
Abstraction of Agents Executing Online and their Abilities in the Situation
Calculus

Bita Banihashemi1, Giuseppe De Giacomo2, Yves Lespérance1,
1 York University

2 Sapienza Università di Roma
bita@cse.yorku.ca, degiacomo@dis.uniroma1.it, lesperan@cse.yorku.ca

Abstract

We develop a general framework for abstracting
online behavior of an agent that may acquire new
knowledge during execution (e.g., by sensing), in
the situation calculus and ConGolog. We assume
that we have both a high-level action theory and
a low-level one that represent the agent’s behav-
ior at different levels of detail. In this setting, we
define ability to perform a task/achieve a goal, and
then show that under some reasonable assumptions,
if the agent has a strategy by which she is able to
achieve a goal at the high level, then we can refine
it into a low-level strategy to do so.

1 Introduction
One way to effectively support reasoning about agents with
complex behavior is to use abstraction. In essence, this in-
volves developing an abstract model of the agent/domain that
suppresses less important details. The abstract model allows
us to reason more easily about the agent’s possible behaviors
and to provide high-level explanations of the agent’s behav-
ior. In AI, abstraction has been investigated in variety of set-
tings such as to improve efficiency in planning (e.g., [Baier
and McIlraith, 2006; Kuter et al., 2007]), facilitate verifica-
tion (e.g., [Mo et al., 2016]), and capture the social practices
of multi-agent systems (e.g., [Dignum et al., 2015]).

[Banihashemi et al., 2017] proposed a general framework
for agent abstraction based on the situation calculus [Mc-
Carthy and Hayes, 1969; Reiter, 2001] and the ConGolog
agent programming language [De Giacomo et al., 2000].
They assume that one has a high-level/abstract action the-
ory, a low-level/concrete action theory, both representing the
agent’s behavior at different levels of detail, and a refine-
ment mapping between the two. The mapping associates each
high-level primitive action to a ConGolog program defined
over the low-level action theory that “implements it”. More-
over, it maps each high-level fluent to a state formula in the
low-level language that characterizes the concrete conditions
under which it holds. They then define a notion of a high-level
theory being a sound abstraction of a low-level theory under
a given refinement mapping. The formalization involves the
existence of a suitable bisimulation relation [Milner, 1971;

1989] between models of the low-level and high-level theo-
ries. It is shown that sound abstractions have many useful
properties that ensure that one can reason about the agent’s
actions (e.g. executability, projection, and planning) at the
abstract level, and refine and concretely execute them at the
low level.

In this paper, we study how we can apply this framework in
the case where the agent is executing online [De Giacomo and
Levesque, 1999; Sardiña et al., 2004b], i.e., may acquire new
knowledge while executing (e.g., by sensing). This means
that the knowledge base that the agent uses in her reasoning
needs to be updated during the execution.

To formalize a notion of sound abstraction in online execu-
tions, we first identify a sufficient property for sound abstrac-
tion to persist in online executions. We then show that a key
result about sound abstractions extends to online executions.
We also adapt definitions of strategies and ability to perform
a task/achieve a goal [Moore, 1985; Lespérance et al., 2000;
2008] to our model of online execution. Then, we show our
main result, namely that under some reasonable assumptions,
if we have a sound abstraction and the agent has a strategy
by which she is able to achieve a goal at the high level, then
one can refine it into a low-level strategy by which the agent
is able to achieve the refinement of the goal. Moreover, the
low-level strategy can be obtained piecewise/incrementally,
by finding a refinement of each step of the high-level strat-
egy individually. This makes reasoning about agents’ abilities
much easier.

Let us briefly discuss related work. [Giunchiglia and
Walsh, 1992; Nayak and Levy, 1995] formalize abstraction of
static logical theories; instead, our work focuses on abstrac-
tion of dynamic domains where the agent may acquire new in-
formation as it executes. Other related work focuses on plan-
ning, for instance [Gabaldon, 2002], which studies encod-
ings of HTNs in ConGolog with enhanced features like ex-
ogenous actions and online executions, and [Baier and McIl-
raith, 2006], which investigates planning with sensing and
complex/macro actions specified in Golog. The former uses
a single basic action theory (BAT), while the latter compiles
the abstracted actions into a new BAT that includes both the
original and abstracted actions. Our approach is more general
and allows fluents to be abstracted as well.

In the next section, we outline the basics of the Situation
Calculus and ConGolog. Then in Section 3, we review the

agent abstraction framework of [Banihashemi et al., 2017].
Following that in Section 4, we discuss how we model sens-
ing, exogenous actions, and online execution. Then in Sec-
tion 5, we identify sufficient conditions for sound abstractions
to persist in online executions and examine their properties.
Following that in Section 6, we formalize a suitable notion
of agent ability. Then in Section 7, we present our main re-
sult, i.e., that under a reasonable set of assumptions, when an
agent has a strategy by which she is able to achieve a goal at
the high level, we can refine it into a low-level strategy to do
so. The paper then concludes by discussing our contributions
and topics for future work.

2 Preliminaries
Situation Calculus. The situation calculus is a well known
predicate logic language for representing and reasoning about
dynamically changing worlds. Within the language, one can
formulate basic action theories (BATs) that describe how the
world changes as a result of actions; see [Reiter, 2001] for
details of how these are defined. Hereafter, we will use D
to refer to the BAT under consideration. We assume that
there is a finite number of action types A. Moreover, we
assume that the terms of object sort are in fact a count-
ably infinite set N of standard names for which we have
the unique name assumption and domain closure. For sim-
plicity, and w.l.o.g., we assume that there are no functions
other than constants and no non-fluent predicates. We write
do([a1, a2, . . . , an−1, an], s) as an abbreviation for the situa-
tion term do(an, do(an−1, . . . , do(a2, do(a1, s)) . . .)); for an
action sequence ~a, we often write do(~a, s) for do([~a], s). A
special predicate Poss(a, s) is used to state that action a is
executable in situation s. The abbreviation Executable(s)
means that every action performed in reaching situation swas
executable in the situation in which it occurred.

ConGolog. To represent and reason about complex actions
or processes obtained by suitably executing atomic actions,
various so-called high-level programming languages have
been defined [Levesque et al., 1997]. Here we concentrate
on (a variant of) ConGolog [De Giacomo et al., 2000] that
includes the following constructs:

δ ::= nil | α | ϕ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗ | δ1‖δ2

In the above, nil denotes the empty program, which does
nothing and is already terminated, α is an action term, possi-
bly with parameters, and ϕ is situation-suppressed formula,
i.e., a formula with all situation arguments in fluents sup-
pressed. As usual, we denote by ϕ[s] the formula obtained
from ϕ by restoring the situation argument s into all fluents
in ϕ. The sequence of program δ1 followed by program δ2 is
denoted by δ1; δ2. Program δ1|δ2 allows for the nondetermin-
istic choice between programs δ1 and δ2, while πx.δ executes
program δ for some nondeterministic choice of a legal bind-
ing for object variable x (observe that such a choice is, in
general, unbounded). δ∗ performs δ zero or more times. Pro-
gram δ1‖δ2 expresses the concurrent execution (interpreted
as interleaving) of programs δ1 and δ2.

Formally, the semantics of ConGolog is specified in terms
of single-step transitions, using the following two predicates:
(i) Trans(δ, s, δ′, s′), which holds if one step of program δ
in situation s may lead to situation s′ with δ′ remaining to
be executed; and (ii) Final(δ, s), which holds if program δ
may legally terminate in situation s. The definitions of Trans
and Final we use are as in [De Giacomo et al., 2010]; dif-
ferently from [De Giacomo et al., 2000], the test construct
ϕ? does not yield any transition, but is Final when satisfied.
Predicate Do(δ, s, s′) means that program δ, when executed
starting in situation s, has s′ as a legal terminating situation,
and is defined as Do(δ, s, s′) .

= ∃δ′.T rans∗(δ, s, δ′, s′) ∧
Final(δ′, s′) where Trans∗ denotes the reflexive transitive
closure of Trans. In the rest, we use C to denote the axioms
defining the ConGolog programming language.

Situation-Determined Programs. A ConGolog program δ
is situation-determined (SD) in a situation s [De Giacomo
et al., 2012] if for every sequence of actions, the remaining
program is determined by the resulting situation, i.e.,

SituationDetermined(δ, s)
.
= ∀s′, δ′, δ′′.

Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ = δ′′,

For instance, the program a; (b | c) (assuming the actions
involved are always executable) is SD in situation S0, since
there is a unique remaining program (b | c) in do(a, S0) (and
similarly for the other reachable situations). However, the
program (a; b) | (a; c) is not SD in situation S0, since after
performing action a, and given only the situation do(a, S0),
it is impossible to determine what the remaining program is
(it could be either b or c).

3 Abstracting Agent Behavior
In the agent abstraction framework of [Banihashemi et al.,
2017], there is a high-level (HL) action theory Dh and a low-
level (LL) action theory Dl representing the agent’s possible
behaviors at different levels of detail. Dh (resp. Dl) involves
a finite set of primitive action typesAh (resp. Al) and a finite
set of primitive fluent predicates Fh (resp. Fl). Also, Dh and
Dl are assumed to share no domain specific symbols except
for the set of standard names for objects N .

Refinement Mapping. To relate the two theories, a re-
finement mapping m is defined as a function that associates
each high-level primitive action type A in Ah to a situation-
determined ConGolog program δA defined over the low-level
theory that implements the action, i.e., m(A(~x)) = δA(~x);
moreover, m maps each situation-suppressed high-level flu-
ent F (~x) in Fh to a situation-suppressed formula φF (~x) de-
fined over the low-level theory that characterizes the concrete
conditions under which F (~x) holds in a situation. We ex-
tend the notation so that m(φ) stands for the result of sub-
stituting every fluent F (~x) in situation-suppressed formula
φ by m(F (~x)). Also, we apply m to action sequences
with m(α1, . . . , αn)

.
= m(α1); . . . ;m(αn) for n ≥ 1 and

m(ε)
.
= nil, where ε is the empty sequence of actions.

m-Bisimulation. To relate the high-level and low-level
models/theories, a variant of bisimulation [Milner, 1971;
1989] is defined as follows. Given Mh a model of Dh ∪ C,
and Ml a model of Dl ∪ C, a relation B ⊆ ∆Mh

S × ∆Ml

S

(where ∆M
S stands for the situation domain of M) is an m-

bisimulation relation between Mh and Ml if 〈sh, sl〉 ∈ B
implies that: (i) sh ∼Mh,Ml

m sl, i.e., sh and sl evaluate
each high-level primitive fluent the same;1 (ii) for every
high-level primitive action type A in Ah , if there exists s′h
such that Mh |= Poss(A(~x), sh) ∧ s′h = do(A(~x), sh),
then there exists s′l such that Ml |= Do(m(A(~x)), sl, s

′
l),

and 〈s′h, s′l〉 ∈ B; and, (iii) for every high-level primi-
tive action type A in Ah , if there exists s′l such that Ml |=
Do(m(A(~x)), sl, s

′
l), then there exists s′h such that Mh |=

Poss(A(~x), sh) ∧ s′h = do(A(~x), sh) and 〈s′h, s′l〉 ∈ B. Mh

ism-bisimilar toMl, writtenMh ∼m Ml, if and only if there
exists anm-bisimulation relationB betweenMh andMl such
that (SMh

0 , SMl
0) ∈ B.

Sound Abstractions. In [Banihashemi et al., 2017], Dh is
a sound abstraction of Dl relative to refinement mappingm if
and only if, for all models Ml of Dl ∪ C, there exists a model
Mh of Dh ∪ C such that Mh ∼m Ml. With a sound abstrac-
tion, whenever the high-level theory entails that a sequence
of actions is executable and achieves a certain condition, then
the low level must also entail that there exists an executable
refinement of the sequence such that the “translated” condi-
tion holds afterwards. Moreover, whenever the low level con-
siders the executability of a refinement of a high-level action
to be satisfiable, then the high level does also. Sound abstrac-
tions can be used to perform effectively several forms of rea-
soning about action, such as planning, monitoring, and gener-
ating high-level explanations of low-level behavior. Note that
a dual notion is also defined: Dh is a complete abstraction
of Dl relative to refinement mapping m if and only if, for all
modelsMh ofDh∪C, there exists a modelMl ofDl∪C such
that Ml ∼m Mh.

Example 1 For our running example, we consider a travel
planner agent that can book a seat (economy Ec or busi-
ness Bz) on a flight f for a customer c. The high-level
BAT Degh abstracts over details of the booking procedure.
The fluent Upg(c, s) holds when an upgrade for customer
c is possible. The action book(c, cls, f) (where cls de-
notes either Bz or Ec) is always possible for economy seats
but only possible for business seats when Upg(c, s) holds.
The fluent Booked(c, cls, f, s) indicates a ticket has been
booked for c. The low-level BAT Degl models the pro-
cess of booking a ticket in more detail. Two types of up-
grades exist: AirMiles(c, s) and Promotion(c, s). Ac-
tion selF lt(c, cls, f) to select a flight is only possible for
Bz seats if either of AirMiles(c, s) or Promotion(c, s)

1This defines a local condition for the bisimulation. We say that
situation sh in Mh is m-isomorphic to situation sl in Ml, writ-
ten sh ∼Mh,Ml

m sl, if and only if Mh, v[s/sh] |= F (~x, s) iff
Ml, v[s/sl] |= m(F (~x))[s] for every high-level primitive fluent
F (~x) in Fh and every variable assignment v (v[x/e] stands for the
assignment that is like v except that x is mapped to e).

holds and action pay(c, cls, f) makes payments. Flu-
ents Selected(c, cls, f, s) and Paid(c, cls, f, s) indicate the
ticket has been selected and paid for respectively. The refine-
ment mapping meg is defined as:

meg(Upg(c)) = AirMiles(c) ∨ Promotion(c)
meg(Booked(c, cls, f)) = Selected(c, cls, f) ∧ Paid(c, cls, f)
meg(book(c, cls, f)) = selF lt(c, cls, f); pay(c, cls, f)

4 Online Execution and Sensing
In this paper, similarly to [Lespérance et al., 2008], we
model sensing as an ordinary action which queries a sen-
sor, followed by the reporting of a sensor result, in the
form of an exogenous action. With this way of doing sens-
ing, we essentially store the sensing results in the situation
(which includes all actions executed so far including the
exogenous actions used for sensing). We update the the-
ory/knowledge base (KB) to incorporate the sensed informa-
tion by asserting Poss(a, s) atoms and relying on precon-
dition axioms to relate sensing to fluents. In particular the
current KB after having performed the sequence of actions ~a
is D ∪ C ∪ {Executable(do(~a, S0)}, which we abbreviate as
D ∪ C ∪ Sensed(~a). Note that this also handles the agent’s
acquiring knowledge from an arbitrary exogenous action.

Example 2 To allow the high-level agent in Example 1 to
learn if Upg(c, s) holds, Degh can include the following:

Poss(qryUpg(c), s) ≡
¬∃c′.(QrdUpg(c′, s) ∧ ¬RecvRep(c′, s))

Poss(repUpg(c, x), s) ≡ QrdUpg(c, s) ∧ ¬RecvRep(c, s) ∧
(Upg(c, s) ∧ x = 1 ∨ ¬Upg(c, s) ∧ x = 0)

where qryUpg(c) is an ordinary action that is used to query
(i.e., sense) if Upg(c, s) holds and repUpg(c, x) is an exoge-
nous action that informs the agent if Upg(c, s) holds through
its precondition axiom; repUpg(c, 1) is executed if Upg(c, s)
holds, and otherwise, repUpg(c, 0) is executed. The fluent
QrdUpg(c, s) (resp. RecvRep(c, s)) in the precondition in-
dicates whether action qryUpg(c) (resp. repUpg(c, x)) has
already been performed in s. (The low-level BAT can be ex-
tended in a similar way to support sensing whether upgrades
are possible through air miles and promotions.)

We model an online agent configuration (c) as a pair 〈δ,~a〉,
where δ is the remaining program and ~a is the sequence of
actions performed so far starting from S0. The initial con-
figuration ci is 〈δi, ε〉. [Banihashemi et al., 2016], define the
online transition relation between configurations as follows:

〈δ,~a〉 →A(~n) 〈δ′,~aA(~n)〉 if and only if
either A ∈ Ao, ~n ∈ N k and
D ∪ C ∪ Sensed(~a) |=

Trans(δ, do(~a, S0), δ
′, do(A(~n), do(~a, S0)))

or A ∈ Ae, ~n ∈ N k and D ∪ C ∪ Sensed(~a) ∪
{Trans(δ, do(~a, S0), δ

′, do(A(~n), do(~a, S0)))} is satisfiable,

where Ao (resp. Ae) represents the ordinary (resp. exoge-
nous) set of action types. Here, 〈δ,~a〉 →A(~n) 〈δ′,~aA(~n)〉
means that configuration 〈δ,~a〉 can make a single-step online
transition to configuration 〈δ′,~aA(~n)〉 by performing action

A(~n). If A(~n) is an ordinary action, the agent must know
that the action is executable and know what the remaining
program is afterwards. If A(~n) is an exogenous action, the
agent need only think that the action may be possible with δ′
being the remaining program. The relation c →∗~a c′ is the
reflexive-transitive closure of c →A(~n) c

′ denoting that on-
line configuration c′ can be reached from configuration c by
performing a sequence of online transitions involving the se-
quence of actions ~a. A (meta-theoretic) predicate cX, mean-
ing that configuration c is known to be final, is defined as:

〈δ,~a〉X if and only if D ∪ C ∪ Sensed(~a) |= Final(δ, do(~a, S0)).

5 Sound Abstraction in Online Executions
How can we use abstraction in agents that execute online and
acquire new information during a run? The agent’s theory/KB
is updated when it gets new information. The first question is
whether a sound abstraction remains so when that happens.

Example 3 Suppose that we have a high-level exogenous
action ah that is executable if and only if Ph holds. Let
m(Ph) = Pl and m(ah) = Pl?; al, where al is a low-level
exogenous action. Moreover, assume that at the low level,
al is always executable. Initially, it is unknown whether Ph
holds at the high level and similarly for Pl at the low level. It
is easy to check that Dh is a sound abstraction of Dl with re-
spect to the mapping m. However, if ah and its refinement al
occur and the theories are updated, thenDh∪{Poss(ah, S0)}
is no longer a sound abstraction of Dl ∪ {Poss(al, S0)} wrt
m. In do(ah, S0), the high-level agent has learned that Ph
holds, as Poss(ah, S0) has been added to the theory. How-
ever, at the low level, adding Poss(al, S0) has no effect and
in do(al, S0), it is still unknown whether Pl holds. The up-
dated low-level theory has a model where ¬Pl holds, which
has no m-bisimilar model in the updated high-level theory.

Thus a sound abstraction does not always remain so when
we update the theories after an action is executed online. For
the sound abstraction to persist, we need to ensure that the
low level acquires as much information as the high level, e.g.,
ensure that the low level learns that m(Ph), i.e., Pl, holds.
When a high-level action a occurs, the high level learns that
a was executable. If the low level also learns that it has in
fact just executed a refinement of a, then we can be certain
that it has acquired as much information as the high level.
We can generalize this to action sequences and prove that it
is a sufficient condition for the sound abstraction to persist:2

Theorem 1 (Online Persistence of Sound Abstractions) If
Dh is a sound abstraction of Dl relative to mapping m and
Dl ∪ C ∪ Sensed(~a) |= Do(m(~α), S0, do(~a, S0)), then Dh ∪
Sensed(~α) is a sound abstraction of Dl ∪ Sensed(~a) wrt m.

Here, the condition Dl ∪ C ∪ Sensed(~a) |= Do(m(~α), S0,
do(~a, S0)) ensures that after executing a refinement~a of high-
level action sequence ~α, the low level knows it has just exe-
cuted a refinement of ~α, and thus it has learned as much as

2For proofs of our results, see [Banihashemi et al., 2018a].

the high level did, and we still have a sound abstraction.3
We can use the above to extend the results of [Banihashemi

et al., 2017] on sound abstractions so that the agent gets to
use the knowledge acquired in an online execution. We can
show that if after executing action sequence ~α online the high
level knows that it can execute action sequence ~β to achieve
condition φ, then after executing a refinement ~a of ~α online,
being aware that ~a is a refinement of ~α, the low level also
knows that there exists a refinement of ~β that achieves m(φ):

Proposition 2 Suppose that Dh is a sound abstraction of
Dl relative to mapping m and Dl ∪ C ∪ Sensed(~a) |=
Do(m(~α), S0, do(~a, S0)) for some ground high-level action
sequence ~α and ground low-level action sequence ~a. Then
for any high-level ground action sequence ~β and situation-
suppressed formula φ,

if Dh∪Sensed(~α) |= Executable(do(~α~β, S0)) ∧ φ[do(~α~β, S0)],

then Dl∪C∪Sensed(~a) |= ∃s.Do(m(~β), do(~a, S0), s) ∧m(φ)[s].

Now, if we had complete information and a deterministic
environment, then we could use this proposition to extract a
plan at the low level to realize high-level action sequence ~β
and achieve φ. However neither of these two conditions hold
in the case we are studying. The agent has incomplete infor-
mation and uses sensing to acquire the knowledge she needs.
Moreover the environment is nondeterministic and produces
exogenous actions that are not under the control of the agent.
For these reasons, we cannot make use of this proposition. In-
stead, for the agent to be able to achieve a goal, she needs to
have a strategy that ensures achieving the goal no matter how
the environment behaves and how sensing turns out. To ad-
dress this, we next develop an account of agent ability. Sub-
sequently, we return to how abstraction can be exploited to
find strategies and ensure ability.

6 Agent Ability
Intuitively, an agent is able to perform a task/achieve a goal
if she can always choose an action that eventually leads to
successful completion of the task/achievement of the goal no
matter how the environment behaves and what information
she finds out; i.e., she needs to have a strategy that she can fol-
low to successfully complete the task/achieve the goal, where
the strategy specifies how she should continue to act after the
environment performs some action in response to what has
occurred so far. Note that we assume that environment ac-
tions are fully observable. Ability is similar to the concept
of conditional or contingent planning [Cimatti et al., 2003;
Alford et al., 2009; Geffner and Bonet, 2013], where agents
operating online in dynamic and incompletely known en-
vironments need to construct plans/strategies that prescribe
different behaviors depending on new information acquired

3This condition does not seem too difficult to guarantee in
practice. Essentially, we must ensure that whenever a test suc-
ceeds in a refinement of a high-level action, the low level knows
or learns the test was satisfied. E.g., we can redefine m(ah) =
Pl?; confirmPl ; al, where confirmPl is a new exogenous action
that has Pl as precondition and no effects; this ensures that when
m(ah) is executed, the agent learns that m(Ph), i.e., Pl, holds.

(e.g., as a result of sensing) to ensure they achieve their
goals/execute their tasks.

Turn Taking. To formalize ability, we need to specify when
the agent/environment can act. We do this by enforcing turn
taking between the agent and the environment. We assume
that in any situation, either it is the agent’s turn and all the
executable actions are ordinary, or it is the environment’s turn
and all the executable actions are exogenous:4

Assumption 1 (Turn Taking) For D ∈ {Dh,Dl}, we have

D |= ∀s.¬[(
∨

A∈Ae

∃~x.Poss(A(~x), s)) ∧ (
∨

A∈Ao

∃~x.Poss(A(~x), s))]

Furthermore, we assume that in any online configuration,5 it
is known whether it is the agent’s or the environment’s turn:

Assumption 2 (Always Known Whose Turn It Is) For
D ∈ {Dh,Dl} and for all ground sequences ~a such that
〈(πa.a)∗, ε〉 →∗~a 〈δ,~a〉 and 〈δ,~a〉X for some δ, we have that

either D ∪ C ∪ Sensed(~a) |=
∨

A∈Ao

∃~x.Poss(A(~x), s)

or D ∪ C ∪ Sensed(~a) |=
∨

A∈Ae

∃~x.Poss(A(~x), s).

Able By. Here, we will restrict attention to bounded-length
strategies.6 We represent (bounded) strategies γ as a re-
stricted form of program using the following syntax:

γ ::= nil | [αo; γ] | set(E)

where E is a non-empty set of programs of the form [βe
i ; γi].

Here, αo ranges over ordinary action terms, βei over ex-
ogenous action terms, and γi over strategies, and set(·)
is an infinitary version of nondeterministic branch [De Gi-
acomo et al., 2012]. Thus nil is the strategy that does
nothing and stops, [αo; γ] represents the strategy where
the agent does action αo and then follows strategy γ, and
set([βe1 ; γ1], [βe2 ; γ2], . . .) with distinct actions βe1 , β

e
2 , . . .

represents the strategy where exogenous action βe1 may oc-
cur after which γ1 is followed, exogenous action βe2 may oc-
cur after which γ2 is followed, etc.; there may be a finite or
countably infinite set of such pairs [βei ; γi].

We adapt [Lespérance et al., 2008] and define
AbleBy(δ,~a, γ), meaning that the agent is able to suc-
cessfully perform a task represented by an online situation-
determined program7 δ in an environment that behaves as
specified by δ in situation do(~a, S0) by executing the strategy
γ, to be the smallest relationR(δ,~a, γ) such that:

4If at some point, the “player” whose turn it is has the option of
doing nothing, we can have it execute a “no-op” action.

5Note that (πa.a)∗ is a program that repeatedly executes a non-
deterministically chosen primitive action zero or more times; thus it
can perform any sequence of executable actions.

6For more general types of tasks that require unbounded strate-
gies, one can use an approach like [Sardiña et al., 2004a; 2006].

7A program is online situation-determined if for any sequence of
actions that the agent can perform online, the resulting agent config-
uration is unique [Banihashemi et al., 2016].

(A) for all pairs (δ,~a), if 〈δ,~a〉X, thenR(δ,~a, nil);
(B) for all δ,~a, if there exists a, δ′ such that a ∈ Ao and 〈δ,~a〉 →a

〈δ′,~aa〉 andR(δ′,~aa, γ), thenR(δ,~a, [a; γ]);
(C) for all δ,~a, if there exists a, δ′ such that a ∈ Ae and 〈δ,~a〉 →a

〈δ′,~aa〉 and for all a, δ′ such that 〈δ,~a〉 →a 〈δ′,~aa〉 there
exists γ such thatR(δ′,~aa, γ),
thenR(δ,~a, set(E)) where E =
{[a; γ] | 〈δ,~a〉 →a 〈δ′,~aa〉 andR(δ′,~aa, γ) for some δ′}

That is, (A) if δ is final in situation do(~a, S0), then the agent
is able to execute δ in situation do(~a, S0) by performing the
empty strategy (nil); (B) if there is an ordinary action a that
the agent can execute online to get from the current config-
uration 〈δ,~a〉 to some configuration 〈δ′,~aa〉 after which the
agent is able to execute δ′ in situation do(~aa, S0) by follow-
ing strategy γ, then the agent is able to execute δ in situation
do(~a, S0) by following strategy [a; γ]; (C) if there is some ex-
ogenous action a that can be executed online from 〈δ,~a〉 and
for every exogenous action a that can be executed online from
the current configuration 〈δ,~a〉 to some configuration 〈δ′,~aa〉
there exists a strategy γ such that the agent is then able to ex-
ecute δ′ in situation do(~aa, S0) by following strategy γ, then
the agent is able to execute δ in situation do(~a, S0) by follow-
ing strategy set(E), whereE is the set of all such pairs [a; γ].
Note that the task of simply achieving a goal φ (by perform-
ing some arbitrary action sequence) can be represented by the
program Achieve(φ)

.
= (πa.a)∗;φ?.

Example 4 Returning to our running example, con-
sider the task δh1 = Achieve(φh1), where φh1 =
(Upg(C1) ∧ Booked(C1, Bz, F1)) ∨ (¬Upg(C1) ∧
Booked(C1, Ec, F1)), i.e., book a business seat for
customer C1 on flight F1 if an upgrade is available
and otherwise book an economy seat. Then at the high
level, we have AbleBy(δh1

, ε, γh1
) with the strategy γh1

=
qryUpg(C1); set((repUpg(C1, 1); book(C1, Bz, F1);nil),
(repUpg(C1, 0); book(C1, Eco, F1);nil)).

7 Hierarchical Refinement of Abilities
The notions of ability and strategy we have defined can be
used at both the high and low levels. If we have a strategy at
the high level that the agent can follow to perform a task or
achieve a goal, under what conditions can we obtain a strategy
at the low level that refines this high-level strategy and that
the agent can follow to perform a refinement of the high-level
task or achieve a refinement of the high-level goal? What
assumptions are sufficient to ensure we can always do this?

High-Level Monitorability. We assume the agent only ex-
ecutes low-level action sequences that refine some high-level
action sequence, i.e., the agent is high-level monitorable.
Assumption 3 (All LL behaviors refine HL actions)

Dl ∪ C |= ∀s.Executable(s) ⊃ ∃δ.Trans∗(ANYSEQHL, S0, δ, s)
where ANYSEQHL

.
= (|Ai∈Ah π~x.m(Ai(~x)))

∗,
i.e., do any sequence of refinements of high-level actions.

Without high-level monitorability, at the concrete level, there
is nothing preventing the environment from performing an ac-
tion that is not part of any refinement of a high-level action

when it is its turn. Thus, if we have a strategy at the high
level that achieves a goal/performs a task, it becomes irrel-
evant and it is impossible to realize this strategy at the low
level; we can’t use reasoning at the high level to guide the
reasoning at the low level.

Low-Level Accountability. If it is the agent’s turn at the
high level and some ordinary action is executable online
there, then as we have a sound abstraction, it follows that it
is known that some refinement of it is executable at the low
level. If instead it is the environment’s turn and it is satis-
fiable that some exogenous action is executable at the high
level, then sound abstraction is not sufficient to ensure that
it is satisfiable that a refinement of a high-level exogenous
action is executable at the low level. We need to avoid such
cases, where an online transition exists at the high level, while
the low level blocks, as no refinement of a high level action
is executable.8 Hence, we assume that after any sequence of
refinements of high-level actions, i.e., in any situation s such
that Do(ANYSEQHL, S0, s), if no refinement of any ordinary
action is executable, then some refinement of some exoge-
nous action is executable:
Assumption 4 (LL Exogenous Action Accountability)

Dl ∪ C |= ∀s.Do(ANYSEQHL, S0, s) ∧
¬
∨

Ai∈Ao
hl
∃~x ∃s′.Do(m(Ai(~x)), s, s

′) ⊃∨
Ai∈Ae

hl
∃~x ∃s′.Do(m(Ai(~x)), s, s

′)

where Aohl (resp. Aehl) represents the high-level ordinary
(resp. exogenous) set of action types.

We also need another assumption to ensure that the high-
level theory remains a sound abstraction of the low-level the-
ory with respect to the mapping when a refinement of a high-
level action is executed and the agent may obtain new knowl-
edge. Therefore, we assume that along all online executions,
whenever a refinement of a high-level action has been exe-
cuted, the low-level agent knows that it has executed it:

Assumption 5 (Awareness of Executed HL Actions) For
all ground high-level action sequences ~α and all ground
low-level action sequences ~a, if 〈m(~α), ε〉 →∗~a 〈δl,~a〉
and 〈δl,~a〉X for some δl, then Dl ∪ C ∪ Sensed(~a) |=
Do(m(~α), S0, do(~a, S0)).

Together, these assumptions amount to low-level account-
ability: the low level accounts for high-level ordinary actions
because we have a sound abstraction, it accounts for high-
level exogenous actions by Assumption 4, and it remains
aware of the high-level actions executed by Assumption 5.

Local Refinement Enforceability. Assumptions 4 and 5
ensure that the low-level accounts for what happens at the
high level, but does not guarantee its (local) enforceability,

8Instead, we could assume the high-level theory is both a sound
and complete abstraction of the low-level theory with respect to a
mapping. However, this seems more restrictive; moreover, it would
require showing that completeness is preserved as we execute the
high-level strategy. We will investigate this in future work.

i.e., it does not guarantee the existence of strategies for the
agent to enforce that refinements are successfully executed.

With respect to ordinary actions, (local) refinement en-
forceability requires that if it is known that there exists a re-
finement of an ordinary high-level action β that is executable
at the low level then the agent has a strategy to successfully
execute a refinement of β, no matter what the environment
does. We assume this holds in every online configuration:

Assumption 6 (Ability to Execute Ordinary HL Actions)
For all ground high-level action sequences ~α and
all ground low-level action sequences ~a such that
〈m(~α), ε〉 →∗~a 〈δl,~a〉 and 〈δl,~a〉X for some δl, and
for any ground high-level ordinary action β ∈ Ao, if
Dl∪C ∪Sensed(~a) |= ∃s.Do(m(β), do(~a, S0), s), then there
exists a low-level strategy γl such that AbleBy(m(β),~a, γl).

If Dh ∪ Sensed(~α) is a sound abstraction of Dl ∪ Sensed(~a)
wrt mapping m and it is known at the high level that an or-
dinary action β is executable in do(~α, S0), it follows that a
refinement of β is known to be executable at the low level in
do(~a, S0), and thus by Assumption 6, there is a strategy to
successfully execute a refinement of β at the low level.

With respect to exogenous actions instead, we want to en-
sure that if a refinement of a high-level exogenous action is
possibly executable, then a refinement of some exogenous ac-
tion will eventually be successfully executed online no matter
how the agent and environment choose to act.

To formalize this, similar to [Lespérance, 2002], we de-
fine a predicate NecTerminates(δ,~a), meaning that all online
executions of program δ in situation do(~a, S0) successfully
terminate, as the least relationR(δ,~a) such that:
(A) for all pairs (δ,~a), if 〈δ,~a〉X and there does not exist a, δ′ such

that 〈δ,~a〉 →a 〈δ′,~aa〉, thenR(δ,~a);
(B) for all pairs (δ,~a), if there exists a, δ′ such that 〈δ,~a〉 →a

〈δ′,~aa〉 and for all a, δ′ such that 〈δ,~a〉 →a 〈δ′,~aa〉,
R(δ′,~aa), thenR(δ,~a).

We also define a low-level program that represents all re-
finements of all high-level exogenous actions:

ANYONEEXOHL
.
= setp({π~x.m(Ai(~x)) | Ai ∈ Ae

h}),
i.e., do any refinement of an exogenous high-level primitive action,

where setp(P) a “delayed commitment” nondeterministic
branch construct that executes a set of programs P nonde-
terministically without committing to which element of P is
being executed until it has to.9

Given this, we can state our assumption:

Assumption 7 (Exogenous HL Actions Never Diverge)
For all ground high-level action sequences ~α and
all ground low-level action sequences ~a such that
〈m(~α), ε〉 →∗~a 〈δl,~a〉 and 〈δl,~a〉X for some δl, if there
exists a ground high-level exogenous action β ∈ Ae such
thatDl∪C∪Sensed(~a)∪{∃s.Do(m(β), do(~a, S0), s} is satis-
fiable, then we have that NecTerminates(ANYONEEXOHL,~a).

9[Banihashemi et al., 2018b] axiomatize setp(P) as follows:
Trans(setp(P), s, δ′, s′) ≡
∃δ.∃δ′′.δ ∈ P ∧ Trans(δ, s, δ′′, s′) ∧
δ′ = setp({δ′′ | ∃δ.δ ∈ P ∧ Trans(δ, s, δ′′, s′)})

Final(setp(P), s) ≡ ∃δ.δ ∈ P ∧ Final(δ, s).

These assumptions together with Dh being a sound ab-
straction of Dl wrt mapping m allow us to show our main
result, i.e., if the high-level agent has a strategy γh to suc-
cessfully execute a task represented by δh, then there exists
a low-level strategy γl such that the low-level agent can en-
sure successful execution of a refinement of γh by using strat-
egy γl, a refinement of γh; moreover, if it is known at the
high level that after successful execution of δh, a situation-
suppressed formula φ holds, then every such γl, ensures that
the refinement of φ holds after γl terminates:

Theorem 3 (Strategy Refinement) Suppose that Dh is a
sound abstraction of Dl relative to mapping m and that As-
sumptions 1 to 7 hold. Then for all ground high-level ac-
tion sequences ~α and all ground low-level action sequences
~a such that 〈~α, ε〉 →∗~α 〈δ′h, ~α〉 for some δ′h and 〈δ′h, ~α〉X
and 〈m(~α), ε〉 →∗~a 〈δl,~a〉 and 〈δl,~a〉X for some δl and for
any online situation-determined high-level program δh and
high-level strategy γh such that AbleBy(δh, ~α, γh), we have
that:10

1. there exists a low-level strategy γl such that
AbleBy(mp(γh),~a, γl);

2. moreover, for any situation-suppressed formula φ, if
Dh ∪ C |= ∀s.Do(δh, do(~α, S0), s) ⊃ φ[s] then
AbleBy(mp(γh);m(φ)?,~a, γl).

Part 1 is proven by induction on the length of the high-level
strategy γh (i.e., number of actions in the longest branch), us-
ing Assumption 6 when γh starts with an ordinary action and
Assumption 7 when it starts with (a set of) exogenous actions.
Part 2 follows from Part 1, properties of AbleBy, and results
on mp from [Banihashemi et al., 2018b]. Furthermore, it is
clear from our proof that the low-level strategy γl can be ob-
tained piecewise/incrementally: first obtain a refinement of
the first step of γh, execute it online, and then repeat this for
the remainder of γh until done.

Example 5 As discussed in Example 4, our agent has a high-
level strategy γh1

by which she can execute the task δh1 and
achieve the goal φh1. Based on Theorem 3, there exists a low-
level strategy γl1 by which the agent is able to accomplish a
refinement of the goal m(φh1); in fact we have

γl1 = qryAM(C1); qryPr(C1); set(
(repAM(C1, 1); repPr(C1, 1); selF lt(C1, Bz, F1);
pay(C1, Bz, F1);nil),
(repAM(C1, 1); repPr(C1, 0); selF lt(C1, Bz, F1);
pay(C1, Bz, F1);nil),
(repAM(C1, 0); repPr(C1, 1); selF lt(C1, Bz, F1);
pay(C1, Bz, F1);nil),
(repAM(C1, 0); repPr(C1, 0); selF lt(C1, Eco, F1);
pay(C1, Eco, F1);nil))

where action qryAM(c) (resp. qryPr(c)) queries if air miles
(resp. promotion) exist for customer c and repAM(c, x)

10[Banihashemi et al., 2018b] extend the mapping
m to a mapping mp that maps any SD high-level pro-
gram δh to a SD low-level program that implements it:
mp(δ

h)
.
= setp({δh[A(~t)/atomic(m(A(~t))) for all A ∈

A, and F (~t)/m(F (~t)) for all F ∈ F]}), where atomic(δ)
performs δ as an atomic unit, without allowing interleaving.

(resp. repPr(c, x)) is an exogenous action that informs the
agent whether AirMiles(c) (resp. Promotion(c)) holds.

8 Conclusion
In this paper, we showed that abstraction can be used to make
reasoning about ability much easier, even for agents that op-
erate online, i.e., acquire new information as they execute.
Specifically, we showed that under some reasonable assump-
tions, if the agent has a strategy by which she is able to
achieve a goal at the high level, then we can refine it piece-
wise into a low-level strategy to achieve the refinement of
the goal. Also, we identified general sufficient conditions for
soundness of an abstraction to persist when the agent acquires
new information.

The framework developed in this paper is very general and
handles arbitrary first-order representations of the states of
the dynamic systems. In such a general setting not much can
be said about the computational aspects. However note that
it is indeed possible to get an effective setting from the com-
putational point of view if we restrict, for example, the high
level to be propositional. In this way we get a finite state ab-
stract system on which doing conditional planning becomes
effective, (under the assumption that we are able to compute
refinement of atomic actions). Similar results can be obtained
for first-order bounded action theories [De Giacomo et al.,
2016]. We leave these questions for future work.

Developing methodologies and (partially) automated tech-
niques for obtaining sound abstractions are important topics
for future work. [Banihashemi et al., 2017] shows that veri-
fying that a number of properties are entailed by the low-level
theory is sufficient to guarantee that one has a sound abstrac-
tion. Some of our assumptions are also straightforward entail-
ment checks. For the others, we will investigate techniques
for verifying them. Of course, one also needs to impose re-
strictions on the theory to get decidability as discussed above.

Acknowledgments
We acknowledge the support of Sapienza Ateneo Project Im-
mersive Cognitive Environments and the National Science
and Engineering Research Council of Canada.

References
[Alford et al., 2009] Ronald Alford, Ugur Kuter, Dana S.

Nau, Elnatan Reisner, and Robert P. Goldman. Maintain-
ing focus: Overcoming attention deficit disorder in contin-
gent planning. In FLAIR, 2009.

[Baier and McIlraith, 2006] Jorge A. Baier and Sheila A.
McIlraith. On planning with programs that sense. In KR,
pages 492–502. AAAI Press, 2006.

[Banihashemi et al., 2016] Bita Banihashemi, Giuseppe De
Giacomo, and Yves Lespérance. Online situation-
determined agents and their supervision. In KR, pages
517–520. AAAI Press, 2016.

[Banihashemi et al., 2017] Bita Banihashemi, Giuseppe De
Giacomo, and Yves Lespérance. Abstraction in situa-
tion calculus action theories. In AAAI, pages 1048–1055.
AAAI Press, 2017.

[Banihashemi et al., 2018a] Bita Banihashemi, Giuseppe De
Giacomo, and Yves Lespérance. Abstraction of agents ex-
ecuting online and their abilities in the situation calculus -
Extended version. Technical Report EECS-2018-02, York
University, 2018.

[Banihashemi et al., 2018b] Bita Banihashemi, Giuseppe De
Giacomo, and Yves Lespérance. Hierarchical agent super-
vision. To appear in AAMAS, 2018.

[Cimatti et al., 2003] Alessandro Cimatti, Marco Pistore,
Marco Roveri, and Paolo Traverso. Weak, strong, and
strong cyclic planning via symbolic model checking. Arti-
ficial Intelligence, 147(1-2):35–84, 2003.

[De Giacomo and Levesque, 1999] Giuseppe De Giacomo
and Hector J. Levesque. An incremental interpreter for
high-level programs with sensing. In Logical Foundations
for Cognitive Agents: Contributions in Honor of Ray Re-
iter, pages 86–102. Springer, Berlin, 1999.

[De Giacomo et al., 2000] Giuseppe De Giacomo, Yves
Lespérance, and Hector J. Levesque. ConGolog, a con-
current programming language based on the situation cal-
culus. Artificial Intelligence, 121(1–2):109–169, 2000.

[De Giacomo et al., 2010] Giuseppe De Giacomo, Yves
Lespérance, and Adrian R. Pearce. Situation calculus
based programs for representing and reasoning about game
structures. In KR. AAAI Press, 2010.

[De Giacomo et al., 2012] Giuseppe De Giacomo, Yves
Lespérance, and Christian J. Muise. On supervising agents
in situation-determined ConGolog. In AAMAS, pages
1031–1038. IFAAMAS, 2012.

[De Giacomo et al., 2016] Giuseppe De Giacomo, Yves
Lespérance, and Fabio Patrizi. Bounded situation calcu-
lus action theories. Artificial Intelligence, 237:172–203,
2016.

[Dignum et al., 2015] Frank Dignum, Virginia Dignum, Rui
Prada, and Catholijn M. Jonker. A conceptual architecture
for social deliberation in multi-agent organizations. Mul-
tiagent and Grid Systems, 11(3):147–166, 2015.

[Gabaldon, 2002] Alfredo Gabaldon. Programming hierar-
chical task networks in the situation calculus. In AIPS02
Workshop on On-line Planning and Scheduling, 2002.

[Geffner and Bonet, 2013] Hector Geffner and Blai Bonet. A
Concise Introduction to Models and Methods for Auto-
mated Planning. Morgan & Claypool Publishers, 2013.

[Giunchiglia and Walsh, 1992] Fausto Giunchiglia and Toby
Walsh. A theory of abstraction. Artificial Intelligence,
5(2):323–389, 1992.

[Kuter et al., 2007] Ugur Kuter, Dana Nau, Elnatan Reis-
ner, and Robert Goldman. Conditionalization: Adapting
forward-chaining planners to partially observable environ-
ments. In ICAPS 2007 - Workshop on planning and exe-
cution for real-world systems, 2007.

[Lespérance et al., 2000] Yves Lespérance, Hector J.
Levesque, Fangzhen Lin, and Richard B. Scherl. Ability
and knowing how in the situation calculus. Studia Logica,
66(1):165–186, 2000.

[Lespérance et al., 2008] Yves Lespérance, Giuseppe De Gi-
acomo, and Atalay Nafi Ozgovde. A model of contingent
planning for agent programming languages. In AAMAS,
pages 477–484. IFAAMAS, 2008.

[Lespérance, 2002] Yves Lespérance. On the epistemic fea-
sibility of plans in multiagent systems specification. In
Intelligent Agents VIII, 8th International Workshop, ATAL
2001, volume 2333, pages 69–85. Springer, 2002.

[Levesque et al., 1997] Hector J. Levesque, Raymond Re-
iter, Yves Lespérance, Fangzhen Lin, and Richard B.
Scherl. Golog: A logic programming language for dy-
namic domains. Journal of Logic Programing, 31(1-
3):59–83, 1997.

[McCarthy and Hayes, 1969] John McCarthy and Patrick J.
Hayes. Some Philosophical Problems From the Standpoint
of Artificial Intelligence. Machine Intelligence, 4:463–
502, 1969.

[Milner, 1971] Robin Milner. An algebraic definition of sim-
ulation between programs. In IJCAI, pages 481–489.
William Kaufmann, 1971.

[Milner, 1989] Robin Milner. Communication and concur-
rency. Prentice Hall, 1989.

[Mo et al., 2016] Peiming Mo, Naiqi Li, and Yongmei Liu.
Automatic verification of Golog programs via predicate
abstraction. In ECAI, pages 760–768, 2016.

[Moore, 1985] Robert C. Moore. A formal theory of knowl-
edge and action. In Formal Theories of the Commonsense
World, pages 319–358. Ablex, NJ, 1985.

[Nayak and Levy, 1995] P. Pandurang Nayak and Alon Y.
Levy. A semantic theory of abstractions. In IJCAI, pages
196–203. Morgan Kaufmann, 1995.

[Reiter, 2001] Raymond Reiter. Knowledge in Action. Logi-
cal Foundations for Specifying and Implementing Dynam-
ical Systems. The MIT Press, 2001.

[Sardiña et al., 2004a] Sebastian Sardiña, Giuseppe De Gia-
como, Yves Lespérance, and Hector J. Levesque. On abil-
ity to autonomously execute agent programs with sensing.
In AAMAS, pages 1522–1523. IEEE, 2004.

[Sardiña et al., 2004b] Sebastian Sardiña, Giuseppe De Gia-
como, Yves Lespérance, and Hector J. Levesque. On the
semantics of deliberation in IndiGolog - from theory to
implementation. Annals of Mathematics and Artificial In-
telligence, 41(2-4):259–299, 2004.

[Sardiña et al., 2006] Sebastian Sardiña, Giuseppe De Gia-
como, Yves Lespérance, and Hector J. Levesque. On the
limits of planning over belief states under strict uncer-
tainty. In KR, pages 463–471. AAAI Press, 2006.

