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Abstract
This work develops an approach to efficient rea-
soning in first-order knowledge bases with incom-
plete information. We build on Levesque’s proper
knowledge bases approach, which supports limited
incomplete knowledge in the form of a possibly in-
finite set of positive or negative ground facts. We
propose a generalization which allows these facts
to involve unknown individuals, as in the work on
labeled null values in databases. Dealing with such
unknown individuals has been shown to be a key
feature in the database literature on data integration
and data exchange. In this way, we obtain one of
the most expressive first-order open-world settings
for which reasoning can still be done efficiently by
evaluation, as in relational databases. We show the
soundness of the reasoning procedure and its com-
pleteness for queries in a certain normal form.

1 Introduction
As argued by Levesque [1998], there is to date really only
one logically correct deductive reasoning technique that ap-
pears to be efficient enough to be feasible for large knowl-
edge bases (KBs) containing (say) millions of facts: database
retrieval. (SAT solving does show promise too, but not for
deduction and not for first-order reasoning.) Viewed in logi-
cal terms, however, a database requires complete information:
every atomic formula must be known to be true or known to
be false. In particular, databases (typically) make a closed-
world assumption: anything not explicitly recorded as true
can be assumed to be false. Yet many AI applications must
survive in an open-world setting, with incomplete informa-
tion of their domain, often acquired incrementally over time
(e.g. a robot that must sense its environment to determine if
there are boxes nearby, or a travel-agent softbot that gathers
information about available flights over the web).

Levesque [1998] raises the question: for what sorts of logi-
cal theories can we retain the deductive efficiency of database
retrieval without requiring complete knowledge? To answer
it, he proposes the notion of a proper knowledge base, where
incomplete knowledge amounts to a possibly infinite set of
positive or negative ground facts. For this kind of KB he
devises a reasoning procedure based on formula evaluation,

which he shows is logically sound and sometimes also com-
plete. Most interestingly, the procedure is essentially as ef-
ficient as query evaluation in databases with complete infor-
mation [Liu and Levesque, 2003; Liu, 2006]. However, one
serious limiting element of this proposal is that a proper KB
cannot include knowledge about individuals whose identity is
unknown.

Incomplete information has also been studied in databases
[Imielinski and Lipski, 1984; Reiter, 1986; Vardi, 1986;
van der Meyden, 1998], and recently it is acquiring new im-
portance in the context of uncertain databases, connected with
probabilistic approaches [Agrawal et al., 2010; Antova et al.,
2009], XML semistructured data [Abiteboul et al., 2006; Bar-
celó et al., 2010], and most prominently in data integration
and data exchange [Lenzerini, 2002; Kolaitis, 2005]. Interest-
ingly, in much of this work, incomplete information comes in
the form of unknown individuals (or labeled null values), i.e.,
we know that there exists an object with certain properties,
but we cannot really identify it (though we may still use it in
joins, and more generally, in formulas). Incomplete informa-
tion of this form is tightly linked with the problem of query
containment, and more specifically with query containment
involving conjunctive queries [Chandra and Merlin, 1977;
Ullman, 1997; Lausen and Wei, 2003]. Indeed Chandra and
Merlin showed that a conjunctive query can be seen as a
database with labeled nulls and conversely, that a database
with labeled nulls can be seen as a conjunctive query. This
observation has led to a rich theory which is at the base of
modern approaches to data integration and data exchange, in-
cluding the work on ontology-based data access and integra-
tion proposed within the AI community [Poggi et al., 2008].

In this paper we combine ideas from these two lines of re-
search. We obtain a generalization of Levesque’s proper KBs
that handles both missing facts (like the original version) and
information about unknown individuals (as in the database
literature). In this way, we obtain one of the most expressive
open-world settings for which reasoning can still be done by
evaluation as in closed-world databases. Specifically we de-
vise a query answering procedure and show that it is always
logically sound and is also logically complete when the query
is in a certain normal form. We analyze its computational
complexity, showing that as long as the number of unknown
individuals remains small (logarithmic in the size of the KB),
the reasoning can indeed be implemented efficiently.



The rest of the paper is organized as follows. In Sec-
tion 2, we review databases as knowledge bases with a built-
in closed-world assumption, and proper KBs as open-world
knowledge bases. In Section 3, we show how to handle un-
known individuals (null values) in proper KBs, while retain-
ing the same sort of efficiency and soundness and complete-
ness properties. Finally in Section 4, we draw some conclu-
sion and discuss future work.

2 Proper Knowledge Bases
We use an ordinary first-order logical language L with an in-
finite supply of predicate symbols (including =), an infinite
supply of constants we call standard names (which we write
as #1, #2, #3, . . .), and no other function or constant symbols.
We use the notation αx

n to mean the result of replacing every
free occurrence of variable x in formula α by standard name
n. In this paper, we will be using the normal Tarski semantics
for L, with |= understood as normal logical entailment.

However, we wish to make the unique name assumption for
the standard names. What this means is that for any knowl-
edge base KB ⊆ L and any query α ∈ L, instead of asking if
KB |= α, we will always be asking if E ∪ KB |= α where E
is the usual axioms of equality (reflexitivity, symmetry, tran-
sitivity, and substitution of equals for equals) together with

{¬(n = n′) | n and n′ are distinct standard names }.

Using E in this way has a number of interesting properties. In
particular, it can be shown that whenever the KB is finite (as
it will always be here), the set (E ∪KB) has a model iff it has
a standard model, that is, one where where = is interpreted
as identity and the domain is isomorphic to the set of standard
names (see [Levesque, 1998], Theorem 2). So this gives us
what amounts to an infinitary version of a domain closure
assumption. Another property we will use is this:

Theorem 1: [Levesque, 1998] Suppose that KB is finite and
H contains all the standard names that appear in KB or α
and at least one other standard name. Then

E ∪ KB |= ∀xα iff E ∪ KB |= αx
n for every n ∈ H .

This means that we can determine whether ∀xα is entailed by
checking whether a finite set of instances of α are entailed.

Now let us consider databases under the closed-world as-
sumption. Following Reiter [Reiter, 1986], we can think of a
database as a logical theory formed by a finite set of ground
atoms A, those explicitly in the database, augmented with a
set of negated atoms obtained by applying the closed-world
assumption, i.e., we can take the KB to be A ∪ {¬P (~n) |
~n is a vector of standard names and P (~n) /∈ A}. Then for
any query α, we can decide if E ∪ KB |= α using the follow-
ing procedure:

1. V [KB, P (~n)] =
{
1 if P (~n) ∈ A
0 otherwise

2. V [KB, (n = n′)] ={
1 if n and n′ are the same standard name
0 otherwise

3. V [KB,¬α] = 1− V [KB, α]

4. V [KB, (α ∨ β)] = max {V [KB, α], V [KB, β]}
5. V [KB,∃xα] = maxn∈H V [KB, αx

n]

(We can treat (α ∧ β), (α ⊃ β), (α ≡ β) and ∀xα as
abbreviations.) V simply evaluates the truth of α in the model
corresponding to E ∪ KB in the obvious way.

Proper KBs generalize databases to support open-world
reasoning, where we do not require every formula or its nega-
tion to be known [Levesque, 1998]. Specifically a proper
knowledge base KB is a finite collection of sentences of L
of the form ∀~x (e ⊃ ρ), where

• e is an ewff, i.e. a quantifier-free formula whose only
predicate is equality, and

• ρ is P (~x) or ¬P (~x)
and such that E ∪ KB is consistent.

It can be shown that a proper KB is a finite representation
for a possibly infinite consistent set of ground literals:

{ ρθ | E ∪ KB |= ρθ }.

In this paper, θ is a substitution of free variables by standard
names, and αθ denotes α after the substitution.

Proper KBs have many interesting properties. Unlike
databases, we can leave the status of some literals open.

Example 1: Let KB stand for : { ∀x(x = #1 ⊃ P (x)),
∀x(x 6= #1 ∧ x 6= #2 ⊃ ¬P (x)) }. Then

E ∪ KB |= P (#1), ¬P (#3), ¬P (#4), ¬P (#5), . . .

but E ∪ KB |6= P (#2) and E ∪ KB |6= ¬P (#2).

Also, we can make the closed-world assumption for some
of the predicates by including both ∀(e⊃ρ) and ∀(¬e⊃ρ),
for some e and ρ.

Example 2: Let KB stand for

{∀x (x = #2 ∨ x = #3 ∨ x = #5 ∨ x = #9 ⊃ P (x)),
∀x (x 6= #2 ∧ x 6= #3 ∧ x 6= #5 ∧ x 6= #9 ⊃ ¬P (x))}

This amounts to making the closed-world assumption on P .

Any finite set of ground literals can be reformulated as a
proper KB, by simply rewriting any ground literal ρθ in the
set as ∀~x (~x = ~xθ ⊃ ρ). Some infinite sets of literals can also
be represented, e.g., ∀x, y, z(x 6= z ∧ y = #3 ⊃ R(x, y, z)).

Reasoning with proper KBs. Although proper KBs are
quite restricted, it remains undecidable to determine whether
or not E ∪ KB |= α. (Consider the case KB = { }, where we
still need to determine whether an arbitrary first order formula
is valid.) As an alternative, Levesque [1998] proposes a lim-
ited reasoning procedure V [KB, α], based on the evaluation
function used for databases under the closed-world assump-
tion, that returns 1 (known to be true), 0 (known to be false),
or 1

2 (unknown), defined as follows:

1. V [KB, ρθ] =1 if there is a ∀(e ⊃ ρ) ∈ KB s.t. E |= eθ
0 if there is a ∀(e ⊃ ρ) ∈ KB s.t. E |= eθ
1
2 otherwise



2. V [KB, (n = n′)] ={
1 if n and n′ are the same standard name
0 otherwise

3. V [KB,¬α] = 1− V [KB, α]
4. V [KB, (α ∨ β)] = max {V [KB, α], V [KB, β]}
5. V [KB,∃xα] = maxn∈H V [KB, αx

n]

The procedure V has been shown to have several interesting
properties. First of all V is tractable in a very strong sense.

1. If e is a ground ewff, then E |= e iff V [{ }, e] = 1 and
can be determined in time linear in |e|.

2. V [KB, ρθ] can be determined in time linear in |KB|:
scan KB for ∀(e ⊃ ρ) or ∀(e ⊃ ρ) and check if E |= eθ.

3. Overall, computing V [KB, α] can be made as efficient
as database retrieval [Liu and Levesque, 2003].

Also V is logically sound:
Theorem 2: [Levesque, 1998]

• If V [KB, α] = 1, then E ∪ KB |= α.
• If V [KB, α] = 0, then E ∪ KB |= ¬α.

However V is not (and cannot be) logically complete in gen-
eral. For example:

E ∪ { } |= (p ∨ ¬p), but V [{ }, (p ∨ ¬p)] = 1

2
.

Completeness for queries in the normal formNF . To get
completeness one has to consider suitable sublanguages of L.
One interesting sublanguage is NF [Levesque, 1998].

First, let us say that a set of sentences S is logically sepa-
rable iff for every consistent set of literals L, if L ∪ S has no
standard interpretation, then for some α ∈ S, L ∪ {α } has
no standard interpretation. Then the normal formNF ⊆ L is
defined as the least set such that:

1. If α is a ground atom or ewff, then α ∈ NF .
2. If α ∈ NF then ¬α ∈ NF .
3. If S⊆ NF, S is logically separable, and S is finite, then∧

S∈ NF .
4. If S ⊆ NF S is logically separable, and S = {αx

n |
n is a standard name }, then ∀xα ∈ NF .

V is complete (as well as sound) for queries in NF :
Theorem 3: [Levesque, 1998] For any proper KB and any
α ∈ NF we have:
• If E ∪ KB |= α, then V [KB, α] = 1.
• If E ∪ KB |= ¬α, then V [KB, α] = 0.
What sorts of queries can we express inNF? In the propo-

sitional case, for any quantifier-free formula α, there is an
equivalent formula α′ that is in NF . [Liu and Lakemeyer,
2008] have shown that this does not hold for arbitrary formu-
las with quantifiers. A counterexample is ∀x y z (R(x, y) ∧
R(y, z) ⊃ R(x, z)). However, some significant classes of L
queries belong to NF .

Let’s say that two literals are conflict-free iff either they
have the same polarity, or they use different predicates, or
they use different standard names at some argument position.

Theorem 4: [Levesque, 1998] If all pairs of literals in α are
conflict-free, then α ∈ NF .

Notice that this theorem applies for example to conjunctive
queries from databases.

3 Dealing with Unknown Individuals
Proper KBs can represent some open-world knowledge, but
only for individuals whose identity is known. There is no way
for a proper KB to say that something has a certain property,
without saying what the standard name of that thing is. In
fact, for α ∈ NF we have the following: If E ∪ KB |= ∃xα,
then for some standard name n, E ∪ KB |= αx

n. This is (in
part) what allows the V procedure to work correctly.

In this section, we consider how to deal with open-world
knowledge that involves individuals whose identity is not
known. We start by extending our first-order logical language
L, so that in addition to the standard names, we include a dis-
joint countably infinite supply of constants called (labeled)
null values (which we write a1, a2, . . .). So now there are
two distinct types of constants in L. As constants, null values
behave exactly like standard names, except that they are not
mentioned by name in E and so the unique name assumption
does not apply to them. From now on, let us assume that a
proper KB is a a set of sentences as defined earlier, but us-
ing this richer language L (i.e., the ewffs in its assertions may
contain null values). For example, if our KB is

{ ∀x.(x = #3 ⊃ P (x)),
∀x.(x = a ⊃ Q(x)) },

then we know the individual that is P (that is, #3), but we do
not know which individual is Q; all we know is that some-
thing (which may or may not be #3) has property Q. In this
sense, null values behave just like Skolem constants.

Reasoning with null values. Null values in proper KBs
pose a problem for reasoning, because, unlike the original
proper KBs, they allow certain types of disjunctive knowl-
edge to be expressed. Consider the following examples:

Example 3: Let KB be { ∀x(x 6= #1 ∧ x 6= #2 ⊃ ¬P (x)),
∀x(x = a ⊃ P (x)) }. Then E ∪ KB |= (a = #1 ∨ a = #2).

Example 4: Let KB be { ∀x(x = a ⊃ P (x)),
∀x(x 6= a ⊃ Q(x)) }. Then E ∪ KB |= (P (#5) ∨Q(#5)).

Example 5: Let KB be {∀x(x = a ∧ x = a′ ⊃ P (x))}.
Then E ∪ KB |= (a 6= a′ ∨ ∃xP (x)).
Obviously, the V procedure, which handles V [KB, (α ∨ β)]
by taking the maximum of V [KB, α] and V [KB, β], will no
longer work. Similar problems arise with existentials.

To see how we can avoid these problems, let us suppose
from now on that the KB uses k null values ~a = 〈a1, . . . ak〉,
and for simplicity, that any null value that appears in a query
α also appears in KB.1 We can in fact eliminate the null val-
ues by repeatedly replacing them by standard names:

1Dropping this assumption would complicate the technical treat-
ment to follow, though all results still hold. In effect, a null value
that appears only in a query can be replaced by a quantified variable.



Theorem 5: Let ~H be a set of tuples of standard names
〈n1, . . . , nk〉 such that n1 ranges over the standard names in
KB and α plus one more, and for each 1 ≤ i < k, ni+1

ranges over the names that ni ranges over plus one more.
Then

E ∪ KB |= α
iff

E ∪ KB~a
~n |= α~a

~n for all names ~n ∈ ~H

The proof of this uses Theorem 1, the Deduction Theorem,
and the Skolemization Theorem (that a set of sentences con-
taining an existential sentence is satisfiable iff the set with
the existential variable replaced by a new constant is satisfi-
able). Thus, with a caveat to follow, we are indeed able to
reduce the evaluation of a query V [KB, α] possibly involving
null values to a finite set of query evaluations V [KB~a

~n , α
~a
~n ]

that do not involve any null values. Note however that these
involve looking at different instances of the KB.

The caveat is the following. Before we can use V (as pre-
viously defined) over KB~a

~n and α~a
~n, we must ensure that KB~a

~n
(that is, the KB with its null values ~a replaced by the standard
names ~n) is a proper KB. KB~a

~n will certainly have the right
form, i.e., a finite set of ∀(e ⊃ ρ) not containing null values.
However, we must also ensure that E ∪ KB~a

~n is consistent!
(When it is not, E ∪ KB~a

~n would then entail every query.)
Checking whether E ∪KB~a

~n is consistent is non-trivial. In-
deed, even though E ∪ KB may be consistent, there can still
be values of ~n for which E ∪ KB~a

~n is not consistent.
Example 6: Let KB = { ∀x(x 6= #1 ∧ x 6= #2 ⊃ ¬P (x)),
∀x(x = a ⊃ P (x)) }. Then E ∪ KBa

#5 is inconsistent.
One possible solution is to restrict the original KB so that

this discrepancy between the consistency of the original KB
and that of the instantiated KBs never occurs. For instance,
we could insist that if a null value occurs in a ∀(e ⊃ ρ) in the
KB, then the KB must not contain a sentence for ρ.

Here, we focus on a more robust approach: detect when
E ∪ KB~a

~n is inconsistent and make sure that we return 1 for
any query in this case. As it turns out, this can be done by
using V .

Theorem 6: Suppose KB is in the proper form and contains
no null values. Then E ∪ KB is inconsistent iff there is a
predicate P in the KB such that

V [{ }, ∃~x (eTP ∧ eFP )] = 1

where eTP is the disjunction of all e s.t. ∀(e ⊃ P (~x)) ∈ KB,
and eFP is the disjunction of all e s.t. ∀(e ⊃ ¬P (~x)) ∈ KB.

Using this result, we can immediately define a query-
answering procedure for proper KBs with null values. How-
ever, the resulting procedure would not be very good. While
the V can be executed efficiently, we would need to go over
the entire KB to look for an inconsistency with some predi-
cate P . Part of what made the query procedure presented in
[Liu and Levesque, 2003] practical is that it only had to deal
with the part of the KB involving predicates mentioned in
the query. Furthermore, to use the above theorem, we would
need to examine the entire KB after every substitution of null
values by standard names from the KB and from the query.

Handling inconsistency offline. To make the query-
answering procedure practical, we now show that it is pos-
sible to do all of the inconsistency checking in advance of
seeing any queries. Our procedure works as follows:

• We construct a set of tuples ~H0 as in Theorem 5, but for
the empty query.

• We construct a table T of those tuples from ~H0 such that
E ∪ KB~a

~n is inconsistent, applying Theorem 6.
After all this offline work, with the table T in hand, we are
ready to handle any query α, as follows:

• We construct a set of tuples ~H as in Theorem 5, this time
using the given α. (Some standard names may not have
been considered in ~H0, as α may include new ones.)

• If some ~n ∈ ~H matches (see below) an element of T,
then we return 1. Otherwise, we return V [KB~a

~n , α
~a
~n ].

A tuple of names 〈n1, . . . , nk〉 matches another 〈n∗1, . . . , n∗k〉
iff the following conditions hold:

1. ni = nj iff n∗i = n∗j ;
2. if ni is in KB, then ni = n∗i ;
3. if ni is not in KB then n∗i is not in KB.

We can compute this matching between two vectors of stan-
dard names using a unification-like procedure.

To see why such a procedure works, consider that when we
constructed the table T , we considered the standard names in
the KB and k new ones. But the actual new ones we used are
not special in any sense, since the following theorem holds:
Theorem 7: [Levesque, 1998] Suppose that β is a formula
with one free variable x, and that n and m are two standard
names that do not appear in β. Then E |= βx

n iff E |= βx
m.

Exploiting such a result, we can show the following:

Theorem 8: For any standard names ~n, E ∪KB~a
~n is incon-

sistent iff there is an ~m ∈ T such that ~n matches ~m.
So in the end, after computing the table T the final rea-

soning procedure for a proper KB that uses null values ~a is
as follows: call a vector ~n of standard names consistent if it
does not match any element of the table T ; then we define:

V [KB, α] =

1, if for all consistent ~n ∈ ~H, V [KB~a
~n , α

~a
~n ] = 1

0, if for all consistent ~n ∈ ~H, V [KB~a
~n , α

~a
~n ] = 0

1
2 , otherwise

The fact that E ∪KB is consistent guarantees that this V is
well-defined. Indeed, it can be shown to be sound:
Theorem 9: [Soundness] For any proper KB and query α,
each of which may contain null values,
• if V [KB, α] = 1, then E ∪ KB |= α;
• if V [KB, α] = 0, then E ∪ KB |= ¬α.
As before, the new V procedure is only complete for re-

stricted queries. When a query α contains null values ~a, we
can let α ∈ NF mean that α~a

~n ∈ NF (as previously defined)
for every vector of standard names ~n.2 Then we get the fol-
lowing theorem:

2Other definitions ofNF with null values are possible.



Theorem 10: [Completeness] For any proper KB and query
α ∈ NF , each of which may contain null values,

• if E ∪ KB |= α, then V [KB, α] = 1;

• if E ∪ KB |= ¬α, then V [KB, α] = 0.

Let us now look at some examples.

Example 7: Returning to Example 4, we let the KB be
{ ∀x(x = a ⊃ P (x)), ∀x(x 6= a ⊃ Q(x)) }. First let the
query α be (P (#5) ∨ Q(#5)). (Thus E ∪ KB |= α.) Then
V [KB, α] will consider two names, #5 and say #7.

• For n = #5, V [KBa
n, P (

#5)] = 1. So V [KBa
n, α] = 1.

• For n = #7, V [KBa
n, Q(#5)] = 1. So V [KBa

n, α] = 1.

So we get the value 1, as desired.
Now let the query α be P (#5). (Thus E ∪ KB |6= α.) Then

V [KB, α] will consider two new names, #5 and say #7.

• For n = #5, V [KBa
n, P (

#5)] = 1.

• For n = #7, V [KBa
n, P (

#5)] = 1
2 .

So we get the value 1
2 , as desired.

Example 8: Returning to Example 3, we let the KB be
{∀x(x = a ⊃ P (x)), ∀x(x 6= #1 ∧ x 6= #2 ⊃ ¬P (x))}.
First, let the query α be (a = #1∨a = #2). (So E∪KB |= α.)
Then V [KB, α] will need to consider three names.

• For n = #1 and n = #2, αa
n will be a trivially true ewff.

So V [KBa
n, α

a
n] = 1.

• Any other n is inconsistent.

So we get the value 1, as desired.
Next, let the query α be (a = #4). (So E ∪ KB |= ¬α.)

Then V [KB, α] will need to consider four names.

• For n = #1 and n = #2, αa
n will be a trivially false ewff.

So V [KBa
n, α

a
n] = 0.

• Any other n is inconsistent.

So we get the value 0, as desired.
Finally, let the query α be (a = #1). (Thus E∪KB |6= α and

E ∪ KB |6= ¬α.) V [KB, α] will again consider three names.

• For n = #1, αa
n will be a trivially true ewff. So

V [KBa
n, α

a
n] = 1.

• For n = #2, αa
n will be a trivially false ewff. So

V [KBa
n, α

a
n] = 0.

• Any other n is inconsistent.

So we get the value 1
2 , as desired.

Computational complexity analysis. We conclude this
section with a computational complexity analysis of the pro-
posed technique. We denote by KB/α the knowledge base
obtained from KB by removing all assertions that do not in-
volve predicates occurring in α. Let’s call the width of a for-
mula the maximal number of free variables occurring in its
subformulas [Liu and Levesque, 2003].

First observe that computing V (KB, α) in the case of a KB
that is a database amounts to the usual top down first-order
query evaluation, see e.g., [Vardi, 1995], which can be done

in O(|α| · |KB/α|w) where, w is the width of α. (Notice that
no variables appear in the KB in this case.) If KB is a proper
KB without null values, then computing V (KB, α) can be
done in time bounded by O(|α| · |KB/α|w+1), where w is the
width of α [Liu, 2006; Liu and Levesque, 2003].

Since our technique works by substituting null values with
the standard names occurring in KB, by applying Liu’s result,
we get that:
Theorem 11: Given the table T , computing V (KB, α) can
be done in time O((h + k)k · |α| · |KB/α|w+1) where h is
the number of standard names in KB, k is the number of null
values in KB, w is the width of α.3

In addition, we have that:
Theorem 12: The table T can be computed in time O((h +
k)k · `v · |E|) where h is the number of standard names in
KB, k is the number of null values appearing in KB, E is the
largest formula of the ∃~x (eTP ∧ eFP ) in Theorem 6, ` is the
number of standard names and null values appearing in E,
and v is the maximum number of variables occurring in one
such formula.4

Let us now consider the various parameters separately. We
call: data complexity the complexity obtained by considering
as the only parameter the number of standard names men-
tioned in the KB and in α; null value complexity the complex-
ity obtained by considering as the only parameter the number
of null values in the KB; KB complexity the complexity ob-
tained considering as the only parameter the size of the KB;
finally, combined complexity the complexity obtained consid-
ering everything as a parameter.

We observe that checking for inconsistency can be done in
NP: guess an assignment for the null values, guess predicate
P , guess an assignment for existential values in the formula
∃~x (eTP ∧ eFP ) in Theorem 6, and evaluate equalities. Exploit-
ing this observation, we ge that:
Theorem 13: Computing V (KB, α) is in:
• LOGSPACE (or better AC0) in data complexity;
• coNP in null value complexity;
• coNP in KB complexity;
• PSPACE in combined complexity.

We notice that the data complexity and the combined com-
plexity are the same as for the evaluation of a first-order query
in databases. Also, the above analysis tells us that to be ef-
ficient we really need to have a number of null values that is
logarithmic in the size of the KB and similarly for the width
of the query. The latter is already true for proper KBs without
null values, and for databases.

A simple extension. One of the kinds of things we might
want to do with null values is to include equality information
about their unknown values in the KB itself. For example,
consider a KB that contains the following sentences:

(a1 = #1 ∨ a1 = #2 ∨ a1 = #5)
(a2 = a3 ∨ a2 6= #7)
(a4 6= a5)

3Notice that, (h+ k)k ≤ |KB|k.
4Notice that, O((h+ k)k · `v · |E|) ≤ O(|KB|k+v+1).



This is clearly disjunctive information, but it can now be han-
dled as part of the KB without causing any additional compu-
tational problems:

1. Let e be the conjunction of the equality sentences we
want to include in the KB.

2. As we are constructing the inconsistency table T, we
evaluate V [{ }, e ~a~n ].

3. If the answer is 0, then E |= ¬ e ~a~n , so we add ~n to T .

4. Then we ignore this e when we evaluate V [KB~a
~n , α

~a
~n ].

Example 9: Let KB be { } ∪ { (a = #1 ∨ a = #2) }. (So
the table T might be {〈#3〉}, for example.) Let α be the query
(a = #4). Then V [KB, α] needs to consider four names:
• For n = #1 and n = #2, V [KBa

n, α
a
n] = 0.

• For n = #4, and n = #6, n is inconsistent.
So we get the value 0, as desired.

Now, let α be (a = #1∨a = #2∨a = #5). V [KB, α] again
considers four names:
• For n = #1 and n = #2, V [KBa

n, α
a
n] = 1.

• For n = #5, and n = #7, n is inconsistent.
So we get the value 1, as desired.

Finally, let α be (a 6= #1). This time, V [KB, α] considers
three names:
• For n = #1, V [KBa

n, α
a
n] = 0.

• For n = #2, V [KBa
n, α

a
n] = 1.

• For n = #5, n is inconsistent.
So we get the value 1

2 , as desired.

4 Conclusion
First-order logic offers the promise of being able to reason
with knowledge that is incomplete, as required in many AI
applications. But so far, only formalisms that make a closed-
world assumption, such as databases, appear to scale well.
However, some simple forms of open-world knowledge can
also be dealt with effectively: proper knowledge bases. As
we have shown here, these techniques can be extended to
deal with unknown individuals, provided that there are not too
many of them. The same techniques can also deal with equal-
ity information about the unknown individuals. Note that we
did not consider how to deal efficiently with KB updates in
this paper. This is an issue for further study.

A further interesting extension would be to handle un-
known individuals whose identity depends that of other in-
dividuals, for example, bestFriend(george), that is, handling
Skolem functions rather than simply Skolem constants as we
have done here. Handling Skolem functions in the general
case is perhaps asking for too much: Suppose e uses Skolem
functions but no predicate other than equality. It is now un-
decidable to determine if E |= e. But it would be interesting
to know if there are some useful special cases that can be
handled. For example, imagine that Skolem functions can-
not appear in a query, and a variant of a proper KB where
a Skolem function is only allowed to appear in the head ρ:
e.g. ∀x y (e ⊃ P (x, f(x, y))). We leave this issue for further
investigation.
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