

IJCAI’09, pages 904–910, 2009.

[Tar55] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. of Mathe-

matics, 5(2):285309, 1955.

[Ume10] Akihiro Umemura. SAT/SMT solvers and their applications. Computer Software, 27(3):3 24–

3 35, 2010.

212

Appendices

213

A Verifier for Basic Action Theory Game Structures

A.1 Prolog Code

%%

%%% L-LANGUAGE

%%

:- op(800, xfy, [&]). /* operator for conjunction */

:- op(850, xfy, [v]). /* operator for disjunction */

:- op(870, xfy, [=>]). /* operator for implication */

:- op(880,xfy, [<=>]). /* operator for equivalence */

% explicit enumeration of constructs (all others are treated as atoms)

ll_construct(Pred) :-

Pred = -W ; %% negation of W

Pred = (W1 & W2) ; %% conjunction, uses & in place of ^

Pred = (W1 v W2) ; %% disjunction

Pred = (W1 => W2) ; %% implication

Pred = (W1 <=> W2) ; %% equivalence

Pred = some(X,W) ; %% exists X . W

Pred = all(X,W) ; %% forall X . W

Pred = mu(z,F) ; %% mu X . F

Pred = exists_successor(G,F) ; %% exists possible successor state for agent

Pred = exists_successor2(G,F) ; %% exists possible successor state for anti-group

Pred = forall_successors2(G,F) ; %% for all possible successor states for anti-group

Pred = next(G,F); %% <<G>>oF

Pred = ensure-eventually(G,F). %% <<G>><>F

ll_atom(Pred) :- not(ll_construct(Pred)).

% negations of HOLDS constructs

holds(false,S) :- !, fail.

holds(-false,S) :- !.

holds(-P,S) :- ll_atom(P), !, not(holds(P,S)).

holds(-(-P),S) :- !, holds(P,S).

holds(-(P & Q),S) :- !, holds(-P v -Q,S).

holds(-(P v Q),S) :- !, holds(-P & -Q,S).

holds(-(P => Q),S) :- !, holds(-(-P v Q),S).

holds(-(P <=> Q),S) :- !, holds(-((P => Q) & (Q => P)),S).

holds(-all(V,P),S) :- !, holds(some(V,-P),S).

holds(-P,S) :- not(holds(P,S)). %% the regular way for all others

% semantics of L-Language constructs

holds(P & Q,S) :-!, holds(P,S), holds(Q,S). %% conjunction, uses & in place of ^

holds(P v Q,S) :-!, (holds(P,S); holds(Q,S)). %% disjunction

holds(P => Q,S) :-!, holds(-P v Q,S). %% implication as horn disjunction

holds(P <=> Q,S) :-!, holds((P => Q) & (Q => P),S). %% equivalence as mutual impication

holds(all(V,P),S) :-!, holds(-some(V,-P),S). %% universal in terms of existential

holds(some(V,P),S) :-!, subst(V,_,P,P1), holds(P1,S). %% existential

214

holds(mu(z,F),S) :- !, mu_approx(z,F,false,1,S). %% mu as approximation

holds(next(G,false),S) :- !, fail. %% ignore for performance

%##

% "can ensure next" operator

% this macro expands according to SitCalc definition

%##

holds(next(G,F),S) :- !, %% next operator <<G>>oF

write(’trying ---> ’), output3(G,F,S), (

incontrol(G,S), % group must be in control

holds(exists_successor(G,F),S),

write(’> successor EXISTS for G ---> ’), output3(G,F,S)

;

incontrol(-G,S), % anti-group must be in control

holds(forall_successors2(-G,F),S),

write(’> successor FORALL for -G ---> ’), output3(G,F,S)

).

holds(exists_successor(G,F),S) :- !, %% F holds in do(a,s) for some legal actions of group G

member(P,G),

agent_action(P, A),

S1=do(A,S), legal(S1),

holds(F,S1), !.

holds(forall_successors2(-G,F),S) :- !, %% F holds in do(a,s) for all legal actions of anti-group G

not(holds(exists_successor2(-G,-F),S)).

holds(exists_successor2(-G,F),S) :- !, %% F holds in do(a,s) for some legal actions of anti-group G

agent(P), not(member(P,G)),

agent_action(P, A),

S1=do(A,S), legal(S1),

holds(F,S1), !.

incontrol(-G,S) :- !, %% group -G is in control

agent(P), not(member(P,G)), agent_control(P,S), !.

incontrol(G,S) :- !, %% group G is in control

member(P,G), agent_control(P,S), !.

%% HOLDS for situation-suppressed formulas (non fluents, system predicates)

holds(Pred,S) :- restoreSitArg(Pred,S,PredEx), !, PredEx.

holds(Pred,S) :- ll_atom(Pred), Pred.

% !!! the domain must provide how to restore situation arguments for all fluents

% !!! for example: restoreSitArg(ontable(X),S,ontable(X,S)).

%########################

%### mu approximation ###

%########################

% binding diameter reached (as for bounded model checking)

mu_approx(Z,F,Int,N,S) :- binding_diameter(Max), N>Max, !,

write(’binding diameter ’), write(N), write(’ reached - stop’), nl, !, fail.

% else: show progress at the start of step (and fail to continue)

mu_approx(Z,F,Int,N,S) :- subst(Z,Int,F,Fx), output2(N,Fx), fail.

% else: substitute and chech if holds

mu_approx(Z,F,Int,N,S) :- subst(Z,Int,F,Fx), holds(Fx,S), !, output1(N,Fx).

% else: next approximation

mu_approx(Z,F,Int,N,S) :- M is N+1, subst(Z,Int,F,Int2), !, mu_approx(Z,F,Int2,M,S).

%##

% "ensure eventually" operator (in terms of mu and next)

%##

holds(ensure-eventually(G,F),S) :- !, %% diamond operator <<G>><>F

holds(mu(z,F v next(G,z)),S).

%#########################

%### helper predicates ###

%#########################

215

% output(M,F) = write out approximation (M = level, F = formula)

output1(M,F) :- output_details(verbose), !,

write(’> ##### approximation ’), write(M), write(’ holds ---> ’), write(F), nl.

output2(M,F) :- output_details(verbose), !,

write(’trying ##### approximation ’), write(M), write(’ ---> ’), write(F), nl.

output3(G,F,S) :- output_details(verbose), !,

write(’next(’), write(G), write(’,’), write(F), write(’) ---> for S = ’), write(S), nl.

% member(X,L) = asserts that X a member of a list L

member(X,[X|T]).

member(X,[H|T]) :- member(X,T).

% subst(NamePrev, NameNew, TermPrev, TermNew)

% = asserts that TermNew is TermPrev with NamePrev replaced by NameNew

subst(_, _, [], []) :- !.

subst(_, _, TP, TP) :- var(TP), !.

subst(NP, NN, NP, NN) :- not(var(NN)), !.

subst(NP, NN, TP, TN) :- not(NP = TP), TP =..[H1|T1], !, subst_list(NP,NN,T1,T2),TN =..[H1|T2].

subst_list(_, _, [], []) :- !.

subst_list(NP, NN, [H1|T1], [H2|T2]) :- subst(NP,NN,H1,H2), !, subst_list(NP,NN,T1,T2).

A.2 Tic-Tac-Toe Game Axiomatization in Prolog

%%

%%% setup

%%

:- consult(’llanguage’).

:- dynamic(proc/2).

:- dynamic(restoreSitarg/3).

:- style_check(-discontiguous).

:- set_flag(print_depth,100).

output_details(verbose). %% just define this term for approximations to pe printed as we go

binding_diameter(11). %% maximul level of approximation expansion

%%

%%% fluents

%%

% GOAL

wins(P,S) :- inline(C1,C2,C3), cell(P,C1,S), cell(P,C2,S), cell(P,C3,S), agent(P), legal(S).

% SITCALC ARGS - restore S for fluents and goal

restoreSitArg(wins(P), S, wins(P,S)).

restoreSitArg(cell(P,C), S, cell(P,C,S)).

restoreSitArg(finished, S, finished(S)).

restoreSitArg(completed, S, completed(S)).

% DERIVED FLUENTS

completed(S) :- not(cell(b,_,S)). %% no more moves

finished(S) :- completed(S) ; wins(P,S). %% no more moves or someone wins

result(S) :- not(legal(S)), write(’illegal’), nl, !.

result(S) :- wins(P,S), write(’winner: ’), write(P), nl, !.

result(S) :- completed(S), write(’draw’), nl, !.

result(_) :- write(’in-progress’), nl, !.

% does a set make a line when ordered somehow

216

inline(C1,C2,C3) :- line(C1,C2,C3).

inline(C1,C2,C3) :- line(C1,C3,C2).

inline(C1,C2,C3) :- line(C2,C1,C3).

inline(C1,C2,C3) :- line(C2,C3,C1).

inline(C1,C2,C3) :- line(C3,C1,C2).

inline(C1,C2,C3) :- line(C3,C2,C1).

% OUTPUTS

disp_game(S) :-

write(’#####’),nl,

write(’#’),disp(1,S),disp(2,S),disp(3,S),write(’#’),nl,

write(’#’),disp(4,S),disp(5,S),disp(6,S),write(’#’),nl,

write(’#’),disp(7,S),disp(8,S),disp(9,S),write(’#’),nl,

write(’#####’),nl.

disp(C,S) :- cell(M,C,S), (M=b, write(’.’) ; M=x, write(’X’); M=o, write(’O’)).

%%

%%% domain

%%

% ACTIONS

primitive_action(mark(P,C)) :- agent(P), cell(C).

% AGENTS

agent(o).

agent(x).

% CELLS

cell(1).

cell(2).

cell(3).

cell(4).

cell(5).

cell(6).

cell(7).

cell(8).

cell(9).

% LINES

line(1,2,3).

line(4,5,6).

line(7,8,9).

line(1,4,7).

line(2,5,8).

line(3,6,9).

line(1,5,9).

line(3,5,7).

%%

%%% D_poss

%%

% poss: possible (is it possible when given legal or not situation)

poss(mark(P,C),S) :- cell(b,C,S), agent(P), cell(C).

%%

%%% D_ssa

%%

cell(M,C,do(A,S)) :- A=mark(M,C) ; cell(M,C,S), not(A=mark(_,C)).

%%

217

%%% D_S0

%%

% all cells in domain are b (blank) in s0.

cell(b,C,s0) :- cell(C).

%%

%%% D_legal

%%

% control: agent is the next to action in situation

agent_control(P,S) :- agent_action(P,A), legal(do(A,S)), !.

% agent_action - determine the agent of an action

agent_action(P,A) :- A = mark(P,C), agent(P), cell(C).

% legal: is the situation LEGAL (can this situation be arrived at)

legal(s0) :- !.

legal(S) :- %%% X must play first

S = do(A,s0),

agent_action(x,A),

poss(A, s0), !.

legal(S) :- % alternate the actions: X’s action after O’s

S = do(A1,S1), S1 = do(A2,S2),

agent_action(x,A1), agent_action(o,A2),

poss(A1,S1), poss(A2,S2),not(finished(S1)), !.

legal(S) :- % alternate the actions: O’s action after X’s

S = do(A1,S1), S1 = do(A2,S2),

agent_action(o,A1), agent_action(x,A2),

poss(A1,S1), poss(A2,S2),not(finished(S1)), !.

A.3 Tic-Tac-Toe Game Property Tests

%%% TEST SITUATIONS %%%

sit(s5,S) :- S=do(mark(x,7),do(mark(o,3),do(mark(x,4),do(mark(o,2),do(mark(x,1),s0))))).

% XOO

% X..

% X..

sit(s4,S) :- S=do(mark(o,3),do(mark(x,4),do(mark(o,2),do(mark(x,1),s0)))).

% XOO

% X..

% ...

sit(s3,S) :- S=do(mark(x,4),do(mark(o,2),do(mark(x,1),s0))).

% XO.

% X..

% ...

sit(s2,S) :- S=do(mark(o,2),do(mark(x,1),s0)).

% XO.

% ...

% ...

sit(s1,S) :- S=do(mark(x,1),s0).

% X..

% ...

% ...

sit(s0,S) :- S=s0.

% ...

% ...

% ...

%%%%%%%%%%

sit(sw6,S) :- S=do(mark(x,3), do(mark(o, 8), do(mark(x, 2), do(mark(o, 9), do(mark(x, 1),

218

do(mark(o, 4), do(mark(x, 5), s0))))))).

% XXX

% OX.

% .OO

sit(sw5,S) :- S=do(mark(o,8),do(mark(x,2),do(mark(o,9),do(mark(x,1),do(mark(o,4),do(mark(x,5),s0)))))).

% XX.

% OX.

% .OO

sit(sw4,S) :- S=do(mark(x,2),do(mark(o,9),do(mark(x,1),do(mark(o,4),do(mark(x,5),s0))))).

% XX.

% OX.

% ..O

sit(sw3,S) :- S=do(mark(o,9),do(mark(x,1),do(mark(o,4),do(mark(x,5),s0)))).

% X..

% OX.

% ..O

sit(sw2,S) :- S=do(mark(x,1),do(mark(o,4),do(mark(x,5),s0))).

% X..

% OX.

% ...

sit(sw1,S) :- S=do(mark(o,4),do(mark(x,5),s0)).

% ...

% OX.

% ...

sit(sw0,S) :- S=do(mark(x,5),s0).

% ...

% .X.

% ...

%%%%%%%%%%

sit(sx1,S) :- S=do(mark(x,2),do(mark(x,1),s0)). % illegal

% XX.

% ...

% ...

sit(sx2,S) :- S=do(mark(x, 2), do(mark(o, 7), do(mark(x, 4), do(mark(o, 5), do(mark(x, 1), s0))))).

% XX.

% XO.

% O..

%%% TESTS %%%

% sit(s5,S), holds(ensure([x],wins(x)),S).

% approx 1, 0s

% sit(s4,S), holds(ensure([x],wins(x)),S).

% approx 2, 0s

% sit(s3,S), holds(ensure([x],wins(x)),S).

% approx 5, 3s

% sit(s2,S), holds(ensure([x],wins(x)),S).

% approx 6, 6s

% sit(s1,S), not(holds(ensure([x],wins(x)),S)).

% binding diameter, 2m

% sit(s0,S), not(holds(ensure([x],wins(x)),S)).

% binding diameter, 15m

%%%%%%%%%%

% sit(sw6,S), holds(ensure([x],wins(x)),S).

% approx 1, 0s

% sit(sw5,S), holds(ensure([x],wins(x)),S).

% approx 2, 0s

% sit(sw4,S), holds(ensure([x],wins(x)),S).

% approx 3, 1s

% sit(sw3,S), holds(ensure([x],wins(x)),S).

% approx 4, 1s

% sit(sw2,S), holds(ensure([x],wins(x)),S).

% approx 5, 3s

% sit(sw1,S), holds(ensure([x],wins(x)),S).

% approx 6, 6s

% sit(sw0,S), not(holds(ensure([x],wins(x)),S)).

219

% binding diameter, 1m

%%%%%%%%%%

% sit(sx1,S), holds(ensure([x],wins(x)),S).

% approx 5, 1s

% sit(sx2,S), not(holds(ensure([x],wins(x)),S)).

% binding diameter, 0s

220

B Verifier for Basic Action Theory Game Structures with
Action/Strategy Constraints

B.1 Prolog Code

%%

%%% L-LANGUAGE-B

%%

:- op(800, xfy, [&]). /* operator for conjunction */

:- op(850, xfy, [v]). /* operator for disjunction */

:- op(870, xfy, [=>]). /* operator for implication */

:- op(880,xfy, [<=>]). /* operator for equivalence */

% explicit enumeration of constructs (all others are treated as atoms)

ll_construct(Pred) :-

Pred = -W ; %% negation of W

Pred = (W1 & W2) ; %% conjunction, uses & in place of ^

Pred = (W1 v W2) ; %% disjunction

Pred = (W1 => W2) ; %% implication

Pred = (W1 <=> W2) ; %% equivalence

Pred = some(X,W) ; %% exists X . W

Pred = all(X,W) ; %% forall X . W

Pred = mu(z,F) ; %% mu X . F

Pred = exists_successor(P,F) ; %% exists possible successor state for agent

Pred = forall_successors(P,F) ; %% for all possible successor states for agent

Pred = exists_successor2(P,F) ; %% exists possible successor state for group

Pred = forall_successors2(P,F) ; %% for all possible successor states for group

Pred = next(G,F); %% <<G>>oF

Pred = ensure(G,F). %% <<G>><>F

ll_atom(Pred) :- not(ll_construct(Pred)).

% negations of HOLDS constructs

holds(false,S) :- !, fail.

holds(-false,S) :- !.

holds(-P,S) :- ll_atom(P), !, not(holds(P,S)).

holds(-(-P),S) :- !, holds(P,S).

holds(-(P & Q),S) :- !, holds(-P v -Q,S).

holds(-(P v Q),S) :- !, holds(-P & -Q,S).

holds(-(P => Q),S) :- !, holds(-(-P v Q),S).

holds(-(P <=> Q),S) :- !, holds(-((P => Q) & (Q => P)),S).

holds(-all(V,P),S) :- !, holds(some(V,-P),S).

holds(-P,S) :- not(holds(P,S)). %% the regular way for all others

% semantics of L-Language constructs

holds(P & Q,S) :-!, holds(P,S), holds(Q,S). %% conjunction, uses & in place of ^

holds(P v Q,S) :-!, (holds(P,S); holds(Q,S)). %% disjunction

holds(P => Q,S) :-!, holds(-P v Q,S). %% implication as horn disjunction

holds(P <=> Q,S) :-!, holds((P => Q) & (Q => P),S). %% equivalence as mutual impication

221

holds(all(V,P),S) :-!, holds(-some(V,-P),S). %% universal in terms of existential

holds(some(V,P),S) :-!, subst(V,_,P,P1), holds(P1,S). %% existential

holds(mu(z,F),S) :- !, mu_approx(z,F,false,1,S). %% mu as approximation

holds(next(G,false),S) :- !, fail. %% ignore for performance

holds(next(G,F),S) :- !, %% next operator <<G>>oF

write(’trying ---> ’), output3(G,F,S), (

incontrol(G,S), !, % group must be in control

holds(exists_successor(G,F),S),

write(’> successor EXISTS for G ---> ’), output3(G,F,S)

;

incontrol(-G,S), !, % anti-group must be in control

holds(forall_successors2(-G,F),S),

write(’> successor FORALL for -G ---> ’), output3(G,F,S)

).

holds(ensure(G,F),S) :- !, %% diamond operator <<G>><>F

holds(mu(z,F v next(G,z)),S).

holds(exists_successor(G,F),S) :- %% F holds in do(a,s) for some PREFERRED actions of group G

member(P,G),

preferred(P,A,S), agent_action(P, A),

S1=do(A,S), legal(S1), !, %% --> preferred action exists so commit to this version of predicate

member(PX,G),

preferred(PX,AX,S), agent_action(PX, AX),

SX=do(AX,S), legal(SX), holds(F,SX), !.

holds(exists_successor(G,F),S) :- %% F holds in do(a,s) for some legal actions of group G

member(P,G),

agent_action(P, A),

S1=do(A,S), legal(S1),

holds(F,S1), !.

holds(forall_successors2(-G,F),S) :- !, %% F holds in do(a,s) for all legal actions of anti-group G

not(holds(exists_successor2(-G,-F),S)).

holds(exists_successor2(-G,F),S) :- %% F holds in do(a,s) for PREFERRED actions of anti-group G

agent(P), not(member(P,G)),

preferred(P,A,S), agent_action(P, A),

S1=do(A,S), legal(S1), !, %% --> preferred action exists so commit to this version of predicate

agent(PX), not(member(PX,G)),

preferred(PX,AX,S), agent_action(PX, AX),

SX=do(AX,S), legal(SX), holds(F,SX), !.

holds(exists_successor2(-G,F),S) :- %% F holds in do(a,s) for some legal actions of anti-group G

agent(P), not(member(P,G)),

agent_action(P, A),

S1=do(A,S), legal(S1),

holds(F,S1), !.

incontrol(-G,S) :- !, %% group -G is in control

agent(P), not(member(P,G)), agent_control(P,S), !.

incontrol(G,S) :- !, %% group G is in control

member(P,G), agent_control(P,S), !.

%% HOLDS for situation-suppressed formulas (non fluents, system predicates)

holds(Pred,S) :- restoreSitArg(Pred,S,PredEx), !, PredEx.

holds(Pred,S) :- ll_atom(Pred), Pred.

% !!! the domain must provide how to restore situation arguments for all fluents

% !!! for example: restoreSitArg(ontable(X),S,ontable(X,S)).

%########################

%### mu approximation ###

%########################

% binding diameter reached (as for bounded model checking)

mu_approx(Z,F,Int,N,S) :- binding_diameter(Max), N>Max, !,

write(’binding diameter ’), write(N), write(’ reached - stop’), nl, !, fail.

% else: show progress at the start of step (and fail to continue)

mu_approx(Z,F,Int,N,S) :- subst(Z,Int,F,Fx), output2(N,Fx), fail.

% else: substitute and chech if holds

mu_approx(Z,F,Int,N,S) :- subst(Z,Int,F,Fx), holds(Fx,S), !, output1(N,Fx).

222

% else: next approximation

mu_approx(Z,F,Int,N,S) :- M is N+1, subst(Z,Int,F,Int2), !, mu_approx(Z,F,Int2,M,S).

%#########################

%### helper predicates ###

%#########################

% output(M,F) = write out approximation (M = level, F = formula)

output1(M,F) :- output_details(verbose), !,

write(’> ##### approximation ’), write(M), write(’ holds ---> ’), write(F), nl.

output2(M,F) :- output_details(verbose), !,

write(’trying ##### approximation ’), write(M), write(’ ---> ’), write(F), nl.

output3(G,F,S) :- output_details(verbose), !,

write(’next(’), write(G), write(’,’), write(F), write(’) ---> for S = ’), write(S), nl.

% member(X,L) = asserts that X a member of a list L

member(X,[X|T]).

member(X,[H|T]) :- member(X,T).

% subst(NamePrev, NameNew, TermPrev, TermNew)

% = asserts that TermNew is TermPrev with NamePrev replaced by NameNew

subst(_, _, [], []) :- !.

subst(_, _, TP, TP) :- var(TP), !.

subst(NP, NN, NP, NN) :- not(var(NN)), !.

subst(NP, NN, TP, TN) :- not(NP = TP), TP =..[H1|T1], !, subst_list(NP,NN,T1,T2),TN =..[H1|T2].

subst_list(_, _, [], []) :- !.

subst_list(NP, NN, [H1|T1], [H2|T2]) :- subst(NP,NN,H1,H2), !, subst_list(NP,NN,T1,T2).

B.2 Tic-Tac-Toe Game Axiomatization in Prolog

%%

%%% setup

%%

:- consult(’llanguageb’).

:- dynamic(proc/2).

:- dynamic(restoreSitarg/3).

:- style_check(-discontiguous).

:- set_flag(print_depth,100).

output_details(verbose). %% just define this term for approximations to pe printed as we go

binding_diameter(11). %% maximul level of approximation expansion

%%

%%% fluents

%%

% GOAL

wins(P,S) :- inline(C1,C2,C3), cell(P,C1,S), cell(P,C2,S), cell(P,C3,S), agent(P), legal(S).

% SITCALC ARGS - restore S for fluents and goal

restoreSitArg(wins(P), S, wins(P,S)).

restoreSitArg(cell(P,C), S, cell(P,C,S)).

restoreSitArg(finished, S, finished(S)).

restoreSitArg(completed, S, completed(S)).

% DERIVED FLUENTS

completed(S) :- not(cell(b,_,S)). %% no more moves

finished(S) :- completed(S) ; wins(P,S). %% no more moves or someone wins

223

result(S) :- not(legal(S)), write(’illegal’), nl, !.

result(S) :- wins(P,S), write(’winner: ’), write(P), nl, !.

result(S) :- completed(S), write(’draw’), nl, !.

result(_) :- write(’in-progress’), nl, !.

% does a set make a line when ordered somehow

inline(C1,C2,C3) :- line(C1,C2,C3).

inline(C1,C2,C3) :- line(C1,C3,C2).

inline(C1,C2,C3) :- line(C2,C1,C3).

inline(C1,C2,C3) :- line(C2,C3,C1).

inline(C1,C2,C3) :- line(C3,C1,C2).

inline(C1,C2,C3) :- line(C3,C2,C1).

% OUTPUTS

disp_game(S) :-

write(’#####’),nl,

write(’#’),disp(1,S),disp(2,S),disp(3,S),write(’#’),nl,

write(’#’),disp(4,S),disp(5,S),disp(6,S),write(’#’),nl,

write(’#’),disp(7,S),disp(8,S),disp(9,S),write(’#’),nl,

write(’#####’),nl.

disp(C,S) :- cell(M,C,S), (M=b, write(’.’) ; M=x, write(’X’); M=o, write(’O’)).

%%

%%% domain

%%

% ACTIONS

primitive_action(mark(P,C)) :- agent(P), cell(C).

% AGENTS

agent(o).

agent(x).

% CELLS

cell(1).

cell(2).

cell(3).

cell(4).

cell(5).

cell(6).

cell(7).

cell(8).

cell(9).

% LINES

line(1,2,3).

line(4,5,6).

line(7,8,9).

line(1,4,7).

line(2,5,8).

line(3,6,9).

line(1,5,9).

line(3,5,7).

%%

%%% D_poss

%%

% poss: possible (is it possible when given legal or not situation)

poss(mark(P,C),S) :- cell(b,C,S), agent(P), cell(C).

%%

224

%%% D_ssa

%%

cell(M,C,do(A,S)) :- A=mark(M,C) ; cell(M,C,S), not(A=mark(_,C)).

%%

%%% D_S0

%%

% all cells in domain are b (blank) in s0.

cell(b,C,s0) :- cell(C).

%%

%%% D_legal

%%

% control: agent is the next to action in situation

agent_control(P,S) :- agent_action(P,A), legal(do(A,S)), !.

% agent_action - determine the agent of an action

agent_action(P,A) :- A = mark(P,C), agent(P), cell(C).

% legal: is the situation LEGAL (can this situation be arrived at)

legal(s0) :- !.

legal(S) :-

S = do(A,s0),

agent_action(x,A),

poss(A, s0), !.

legal(S) :-

S = do(A1,S1), S1 = do(A2,S2),

agent_action(x,A1), agent_action(o,A2),

poss(A1,S1), poss(A2,S2),not(finished(S1)), !.

legal(S) :-

S = do(A1,S1), S1 = do(A2,S2),

agent_action(o,A1), agent_action(x,A2),

poss(A1,S1), poss(A2,S2),not(finished(S1)), !.

%%

%%% SOFT CONSTRAINTS

%%

% preferred - soft constraint for P i.e. try to restrict agent actions if possible

preferred(P,A,S) :- P=o, cell(b,1,S), A=mark(P,1). %% grab corners

preferred(P,A,S) :- P=o, cell(b,3,S), A=mark(P,3). %% grab corners

preferred(P,A,S) :- P=o, cell(b,7,S), A=mark(P,7). %% grab corners

preferred(P,A,S) :- P=o, cell(b,9,S), A=mark(P,9). %% grab corners

B.3 Tic-Tac-Toe Game Property Tests

%%% TEST SITUATIONS %%%

sit(s5,S) :- S=do(mark(x,7),do(mark(o,3),do(mark(x,4),do(mark(o,2),do(mark(x,1),s0))))).

% XOO

% X..

% X..

sit(s4,S) :- S=do(mark(o,3),do(mark(x,4),do(mark(o,2),do(mark(x,1),s0)))).

% XOO

% X..

% ...

sit(s3,S) :- S=do(mark(x,4),do(mark(o,2),do(mark(x,1),s0))).

% XO.

% X..

% ...

225

sit(s2,S) :- S=do(mark(o,2),do(mark(x,1),s0)).

% XO.

% ...

% ...

sit(s1,S) :- S=do(mark(x,1),s0).

% X..

% ...

% ...

sit(s0,S) :- S=s0.

% ...

% ...

% ...

%%%%%%%%%%

sit(sw6,S) :- S=do(mark(x,3), do(mark(o, 8), do(mark(x, 2), do(mark(o, 9),

do(mark(x, 1), do(mark(o, 4), do(mark(x, 5), s0))))))).

% XXX

% OX.

% .OO

sit(sw5,S) :- S=do(mark(o,8),do(mark(x,2),do(mark(o,9),do(mark(x,1),do(mark(o,4),do(mark(x,5),s0)))))).

% XX.

% OX.

% .OO

sit(sw4,S) :- S=do(mark(x,2),do(mark(o,9),do(mark(x,1),do(mark(o,4),do(mark(x,5),s0))))).

% XX.

% OX.

% ..O

sit(sw3,S) :- S=do(mark(o,9),do(mark(x,1),do(mark(o,4),do(mark(x,5),s0)))).

% X..

% OX.

% ..O

sit(sw2,S) :- S=do(mark(x,1),do(mark(o,4),do(mark(x,5),s0))).

% X..

% OX.

% ...

sit(sw1,S) :- S=do(mark(o,4),do(mark(x,5),s0)).

% ...

% OX.

% ...

sit(sw0,S) :- S=do(mark(x,5),s0).

% ...

% .X.

% ...

%%%%%%%%%%

sit(sx1,S) :- S=do(mark(x,2),do(mark(x,1),s0)). % illegal

% XX.

% ...

% ...

sit(sx2,S) :- S=do(mark(x, 2), do(mark(o, 7), do(mark(x, 4), do(mark(o, 5), do(mark(x, 1), s0))))).

% XX.

% XO.

% O..

%%% TESTS %%%

% sit(s5,S), holds(ensure([x],wins(x)),S).

% approx 1, 0s

% sit(s4,S), holds(ensure([x],wins(x)),S).

% approx 2, 0s

% sit(s3,S), holds(ensure([x],wins(x)),S).

% approx 5, 0s

% sit(s2,S), holds(ensure([x],wins(x)),S).

% approx 4, 1s

% sit(s1,S), holds(ensure([x],wins(x)),S).

% approx 5, 2s

% sit(s0,S), holds(ensure([x],wins(x)),S).

% approx 6, 4s

226

%%%%%%%%%%

% sit(sw6,S), holds(ensure([x],wins(x)),S).

% approx 1, 0s

% sit(sw5,S), holds(ensure([x],wins(x)),S).

% approx 2, 0s

% sit(sw4,S), holds(ensure([x],wins(x)),S).

% approx 3, 0s

% sit(sw3,S), holds(ensure([x],wins(x)),S).

% approx 4, 0s

% sit(sw2,S), holds(ensure([x],wins(x)),S).

% approx 5, 1s

% sit(sw1,S), holds(ensure([x],wins(x)),S).

% approx 4, 1s

% sit(sw0,S), holds(ensure([x],wins(x)),S).

% approx 5, 2s

%%%%%%%%%%

% sit(sx1,S), holds(ensure([x],wins(x)),S).

% approx 5, 2s

% sit(sx2,S), holds(ensure([x],wins(x)),S).

% failed, 2s

227

C Verifier for GameGolog-Expressed Game Structures

C.1 Prolog Code

%%

%% GAMEGOLOG SEMANTICS

%%

%% similar to Golog semantcs

%% there is a new parameter U to trans and it holds if agent U is in control in situation S

%% there is a new parameter UX to trans and it holds if agent UX is in control in situation SX

:- op(200, fy, [?]). %% operator for domain

:- op(200, xfy, [of]). %% operator for domain

:- op(210, xfy, [:]). %% operator for sequence of actions

:- op(220, xfy, [@@]). %% operator for nd choice of action

trans(E,S,SX) :- trans(_U,E,S,_UX,_EX,SX).

trans(U,?P,SX,U,_EX,SX) :- !, fail. %% test

trans(U,?true : E,S,UX,EX,SX) :- !, trans(U,E,S,UX,EX,SX). %% performance improvement

trans(U,E1 : E2,S,UX,EX,SX) :- trans(U,E1,S,UX,EX1,SX), EX = (EX1 : E2). %% action sequence

trans(U,E1 : E2,S,UX,EX,SX) :- final(E1,S), trans(U,E2,S,UX,EX,SX). %% action sequence

trans(U,if(P,E1,E2),S,UX,EX,SX) :- holds(P,S), trans(U,E1,S,UX,EX,SX). %% if then else

trans(U,if(P,E1,E2),S,UX,EX,SX) :- not(holds(P,S)), trans(U,E2,S,UX,EX,SX). %% if then else

trans(U,while(P,E),S,UX,EX,SX):- %% while

holds(P,S), trans(U,E,S,UX,EX1,SX), EX = (EX1 : while(P,E)).

trans(U,E1 @@ E2,S,U,E1,do(left(U),S)). %% nd branch

trans(U,E1 @@ E2,S,U,E2,do(right(U),S)). %% nd branch

trans(U,pi(V of D,E),S,U,EX,SX) :- DP=..[D,VX], DP, poss(pick(U,VX),S),

SX = do(pick(U,VX),S), subst(V,VX,E,EX). %% nd choice of argument

trans(U,star(E),S,U,E : star(E),do(continue(U),S)). %% star

trans(U,star(E),S,U,?true,do(stop(U),S)). %% star

trans(_U,uc(UX1,E),S,UX,EX,SX) :- trans(UX1,E,S,UX,EX,SX). %% under control

trans(U,A,S,U,?true,do(A,S)) :- primitive_action(A),poss(A,S). %% primitive action

final(E,S) :- primitive_action(E),!,fail. %% primitive action

final(?P,S) :- holds(P,S). %% test

final(E1 : E2,S) :- final(E1,S), final(E2,S). %% sequence

final(if(P,E1,E2),S) :- holds(P,S), final(E1,S). %% if

final(if(P,E1,E2),S) :- not(holds(P,S)), final(E2,S). %% if

final(while(P,E),S) :- holds(P,S), final(E,S) ; not(holds(P,S)). %% while

final(E1 @@ E2,S) :- !, fail. %% nd branch - GG version

final(pi(V of D,E),S) :- !, fail. %% nd choice of argument - GG version

final(star(E),S) :- !, fail. %% star - GG version

% trans* (star composition of trans)

transs(U,E,s0,UX,EX,do(A,s0)) :- trans(U,E,s0,UX,EX,do(A,s0)).

transs(U,E,S,UX,EX,do(A,S1)) :- transs(U,E,S,U1,E1,S1), trans(U1,E1,S1,UX,EX,do(A,S1)).

228

%%

%%% L-LANGUAGE

%%

:- op(800, xfy, [&]). /* operator for conjunction */

:- op(850, xfy, [v]). /* operator for disjunction */

:- op(870, xfy, [=>]). /* operator for implication */

:- op(880,xfy, [<=>]). /* operator for equivalence */

% explicit enumeration of constructs (all others are treated as atoms)

ll_construct(Pred) :-

Pred = -W ; %% negation of W

Pred = (W1 & W2) ; %% conjunction, uses & in place of ^

Pred = (W1 v W2) ; %% disjunction

Pred = (W1 => W2) ; %% implication

Pred = (W1 <=> W2) ; %% equivalence

Pred = some(X,W) ; %% exists X . W

Pred = all(X,W) ; %% forall X . W

Pred = mu(z,F) ; %% mu X . F

Pred = exists_successor(G,F) ; %% exists possible successor state for group

Pred = exists_successor2(G,F) ; %% exists possible successor state for anti-group

Pred = forall_successors2(G,F) ; %% for all possible successor states for anti-group

Pred = next(G,F); %% <<G>>oF

Pred = ensure(G,F). %% <<G>><>F

ll_atom(Pred) :- not(ll_construct(Pred)).

% negations of HOLDS constructs

holds(false,S) :- !, fail.

holds(-false,S) :- !.

holds(-P,S) :- ll_atom(P), !, not(holds(P,S)).

holds(-(-P),S) :- !, holds(P,S).

holds(-(P & Q),S) :- !, holds(-P v -Q,S).

holds(-(P v Q),S) :- !, holds(-P & -Q,S).

holds(-(P => Q),S) :- !, holds(-(-P v Q),S).

holds(-(P <=> Q),S) :- !, holds(-((P => Q) & (Q => P)),S).

holds(-all(V,P),S) :- !, holds(some(V,-P),S).

holds(-P,S) :- not(holds(P,S)). %% the regular way for all others

% semantics of L-Language constructs

holds(P & Q,S) :-!, holds(P,S), holds(Q,S). %% conjunction, uses & in place of ^

holds(P v Q,S) :-!, (holds(P,S); holds(Q,S)). %% disjunction

holds(P => Q,S) :-!, holds(-P v Q,S). %% implication as horn disjunction

holds(P <=> Q,S) :-!, holds((P => Q) & (Q => P),S). %% equivalence as mutual impication

holds(all(V,P),S) :-!, holds(-some(V,-P),S). %% universal in terms of existential

holds(some(V,P),S) :-!, subst(V,_,P,P1), holds(P1,S). %% existential

holds(mu(z,F),S) :- !, mu_approx(z,F,false,1,S). %% mu as approximation

holds(next(G,false),S) :- !, fail. %% ignore for performance

holds(next(G,F),S) :- !, %% next operator <<G>>oF

write(’trying ---> ’), output3(G,F,S), (

incontrol(G,S), % group must be in control

holds(exists_successor(G,F),S),

write(’> successor EXISTS for G ---> ’), output3(G,F,S)

;

incontrol(-G,S), % anti-group must be in control

holds(forall_successors2(-G,F),S),

write(’> successor FORALL for -G ---> ’), output3(G,F,S)

).

holds(ensure(G,F),S) :- !, %% diamond operator <<G>><>F

holds(mu(z,F v next(G,z)),S).

holds(exists_successor(G,F),S) :- !, %% F holds in do(a,s) for some legal actions of group G

member(P,G),

agent_action(P, A),

S1=do(A,S), legal(S1),

229

holds(F,S1), !.

holds(forall_successors2(-G,F),S) :- !, %% F holds in do(a,s) for all legal actions of anti-group G

not(holds(exists_successor2(-G,-F),S)).

holds(exists_successor2(-G,F),S) :- !, %% F holds in do(a,s) for some legal actions of anti-group G

agent(P), not(member(P,G)),

agent_action(P, A),

S1=do(A,S), legal(S1),

holds(F,S1), !.

incontrol(-G,S) :- !, %% group -G is in control

agent(P), not(member(P,G)), agent_control(P,S), !.

incontrol(G,S) :- !, %% group G is in control

member(P,G), agent_control(P,S), !.

%% HOLDS for situation-suppressed formulas (non fluents, system predicates)

holds(Pred,S) :- restoreSitArg(Pred,S,PredEx), !, PredEx.

holds(Pred,S) :- ll_atom(Pred), Pred.

% !!! the domain must provide how to restore situation arguments for all fluents

% !!! for example: restoreSitArg(ontable(X),S,ontable(X,S)).

%########################

%### mu approximation ###

%########################

% binding diameter reached (as for bounded model checking)

mu_approx(Z,F,Int,N,S) :- binding_diameter(Max), N>Max, !,

write(’binding diameter ’), write(N), write(’ reached - stop’), nl, !, fail.

% else: show progress at the start of step (and fail to continue)

mu_approx(Z,F,Int,N,S) :- subst(Z,Int,F,Fx), output2(N,Fx), fail.

% else: substitute and chech if holds

mu_approx(Z,F,Int,N,S) :- subst(Z,Int,F,Fx), holds(Fx,S), !, output1(N,Fx).

% else: next approximation

mu_approx(Z,F,Int,N,S) :- M is N+1, subst(Z,Int,F,Int2), !, mu_approx(Z,F,Int2,M,S).

%#########################

%### helper predicates ###

%#########################

% output(M,F) = write out approximation (M = level, F = formula)

output1(M,F) :- output_details(verbose), !,

write(’> ##### approximation ’), write(M), write(’ holds ---> ’), write(F), nl.

output2(M,F) :- output_details(verbose), !,

write(’trying ##### approximation ’), write(M), write(’ ---> ’), write(F), nl.

output3(G,F,S) :- output_details(verbose), !,

write(’next(’), write(G), write(’,’), write(F), write(’) ---> for S = ’), write(S), nl.

% member(X,L) = asserts that X a member of a list L

member(X,[X|T]).

member(X,[H|T]) :- member(X,T).

% subst(NamePrev, NameNew, TermPrev, TermNew)

% = asserts that TermNew is TermPrev with NamePrev replaced by NameNew

subst(_, _, [], []) :- !.

subst(_, _, TP, TP) :- var(TP), !.

subst(NP, NN, NP, NN) :- not(var(NN)), !.

subst(NP, NN, TP, TN) :- not(NP = TP), TP =..[H1|T1], !, subst_list(NP,NN,T1,T2),TN =..[H1|T2].

subst_list(_, _, [], []) :- !.

subst_list(NP, NN, [H1|T1], [H2|T2]) :- subst(NP,NN,H1,H2), !, subst_list(NP,NN,T1,T2).

C.2 Tic-Tac-Toe GameGolog Axiomatization in Prolog

%%

230

%%% setup

%%

:- consult(’gg’).

:- dynamic(proc/2).

:- dynamic(restoreSitarg/3).

:- style_check(-discontiguous).

:- set_flag(print_depth,100).

output_details(verbose). %% just define this term for approximations to pe printed as we go

binding_diameter(22). %% maximul level of approximation expansion

%%

%%% fluents

%%

% GOAL

wins(P,S) :- inline(C1,C2,C3), cell(P,C1,S), cell(P,C2,S), cell(P,C3,S), agent(P), legal(S).

% SITCALC ARGS - restore S for fluents and goal

restoreSitArg(wins(P), S, wins(P,S)).

restoreSitArg(cell(P,C), S, cell(P,C,S)).

restoreSitArg(finished, S, finished(S)).

restoreSitArg(completed, S, completed(S)).

% DERIVED FLUENTS

completed(S) :- not(cell(b,_,S)). %% no more moves

finished(S) :- completed(S) ; wins(P,S). %% no more moves or someone wins

result(S) :- not(legal(S)), write(’illegal’), nl, !.

result(S) :- wins(P,S), write(’winner: ’), write(P), nl, !.

result(S) :- completed(S), write(’draw’), nl, !.

result(_) :- write(’in-progress’), nl, !.

% does a set make a line when ordered somehow

inline(C1,C2,C3) :- line(C1,C2,C3).

inline(C1,C2,C3) :- line(C1,C3,C2).

inline(C1,C2,C3) :- line(C2,C1,C3).

inline(C1,C2,C3) :- line(C2,C3,C1).

inline(C1,C2,C3) :- line(C3,C1,C2).

inline(C1,C2,C3) :- line(C3,C2,C1).

% OUTPUTS

disp_game(S) :-

write(’#####’),nl,

write(’#’),disp(1,S),disp(2,S),disp(3,S),write(’#’),nl,

write(’#’),disp(4,S),disp(5,S),disp(6,S),write(’#’),nl,

write(’#’),disp(7,S),disp(8,S),disp(9,S),write(’#’),nl,

write(’#####’),nl.

disp(C,S) :- cell(M,C,S), (M=b, write(’.’) ; M=x, write(’X’); M=o, write(’O’)).

%%

%%% domain

%%

% ACTIONS

primitive_action(mark(P,C)) :- agent(P), cell(C).

primitive_action(pick(P,C)) :- agent(P), cell(C).

primitive_action(stop(P)) :- agent(P).

primitive_action(continue(P)) :- agent(P).

231

% AGENTS

agent(o).

agent(x).

% CELLS

cell(1).

cell(2).

cell(3).

cell(4).

cell(5).

cell(6).

cell(7).

cell(8).

cell(9).

% LINES

line(1,2,3).

line(4,5,6).

line(7,8,9).

line(1,4,7).

line(2,5,8).

line(3,6,9).

line(1,5,9).

line(3,5,7).

%%

%%% D_poss

%%

% poss: possible (is it possible when given legal or not situation)

poss(mark(P,C),S) :- cell(b,C,S), agent(P), cell(C).

poss(pick(P,C),S) :- cell(b,C,S), agent(P), cell(C).

poss(stop(P),S).

poss(continue(P),S).

%%

%%% D_ssa

%%

cell(M,C,do(A,S)) :- A=mark(M,C) ; cell(M,C,S), not(A=mark(_,C)).

%%

%%% D_S0

%%

% all cells in domain are b (blank) in s0.

cell(b,C,s0) :- cell(C).

%%

%%% D_legal

%%

% control: agent is the next to action in situation

agent_control(P,S) :- agent_action(P,A), legal(do(A,S)), !.

% agent_action - determine the agent of an action

agent_action(P,A) :- A = mark(P,C), agent(P), cell(C).

agent_action(P,A) :- A = pick(P,C), agent(P), cell(C).

agent_action(P,A) :- A = stop(P), agent(P).

agent_action(P,A) :- A = continue(P), agent(P).

% legal: is the situation LEGAL (can this situation be arrived at) using trans*

legal(S) :- proc(ttt,R0), transs(_U,R0,s0,_UX,_RX,S).

232

%%

%%% GameGolog

%%

% program

% all bound variables must have unique names

proc(ttt,

while(-finished,

uc(x, pi(c1 of cell, mark(x,c1))) :

if(-finished,

uc(o, pi(c2 of cell, mark(o,c2))),

? true)

)

).

C.3 Tic-Tac-Toe Game Property Tests

%%% TEST SITUATIONS %%%

sit(s5,S) :- S=do(mark(x,7),do(pick(x,7),do(mark(o,3),do(pick(o,3),do(mark(x,4),do(pick(x,4),

do(mark(o,2),do(pick(o,2),do(mark(x,1),do(pick(x,1),s0)))))))))).

% XOO

% X..

% X..

sit(s4,S) :- S=do(mark(o,3),do(pick(o,3),do(mark(x,4),do(pick(x,4),do(mark(o,2),do(pick(o,2),

do(mark(x,1),do(pick(x,1),s0)))))))).

% XOO

% X..

% ...

sit(s3,S) :- S=do(mark(x,4),do(pick(x,4),do(mark(o,2),do(pick(o,2),do(mark(x,1),do(pick(x,1),s0)))))).

% XO.

% X..

% ...

sit(s2,S) :- S=do(mark(o,2),do(pick(o,2),do(mark(x,1),do(pick(x,1),s0)))).

% XO.

% ...

% ...

sit(s1,S) :- S=do(mark(x,1),do(pick(x,1),s0)).

% X..

% ...

% ...

sit(s0,S) :- S=s0.

% ...

% ...

% ...

%%%%%%%%%%

sit(sw6,S) :- S=do(mark(x,3), do(pick(x,3),do(mark(o, 8), do(pick(o,8),do(mark(x, 2),

do(pick(x,2), do(mark(o, 9), do(pick(o,9),do(mark(x, 1), do(pick(x,1),do(mark(o, 4), do(pick(o,4),

do(mark(x, 5), do(pick(x,5),s0)))))))))))))).

% XXX

% OX.

% .OO

sit(sw5,S) :- S=do(mark(o,8),do(pick(o,8),do(mark(x,2),do(pick(x,2),do(mark(o,9),do(pick(o,9),

do(mark(x,1),do(pick(x,1),do(mark(o,4),do(pick(o,4),do(mark(x,5),do(pick(x,5),s0)))))))))))).

% XX.

% OX.

% .OO

sit(sw4,S) :- S=do(mark(x,2),do(pick(x,2),do(mark(o,9),do(pick(o,9),do(mark(x,1),do(pick(x,1),

do(mark(o,4),do(pick(o,4),do(mark(x,5),do(pick(x,5),s0)))))))))).

% XX.

% OX.

% ..O

233

sit(sw3,S) :- S=do(mark(o,9),do(pick(o,9),do(mark(x,1),do(pick(x,1),

do(mark(o,4),do(pick(o,4),do(mark(x,5),do(pick(x,5),s0)))))))).

% X..

% OX.

% ..O

sit(sw2,S) :- S=do(mark(x,1),do(pick(x,1),do(mark(o,4),do(pick(o,4),

do(mark(x,5),do(pick(x,5),s0)))))).

% X..

% OX.

% ...

sit(sw1,S) :- S=do(mark(o,4),do(pick(o,4),do(mark(x,5),do(pick(x,5),s0)))).

% ...

% OX.

% ...

sit(sw0,S) :- S=do(mark(x,5),do(pick(x,5),s0)).

% ...

% .X.

% ...

%%%%%%%%%%

sit(sx1,S) :- S=do(mark(x,2),do(pick(x,2),do(mark(x,1),do(pick(x,1),s0)))). % illegal

% XX.

% ...

% ...

sit(sx2,S) :- S=do(mark(x, 2), do(pick(x,2), do(mark(o, 7), do(pick(o,7), do(mark(x, 4),

do(pick(x,4), do(mark(o, 5), do(pick(o,5), do(mark(x, 1), do(pick(x,1), s0)))))))))).

% XX.

% XO.

% O..

%%% TESTS %%%

% sit(s5,S), holds(ensure([x],wins(x)),S).

% approx 1, 0s

% sit(s4,S), holds(ensure([x],wins(x)),S).

% approx 3, 7s

% sit(s3,S), holds(ensure([x],wins(x)),S).

% approx 9, 10m

% sit(s2,S), holds(ensure([x],wins(x)),S).

% approx 11, 36m

% sit(s1,S), not(holds(ensure([x],wins(x)),S)).

% binding diameter, ???

% sit(s0,S), not(holds(ensure([x],wins(x)),S)).

% binding diameter, ???

%%%%%%%%%%

% sit(sw6,S), holds(ensure([x],wins(x)),S).

% approx 1, 0s

% sit(sw5,S), holds(ensure([x],wins(x)),S).

% approx 3, 5s

% sit(sw4,S), holds(ensure([x],wins(x)),S).

% approx 5, 42s

% sit(sw3,S), holds(ensure([x],wins(x)),S).

% approx 7, 2m

% sit(sw2,S), holds(ensure([x],wins(x)),S).

% approx 9, 13.5m

% sit(sw1,S), holds(ensure([x],wins(x)),S).

% approx 11, 34m

% sit(sw0,S), not(holds(ensure([x],wins(x)),S)).

% binding diameter, ???

%%%%%%%%%%

% sit(sx1,S), not(holds(ensure([x],wins(x)),S)).

% binding diameter, 10s

% sit(sx2,S), not(holds(ensure([x],wins(x)),S)).

% binding diameter, 2.5m

234

	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Overview
	Thesis Focus
	Thesis Motivation
	Thesis Contributions
	Outline

	Background
	Representing Dynamic Worlds
	The Situation Calculus
	Basic Action Theories

	Reasoning about Action
	High-Level Languages
	Complex Actions
	Golog and ConGolog
	GameGolog

	Characteristic Graphs
	Game Structures
	Basic Action Theory Models
	Situation Calculus Game Structures
	GameGolog Theories

	Expressing Properties of Systems in Game-Theoretic Logics
	Alternating-time Temporal Logic (ATL)
	Alternating-time -Calculus (AMC)
	Ł-Logic
	Ł_p-Logic

	Verification of Properties of Systems in Game-Theoretic Logics
	Symbolic Manipulation
	() Procedure for Ł-Logic Formulas
	"464A671 "564B679 Procedure for Ł_p-Logic Formulas

	Other Verification Methods
	Theorem Proving
	Model Checking
	Bounded Model Checking
	Program Synthesis
	Infinite-States Domains

	Symbolic Manipulation-Based Verification of Properties of Game Structures
	Light World (LW)
	Situation Calculus Game Structure Axiomatization of LW Domain
	Possibility of Winning
	Existence of a Winning Strategy

	Oil Lamp World (OLW)
	Situation Calculus Game Structure Axiomatization of OLW Domain
	Possibility of Winning

	In-Line Tic-Tac-Toe (TTT1D)
	Situation Calculus Game Structure Axiomatization of TTT1D Domain
	Possibility of Winning
	Existence of a Winning Strategy

	Mark Down (MD)
	Situation Calculus Game Structure Axiomatization of MD Domain
	Possibility of Winning
	Existence of a Winning Strategy

	Mark Up (MU)
	Situation Calculus Game Structure Axiomatization of MU Domain
	Possibility of Winning
	Existence of a Winning Strategy

	Discussion

	Characteristic Graph-Based Verification of Properties of GameGolog Structures
	Light World (LW)
	GameGolog Program of the LW Game
	Characteristic Graph of the LW Game
	Possibility of Winning
	Existence of a Winning Strategy

	Discussion

	Automated Evaluation-Based Verification of Properties of Game Theories
	Verifier for Basic Action Theory Game Structures
	Verifier for Basic Action Theory Game Structures with Constraints
	Verifier for GameGolog-Expressed Game Structures
	Discussion

	Conclusions and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices
	Verifier for Basic Action Theory Game Structures
	Prolog Code
	Tic-Tac-Toe Game Axiomatization in Prolog
	Tic-Tac-Toe Game Property Tests

	Verifier for Basic Action Theory Game Structures with Action/Strategy Constraints
	Prolog Code
	Tic-Tac-Toe Game Axiomatization in Prolog
	Tic-Tac-Toe Game Property Tests

	Verifier for GameGolog-Expressed Game Structures
	Prolog Code
	Tic-Tac-Toe GameGolog Axiomatization in Prolog
	Tic-Tac-Toe Game Property Tests

