
Web Service Composition as a Planning Task: Experiments using
Knowledge-Based Planning

Erick Martínez and Yves Lespérance
Department of Computer Science

York University
Toronto, Ontario M3J 1P3

Canada
{erickm, lesperan}@cs.yorku.ca

Abstract

Motivated by the problem of automated Web service
composition (WSC), in this paper, we present some
empirical evidence to validate the effectiveness of us-
ing knowledge-based planning techniques for solving
WSC problems. In our experiments we utilize the PKS
(Planning with Knowledge and Sensing) planning sys-
tem which is derived from a generalization of STRIPS.
In PKS, the agent’s (incomplete) knowledge is repre-
sented by a set of databases and actions are modelled as
revisions to the agent’s knowledge state rather than the
state of the world. We argue that, despite the intrinsic
limited expressiveness of this approach, typical WSC
problems can be specified and solved at the knowledge
level. We show that this approach scales relatively well
under changing conditions (e.g. user constraints). Fi-
nally, we discuss implementation issues and propose
some architectural guidelines within the context of an
agent-oriented framework for inter-operable, intelligent
multi-agent systems for WSC and provisioning.

Introduction
Web services are self-contained, self-described, active, mod-
ular software applications that can be advertised, discovered,
and invoked over the Web (Gottschalk & IBM Team 2000),
e.g., an airline travel service or a book-buying service. In
this paper, we are mainly motivated by the problem of au-
tomated Web service composition (henceforth WSC), which
can be stated as follows: given a set of Web services and
some user-defined task or goal to be achieved, a computer
agent should be able to automatically find a composition
of the available services to accomplish the task (McIlraith
& Son 2002). WSC can either be seen as a software/plan
synthesis problem or as a plan execution problem. Plan-
ning is computationally demanding, particularly under con-
ditions of incomplete knowledge and sensing. Many actions
performed by existing Web services are precisely sensing
actions. To tackle WSC as a plan synthesis problem, plan-
ning can be performed using predefined available services
as the building blocks of a plan. In (McIlraith & Son 2002)
an extension of the logic programming language Golog is

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

proposed to address the WSC problem through the provi-
sion of high-level generic procedures and user defined cus-
tomization constraints. Also, a middle-ground approach to
execution is defined that combines on-line execution of nec-
essary information-gathering Web services with offline sim-
ulation of world-altering services. This approach operates
under the assumption of reasonable persistence of sensed in-
formation and complete independence between sensing and
world-altering actions. But there are scenarios where these
assumptions do not hold, e.g, a Web service that requires
users to register/login prior to browsing resources.

Some work has addressed the problem of planning un-
der conditions of incomplete knowledge and sensing, for in-
stance, the PKS planner (Petrick & Bacchus 2002) that uses
a generalization of the STRIPS (Fikes & Nilsson 1971) ap-
proach, and the planner discussed in (Bertoli et al. 2001),
that uses a model checking approach. One of the features
that makes PKS interesting for WSC, is its ability to gener-
ate parameterized conditional plans under such conditions.
In addition, PKS (as opposed to other approaches based on
possible worlds reasoning) generates plans at the knowledge
level without considering all the different ways the physical
world can be configured. Previous experimental results are
also encouraging. In this paper, we explore the applicability
of PKS to the automated WSC problem.

The rest of the paper is organized as follows. First, we
review the PKS planning system. Next, we discuss a gen-
eral approach to specifying/solving WSC problems at the
knowledge-level using PKS. After that, we focus on repre-
sentational issues. In particular, we discuss how to keep our
specification as generic, customizable, and concise as pos-
sible. We also examine the details of some travel domain
examples. Then, we present some preliminary experimental
results to evaluate the performance and correctness of PKS
on these examples. In the following section, we sketch an in-
frastructure and toolkit for an agent-oriented framework for
inter-operable, intelligent multi-agent systems for WSC and
provisioning. We also try to situate the experiments within
the context of such a framework. Finally, we review what
has been achieved and discuss future work.

PKS
PKS (Bacchus & Petrick 1998; Petrick & Bacchus 2002;
2003) is a knowledge-based planning system derived from a

generalization of STRIPS. In STRIPS, the state of the world
is represented by a database and actions are represented as
updates to that database. The PKS system uses, instead of a
single database, a set of databases that represent the agent’s
knowledge rather than the state of the world. Actions are
modelled as knowledge-level modifications to the agent’s
knowledge and specified as updates to these databases.
Databases: There are four available databases, each one
storing a different type of knowledge. The contents of these
databases have a fixed formal interpretation in a first-order
modal logic of knowledge that characterizes the agent’s
knowledge state.
Kf : This database can contain any ground literal. In par-
ticular, it can store positive and negative facts known to the
agent. Kf can also contain formulas specifying knowledge
of the value of a function on fixed arguments. The closed
world assumption does not apply.
Kw : This database stores formulas whose truth value the
agent knows. In particular, Kw can contain any conjunction
of ground atomic formulas. Intuitively, Kw(α) means that
at planning time we have that either the agent knows α or
it knows ¬α. The agent will only resolve this disjunction
at execution time. This database is used for plan time mod-
elling of the effects of sensing actions.
Kv : This database contains information about function val-
ues. In particular, Kv can store unnested function terms
whose values are known to the agent at execution time. Kv

is used for plan time modelling of the effect of sensing ac-
tions that return numeric values.
Kx : This database contains information about disjunc-
tive (exclusive or) knowledge of ground literals of the form
(l1|l2|...|ln). Intuitively, this formula represents the fact that
the agent knows exactly one of the li is true.
Note that the only forms of incomplete knowledge that can
be expressed are complete lack of knowledge about an atom,
by leaving it out of Kf , and knowledge that only one of a fi-
nite set of literals are true using Kx. There is no reasoning
by cases other than by going through a set of cases that have
been explicitly enumerated.
Goals: Simple goals can be represented as primitive queries.
A primitive query can take one of the following forms: (i)
K(α), is α known to be true? (ii) K(¬α), is α known to
be false? (iii) Kw(α), does the agent know whether α? (iv)
Kv(t), does the agent know the value of t? (v) the negation
of any of the previous queries. In the above, α represents
any ground atomic formula, and t represents any variable
free term. Complex goals can be expressed as queries which
include primitive queries, conjunctions of queries, disjunc-
tions of queries, and quantified queries where the quantifi-
cation ranges over the set of known objects.
Actions: Actions are specified in terms of three compo-
nents: parameters, preconditions, and effects. For exam-
ple in Table 1, the specifications for actions open(r) and
search(r) are given. The former is a physical action to open
(the door to) a room. The later is a knowledge-producing
action that senses for the presence of a person in a room.
Action open(r) requires the agent to know that room r is
not already open as a precondition. The effect of open(r)
is modelled by the addition of the new fact opened(r) to

Action Precondition Effects
open(r) K(room(r)) add(Kf , opened(r))

K(¬opened(r))
search(r) K(room(r)) add(Kw, found(r))

¬Kw(found(r))
K(opened(r))

Table 1: open and search actions.

Domain Specific Update Rules
K(room(r)) ∧(K(found(r)) ⇒

add(Kf , done)

Table 2: DSUR example.

the Kf database. Action search(r) requires, as a precon-
dition, the agent to know that room r is already open and
not knowing about whether someone has been found yet in
room r. The effect of search(r) is that the agent comes to
know whether someone was found in room r. This is mod-
elled by adding a new literal found(r) to the Kw database.
Note that the preconditions in this case are a conjunction of
primitives queries. Actions’ effects are specified as a set of
database updates, some of which can be conditional.
Domain specific update rules (DSUR): These rules are
used to specify additional action effects and correspond to
state invariants at the knowledge level. In any knowledge
state, DSURs may be triggered provided their conditions are
satisfied. A DSUR example is given in Table 2. This rule
captures the additional action effect of marking the search
task as finished when someone is found in any room. Note
that the antecedent of a DSUR can be any goal formula, and
the consequent must be a set of database updates.
Planning problems: A planning problem in PKS is defined
as a tuple 〈I, A, U,G〉, where I is the initial state, A is a
nonempty set of action specifications, U is a set of DSURs,
and G is a goal condition.

The PKS system relies on an efficient, but incomplete,
inference algorithm that uses a forward chaining approach
to find plans (Bacchus & Petrick 1998). PKS’s efficiency
comes as a result of its limited expressiveness with respect to
the kinds of incomplete knowledge that can be represented.
The current implementation supports both undirected depth-
first search and breadth-first search (used to find shortest
plans).

Composing Web Services in PKS
One of the features that makes the PKS planning system at-
tractive, for the automated WSC task, is its ability to gen-
erate parameterized conditional plans (containing run-time
variables) in the presence of incomplete knowledge and
sensing. Also, plans are generated at the knowledge level
without considering all the different ways the physical world
can be configured and changed by actions. In (Petrick &
Bacchus 2002) some experiments are described which show
“impressive performance” on generating plans in a number
of classic planning domains and problems (e.g., bomb in the

toilet, medicate, opening a safe and Unix domains). The
authors also claim that, for many common problems, this
knowledge-based representation “scales better and supports
features that makes it applicable to much richer domains”.

The main motivation for our experiments is to test both
the applicability and scalability of this approach to the WSC
problem. In this paper, we primarily address WSC as a plan
synthesis problem. Therefore, we do not discuss other is-
sues like plan execution and contingency recovery. Given
a particular domain specification and a description of some
user defined goals and explicit preferences, we use the PKS
planning system to generate conditional plans that solve the
task. In our approach each PKS primitive action corre-
sponds to an available service. In particular, knowledge-
producing actions correspond to information-gathering ser-
vices and physical actions to world-altering services. We
think that, in principle, this approach is modular and flexi-
ble. If a new Web service becomes available we can add it
as a new primitive action to the domain specification. More-
over, we can handle cases that previous approaches (McIl-
raith & Son 2002) cannot, e.g., physical actions having a di-
rect effect on sensing actions. Also, we do not need to have
pre-specified generic plans. However, as can be expected
with offline simulation, our search space is likely to be large
as our conditional plans should cover all the possible alter-
natives.

Representing Web Services in PKS
One motivation in these experiments is to keep our speci-
fications as general, customizable and intuitive as possible,
so that they can be reused by different users under changing
conditions. Given the current representational restrictions of
PKS, we often cannot represent the user’s objective as a goal
formula alone, e.g. a general non-exclusive disjunctive goal
of the form K(P (~x) ∨ Q(~x)). Nevertheless, one can often
get around this limitation by introducing a new fluent for the
goal and adding DSURs that make it true under appropriate
conditions, e.g. when one of the disjuncts holds. We will
show some of this in the BBF and BPBF problems.

We address the generic representation issue by keeping
the action specifications as decoupled as possible from the
specifics of the goal of a planning problem. We also want to
be able to plug in new available services by simply adding
the corresponding primitive actions to the domain specifica-
tion. By separating all goal specific action effects, we get
a more modular and generic representation to meet the re-
quirements of different users.

To make our specification accommodate user con-
straints/preferences, we adopt some of the ideas of (McIl-
raith & Son 2002). For each action ai we introduce a fluent
desAi that encapsulates the necessary conditions that make
ai desirable for execution for a given user. The desirable
fluent is added to the preconditions of each action. For ex-
ample, a typical knowledge-producing action that senses the
temperature of a room is defined in Table 3. Note that desir-
able conditions need to be specified either in the initial state,
or (most likely) using DSURs. We should also separate user
constraints from those used for search control. To that end

Action Precondition Effects
sTemp(x) K(room(x)) add(Kv, temp(x))

K(heatOn(x))
K(desSTemp(x))

Table 3: sTemp action.

we can introduce a fluent indAi that encodes the control in-
formation that makes action ai indicated. These indicated
fluents serve as an optimization mechanism that allows us
to add further restrictions to the search space, in order to
avoid unnecessary branching (e.g., it is indicated to sense
the temperature of a room only if the agent already knows
there is someone there). However, for simplicity, in this pa-
per we express search control constraints using the desirable
fluents.

We think that this form of action specification in PKS is
well suited for WSC problems as it is easy to understand and
maintain, as well as more extensible and reusable. Neverthe-
less, the knowledge engineer must be careful in introducing
DSURs, because of the associated computational overhead.

The rest of this section describes a particular domain spec-
ification using PKS. Our actual experiments involve WSC
for an air travel domain with five different variations on the
problem of booking a flight between two cities under differ-
ent customizing user constraints. For simplicity, we assume
that all information regarding origin, destination, departure
and arrival dates is already known and leave these parame-
ters implicit. Otherwise, functional fluents can be introduced
to model the knowledge acquisition. We envision that an ex-
ecutor agent can add all this complementary information at
execution time. Moreover, there is significant advantage to
this, both in terms of getting a more compact representation
of the domain and increased performance at planning time.

All the problems described in this paper, share the ba-
sic domain specification elements given in Table 4. In
this domain, four basic Web services are available: (i)
findRFlight(c), i.e., check if a flight exists on com-
pany c for the (implicit) desired cities and dates, (ii)
checkFSpace(c), i.e., check whether it has seats avail-
able, (iii) checkFCost(c), i.e., find out its price and (iv)
bookF light(c), i.e., book it. As expected, sensing actions
correspond to information-gathering services and physical
actions to world-altering services. We consider a fixed set of
air companies and in the initial state, the agent always knows
what these companies are (perhaps as a result of having used
another existing information-gathering service). Additional
action effects are represented by DSURs. In particular, rules
(1) and (2) capture some effects of sensing for a flight. If the
agent actually finds a flight, then it comes to know what the
flight number is. On the other hand, if the agent finds that
no such a flight exists, then it follows that the flight is not
available. Rules (3) and (4) capture a simple search control
constraint: the agent should only check for the price of a
flight already known to have available space. The specifics
of each version of the problem are captured by introducing
additional DSURs.
Problem BPF: This problem involves a simple customiz-

Action Precondition Effects
findRFlight(x) K(airCo(x)) add(Kw, f lightExists(x))

¬Kw(flightExists(x)) add(Kf ,¬desF indRFlight(x))
K(desF indRFlight(x))

checkFSpace(x) K(airCo(x)) add(Kw, availF light(x))
¬Kw(availF light(x)) add(Kf ,¬desCheckFSpace(x))
Kv(flightNum(x))
K(desCheckFSpace(x))

checkFCost(x) K(airCo(x)) add(Kv, f lightCost(x))
¬Kv(flightCost(x)) add(Kf ,¬desCheckFCost(x))
K(flightExists(x))
K(desCheckFCost(x))

bookF light(x) K(airCo(x)) add(Kf , bookedF light(x))
¬K(bookedF light(x)) del(Kf , availF light(x))
K(availF light(x)) add(Kf ,¬desBookF light(x))
K(desBookF light(x))

Domain specific update rules
K(airCo(x)) ∧ ¬Kv(flightNum(x)) ∧ K(flightExists(x)) ⇒

add(Kv, f lightNum(x)) (1)

K(airCo(x)) ∧ ¬K(¬availF light(x)) ∧ K(¬flightExists(x)) ⇒
add(Kf ,¬availF light(x)) (2)

K(airCo(x)) ∧ ¬Kw(desCheckFCost(x)) ∧ K(availF light(x)) ⇒
add(Kf , desCheckFCost(x)) (3)

K(airCo(x)) ∧ ¬Kw(desCheckFCost(x)) ∧ K(¬availF light(x)) ⇒
add(Kf ,¬desCheckFCost(x)) (4)

Table 4: Basic air travel domain action specification.

ing user constraint: (s)he has a preferred company. In the
initial state, the agent knows what the user’s preferred com-
pany is. It also knows that actions findRFlight(x) and
checkFSpace(x) are always desirable. The goal is either to
book a flight with the preferred company, or with any other
company if the preferred one is not available. For conve-
nience, we introduce a couple of abbreviations, i.e., (5) and
(6):

KnowNoF lightExists
.
=

∀k(x)[K(airCo(x)) ⇒

K(¬flightExists(x))]

(5)

KnowNoAvailF light
.
=

∃k(x)[K(airCo(x))∧

K(flightExists(x))]∧

∀k(x)[(K(airCo(x))∧

K(flightExists(x)))

⇒ K(¬availF light(x))]

(6)

(5) is self-explanatory and (6) encodes the case where there
is no seat available. Note that quantifiers are restricted to
range over the set of known objects/constants in the domain.

The goal can then be represented as shown in (7):

% book pref. company
∃k(x)[K(airCo(x)) ∧ K(bookedF light(x))∧

K(prefAirCo = x)] |

% if pref. company not available book any other
∃k(x)[K(airCo(x)) ∧ K(bookedF light(x))∧

K(prefAirCo 6= x)∧

K(flightExists(prefAirCo))∧

K(¬availF light(prefAirCo))] |

% if pref. company has no flight book any other
∃k(x)[K(airCo(x)) ∧ K(bookedF light(x))∧

K(prefAirCo 6= x)∧

K(¬flightExists(prefAirCo))] |

% no flight booked
KnowNoAvailF light |

KnowNoF lightExists

(7)

Also note the use of ’|’ to denote (ordinary) disjunctions. We
need to add a few update rules to the initial specification to
make this work. Update rule (8) says that if it is known that
a company has no space on its flight, then it is not desirable
to book it. Update rule (9) says that a flight from a company
other than the preferred company can only be desirable to

book if the agent already knows that the preferred company
is not available. Note that the positive case of rule (8) should
also be added, i.e., it is desirable to book the preferred com-
pany if available.

K(airCo(x)) ∧ K(¬availF light(x))∧

¬Kw(desBookF light(x))∧

⇒ add(Kf ,¬desBookF light(x))

(8)

K(airCo(x)) ∧ K(availF light(x))∧

K(prefAirCo 6= x)∧

¬Kw(desBookF light(x))∧

K(¬desBookF light(prefAirCo))

⇒ add(Kf , desBookF light(x))

(9)

Problem BMxF: This problem involves a different cus-
tomizing user constraint, the user has a maximum price that
(s)he is willing to pay. As before, the agent initially knows
that actions findRFlight(x) and checkFSpace(x) are al-
ways desirable. Additionally, the agent knows what the
user’s price limit is. For convenience, we introduce another
abbreviation, (10):

KnowNoBudgetF light
.
=

∃k(x)[K(airCo(x)) ∧ K(flightExists(x))∧

K(availF light(x))]∧

∀k(x)[(K(airCo(x)) ∧ K(flightExists(x))∧

K(availF light(x)))

⇒ K(priceGtMax(x))]

(10)

(10) represents the case where there is at least one available
flight but none within the budget. The goal is to book any
flight with price equal or less than the maximum price tag.
This is represented by (11):

% book company within budget
∃k(x)[K(airCo(x)) ∧ K(bookedF light(x))∧

K(¬priceGtMax(x))] |

% no flight booked
KnowNoBudgetF light |

KnowNoAvailF light |

KnowNoF lightExists

(11)

We must also add some DSURs to the initial specifica-
tion. The update rule (12) captures the notion that if the
cost of a flight is known, then it is also known whether
or not it is greater than the maximum price. Note that
in order to branch on the truth value of the inequality
(flightCost(x) > userMaxPrice) we need to introduce
the fluent priceGtMax(x) (the current implementation of
PKS is unable to evaluate expressions that cannot be reduced
to a numeric quantity at plan time; this issue is supposed
to be addressed in a coming release of the planner). Rules
(13) and (14) encode the maximum price constraint as only
flights that do not exceed the maximum price tag should be
considered for booking.

K(airCo(x)) ∧ ¬Kw(priceGtMax(x))∧

Kv(userMaxPrice) ∧ Kv(flightCost(x))

⇒ add(Kw, priceGtMax(x))

(12)

K(airCo(x)) ∧ K(¬priceGtMax(x))∧

¬Kw(desBookF light(x))

⇒ add(Kf , desBookF light(x))

(13)

K(airCo(x)) ∧ K(priceGtMax(x))∧

¬Kw(desBookF light(x))∧

⇒ add(Kf ,¬desBookF light(x))

(14)

Problem BPMxF: This problem considers not one but two
customizing user constraints, preferred company and max-
imum price. In the initial state, the agent knows what the
user’s preferred company and maximum price are. In ad-
dition, the agent knows that actions findRFlight(x) and
checkFSpace(x) are always desirable. The most important
constraint is not exceeding the maximum price. Also, the
user wants to book with the preferred company if possible.
This goal is represented by (15):

% book pref. company if within budget
∃k(x)[K(airCo(x)) ∧ K(bookedF light(x))∧

K(prefAirCo = x)∧

K(¬priceGtMax(x))] |

% if pref. company is above max. price
% book another company within budget
∃k(x)[K(airCo(x)) ∧ K(bookedF light(x))∧

K(prefAirCo 6= x)∧

K(¬priceGtMax(x))∧

K(¬desBookF light(prefAirCo))] |

% no flight booked
KnowNoBudgetF light |

KnowNoAvailF light |

KnowNoF lightExists

(15)

This problem is a combination of BPF and BMxF and re-
quires the addition of several DSURs to the original specifi-
cation. In particular, update rules (12), (14) and (16) need to
be added.

K(airCo(x)) ∧ K(¬priceGtMax(x))∧

K(prefAirCo 6= x)∧

¬Kw(desBookF light(x))∧

K(priceGtMax(prefAirCo))∧

⇒ add(Kf , desBookF light(x))

(16)

Note that (16) is a variation of (9) and (13) that encapsulates
a stronger constraint: flights from a company other than the
preferred one and not exceeding the maximum price should
be considered for booking, provided the price for the pre-
ferred company exceeds the maximum price. Also note that
for this to work, the positive case for the preferred company
has to be added as well.
Problem BBF: This problem involves an optimization task:
the user wants to book the best, i.e., cheapest flight available.
Initially, the agent knows that actions findRFlight(x) and
checkFSpace(x) are always desirable. It also knows that
one of the air companies is the best/cheapest but it does not

know which one. The goal is to book the least expensive
flight available, as shown in (17):

% book least expensive company
∃k(x)[K(airCo(x)) ∧ K(bookedF light(x))∧

K(bestAirCo = x)] |

% no flight booked
KnowNoAvailF light |

KnowNoF lightExists

(17)

The initial knowledge state includes a formula of the form
(bestAirCo = c1|bestAirCo = c2|...|bestAirCo = cn) in
Kx. Note the introduction of the new fluent bestAirCo,
which represents the least expensive available company.
Again we must add some update rules to the initial speci-
fication. The most important rules are presented below. The
agent must figure out the ordering of the companies by flight
price; this is captured by rules (18) and (19). Then we rely
on the planner’s ability to deal with disjunctive knowledge
(exclusive or) of literals. Update rules (20) and (21) elim-
inate companies one by one based on flight price, until the
agent can conclude that the last remaining company must be
the best. Note that if two companies have equal price the
agent arbitrarily picks one known to be available. Rule (22)
eliminates companies that are not available. Once ’the best
company’ is found, rule (23) is triggered and we can proceed
with the booking.

K(airCo(x)) ∧ K(airCo(y))∧

K(x 6= y) ∧ ¬Kw(priceEq(x, y))∧

Kv(flightCost(x)) ∧ Kv(flightCost(y))∧

⇒ add(Kw, priceEq(x, y))

(18)

K(airCo(x)) ∧ K(airCo(y)) ∧ K(x 6= y)∧

¬Kw(priceLt(x, y)) ∧ K(¬priceEq(x, y))∧

⇒ add(Kw, priceLt(x, y))

(19)

K(airCo(x)) ∧ K(airCo(y))∧

K(x 6= y) ∧ ¬K(bestAirCo 6= y)∧

K(priceLt(x, y)) ∧ K(availF light(x))

⇒ add(Kf , bestAirCo 6= y)

(20)

K(airCo(x)) ∧ K(airCo(y))∧

K(x 6= y) ∧ ¬K(bestAirCo 6= y)∧

K(priceEq(x, y)) ∧ K(availF light(x))∧

⇒ add(Kf , bestAirCo 6= y)

(21)

K(airCo(x)) ∧ ¬K(bestAirCo 6= x)∧

K(¬availF light(x))

⇒ add(Kf , bestAirCo 6= x)

(22)

K(airCo(x)) ∧ ¬K(desBookF light(x))∧

K(bestAirCo = x)

⇒ add(Kf , desBookF light(x))

(23)

Problem BBPF: This problem is a refined version of BBF.
The goal consists in booking the least expensive available
flight, but if two flights have the same price the agent should

always favour the preferred company. There are two user
constraints, preferred company and least expensive flight.
As before, in the initial state the agent knows that one of the
air companies is the best (i.e., least expensive), but it does
not know which one. Additionally, the agent knows what
the preferred company is. The goal is represented by (24):

% book pref. company if least expensive
∃k(x)[K(airCo(x)) ∧ K(bookedF light(x))∧

K(prefAirCo = x) ∧ K(bestAirCo = x)] |

% if pref. company is not least expensive
% book the least expensive one
∃k(x)[K(airCo(x)) ∧ K(bookedF light(x))∧

K(prefAirCo 6= x) ∧ K(bestAirCo = x)∧

K(¬desBookF light(prefAirCo))] |

% no flight booked
KnowNoAvailF light |

KnowNoF lightExists

(24)

This preference is encoded by adding DSURs (18), (19),
(20), (22), (23), and (25) to the original specification.

K(airCo(x)) ∧ ¬K(bestAirCo 6= x)∧

K(prefAirCo 6= x)∧

K(priceEq(x, prefAirCo))∧

K(availF light(prefAirCo))

⇒ add(Kf , bestAirCo 6= x)

(25)

For problems BMxF, BBF and BBPF, we think that an
even more compact representation can still be achieved once
the planner is enhanced with built-in support for conditional
branching on the truth value of some unevaluated expres-
sions (e.g., f(x) < c).

These examples are interesting because they encompass
very general properties found in current WSC problems.
In particular, they represent typical customizing user con-
straints, both hard constraints (true or false) and optimiza-
tion constraints. In our approach, user’s preferences are en-
coded using the desirable fluents and maintained by DSURs.
However, as the number of constraints increases, adding
DSURs can become tricky and also compromises the con-
ciseness of the representation. This naturally raises the is-
sue of exploring a systematic way of automatically generat-
ing DSURs from some given user preferences. We are cur-
rently investigating the feasibility of a such systematization.
In general terms, we want to take as input a description of
the user’s preferences (i.e., in the form of a goal and some
customizing constraints), and systematically generate a set
of DSURs to enforce these constraints as the planner looks
for a plan that achieves the goal.

Experimental Results
Our experiments were conducted on a 3.0GHz Xeon with
4Gb RAM, under Linux 2.4.22. The performance results are
presented in Tables 5 and 6. The trials were performed by

Co. BPF BMxF BPMxF BBF BPBF
2 0.00 0.00 0.00 0.02 0.10
3 0.00 0.01 0.01 0.35 1.58
4 0.00 0.01 0.01 53.99 259.39
5 0.01 0.02 0.02 > tmax > tmax

10 0.01 0.04 0.04 > tmax > tmax

20 0.04 0.05 0.06 > tmax > tmax

50 0.31 0.51 0.60 > tmax > tmax

100 2.47 3.15 3.43 > tmax > tmax

Table 5: Results for BPF, BMxF, BMxPF, BBF and BBPF
with # Co. air companies using depth-first search with 1
explicit parameter, the company (tmax = 300 secs.).

Co. BPF BMxF BPMxF BBF BPBF
2 0.17 0.21 0.37 1.27 8.42
3 0.58 0.72 1.20 24.02 109.33
4 1.45 2.20 3.71 > tmax > tmax

5 3.76 4.33 4.65 > tmax > tmax

10 80.60 96.45 105.49 > tmax > tmax

Table 6: Results for BPF, BMxF, BMxPF, BBF and BBPF
with # Co. air companies using depth-first search with 5
explicit parameters: company, origin, destination, departure
date and arrival date (tmax = 300 secs.).

running the planner1 five times on each problem, and taking
the average results for each one. All times are reported in
CPU seconds.

In terms of performance, our approach scales up particu-
larly well for the hard constraints problems BPF, BMxF and
BPMxF. In particular, we can generate plans for 100 compa-
nies in less than 4 seconds. Note that, for the five parameters
version of the problems, the running time increases by a fac-
tor of 100. This is why we eliminated the origin/destination
cities, and departure/arrival dates parameters. Also note that
the optimization problems BBF and BPBF appear not to
scale up well. Both versions require a complete ordering
of companies by cost, and therefore the planner has to do
more complex combinatorial reasoning.2

Note that all our examples have at least twice as many
DSURs as the most complex domains (i.e., medicate and
opening a safe) reported on (Petrick & Bacchus 2002). Our
experiments revealed that the overall performance is more
sensitive to the number of parameters used than it is to the
number of updates rules.

In terms of correctness, in all cases, the plans generated
eventually succeed in booking a flight. Initially, most so-
lutions contained many irrelevant action instances. First, we
tried to improve on the quality of the plans by using breadth-
first search instead of undirected depth-first search, but it
does not scale up well. Therefore, all the results reported in

1The latest available release of PKS at the time of writing this
paper was v0.6-alpha-2 (Linux)

2Also, the planner’s current handling of the Kv database has
not yet been optimized. It remains to be seen whether a scalable
approach to this type of problems can be developed.

findRFlight(c1)
<branch, flightExists(c1)>
<k+>:

checkFSpace(c1)
<branch, availFlight(c1)>
<k+>:

checkFCost(c1)
bookFlight(c1)

<k->:
<k->:

findRFlight(c2)
<branch, flightExists(c2)>
<k+>:

checkFSpace(c2)
<branch, availFlight(c2)>
<k+>:

checkFCost(c2)
bookFlight(c2)

<k->:
<k->:

Table 7: Plan for problem BPF for two companies (gener-
ated using depth-first search).

Tables 5 and 6 were obtained using depth-first search. In the
end, we managed to get rid of the unnecessary operators by
carefully introducing appropriate search control constraints
encoded into desirable fluents. We also intend to examine
how iterative deepening search performs. A sample plan
generated for the simplest problem appears in Table 7.

Agent-Based Infrastructure for WSC and
Provisioning

Our work on planning for WSC is set within a broader effort
to develop next generation tools for WSC and provisioning.
We are mostly interested in Web services that require the
use of agent-oriented approaches and planning techniques.
In other words, we target our efforts to the new emerging se-
mantic Web paradigm. To this end, we are currently working
on an agent-oriented framework for inter-operable, intelli-
gent multi-agent systems for WSC (Martínez 2004). Our ap-
proach is to interface three existing tools, IndiGolog, JADE,
and PKS to obtain a toolkit that can provide an adequate in-
frastructure for doing semantic WSC and provisioning.

We use the IndiGolog agent programming language to ad-
dress the need for reasoning, planning, execution monitor-
ing and re-planning capabilities. IndiGolog (De Giacomo &
Levesque 1999) is part of the Golog-family (De Giacomo,
Lespérance, & Levesque 2000; Reiter 2001) of high-level
logic programming languages developed by the Cognitive
Robotics Group at the University of Toronto. IndiGolog pro-
vides a practical framework for implementing autonomous
agents as it supports plan execution, sensing, exogenous
events and planning in incompletely known dynamic envi-
ronments. It also has mechanisms for execution monitor-
ing and re-planning. The latter capabilities are important for
Web service enactment, as the agent can keep track of how

responsive particular services are and control how much is
delegated to them. However, IndiGolog is mainly intended
for designing individual autonomous agents.

The Java Agent Development Framework (JADE) is a
Java-based, FIPA-compliant software framework for devel-
oping multi-agent applications. JADE (Bellifemine, Poggi,
& Rimassa 1999) provides interoperability with other agent
applications/platforms that are compliant with the Founda-
tion for Intelligent Physical Agents (FIPA) specifications. It
also provides support for different types of ontologies. We
use JADE as the front-end component to do matchmaking
and negotiation of the services required. However, JADE’s
reasoning capabilities are very limited.

The PKS planner is included in the toolkit to provide a
capability for generating conditional plans that include sens-
ing actions. However, PKS’s efficiency comes at the price of
some limited representational and inferential power.

Each of these tools has its strengths and weaknesses, but
combined together, they provide a very powerful toolkit.
We have already developed an IndiGolog-JADE interface
library, where the agents communicate using FIPA ACL
(Agent Communication Language) messages. A JADE-PKS
interface library is under development.

Conclusion and Future Work
In this paper, we addressed the problem of automated WSC
by using knowledge-based planning techniques. In partic-
ular, we used the PKS planning system to synthesize plans
that compose various available Web services to achieve user
defined goals in a travel services domain. We studied how
the running time of the planner depends on various prob-
lem parameters. We also described an approach to domain
specification in PKS that is general, modular, customizable
and intuitive. Despite the limited expressiveness and infer-
ential power intrinsic to this approach, we provided empiri-
cal evidence that it is effective for representing/solving some
typical WSC problems. Nevertheless, a great deal of the so-
lution still depends on the knowledge engineer’s design de-
cisions, not the planner. This obviously raises the issue of
looking for a systematic way to automatically generate a set
of DSURs from a given description of the user’s preferences,
in the form of a goal and some customization constraints.
Such a set of DSURs should enforce these constraints as
the planner looks for a plan that achieves the goal. We also
showed that this approach scales relatively well under differ-
ent user constraints. We discussed as well a next generation
toolkit and agent-oriented infrastructure for advanced WSC
and provisioning.

In terms of scalability, one issue that arises from these
experiments is the question of how sensitive our approach
is with respect to the number of primitive actions. In par-
ticular, we should explore further the effects of unrelated
actions or actions that do not get to execute, both with and
without control information. Additionally, the problem of
selecting which Web services are relevant for a particular
WSC should be considered. In principle, we envision that
some other part of our architecture takes care of that per-
haps using some kind of heuristics. Finally, we should keep

in mind that the current PKS planning system is still exper-
imental, and future enhancements (e.g., more sophisticated
search control mechanisms) should have a direct effect on
the overall scalability.

Acknowledgements
We thank Ron Petrick from the Cognitive Robotics Group
at the University of Toronto for providing an initial alpha
version of the PKS planner as well as useful advice. Also,
the referees provided some useful suggestions.

References
Bacchus, F., and Petrick, R. 1998. Modeling an agent’s incom-
plete knowledge during planning and execution. In Proceedings
of the Sixth International Conference on Principles of Knowledge
Representation and Reasoning (KR-1998), 432–443. San Fran-
cisco, CA: Morgan Kaufmann Publishers.
Bellifemine, F.; Poggi, A.; and Rimassa, G. 1999. Jade: A FIPA-
compliant agent framework. In Proceedings of PAAM-1999, 97–
108.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P. 2001. Plan-
ning in non-deterministic domains under partial observability via
symbolic model checking. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI-2001), 473–
478.
De Giacomo, G., and Levesque, H. J. 1999. An incremental inter-
preter for high-level programs with sensing. In Levesque, H. J.,
and Pirri, F., eds., Logical Foundations for Cognitive Agents.
Springer-Verlag. 86–102.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000. Con-
Golog, a concurrent programming language based on the situation
calculus. Artificial Intelligence 121(1-2):109–169.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 2:189–208.
Gottschalk, K., and IBM Team. 2000. Web services architecture
overview: The next stage of evolution for e-business. Article,
IBM, http://www-106.ibm.com/developerworks/web/library/w-
ovr/.
Martínez, E. 2004. Web service composition as a planning task:
an agent-oriented framework. MSc thesis, Department of Com-
puter Science, York University, Forthcoming.
McIlraith, S., and Son, T. C. 2002. Adapting Golog for com-
position of semantic web services. In Proceedings of the Eighth
International Conference on Knowledge Representation and Rea-
soning (KR-2002), 482–493.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based
approach to planning with incomplete information and sensing.
In Proceedings of the Sixth International Conference on Artifi-
cial Intelligence Planning and Scheduling (AIPS-2002), 212–221.
Menlo Park, CA: AAAI Press.
Petrick, R. P. A., and Bacchus, F. 2003. Reasoning with condi-
tional plans in the presence of incomplete knowledge. In Proceed-
ings of the ICAPS-03 Workshop on Planning under Uncertainty
and Incomplete Information, 96–102. Trento, Italy: Università di
Trento.
Reiter, R. 2001. Knowledge in Action: Logical Foundations
for Specifying and Implementing Dynamical Systems. The MIT
Press.

