
Exploiting Reward Machines with Deep Reinforcement Learning

in Continuous Action Domains

Haolin Sun

A DISSERTATION SUBMITTED TO

THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF COMPUTER SCIENCE

GRADUATE PROGRAM IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

YORK UNIVERSITY

TORONTO, ONTARIO

January 2023

©Haolin Sun, 2023

Abstract

Deep reinforcement learning can solve real-world robot control problems, such as autonomous driving and

robotic arm manipulation. The goal of a deep reinforcement learning agent is to find an optimal strategy for

each specific task. In deep reinforcement learning, an agent does not know the problem description and learns

the optimal solution through trial-and-error. This method brings two major challenges when solving real-

world problems: partial observability and learning efficiency. In this thesis, we address these two challenges

and extend previous work. First, we use reward machines to address the problem of partial observability.

A reward machine can decompose a task and pass its high-level structure to the agent, letting the agent

exploit this information. It supports non-Markovian task specifications, thus accommodating some partial

observability. Then, we focus on finding the existing cutting-edge deep reinforcement learning algorithms

and integrating them with reward machines to enhance the learning efficiency. To test the performance of

all the algorithms, we proposed a series of different tasks that can be used to mimic real-world robot control

problems. Finally, based on the test results, we compare the performance of all the algorithms and analyze

their advantages and disadvantages.

ii

To Yongmei Cui, Wentao Sun and Chang Liu

iii

Acknowledgments

First, I would like to express my most sincere gratitude to my supervisor, Professor Yves Lespérance. Thank

you for providing me with the opportunity to do research with you. To be honest, I did not expect that

I would get an offer when I applied to graduate studies because my undergraduate GPA was not that

outstanding. However, you chose to believe in me as a seemingly unimpressive student, and you made

my dream come true. Your decision completely changed my life, giving me access to the field of artificial

intelligence, which is one of the most trending topics right now. You truly helped me expand my knowledge;

you even made me feel more confident in my life. During the time when I was looking for a topic for my

thesis, I felt panicked and confused, but you were always there to provide me with various research directions

and inspiration, which helped me get through that most difficult time. I appreciate you from the bottom

of my heart for your guidance and support, and I look forward to continuing to explore the field of AI with

you in the future.

I would also like to express my appreciation to my internal committee member, Professor Frank van

Breugel. Thank you very much for your valuable comments and suggestions on my thesis. The questions

you asked were crucial, and they helped me to think more deeply about many details of my thesis and made

my understanding of it more thorough.

Finally, a special thanks to my external member, Professor Jinjun Shan, for taking the time to attend

my defence while attending the conference. Thank you very much for your time and support.

iv

Contents

Abstract ii

Dedication iii

Acknowledgments iv

Contents v

List of Figures viii

1 Introduction 1

1.1 Motivation . 3

1.2 Our Approach and Contribution . 3

1.2.1 The Combination of Reward Machines and Popular Deep RL Algorithms 3

1.2.2 Defining Various Types of Tasks and Validating Algorithm Performance 4

1.2.3 Contributions . 4

1.3 Outline of the Thesis . 5

2 Background 6

2.1 Discrete and Continuous Action Domains . 6

2.2 Deterministic vs Stochastic Policies and their Representation 7

2.2.1 Stochastic Policy Output in Discrete Action Domains 8

2.2.2 Stochastic Policy Output in Continuous Action Domains 8

2.3 Exploration and Exploitation . 8

2.4 Decaying ϵ-greedy Method . 9

2.5 Sampling and KL Divergence . 9

2.6 On-policy and Off-policy Update . 10

v

2.7 Actor-Critic Architecture . 11

3 Related Work 12

3.1 Reward Machines, CRM and HRM . 12

3.1.1 Reward Machines . 12

3.1.2 Counterfactual Experience for reward machines (CRM) 14

3.1.3 Hierarchical Reinforcement Learning for Reward Machines (HRM) 17

3.2 Deep Deterministic Policy Gradient (DDPG) . 18

3.3 DDPG with CRM . 20

3.4 Maximum Entropy Reinforcement Learning and Soft Actor-Critic (SAC) 22

3.4.1 Maximum Entropy Reinforcement Learning (MERL) 22

3.4.2 Soft Actor-Critic (SAC) . 23

3.5 Twin Delayed Deep Deterministic Policy Gradient (TD3) . 29

3.5.1 Several Improvements of TD3 based on DDPG . 29

3.5.2 TD3 implementation . 31

3.6 Proximal Policy Optimization (PPO) . 31

3.6.1 Stochastic Gradient Ascent . 33

3.6.2 Trust Region . 35

3.6.3 PPO Implementation . 36

4 New Algorithms for Reward Machines in Deep Reinforcement Learning 39

4.1 Soft Actor-Critic (SAC) with CRM . 39

4.2 Twin Delayed Deep Deterministic Policy Gradient (TD3) with CRM 42

4.3 Proximal Policy Optimization (PPO) with CRM . 44

4.4 Discussion . 46

5 Experimental Evaluation 48

5.1 Results in the Half-Cheetah Domain . 49

5.1.1 Performance on Task 1 and Task 2 . 52

5.1.2 Performance on Task 3 . 57

5.1.3 Performance on Task 4 . 58

5.1.4 Performance on Task 5 . 59

5.2 Results in the Ant Domain . 61

5.2.1 Performance on Task 1 and Task 2 . 63

vi

5.2.2 Performance on Task 3 . 65

5.3 Discussion . 66

5.3.1 Overall Performance of SAC-CRM . 66

5.3.2 Overall Performance of DDPG-CRM . 67

5.3.3 Overall Performance of Option-DHRM . 67

5.3.4 Overall Performance of TD3-CRM . 68

5.3.5 Overall Performance of PPO-CRM . 68

6 Conclusion 70

6.1 Summary of Contributions . 70

6.2 Future Work . 71

6.3 Concluding Remarks . 73

Bibliography 74

vii

List of Figures

3.1 An example RM environment . 13

3.2 The automaton of the RM environment example . 13

3.3 A multimodal Q-function . 25

5.1 The Half-Cheetah domain . 49

5.2 The RM automaton of Task 1 in the Half-Cheetah domain. 50

5.3 The RM automaton of Task 2 in the Half-Cheetah domain. 50

5.4 The RM automaton of Task 3 in the Half-Cheetah domain. 51

5.5 The RM automaton of Task 4 in the Half-Cheetah domain. 51

5.6 The RM automaton of Task 5 in the Half-Cheetah domain. 51

5.7 CRM vs baselines in Half-Cheetah Task 1 . 53

5.8 CRM vs baselines in Half-Cheetah Task 2 . 54

5.9 Results for Task 1 in the Half-Cheetah domain . 54

5.10 Results for Task 2 in the Half-Cheetah domain . 55

5.11 PPO-CRM vs baseline PPO in Half-Cheetah Task 1 . 56

5.12 PPO-CRM vs baseline PPO in Half-Cheetah Task 2 . 57

5.13 Results for Task 3 in the Half-Cheetah domain . 58

5.14 Results for Task 4 in the Half-Cheetah domain . 59

5.15 Results for Task 5 in the Half-Cheetah domain . 60

5.16 The Ant domain . 62

5.17 The RM automaton of Task 3 in the Ant domain. 63

5.18 Results for Task 1 in the Ant domain . 63

5.19 Results for Task 2 in the Ant domain . 64

5.20 Results for Task 3 in the Ant domain . 65

viii

Chapter 1

Introduction

In artificial intelligence, an intelligent agent must make appropriate decisions and actions at each moment to

complete a given task. For example, in autonomous driving, the vehicle needs to decide the current driving

behavior based on the current road conditions to ensure safe arrival at the destination; for a robotic arm

to grasp objects, the arm needs to determine how to drive itself to grasp the object quickly and accurately.

The critical point of solving such problems is how to make the best decisions and execute the best actions

to achieve the desired goal in a constantly changing environment. The learning approach to solving such

problems is called reinforcement learning (RL).

In reinforcement learning, an agent interacts with the environment by performing an action in each

environmental state, with each interaction resulting in a reward signal. The goal of an RL agent is to learn

a policy (a mapping from observations to actions) that maximizes the expected cumulative reward and to

improve its policy from past learning experiences.

In any environment state, an RL agent does not pursue an action that can bring the maximum reward

only in this state, but instead pursues an action that can bring a larger expected reward throughout the

task. When choosing an action, the agent usually takes a greedy approach, i.e., prefers the action that has

been tried in the history of interaction and can bring more expected benefits. However, untried actions may

have higher expected rewards. Therefore, the agent needs to balance the frequency of exploiting the known

actions and exploring new actions to find the optimal policy quickly and accurately.

In some simple discrete action domains, such as simple turn-based games, where the number of states

and actions is finite, a basic RL algorithm such as Q-learning [28] will be sufficient to find the optimal policy

relatively quickly. The core idea of Q-learning is straightforward, i.e., try all the possible actions in each

state and record their expected rewards. When the same state is encountered in the next round of learning,

1

the agent will select the action with the highest expected reward to obtain the optimal policy. However, in

a more complex continuous action domain, such as autonomous driving, because the values of acceleration,

deceleration, and steering wheel rotation are from infinite domains, the agent cannot try all possible actions

during the learning process, so Q-learning will not be able to identify the actions with the highest expected

rewards in each state and thus cannot find the optimal policy.

Deep reinforcement learning was developed in part to solve the RL problems in continuous action domains.

Deep reinforcement learning integrates the powerful understanding capability of neural networks and the

decision-making capability of reinforcement learning, enabling agents to solve more complex problems in

continuous action domains [9].

The reward functions in the RL algorithms are usually a black box, where an RL agent receives the

reward only when it completes the whole task, and the agent does not know what conditions are necessary

to be triggered in the process of completing the task. As such, if the agent wants to learn the optimal policy,

it must interact with the environment on an ongoing basis, and the interaction process takes a lot of time

and computational power. However, if the agent can access the internal structure of the reward function

and thus understand the high-level idea of the task, then the agent can exploit this information to speed up

the learning of the optimal policy.

In order to let the agent have access to the reward function, Toro Icarte et al. proposed a finite state

machine, called the reward machine (RM) [25], which defines a novel form for the reward function. Reward

machines can define multiple forms of reward functions, including concatenation, loops, and conditional rules.

A reward machine can decompose a complex task into multiple subtasks and expose the corresponding reward

function in each subtask to the agent, thus allowing the agent to learn the reward function at each RM state.

For each RM state transferred, the reward of the specific subtask will be returned, enabling agents to learn

RM state by RM state, thus allowing the agent to conduct less exploration and speed up the learning.

Reward machines are flexible in expression; tasks can be expressed in a variety of ways, such as Linear

Temporal Logic (LTL) [8] or other formal languages, and then translated into a reward machine.

Meanwhile, in order to exploit the structure of a reward machine, Toro Icarte et al. proposed a novel

approach called counterfactual experiences for reward machines (CRM) [23]. When the agent interacts

with the environment, CRM uses the information from the reward functions provided by reward machines

to generate synthetic experiences to help the agent make more explicit judgments about RM states, thus

accelerating the agent’s learning speed.

2

1.1 Motivation

Reward machines can be used in both discrete and continuous action domains. In discrete action domains,

Toro Icarte et al. have improved the learning efficiency of the existing RL algorithms by combining CRM with

Q-learning and Double DQN [26], where RM-based Q-learning can converge to the optimal policy. However,

the only existing algorithms that have been combined with reward machines in continuous action domains

are DDPG [15] and option-based Hierarchical Reinforcement Learning (HRL) [20]. With the emergence of

new deep RL algorithms, the advantages of DDPG and option-based HRL have become less prominent. In

some environments, the performance of other newly proposed deep RL algorithms has surpassed that of

DDPG and option-based HRL. In order to further improve the learning efficiency of RM-based algorithms

in various continuous action domains, we will work on two things in this thesis:

1. Adapting other deep RL algorithms to work with RMs. That is, trying to combine reward

machines with other newer deep RL algorithms and aiming to make them perform better than DDPG

and option-based HRL in various continuous domains.

2. Defining various types of benchmark tasks and using them to evaluate our algorithms.

That is, defining various types of tasks in continuous action domains to explore the performance and

use cases of different RM-based algorithms.

1.2 Our Approach and Contribution

In this thesis, we combine CRM with several popular deep RL algorithms, including Soft Actor-Critic (SAC)

[10], Twin-Delayed Deep Deterministic Policy Gradient (TD3) [7], and Proximal Policy Optimization (PPO)

[18]. These new algorithms, as well as the DDPG-CRM and HRM proposed by Toro Icarte et al., are tested

and compared in eight tasks in two continuous domains. We also summarize the strengths and weaknesses

of each algorithm with their reasons.

1.2.1 The Combination of Reward Machines and Popular Deep RL Algorithms

The role of reward machines is to decompose a complex task into multiple subtasks and expose the reward

function of each subtask to the algorithms, allowing the algorithms to obtain more explicit information from

it. As such, the learning ability of the algorithm itself will directly affect whether the agent can get a high

reward value.

In order to further improve the learning efficiency of RM-based algorithms in continuous action domains,

we combined reward machines with popular deep RL algorithms proposed in recent years, including Soft

3

Actor-Critic (SAC), Twin-Delayed Deep Deterministic Policy Gradient (TD3), and Proximal Policy Gradient

(PPO). These algorithms outperformed DDPG in many previous experimental studies, so we expect that

they will outperform DDPG-CRM in the same environments when combined with CRM.

1.2.2 Defining Various Types of Tasks and Validating Algorithm Performance

Our experimental section validates the performance of all the algorithms by defining a total of eight tasks

in two different continuous action domains. Among them, five tasks involve a 2D environment, and three

involve a 3D environment. For the 2D environment, we choose one of the mainstream test environments,

Half-Cheetah [3], which was developed by Open AI. Our Half-Cheetah environment contains five tasks,

including two tasks defined by Toro Icarte et al. [23] and three new tasks defined by ourselves. These tasks

are of different types and complexity, allowing a more comprehensive evaluation of the performance of all

algorithms in this environment. In addition, to test the performance of the algorithms in a more complex

environment, we add Ant [3] as another environment, which was also developed by Open AI. Ant is a 3D

environment with a higher complexity than the Half-Cheetah, and we define a total of three tasks in this

environment.

1.2.3 Contributions

The main contributions of this thesis can be summarized as follows.

First, we combined CRM with several mainstream deep RL algorithms for which the combination had not

been studied before. By researching the current mainstream deep RL algorithms, we selected three widely

used and well-performing deep RL algorithms to combine with CRM. The combined algorithms are called

SAC-CRM, TD3-CRM, and PPO-CRM.

Then, we added more task types compared to previous experiments, e.g., [25]. Based on the RM model,

we defined a total of six new tasks in different continuous action domains to further validate the performance

of all RM-based algorithms in different environments and task types. Based on the experimental results, we

compared the performance of all the RM-based deep RL algorithms in different environments and tasks and

analyzed the reasons for the performance difference.

Last but not least, we discovered a new, better-performing CRM-based deep RL algorithm. Through

a series of experimental validations, we found that in SAC-CRM, the learning speed and reward values it

achieves within the specified number of learning steps are the best among all the algorithms for most tasks.

4

1.3 Outline of the Thesis

The rest of the thesis is organized as follows: Chapter 2 explains some essential concepts in reinforcement

learning and discusses some key terms that appear in some of the algorithms. Chapter 3 comprehensively

explains all the existing algorithms that we build on in this thesis, listing and explaining the unique learning

mechanisms and their roles in each algorithm. Chapters 4 and 5 present the main contributions of this

thesis. Chapter 4 explains the rationale and process of combining the new algorithms with reward machines

and shows how to add counterfactual experiences to typical deep RL algorithms. Chapter 5 presents our

experimental evaluation of the algorithms, containing descriptions of all eight tasks, which include two tasks

defined by Toro Icarte et al. [25] and six brand-new tasks. Chapter 5 also shows the performance of all the

algorithms and their corresponding analyses. Finally, Chapter 6 summarizes the contributions of this thesis

and discusses future work.

5

Chapter 2

Background

In this chapter, we will explain key RL concepts and terms that appear in this thesis. Reinforcement

learning has a wide range of use cases, so the RL environments are diverse. As such, the algorithms applied

in different RL environments are different. Moreover, the ways in which each algorithm updates its policies

are different, and these differences can affect the resulting policies. This chapter highlights the fundamental

concepts of the RL algorithms used in the thesis to help the reader better understand the theory behind all

the algorithms.

2.1 Discrete and Continuous Action Domains

The action domain is an essential setting in RL problems, and each agent needs to be trained in a specific type

of action domain. The design of the action domain is crucial for the choice of RL algorithms. In different types

of action domains, the agent needs to adopt different RL algorithms to maximize the reward; meanwhile,

the complexity of the action domain also significantly impacts the performance of RL algorithms. There are

two main classes of action domains in reinforcement learning: discrete action domains and continuous action

domains [5].

In a discrete action domain, the possible choice of an action is drawn from a finite number of discrete

values. For example, in the Snake game, the available actions set is A = {left , right, up, down}, all the

actions will be selected from these four actions. In contrast, in a continuous action domain, the possible set

of choices for an action is infinite, which is usually represented by a real vector, such as A ∈ [−1, 1]. For

example, when a robot moves with human-like limbs, its knee joints have to make corresponding movements

to drive the movement of the legs, including the rotation angle and the rotation force of the joints. The

units such as angle and strength can be freely chosen within a continuous range and cannot be represented

6

by a finite number of discrete numerical values. An RL environment with this type of action domain is

called a continuous action domain. Note that in a continuous action domain, the continuous actions can

be discretized, and previous work has shown that using discretized actions with some on-policy algorithms

(such as PPO) can make learning more efficient [22]. However, very little related work has been done so

far on the discretization of continuous actions, and the existing studies cannot adequately demonstrate the

broad applicability of discretized actions. Therefore, the default choice for the vast majority of deep RL

algorithms is still to sample from the continuous action distributions.

2.2 Deterministic vs Stochastic Policies and their Representation

In reinforcement learning, the goal of an agent in a task is to learn a good policy to help it choose the best

action among different states to obtain the highest possible reward value. Specifically, there are two forms

of policy representation: deterministic and stochastic. They are represented differently in the actual neural

network’s output layer and thus influence how the agent selects actions. Intuitively, a deterministic policy

is a decisive policy whose output for a given state is a fixed action to be performed by an agent. Formally,

a deterministic policy π is a function from state to action. For an input state s, the output action of a

deterministic policy can be represented as:

a = π(s) (2.1)

In contrast, the output of a stochastic policy is not an unique action, but the probability that the agent

will take an action for all possible actions at a given state. A stochastic policy can be represented as:

π(s) = P [a | s] (2.2)

where, i.e., formally a stochastic policy π is a function from states to probability distributions over actions.

As such, the input is still a state, but instead of the output being an action, it is the probability distribution

of all possible actions.

Generally, an RL policy can be represented by a neural network, where the input is a specific environ-

mental state. In a deterministic policy, the output layer will contain only one node, representing the optimal

action derived from the policy. In contrast, the output layer of a stochastic policy will not be a single action.

7

2.2.1 Stochastic Policy Output in Discrete Action Domains

In discrete action domains, since the number of available actions is finite, the number of nodes in the output

layer of the neural network is equal to the number of all available actions at a given state. After being

transformed by a specific activation function, the value in each node represents the probability of each

action being selected in the current state. The sum of the probabilities in all nodes is equal to 1.

2.2.2 Stochastic Policy Output in Continuous Action Domains

In continuous action domains, it is impossible for a node to represent an action; otherwise, an endless number

of nodes would be required to represent all possible actions. Therefore, we cannot directly express actions

produced from our policy (the probability distribution) via the output layer. Instead, we can generate

a distribution from the output nodes and sample the desired actions from it. A distribution, such as the

Gaussian distribution, does not model the probability of an action directly; rather, it models the chance of an

action falling within a particular interval. The mean and the standard deviation are two primary parameters

to construct a distribution; they are numbers that can be represented by two nodes in the output layer. The

value of the mean is the action that the policy believes to be best, and the standard deviation is the level of

confidence that the policy thinks we should have in that action (the larger the standard deviation, the lower

the level of confidence).

2.3 Exploration and Exploitation

In continuous action domains, the learning environment is usually complex. Meanwhile, reinforcement

learning is a method of completing a task through ”trials and errors.” As such, the agent needs to constantly

try different actions to reach different environmental states and learn from these attempts. As a result, the

best actions in different states are chosen, and these actions are combined to form a policy.

With the continuous update of the policies, the agent may have found a relatively good policy, but this

policy is not the optimal solution for the task. Then, the agent needs to make a trade-off between trying

new actions and continuing to use the actions from the existing policy. The process of an agent trying new

actions to generate a new policy is called exploration, while the behavior of the agent continuing to use

the actions from the existing policy is called exploitation. More specifically, exploration is to try more new

actions at the cost of slightly deviating from the current best policy in an attempt to generate a better one.

Exploitation aims to use the best-known policy to obtain higher cumulative rewards. In the learning process,

the agent should not only make good use of the learned experience to obtain a higher reward as much as

8

possible but also keep exploring to try to find better policies constantly.

2.4 Decaying ϵ-greedy Method

In the actual learning process, the ratio of the agent’s exploration and exploitation becomes the key to

whether it can complete the learning efficiently. If the exploration range is extensive, the agent will continue

to randomly attempt new actions without a goal. It is hard for the agent to use the proper actions to

complete the tasks, and the training speed will be slowed. On the other hand, if the exploitation rate is too

high, the agent will become ”short-sighted” and its policy will fail to reach the optimal solution, thus failing

to obtain a higher reward. Therefore, the ratio of exploration and exploitation will be an essential factor

affecting the overall learning efficiency of the agent.

In order to define and reasonably allocate the exploration and exploitation ratio, the ϵ-greedy method is

proposed. For each step, ϵ-greedy uses the probability ϵ as the probability of exploration and 1 − ϵ as the

probability of exploitation. More specifically, in ϵ-greedy, the agent will choose a random action with the

probability of ϵ and the action under the current optimal policy with a probability of 1− ϵ, and follow this

rule to update the policies based on the performance of the new action combinations.

In practical scenarios, we usually think that with the advancement of the learning process, the policy

learned by the agent will become closer to the optimal policy, and the reward value obtained by the policy

will be higher. So, as learning progresses, we tend to gradually reduce the agent’s exploration of new actions

and focus more on the current policy to make the agent’s learning more efficient. So, as the exploration rate

gets lower and lower, the value of ϵ will gradually decrease. This method is known as Decaying ϵ-greedy.

2.5 Sampling and KL Divergence

In a discrete action domain, since the number of available actions is finite, the agent can directly select new

actions by enumerating all the available actions. However, enumerating actions is not possible in a continuous

action domain since the number of available actions is infinite. Therefore, to evaluate and select continuous

actions, we need to sample a series of actions and evaluate the sampled actions as an approximation of

the continuous actions. The actions after sampling will change from continuous to discrete, which can be

integrated into the evaluation process; meanwhile, because of the reduced number of actions, sampling can

significantly reduce the difficulty of calculation.

Although sampling can facilitate calculation, one problem brought by sampling cannot be ignored; there

will be differences between the data distribution after sampling and the original data distribution. More

9

specifically, because the sampled data does not fully represent the original data, there will be a difference

between the optimal policy learned by the agent after learning from the sampled data and the optimal policy

using the original data. This difference may well result in the agent performing poorly on the task. The

core factor in solving this problem will be how to minimize the gap between the policy learned by the agent

using the sampled data and the actual optimal policy. It is conceivable that the main reason for the gap

between policies through sampling is the loss of information. In this case, Kullback-Leibler (KL) divergence

is proposed, which aims to measure the amount of information lost in the process of approximating another

policy with one policy. KL divergence is calculated as the expectation of the log difference between the

original action distribution p and the approximate action distribution q for a stochastic policy, where the

log represents the number of bits of information expected to loss. The formula of KL divergence is:

DKL(p∥q) = E[log p(x)− log q(x)] (2.3)

More intuitively, we can understand p and q as the responding actual optimal policy and the policy learned

by sampling, namely:

DKL(π(s)optimal∥π(s)approx) = E[log π(s)optimal − log π(s)approx] (2.4)

where s is the current state. It can be seen that the smaller the KL divergence, the closer the policy learned

by the agent using the sampled data is to the actual optimal policy, and the better the agent will perform

in the real tasks.

2.6 On-policy and Off-policy Update

For RL algorithms, one or more Q-functions are used to evaluate the potential future return of taking a

specific action in a particular state. There are two ways for an RL agent to update its Q-function. One is

called on-policy update, which updates the Q-functions directly with the data generated from the interaction

with the environment, i.e., assuming the current policy will be followed after the current action to make

decisions during the learning process. For example, SARSA [27] is a typical on-policy update method. In

SARSA, the Q-function will be updated by using the Q-value of the next state and the action generated by

the current policy. Hence, the return of the state-action pairs in SARSA will be evaluated by assuming the

current policy continues to be followed. The update function for SARSA is:

Q(s, a)← Q(s, a) + α (r + γQ (s′, a′)−Q(s, a)) (2.5)

10

where Q(s, a) is the Q-value of the new state-action pair; r is the reward given by the environment; a′ is the

action that would be taken according to the current policy π(s), and s′ is the state after executing a′; γ is

a discount factor, which can adjust the importance of the Q-value of the current state-action pair; α is the

learning rate, which can adjust the importance of the environmental reward and the difference between the

Q-value of the new action and the current action.

The other way the agent updates its Q-function is called off-policy update. In off-policy updates, such as

in Q-learning [28], the Q-function is updated using the Q-value of the next state the action learned by the

agent previously that gives the highest return. In Q-learning, the update function is:

Q(s, a)← Q(s, a) + α
(
r + γmax

a′
Q (s′, a′)−Q(s, a)

)
(2.6)

where all the parameters are the same as in SARSA, and Q(s′, a′) is the set of Q-values of all state-action

pairs. Therefore, the return for state-action pairs in off-policy learning will be evaluated following a previously

learned greedy approach.

2.7 Actor-Critic Architecture

The Actor-Critic architecture [2] is a commonly used architecture in deep reinforcement learning. This

architecture contains two neural networks: the actor network and the critic network. The actor network

is responsible for using learned policies to interact with the environment by performing different actions to

obtain reward values; in other words, the actor network is a policy network, where the input is the current

environmental state and the output is the corresponding action of the current policy. The critic network

learns the reward mechanisms of the environment by observing the feedback received by the actor network

and ”critiquing” the actions of the actor network, where the input is the current state-action pair, and the

output is the corresponding Q-value. The critic network can use the Q-values to help the agent judge the

goodness of the current action and update the actor network; it can also learn the relationship between the

environmental states and the rewards and see the expected rewards based on the agent’s current state and

action. The Actor-Critic architecture can usually enhance the learning efficiency of an agent. To illustrate,

in a single neural network architecture, the agent must perform a policy update by completing the entire

learning episode (e.g., a traditional policy gradient). In contrast, in Actor-Critic, with the help of the critic

network, each action (step) will receive feedback from the critic network, thus enabling the agent to do

single-step updates and reduce the cost of exploration.

11

Chapter 3

Related Work

3.1 Reward Machines, CRM and HRM

3.1.1 Reward Machines

When the agent searches for an optimal policy for a task, especially for a complex task, the agent needs to

perform a large number of actions to judge the goodness of the current policy by the reward values from

the environment. In traditional reinforcement learning, the agent does not know the complete environment

model. Suppose the agent wants to complete a specified task. In that case, it must interact with the envi-

ronment continuously by trying different actions and judging whether those actions are helpful to complete

the task by the reward value given by the environment. In a complex task, there are usually a number of

conditions that must be fulfilled in order to be completed. However, since the reward function is a black box,

the agent cannot know the details of all the conditions, which will make the agent keep exploring blindly

and thus waste lots of time in the exploration phase.

In order to help the agent enhance the exploration efficiency, Toro Icarte et al. proposed a finite state

machine, called the reward machines [25, 24], which supports the specification of a wide range of non-

Markovian rewards. In reward machines, the programmer can decompose a complex task into multiple

subtasks by defining a reward machine state and reward function for each phase of a complex task. Each

subtask can be defined by using the set of propositional symbols P.

To have a simple and concrete example, suppose that the agent in Figure 3.1 is given the task of walking

from point A to point D, and it will get a reward value of 1000 after reaching point D. The agent can move

forward or backward on a line segment. Since the agent is far away from point D, if the task received by the

agent consists only of reaching point D, the agent needs to spend a lot of time exploring. If a reward machine

12

Figure 3.1: An example RM environment

Figure 3.2: The automaton of the RM environment example

is used, the RM can decompose this task into several subtasks by adding intermediate target points for the

agent to complete. Specifically, we can add several intermediate points A, B, and C between the agent’s

starting position and point D, so that the agent can first learn how to reach point A, then learn how to reach

point B from point A, then learn how to reach point C from point B, and finally learn how to reach point D

after reaching point C. In this way, the agent becomes closer to the target point in each subtask, which can

reduce the time for the agent to explore, and thus the learning efficiency will be improved. The automaton

for this task is shown in Figure 3.2. In this automaton, the reward value is 0 for transitions among the

non-terminal RM states u0 to u4. When the agent reaches point D while in u4, it arrives at the terminal RM

state, and it will receive a reward value of 1000. In this environment, P can be defined as P = {A,B,C,D},

where event e ∈ P occurs when the agent is at location e. To assign truth values to symbols in P, a labelling

function L : S×A×S → 2P will be needed. L can assign truth values to symbols in P given an environment

experience (s, a, s′), where s′ is the resulting state after executing action a from state s. The definition of

a reward machine is: given a set of propositional symbols P, a set of (environment) states S, and a set of

actions A, a reward machine (RM) is a tuple RPSA = ⟨U, u0, F, δu, δr⟩ where U is a finite set of states,

u0 ∈ U is the initial state, F is a finite set of terminal states (where U ∩ F = ∅), δu is the state-transition

function, δu : U × 2P → U ∪ F , and δr is the state-reward function, δr : U → [S × A × S → R]. In the

example, U is the set of all the non-terminal RM states, including {u0, u1, u2, u3, u4}; F is the set of the

terminal state, which is the state after u4; the state-transition function δu is used when the agent reaches

point A, and it will transfer the agent’s current RM state from u0 to u1 (otherwise it remains in u0), then

it will transfer the RM state from u1 to u2 when the agent reaches point B, and so forth. When the agent

reaches point D, indicating that it has reached the terminal state, the state-reward function δr is used and

it will give the agent a reward value of 1000.

13

A reward machine can take abstracted environment descriptions as input, and produce reward functions

as output. In this way, the reward function is no longer a black box, and the learning algorithm can exploit

knowledge of the reward machine structure. As a result, each subtask can pass its high-level requirements

to the agent. The agent will be able to explore according to the specific instructions given by the subtasks.

By completing each subtask sequentially, the agent will be able to complete a complex task and achieve the

final goal eventually.

3.1.2 Counterfactual Experience for reward machines (CRM)

In general reinforcement learning, the underlying environment model of the agent is assumed to be a Markov

Decision Process (MDP). An MDP [6] is a tuple M = ⟨S,A, r, p, γ, µ⟩, where S is a finite set of states,

A is a finite set of actions, r : S × A × S → R is the reward function, p (st+1 | st, at) is the transition

probability distribution, γ ∈ (0, 1] is the discount factor, and µ is the initial state distribution where µ (s0)

is the probability that the agent starts in state s0 ∈ S. By using reward machines, the agent learns in the

environment considering not only the state st at time t of the environment, but also the RM state ut at time

t. The extra consideration of the RM state ut changes the learning environment from a traditional MDP

to a Markov Decision Process with a Reward Machine (MDPRM) [23]. A Markov Decision Process with a

Reward Machine (MDPRM) is a tuple T = ⟨S,A, p, γ, µ,P, L, U, u0, F, δu, δr⟩, where S, A, p, γ and µ are

defined as in an MDP, P is a set of propositional symbols, L is a labelling function L : S × A × S → 2P ,

and U, u0, F, δu, and δr are defined as in a reward machine. In an MDPRM, the policy learned by the

agent then changes from π(a | s) to π(a | s, u), and the learning experience generated by the agent changes

from ⟨s, a, r, s′⟩ to ⟨s, u, a, r, s′, u′⟩. It can be seen that MDPRMs are regular MDPs when considering the

cross-product between the environment states S and the RM states U . As such, the standard RL algorithms

that learn in MDPRMs use the cross-product baseline of reward machines.

As a concrete example, Algorithm 1 shows the pseudocode for using the cross-product baseline in Q-

learning. In the cross-product Q-learning, besides considering the environment states s, it also keeps track

of the current RM state u and learns the Q-values over the cross-product Q(s, u, a). This lets the agent

consider the current environment state s and RM state u when selecting the following action a. On line 8,

the Q-value is updated as follows:

Q(s, u, a)
α←− r + γmax

a′∈A
Q (s′, u′, a′) (3.1)

where γ is the learning rate, which is the same as in traditional Q-learning, and r is the reward given by the

14

reward machine. This uses the
α←− notation, which is an abbreviation for:

Q(s, u, a)← α ∗ (r + γmax
a′∈A

Q (s′, u′, a′)) + (1− α) ∗Q (s, u, a) (3.2)

where α is the (learning) rate to update the Q-value. However, the RL algorithms using the cross-product

baseline do not exploit the information exposed by the RM.

Algorithm 1 The cross-product baseline using Q-learning.

Input: S,A, µ, γ ∈ (0, 1], α ∈ (0, 1], ϵ ∈ (0, 1],P, L,RPSA = ⟨U, u0, F, δu, δr⟩
1: Initialize Q(s, u, a) for all s ∈ S, u ∈ U ∪ F , and a ∈ A, arbitrarily except that Q (s′, u′, ·) = 0 if s′ is

terminal or u′ ∈ F
2: for however many updates do
3: Initialize u← u0 and sample an initial state for the environment s ∼ µ
4: while s is not terminal and u /∈ F do
5: Choose action a from (s, u) using policy derived from Q(e.g., ϵ-greedy)
6: Take action a and observe the next state s′

7: Compute the reward r ← δr(u) (s, a, s
′) and next RM state u′ ← δu (u, L (s, a, s′))

8: Q(s, u, a)
α←− r + γmaxa′∈A Q (s′, u′, a′)

9: Update s← s′ and u← u′

10: end while
11: end for

To exploit the information provided by the RM, Toro Icarte et al. proposed a method called Coun-

terfactual experience for Reward Machines (CRM) [23]. CRM also learns policies over the cross-product

π(a | s, u), but uses counterfactual reasoning to generate synthetic experiences. In CRM, the RM will go

through every RM state ū ∈ U after each action performed by the agent, and use the state transition function

δu (ū, L (s, a, s′)) to determine the next RM state ū′; the agent will also receive a reward of r̄ using the reward

transition function δr(ū) (s, a, s
′). That is, instead of just providing the actual experience in an MDPRM,

the RM can now provides one experience per RM state, and the agent will now also learn the experience

provided by the state-transition function and state-reward function.

CRM allows the agent to learn in parallel. During the learning process using CRM, the agent not only

learns the actual experience in MDPRM, but the counterfactual experiences are also continuously being

stored. Whenever the agent reaches an RM state that it has reached before, the agent will be able to use the

previous learned counterfactual experience in this state to learn more efficiently. For example, suppose the

agent’s task is to depart from the workplace to the post office and then go home (the workplace, the post

office, and the home are in different locations). The reward machine will have two RM states or two subtasks

in this environment. The first subtask is to go from the workplace to the post office, and the second subtask

is to go from the post office to home. While the agent is exploring, it may arrive home without going through

the post office. In this case, CRM will use what the agent has learned from the workplace’s direct-to-home

15

experience to determine that this behavior is not the agent’s first task, and it is not an efficient behavior to

go to the post office. However, at the same time, the CRM has also learned part of the experience of how to

get home. Therefore, in the following exploration, once the agent has completed the subtask of going from

the workplace to the post office, the agent will be able to use the part of the experience that the CRM has

learned before to complete the second subtask more quickly.

CRM can be combined with some reinforcement learning algorithms to help the original algorithms

achieve better training results because it lets the agent exploit the information from reward machines. First,

the agent learns in an MDPRM, makes an action a in the cross-product state ⟨s, u⟩, and then reaches the

next cross-product state ⟨s′, u′⟩ and receives the reward value r. At this point, the agent’s judgment of the

environment state will not only refer to the environment states s and s′ alone, but will also consider the

RM states u and u′. The actual experience received by the agent in CRM is (s, u, a, r, s′, u′). Moreover, the

agent will also learn the state and reward transitions in CRM, which can give the agent key information

about how to transfer from one RM state to another. The comprehensive consideration of the environment

state and the RM state can help the agent determine its task process better and thus improve the policy.

For example, the combination of CRM and Q-learning [28] adds the counterfactual experience generated by

CRM when computing the Q-value.

Algorithm 2 shows the pseudocode of Q-learning with CRM, which includes the learning process using

the actual experience and the counterfactual experience in MDPRM.

Algorithm 2 Q-learning with counterfactual experiences for RMs (CRM).

Input: S,A, µ, γ ∈ (0, 1], α ∈ (0, 1], ϵ ∈ (0, 1],P, L,RPSA = ⟨U, u0, F, δu, δr⟩
1: Initialize Q(s, u, a) for all s ∈ S, u ∈ U ∪ F , and a ∈ A
2: for however many updates do
3: Initialize u← u0 and sample an initial state for the environment s ∼ µ
4: while s is not terminal and u /∈ F do
5: Choose action a from (s, u) using policy derived from Q(e.g., ϵ-greedy)
6: Take action a and observe the next state s′

7: Compute the reward r ← δr(u) (s, a, s
′) and next RM state u′ ← δu (u, L (s, a, s′))

8: Set experience ← {(s, ū, a, δr(ū) (s, a, s′) , s′, δu (ū, L (s, a, s′))) | ∀ū ∈ U}
9: for (s, ū, a, r̄, s′, ū′) ∈ experience do

10: Q(s, ū, a)
α←− r + γmaxa′∈A Q (s′, ū′, a′)

11: end for
12: Update s← s′ and u← u′

13: end while
14: end for

In the pseudocode, the generation of the counterfactual experience occurs in line 8. After the agent

executes an action, for each RM state, CRM will use the state-transition function to calculate the next

RM state and use the reward-state function to calculate the reward. Then, CRM stores the counterfactual

experience of each RM state in experience. That is, if there are ten RM states in the whole task, there will

16

be ten counterfactual experiences added in experience for each action, and each counterfactual experience

corresponds to one RM state.

With the help of the counterfactual experience, the agent can judge whether it has accomplished one

specific subtask defined by reward machines. To illustrate, multiple subtasks will be created when the

programmer defines a complex task using reward machines. When the agent learns the given task, it will

start from the initial RM state, which can be seen as the first subtask. In CRM, after one action, the agent

will receive the next RM state ū′. According to ū′, the agent will tell whether the next RM state or, more

specifically, the next subtask has begun. Suppose the next RM state is still the same as the current RM state.

In that case, the agent did not accomplish the current subtask, and it still needs to stay at the current RM

state to do more exploration. However, if the next RM state changes, it indicates the agent has completed

the current subtask and will move to the next RM state, then start trying to complete the next subtask.

For the reward part, the agent now refers to reward r̄ given by the reward machines. The value of the

reward will be determined by the current environmental state s, the action a executed by the agent, the

next environmental state s′, and the current reward machine state u. The new reward will be represented as

r̄ ← δr(u) (s, a, s
′), where δr : U → [S × A× S → R] is the state-reward function. The reward given by the

RM can help the agent judge the correctness of its actions and tell the agent its progress on the given task.

In summary, CRM’s responsibility is to store related information causing the change of the RM states.

Later, the agent can re-invoke this information when it encounters the same state so that the agent knows

what to do to move from the current RM state to the next RM state, thus completing the whole task faster.

Note that in CRM, a change in the environment state does not necessarily lead to a change in the RM

state. Suppose a change in S does not cause a change in U . In that case, this tells the agent that the

current action may not be helpful in completing the current subtask. In the later training, the agent will

reduce the probability of occurrence of the same action in the same state, which will encourage the agent

to explore other suitable actions and thus accelerate the learning efficiency. However, once the environment

state change causes the RM state’s change, when the agent reaches the same environment state again, the

agent can use the related experience to tell what action to perform to get to the next RM state; thus, the

agent can do less exploration in that specific state, which can significantly enhance the learning efficiency.

3.1.3 Hierarchical Reinforcement Learning for Reward Machines (HRM)

There is another use case for reward machines, called Hierarchical Reinforcement Learning for Reward

Machines (HRM) [23]. This approach is based on the options framework for hierarchical reinforcement

learning (HRL) [20] . The general goal of HRM is to break down a complex problem into simpler subproblems

17

that are potentially easier to solve. Formally, an option is a triple ⟨I, π, β⟩, where I is the initiation set (the

subset of the state space of the RM in which the option can be started), π is the policy that determines

what actions should be taken while the option is being pursued, and β gives the probability that the option

will terminate in each state. It is worth noting that an option can be viewed as a macro-action.

In HRM, the agent will learn a set of options that focus on learning how to shift from one RM state to

another RM state in an MDPRM. Then, to receive the reward, a higher-level policy will learn how to choose

among those options.

For example, suppose the given task for the agent is to pick up a coffee and the mail, then deliver them

to the office. The agent has two ways to complete this task; it can either pick up the coffee and then the

mail, or pick up the mail first and then the coffee, and eventually head to the office. In this case, HRM

will learn a total of five options. Specifically, HRM will learn one policy to get a coffee before getting the

mail, one policy to get the mail before getting a coffee, one policy to get a coffee after getting the mail, one

policy to get the mail after getting the coffee, and one policy to go to the office. The high-level policy’s job

is to determine which of the five options to execute next. The high-level policy, for example, will decide

whether to grab a coffee or the mail first after the task is initialized. It will assess the current state of the

environment when making the decision, and it will learn to get the coffee or the mail based on which is closer

to the agent.

HRM can be particularly effective at quickly learning good policies for MDPRMs, according to the

experimental results by Toro Icarte et al. Its success comes from its capability to learn policies for all

options in parallel using off-policy learning. However, HRM may lead to sub-optimal solutions. The reason

is that the options-based approach is greedy; the policies will always strive to transition as rapidly as possible

without considering the subsequent performance after the transition. An option’s policy only tries to reach

its termination region without considering what needs to be done afterwards; it may not reach the best state

in the termination region for the subsequent subtask.

3.2 Deep Deterministic Policy Gradient (DDPG)

Deep Deterministic Policy Gradient (DDPG) [15] was proposed by Lillicrap et al. in 2016, and it is an off-

policy deep RL algorithm using the actor-critic architecture. DDPG can solve continuous control problems

by using an actor network to learn the optimal policy and a critic network to approximate the optimal

Q-function. The input of the actor network is the current environmental state, and the output is a (possibly

continuous-type) action to execute derived from the current policy. Specifically, the actor network is a policy

18

function with the expression:

µθ(s) : S → A (3.3)

where µθ is the agent’s current policy, which can derive an action based on the current environmental state;

and θ is the parameters of the deep neural network that represents the policy. For example, in Half-Cheetah

[3], the input of the actor network is a dictionary type of array with a length of 17, which includes the

coordinate position of the robot, the angles of the limbs, and the velocities of the joints. The range of the

array elements is (−∞,∞). Correspondingly, the output is an action; in Half-Cheetah, it is a dictionary

type of array with a length of 6, including the torque that will be applied to each joint. Each element in

the array is a 32-bit float number with a range of (−1, 1), which represents the amount of force that will be

applied.

In comparison, the input of the critic network is the current state-action pair, and the output is the

corresponding Q-value. For example, in Half-Cheetah, the input is a two-dimensional array that combines

all the state and action information in the actor network. Specifically, the critic network is a value function

with the expression:

Qϕ(s, a) : S ×A→ R (3.4)

where ϕ is the parameters of the deep neural network that represents the Q-function. The Q-function is up-

dated by minimizing the mean squared Bellman error (MSBE) betweenQϕ(s, a) and r+Qϕtarg

(
s′, µθtarg (s

′)
)
,

where ϕtarg and θtarg are the parameters of target networks to evaluate the Q-values in the critic network

and the policies in the actor network. The output Q-value is a real number, which represents the expected

reward after the agent apply an action a in state s, and do the remaining actions by following µ:

Qϕ(s, a) = E
st,at∼πµ

[∞∑
t=0

γtr (st, at) | s0 = s, a0 = a

]
(3.5)

where πµ represents the distribution of the state-action pairs under the policy µ. Qϕ(s, a) can be seen as a

score for a policy under state s and action a.

The learning method of DDPG is similar to Q-learning in that both learn to derive the optimal action

value function:

Q∗(s, a) = E
s′∼P

[
r(s, a) + γmax

a′
Q∗ (s′, a′)

]
(3.6)

where s′ ∼ P is the next state sampled by the environment from a distribution P (· | s, a). Unlike in

standard Q-learning, because of the continuous action space, the number of actions is infinite, so it is very

costly to analyze each action and update the Q-function. For this reason, in DDPG, the original Q-function

19

is compiled into a differentiable form, where the action a is approximated as µ(s), and the experience

(s, µ(s), r, s′) learned by the agent is divided into multiple mini-batches to update the Q-function in stages,

thus obtaining an approximation of the Q-function. Then the policy in the actor network is updated using

the expected gradient [1] of Q∗(s, a), and the parameters of the target networks are periodically updated as

follows: ϕtarg ← ρϕtarg + (1− ρ)ϕ and θtarg ← ρθtarg + (1− ρ)θ, where ρ ∈ (0, 1).

3.3 DDPG with CRM

In traditional DDPG, the agent will receive feedback from the environment after making an action according

to the current policy π(a | s), including the current state s, the reward value r, and the next state s′. Then,

the agent stores the feedback information from the environment and the actions it takes in the replay buffer

in the form of tuples, expressed as ⟨s, a, r, s′⟩.

To improve the learning efficiency of DDPG, especially the learning capability in complex tasks, DDPG-

CRM was proposed by Toro Icarte et al. [23], and a series of experiments show the significant performance

improvement after adding CRM. However, DDPG-CRM was not presented in detail by Toro Icarte et al., so

a brief analysis of DDPG-CRM with pseudocode will be given in this section.

After combining CRM with DDPG, the learning environment will no longer be a traditional MDP but

an MDPRM. First, unlike the original DDPG, since the learning environment has become an MDPRM,

the information received by the agent will include the data of the environment in addition to the infor-

mation provided by the reward machines. The data of reward machines includes the current RM state

u and the next RM state u′. The actual experience now becomes to ⟨s, u, a, r, s′, u′⟩. Moreover, CRM

will also generate one counterfactual experience for each RM state ū ∈ U , and the agent will also learn

the experience provided by the state-transition function ū′ ← δu (ū, L (s, a, s′)) and state-reward function

r̄ ← δr(ū) (s, a, s
′). Because of the addition of the RM information, the experience received by the agent

will also include the current RM state ū, RM reward r̄ and next RM state ū′. The data stored in the

replay buffer now includes counterfactual experiences and becomes a new form of synthetic experience:

{⟨s, ū, a, δr(ū) (s, a, s′) , s′, δu (ū, L (s, a, s′))⟩ | ū ∈ U}.

At this time, the policy update of DDPG-CRM will change from considering the environment states

and rewards to a comprehensive consideration of the environment states, RM states, and the reward given

by reward machines. Similarly, the critic network of DDPG-CRM will additionally refer to the RM states

and the RM reward based on the original environment information when updating the Q-function. The

pseudocode of DDPG-CRM is shown in Algorithm 3, where the counterfactual experiences are generated in

line 7. Then, the RM states and rewards will be used to generate the target Q-function (line 13), and the Q-

20

function will be updated by minimizing the Mean Squared Bellman Error (MSBE) with stochastic gradient

descent (line 14), where ∇ϕi
represents the gradient that is approximated using sampled mini-batches from

the replay buffer experience. Based on the Q-values of the current state-action pair, the corresponding policy

will be updated (lines 15 and 16).

Algorithm 3 DDPG with counterfactual experiences for RMs (CRM).

Input: initial policy parameters θ,Q-function parameters ϕ, empty replay buffer D, labelling function L, a
finite set of states U , a finite set of terminal states F , state-transition function δu, state-reward function
δr, initial RM state u0 ∈ U

1: Set target parameters equal to main parameters θtarg ← θ, ϕtarg ← ϕ
2: Initialize u← u0 and s← EnvInitialState()
3: repeat
4: Observe state s, u and select action a = clip (µθ(s, u) + ϵ, aLow , aHigh), where ϵ ∼ N
5: Execute a in the environment and observe next state s′

6: Compute the reward r ← δr(u) (s, a, s
′) and next RM state u′ ← δu (u, L (s, a, s′)), done signal d to

indicate whether s′ is terminal, and check whether u ∈ F
7: Set experience ← {(s, ū, a, δr(ū) (s, a, s′) , s′, δu (ū, L (s, a, s′)) , d) | ū ∈ U}
8: Store experience in replay buffer D
9: If s′ is terminal or ū ∈ F , reset environment state.

10: if it’s time to update then
11: for however many updates do
12: Randomly sample a batch B of transitions from D
13: Compute targets:

y (r̄, s′, ū′, d) = r̄ + γ(1− d)Qϕtarg

(
s′, ū′, µθtarg (s′, ū′)

)
14: Update Q-functions by minimizing the MSBE of the sampled Q-function and target Q-function

using one step of gradient descent

∇ϕi

1

|B|
∑

(s,ū,a,r̄,s′,ū′,d)∈B

(Qϕi(s, ū, a)− y (r̄, s′, ū′, d))
2

15: Update policy by one step of gradient ascent using

∇θ
1

|B|
∑

s,ū∈B

Qϕ (s, ū, µθ(s, ū))

16: Update target network with
ϕtarg ← ρϕtarg + (1− ρ)ϕ

θtarg ← ρθtarg + (1− ρ)θ

17: end for
18: end if
19: until convergence or maximum training step reached

21

3.4 Maximum Entropy Reinforcement Learning and Soft Actor-

Critic (SAC)

3.4.1 Maximum Entropy Reinforcement Learning (MERL)

Entropy can be interpreted as the degree of chaos, disorder, and randomness. The higher the entropy, the

richer environmental information will be contained by the environment. The benefits of introducing entropy

into the RL algorithm are that the policy can be as random as possible. The agent can explore the state

space more thoroughly and avoid the policy falling into a local optimum early. Multiple feasible solutions

can be explored to complete the specified task, improving the resistance to interference by the environmental

noise.

To calculate the entropy value of the random variable x, assume that x belongs to the distribution P .

The entropy value of x, which is H(P), is:

H(P) = E
x∼P

[− logP (x)] (3.7)

In reinforcement learning, the agent’s goal is to find the policy that collects the highest cumulative rewards,

so the expression for the policy is:

π∗
std = argmax

π

∑
t

E(st,at)∼ρπ
[r (st, at)] (3.8)

where ρπ represents the distribution of the state-action pairs under policy π. Now, if the mechanism of

entropy maximization is introduced into the search for policies, the target policy of the agent will become:

π∗
MaxEnt = argmax

π

∑
t

E(st,at)∼ρπ
[r (st, at) + αH (π (· | st))] (3.9)

where α is the hyperparameter named temperature coefficient, which is a non-negative real number that is

used to adjust the importance of the entropy value.

From the new policy formulation with the addition of maximum entropy, it can be seen that the learning

objective of the policy will maximize the entropy value of the policy while maximizing the cumulative reward.

The increase of the entropy value of the policy can help the agent to explore within a reasonable range as

much as possible while ensuring that the policy has the highest possible reward value, avoiding letting the

agent fall into the local optimum too early and laying a good foundation for the subsequent exploitation.

The algorithms based on MERL have a unique action exploration mechanism. In other mainstream deep

22

reinforcement learning algorithms (such as Q-learning and DQN), the decaying ϵ - greedy approach is their

default method of controlling exploration probabilities. The decaying ϵ - greedy’s approach is straightforward,

that is, by defining a hyperparameter ϵ as the exploration probability of the entire learning process and

gradually reducing the value of ϵ as the learning progresses to reduce exploration. In comparison, algorithms

that learn by adding entropy (such as Soft Actor-Critic) do not randomly explore new actions with a fixed

probability, but dynamically adjust the appearance probabilities of actions based on their Q-values. These

probabilities include both actions that have been explored and new actions that have not yet been explored.

In general, decaying ϵ - greedy is more inclined to randomly explore new actions with a fixed probability,

while maximum entropy learning is more focused on learning to continuously assign the probability of each

action. Moreover, because of the addition of entropy, those actions that seem to be unable to achieve a high

Q-value but have a high entropy value will also be fully considered, and their probabilities of being selected

can even be almost the same as the actions with the highest Q-value but low entropy value. This mechanism

ensures that all the potential excellent actions can be reasonably allocated and utilized.

3.4.2 Soft Actor-Critic (SAC)

The Soft Actor-Critic (SAC) algorithm [10] was proposed by Haarnoja et al., and a series of benchmark

environments confirmed its excellent performance. Later in 2018, Haarnoja et al. went a step further and

applied SAC to real-life robot control tasks and achieved good results [11]. More than other RL algorithms,

SAC adds an entropy term in the Q-function to maximize the entropy of the policy while maximizing

the cumulative return. The benefit of the maximum entropy model is that the model makes the fewest

assumptions about the unknown information of the environment when matching the observed information.

Moreover, controlling the entropy value allows the agent to maintain a high level of exploration capability

and prevent the agent from falling into a local optimum prematurely.

Similar to the structure of DDPG, SAC also uses the actor-critic architecture. The actor network is

responsible for iterating the policy by receiving the information of the interaction between the agent and

the environment. The critic network is responsible for updating the value function (Q-function) to judge the

policy.

3.4.2.1 Soft Value Function (SVF) in critic network

Because of the addition of maximum entropy learning, SAC has a unique expression of the value function.

The value function updated by the critic network in SAC refers to the expressions of the standard Q function.

On this basis, the parameters required for maximum entropy learning are introduced. This new form of value

23

function is called Soft Value Function (SVF). The original standard Q-function is:

Qπ(s, a) = E
st,at∼ρπ

[∞∑
t=0

γtr (st, at) | s0 = s, a0 = a

]
(3.10)

By introducing the target function of MERL π∗
MaxEnt (3.9), the Soft Value Q-function can be obtained as:

Qπ
soft(s, a) = E

st,at∼ρπ

[∞∑
t=0

γtr (st, at) + α

∞∑
t=1

γtH (π (· | st)) | s0 = s, a0 = a

]
(3.11)

It can be seen that after adding the entropy term to the Q-function, the reward value that the current policy

obtains will no longer be the only criterion to judge the goodness of a policy. Instead, each update step of

the Q-function receives a bonus entropy value. At this point, if the Q-value is high, it not only indicates

that the reward value of the current policy is high but also that the agent is still maintaining a high level of

exploration.

Specifically, a higher Q-value with an added entropy term may indicate three different cases. The first

case is the most desirable; both the reward and entropy values are high, indicating that the agent’s current

policy is good; meanwhile, the agent also maintains a high level of exploration. The second case is that the

reward value is high, but the low entropy value. This situation indicates that although the agent’s policy

seems to be good, its exploration capability has been lower, and the policy may have fallen into a local

optimal solution, which is not a good thing for later policy improvement. The third case is that the current

policy has a low reward value but a high entropy value. It indicates that although the current policy is not

excellent, the agent still maintains a high exploratory nature and is constantly trying new actions, which

means the policy has a higher potential to be improved. So it can be seen that when we use the Q-value

after adding the entropy value as the criterion to judge a policy, we tend to choose not only the policies

with high reward value but also policies with more random choices and high exploratory nature, even if the

reward value they can obtain right now is not that outstanding, which is the core of SVF. SVF allows agents

to open their minds to think about policies critically; when judging a policy, a high reward value does not

mean it is an excellent policy, and a low reward value does not mean that the policy is worthless.

3.4.2.2 Energy Based Policy(EBP) in actor network

In order to adapt to more complex tasks and enhance the expressiveness of policies, SAC adopts a unique

policy model. The policy distribution in SAC abandons the traditional Gaussian distribution and uses an

24

energy-based model to represent the policy:

π (at | st) ∝ exp (−E (st, at)) (3.12)

where E is the energy function, which represents the distribution characteristics of the Q-value, expressed

as:

E (st, at) = −
1

α
Qsoft (st, at) (3.13)

Based on the energy function, we can obtain the policy model as:

π (at | st) ∝ exp

(
1

α
Qsoft (st, at)

)
(3.14)

Compared with the traditional Gaussian distribution model, the policy model based on energy function

distribution has one prominent feature, which enhances the policy’s exploratory nature. Figure 3.3 [21]

Figure 3.3: A multimodal Q-function

shows a typical distribution of a multimodal Q-function. In the state st, all available actions at of the agent

constitute the horizontal axis, and their corresponding Q-values constitute the curve. It can be seen that

there are two peaks in the curve, which respectively represent the optimal action interval and the sub-optimal

action interval in st.

In the Gaussian distribution used by most RL algorithms, the policy’s choice of actions will focus on

the region with the largest Q-value (red distribution in 3a) and completely ignore all sub-optimal solutions.

However, in the practical learning process, the sub-optimal solution is also valuable; in fact, the optimal

solution in the current state is often not the global optimal solution. Therefore, when choosing an action,

an ideal scenario is that the policy takes the optimal actions as the primary reference object, but also

considers the sub-optimal actions. 3b is the case where the optimal solution and the sub-optimal solution

25

are considered at the same time. In 3b, the policy’s choice of actions (green distribution in 3b) is no longer

concentrated around the optimal solution. Instead, it assigns a part of the weight to the sub-optimal solution

while mainly considering the optimal solution. In this way, the policy’s selection of actions will no longer

focus on the optimal action only, but will also fully consider and try the sub-optimal actions. Therefore,

EBP uses the policy distribution in 3b to enhance its exploration ability.

3.4.2.3 Policy Evaluation and Improvement in SAC

SAC follows the operation mode of the actor-critic structure by alternately running policy evaluation and

policy improvement to make the value function and the policy it guides continuously approach the optimal

solution. Eventually, a good enough policy can be obtained and used in practical applications.

For policy evaluation part in the critic network, SAC uses the soft Q-function with the entropy term to

iterate, which is shown in equation (3.11).

For the policy improvement part in the actor network, SAC uses a temporary policy π to interact with

the environment. Then, it makes π as close to the energy based policy (EBP) as possible in subsequent policy

optimization. The distance between π and EBP is measured by KL-divergence. The policy optimization

formula is:

πnew = argmin
π∈Π

DKL

(
π (· | st) ∥

exp
(
1
αQ

πold

soft (st, ·)
)

Zπold

soft (st)

)
(3.15)

where Π represents the set of available policies, Z represents the expectation of the cumulative return in

each state using the current policy.

Finally, similar to the common actor-critic type RL algorithms, SAC will alternately execute the policy

evaluation and improvement to converge to the optimal value function and policy.

3.4.2.4 Implementation of SAC

The SAC algorithm adopts the actor-critic network structure, including one actor network and one critic

network. The actor network is responsible for the policy update, and the critic network is responsible for

updating the value function. The policy in the actor network is πϕ(· | s), which represents the policy that

the agent will take in the state s. The Q-function of the critic network is Qθ(s, a), which represents the

estimated Q-value obtained by the agent when taking action a in the state s.

First, the critic network will receive an agent’s state-action pair (s, a) and output a real value as the

Q-value for this state-action pair. Then, the actor network will receive the state s that the agent is in, then

output a mean value and a standard deviation to form a distribution of available actions in s. When the

agent needs to select an exact action from the policy, it will sample an action from the distribution and use

26

it as the next action.

Because all the actions are sampled from a distribution, there will be loss of information, thus causing

a difference between the expected Q-values and the Q-values of the sampled state-action pairs. In order to

make the Q-values of the sampled state-action pairs as close to the expected Q-values as possible, a loss

function that can measure their difference is needed. The loss function can be defined as the difference

between the Q-values of the sampled state-action pairs and the actual state-action pairs. According to

equation (3.11), the loss function for training the Q-function can be obtained:

JQ(θ) = E
(st,at,st+1)∼D

at+1∼πϕ

[
1

2
(Qθ (st, at)− (r (st, at) + γ (Qθ (st+1, at+1)− α log (πϕ (at+1 | st+1)))))

2

]
(3.16)

where γ and α are discount factors, and (st, at) is extracted from the data generated from the replay buffer

that stores the past interactions between the agent and the environment, and at+1 is collected from the

temporary policy πϕ.

Moreover, since there is a difference between the expected Q-values and the Q-values of the sampled

state-action pairs, there will be a difference between the expected optimal policy and the policy based on the

sampled data. As such, a loss function that can measure the difference between the expected optimal policy

and the temporary policy is needed. KL-divergence can be used to measure the difference between policies.

Similar to equation (3.15) that we used to update a policy, the loss function of the temporary policy πϕ can

be obtained as:

Jπ(ϕ) = DKL

(
πϕ (· | st) ∥ exp

(
1

α
Qθ (st, ·)− logZ (st)

))
= Est∼D,at∼πϕ

[
log

(
πϕ (at | st)

exp
(
1
αQθ (st, at)− logZ (st)

))]

= Est∼D,at∼πϕ

[
log πϕ (at | st)−

1

α
Qθ (st, at) + logZ (st)

] (3.17)

where α is a discount factor, st is taken from the replay buffer, and at is sampled from the current temporary

policy πϕ.

After that, the agent will continuously collect data by interacting with the environment, train the two

networks, and try to minimize the value of two loss functions JQ(θ) and Jπ(ϕ), which eventually converges to

a solution. The pseudocode of SAC is shown in Algorithm 4, where line 11 calculates the target Q-function,

line 12 updates the Q-function by minimizing the MSBE between the sampled Q-function and the target Q-

function (JQ(θ)), and lines 13 and 14 update the policy by minimizing the difference between the temporary

policy and the target optimal policy (Jπ(ϕ)).

27

Algorithm 4 Soft Actor-Critic

Input: initial policy parameters θ,Q-function parameters ϕ1, ϕ2, empty replay buffer D
1: Set target parameters equal to main parameters ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

2: repeat
3: Observe state s and select action a ∼ πθ(· | s)
4: Execute a in the environment
5: Observe next state s′, reward r, and done signal d to indicate whether s′ is terminal
6: Store (s, a, r, s′, d) in replay buffer D
7: If s′ is terminal, reset environment state.
8: if it’s time to update then
9: for j in range (however many updates) do

10: Randomly sample a batch of transitions, B = {(s, a, r, s′, d)} from D
11: Compute targets for the Q functions:

y (r, s′, d) = r + γ(1− d)

(
min
i=1,2

Qϕtarg,i (s
′, ã′)− α log πθ (ã

′ | s′)
)
, ã′ ∼ πθ (· | s′)

12: Update Q-functions by one step of gradient descent using

∇ϕi

1

|B|
∑

(s,a,r,s′,d)∈B

(Qϕi
(s, a)− y (r, s′, d))

2
for i = 1, 2

13: Update policy by one step of gradient ascent using

∇θ
1

|B|
∑
s∈B

(
min
i=1,2

Qϕi
(s, ãθ(s))− α log πθ (ãθ(s) | s)

)
where ãθ(s) is a sample from πθ(· | s) which is differentiable wrt θ via the reparametrization trick.

14: Update target network with

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2

15: end for
16: end if
17: until convergence or maximum training step reached

28

3.5 Twin Delayed Deep Deterministic Policy Gradient (TD3)

3.5.1 Several Improvements of TD3 based on DDPG

Although DDPG performs well in some tasks, the shortcomings of DDPG are also undeniable. One of the

most common problems of DDPG is that it overestimates the Q-value when the critic network is updated,

which misleads the actor network and makes the agent think that the current action is good enough and

stop exploring for better actions.

In the actor-critic architecture, the role of the critic network is to learn the Q-value of actions, that is,

to estimate the expected reward of the agent after making an action. Because the agent learning process is

unsupervised, the Q-value is not limited, which leads to an abnormal ”tacit agreement” between the actor

network and the critic network, making the Q-value larger and larger, eventually resulting in a high but

inaccurate Q-value.

On the other hand, the update of the critic network is a bootstrapping process; therefore, the Q-value will

have bias, and the bias will get larger and larger as the bootstrapping begins to accumulate. The increasing

bias also causes the Q-value learned by the agent to be higher than the actual Q-value.

To address the problem that DDPG often overestimates Q-values, Fujimoto et al. proposed TD3 [7] ,

which makes several improvements to the original DDPG.

3.5.1.1 Introduce twin Q-function

The DDPG algorithm learns only one Q-function. A single Q-function means it will be the only reference

for the agent to update its policy. The Q-value of the single Q-function will be unconditionally referenced

by the agent even if there is an overestimation problem.

In order to improve the reliability of Q-values referred by the agent, TD3 will learn two Q-functions

simultaneously. The agent will refer to both Q-functions during the learning process and take the one with

the smaller Q-value as the reference basis for policy updates. This approach addresses the problem of high

Q-value. It weakens the agent’s utilization of an action, potentially suggesting that the agent’s current action

may not be that good and motivating the agent to do more exploration.

29

3.5.1.2 Addressing Variance

As mentioned earlier, there is an error between the predicted Q-value and the true Q-value. Let the error

between the predicted Q-value and the true Q-value be δt, then the expression of Q-value is:

Qθ (st, at) = rt + γE [Qθ (st+1, at+1)]− δt

= rt + γE [rt+1 + γE [Qθ (st+2, at+2)− δt+1]]− δt

= Esi∼pπ,ai∼π

[
T∑
i=t

γi−t (ri − δi)

] (3.18)

It can be seen that as the Q-function is continuously updated, its error will be accumulated. If the value

of discount factor γ is large, then γ will further amplify the effect of overestimation and make the error

larger. To address this problem, TD3 proposes several corresponding improvements.

Firstly, TD3 proposes a delayed-updated policy. TD3’s idea is that since Q-functions have the problem of

overestimation, updating policies in the actor network directly after each Q-function update will make policy

updates more and more aggressive and eventually lead to more significant errors. However, if the Q-function

can firstly update itself several times, then uses the relatively authentic Q-value to guide the policy update,

the corresponding policy will be more reliable. The formula for updating the policy network is:

θ′ ← τθ + (1− τ)θ′ (3.19)

where τ represents how often the policy is updated. When τ is 1, policy updates will be made every time

the Q-function is updated. When τ becomes smaller and smaller, the frequency of policy updates will be

lower and lower. The experiments in [7] prove that reducing the policy’s update frequency can effectively

reduce the overestimation.

3.5.1.3 Target Policy Smoothing Regularization

The authors of TD3 argue that similar actions should get similar reward values under the same state in a

task. However, in the actual learning process of the agent, the reward values of similar actions can vary

greatly. For this reason, an action noise mechanism is designed in TD3, i.e., after selecting the best action

for the current state, a random Gaussian noise within a specified range is added to the action. The added

Gaussian noise is:

ϵ ∼ clip(N (0, σ),−c, c) (3.20)

where ϵ is a natural number in the range of (−c, c).

30

By adding noise, each time the action used to calculate the Q-value will no longer be the best action, but

the action is very close to the best action. The purpose of adding noise is to dodge the corresponding very

high Q-value of an ”excellent” action. Although the action has a very high Q-value, it is possible that similar

actions do not have such a high Q-value, which implies that perhaps the Q-value for the ”excellent” action

should not be that high. So, by adding noise, it is possible to avoid the appearance of extreme Q-values by

having the Q-value of the action taken to the surrounding area. The new Q-value then becomes:

y = r + γQθ′ (s′, πϕ′ (s′) + ϵ) (3.21)

3.5.2 TD3 implementation

First, TD3 maintains two critical networks and an actor network, then builds the target network correspond-

ingly. Then, an action is generated, where the action is based on the current policy with random Gaussian

noise, denoted as:

a ∼ πϕ(s) + ϵ (3.22)

Subsequently, the transition tuple after this action is generated, including the current state, the current

action, the reward value and the next state, denoted as (s, a, r, s′). Then, the transition tuple is sampled

from the replay buffer, the action in it will be added with Gaussian noise, and sent to each of the two Q

target networks to derive the Q-value output by this action. Then, the smaller one of the two Q-values

will be chosen to update the critic network. Finally, based on the update frequency τ , the critic network

will update the policies in the actor network with a relatively lower frequency. A detailed procedure of

TD3 is shown in Algorithm 5, where line 11 computes the target actions using the Target Policy Smoothing

Regularization, line 12 computes the target Q-function, line 13 updates the Q-function by minimizing the

MSBE, line 14 applies the delayed updating mechanism, and the policy will be updated in line 15.

3.6 Proximal Policy Optimization (PPO)

In 1992, Williams proposed the REINFORCE algorithm [29], using gradient estimates to update the policy

by neural network-based RL. After that, Sutton et al. built a unifying framework that casts the previous

algorithms as instances of the policy gradient method [19].

In continuous action domains, the agent cannot perform every possible action for learning because of the

infinite number of available actions. In most cases, the agent can only rely on randomly selected actions

for verification. In order to keep the policy update in a controllable range, Schulman et al. proposed Trust

31

Algorithm 5 Twin Delayed DDPG (TD3)

Input: initial policy parameters θ,Q-function parameters ϕ1, ϕ2, empty replay buffer D
1: Set target parameters equal to main parameters ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

2: repeat
3: Observe state s and select action a = clip (µθ(s) + ϵ, aLow , aHigh), where ϵ ∼ N
4: Execute a in the environment
5: Observe next state s′, reward r, and done signal d to indicate whether s′ is terminal
6: Store (s, a, r, s′, d) in replay buffer D
7: If s′ is terminal, reset environment state.
8: if it’s time to update then
9: for j in range (however many updates) do

10: Randomly sample a batch of transitions from D
11: Compute target actions

a′ (s′) = clip
(
µθtarg (s

′) + clip(ϵ,−c, c), aLow , aHigh

)
, ϵ ∼ N (0, σ)

12: Compute targets
y (r, s′, d) = r + γ(1− d) min

i=1,2
Qϕtarg,i

(s′, a′ (s′))

13: Update Q-functions by one step of gradient descent using

∇ϕi

1

|B|
∑

(s,a,r,s′,d)∈B

(Qϕi(s, a)− y (r, s′, d))
2

for i = 1, 2

14: if j mod policy − delay = 0 then
15: Update policy by one step of gradient ascent using

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2

θtarg ← ρθtarg + (1− ρ)θ

16: end if
17: end for
18: end if
19: until convergence or maximum training step reached

32

Region Policy Optimization (TRPO) [17], which restricts each update to the policy in a trusted domain,

thus significantly enhancing the stability of learning. Later, Schulman et al. proposed Proximal Policy

Optimization (PPO) [18], which simplifies the trusted domain calculation process for TRPO. PPO and

TRPO are two of the most prominent policy gradient algorithms used in deep RL, and the corresponding

experiments confirm their versatility and robustness.

Unlike off-policy algorithms such as DDPG, SAC and TD3, PPO is an on-policy algorithm. The most

significant difference between PPO and off-policy algorithms is how it collects data. Specifically, there is no

replay buffer in PPO, which means that it does not save the experience learned before; PPO only learns

the samples generated by the current policy and completely ignores the previous policy after generating

a new policy. Meanwhile, PPO will conduct multiple rounds of learning on the samples generated by the

current policy to fully tap the samples’ learning potential, improve the samples’ utilization, and constrain

the difference between the old and new policies to ensure their steady improvement.

Usually, policy networks can be learned by policy gradient algorithms, such as Vanilla Policy Gradient

[19]. Although the policy gradient algorithms are fast in learning, their performance is unstable. On the

one hand, the policy gradient methods are sensitive to the setting of hyperparameters, and the setting of

the learning rate has a significant impact on the results. On the other hand, the policy gradient algorithms

will choose the policies more randomly, and the performance can fluctuate during the training process.

The learning curves of the policy gradient algorithms usually contain a considerable amount of noise, and

the whole curve fluctuates up and down sharply. In comparison, PPO is more stable than the traditional

policy gradient algorithms. PPO uses the mechanism of trust region, which can limit the value of the final

objective function in a controllable range even if the hyperparameters fluctuate greatly; therefore, PPO is less

sensitive to hyperparameters than the other policy gradient algorithms, and the learning curve of PPO does

not fluctuate drastically, which shows PPO is more robust than the others. Moreover, PPO is more sample

efficient than traditional policy gradient algorithms; PPO can train better-performing policy networks when

the same number of experiences are obtained.

3.6.1 Stochastic Gradient Ascent

In PPO, the goal is to find the optimal policy θ⋆ that the agent can execute given the current environment

and task, which is represented as:

θ⋆ = argmax
θ

J(θ) (3.23)

where J(lθ) is the objective function, and θ is the current policy to be optimized.

In order to find the optimal policy θ⋆, two steps need to be performed in Gradient Ascent. First, the

33

gradient of the objective function J under the current policy is obtained. The value of θ can be made larger

by going in the objective direction. The expression for the gradient g is:

g =
∂J(θ)

∂θ

∣∣∣∣
θ=θold

(3.24)

where θold represents the old policy learned during the last policy update.

After obtaining g, the old policy and the gradient can be used to learn the new policy. The new policy

is denoted as:

θnew ← θold + α · g (3.25)

where α is the learning rate. After repeating the above steps, a converged policy can be eventually obtained.

The premise of using Gradient Ascent is to find the gradient of the objective function J with respect to

the policy θ. However, in some cases, the gradient cannot be found when J cannot be integrated, such as:

J(θ) = ES [V (S; θ)] (3.26)

where S is the set of all states in the environment, V is the value function which judges the goodness of the

current policy θ for the current task; J(θ) is the expectation of V (S; θ), implying that a definite integral is

to be done for V (S; θ). But, the equation cannot be found as a definite integral, so the expectation and the

gradient cannot be found.

However, the stochastic gradient can still be found. The stochastic gradient is a Monte Carlo approxi-

mation [13] to the expected value. In stochastic gradient ascent, a random sampling of the set of states S

will be performed to derive its subset S′. The gradient is then computed using S′, denoted as:

g =
∂V (S′; θ)

∂θ

∣∣∣∣
θ=θold

(3.27)

where g is the stochastic gradient, which represents the Monte Carlo approximation to the objective function.

Finally, the new policy θnew can be obtained as:

θnew ← θold + α · g (3.28)

where α represents the discounted factor.

34

3.6.2 Trust Region

In the process of policy updating, because many parameters are involved, a slight change in one parameter

can significantly affect the performance of the policy. Without limiting the magnitude of parameter updates,

the performance of the policy will frequently fluctuate as the learning progresses, resulting in a decrease in

the learning efficiency of the agent, such as the Vanilla Policy Gradient algorithm [19]. In order to solve

the problem that the learning efficiency is affected by the fluctuation of the parameters, Schulman et al.

[2015] proposed the concept of trust region [17], which sets a limit on the parameters involved in learning.

The trust region limits the parameters involved in learning. Once the change in the parameters reaches the

threshold value specified by the trust region, the parameters will stay at the specified threshold value. The

trust region keeps the update of the new policy is within a controlled range and ensures the new policy does

not differ too much from the old policy, thus achieving more stable training.

The optimization object of the trust region algorithm is J(θ), which is the same as the policy gradient

algorithms. Now, N (θold) is used to denote the neighborhood of the current policy, which represents the set

of all similar policies in the neighborhood of the current policy. The expression of N (θold) is:

N (θold) = {θ| ||θ − θold||2 ≤ ∆} (3.29)

where ∆ is a positive real number and the inequality in curly brackets represents that the distance between

the current policy θ and the old policy θold cannot exceed ∆. In other words, if the old policy θold is the

center point of a circle, ∆ represents the radius of the circle, then the location of the new policy θ will always

stay in this circle.

To summarize, the meaning of trust region is that suppose there is another objective function L (θ | θold)

which is located very close to the original objective function J(θ) in the neighborhood of θold, then the

neighborhood N (θold) of θold is called the trust region, and the new policy will be accepted at any point

within the range of the trust region.

In general, the form of J(θ) is complex, and it is not conducive to computation. However, in the trust

region, the form of L (θ | θold) is more concise than J(θ), so the computation can start by letting L (θ | θold)

be close to J(θ) in the range of the trust region, and then use the function L (θ | θold) instead of J(θ) to

reduce the computational complexity of policy optimization.

The algorithms in trust region are performed in two steps. The first step is approximation, given the old

policy θold and constructing the objective function L (θ | θold). The method of constructing L (θ | θold) can

use either the second-order Taylor’s expansion [4] of J(θ) or the Monte Carlo approximation [13] of J(θ).

The second step is maximization, where the maximum value of L (θ | θold) is searched in the trust region

35

and assigned to the new policy, denoted as:

θnew ← argmax
θ∈N (θold)

L (θ | θold) (3.30)

3.6.3 PPO Implementation

The working process of PPO is similar to the policy gradient algorithms. In order to solve the problem of

unstable performance of the traditional policy gradient algorithms and reduce the impact of hyperparameters,

PPO introduces the trust region mechanism, which controls the difference between the new policy and the

old policy within a range and improves the overall learning stability.

There are two forms of PPO to limit the magnitude of policy updates, one is PPO with KL-divergence

in the objective function [12], and the other is PPO with clip in the objective function [18]. The clip-based

PPO is applied in the experiments of this thesis.

First, the policy in PPO is updated in the same way as the policy gradient algorithm, which is to maximize

the objective function of the policy, denoted as:

θk+1 = argmax
θ

E
s,a∼πθk

[L (s, a, θk, θ)] (3.31)

where θk+1 is the new policy, and L (s, a, θk, θ) is the approximation function of the actual objective function

J(θ) in the trust region. Because of the inclusion of the clip mechanism in PPO, the new L (s, a, θk, θ) will

be expressed as:

L (s, a, θk, θ) = min

(
πθ(a | s)
πθk(a | s)

Aπθk (s, a), clip

(
πθ(a | s)
πθk(a | s)

, 1− ϵ, 1 + ϵ

)
Aπθk (s, a)

)
(3.32)

where ϵ is a hyperparameter used to clip so as to limit the distance between the new policy and the old one.

Aπθk (s, a) is called advantage function and is used to evaluate how good the action a is in the current state

s throughout the trajectory of the current policy.

For a more intuitive understanding of clip, L (s, a, θk, θ) has a more concise expression:

L (s, a, θk, θ) = min

(
πθ(a | s)
πθk(a | s)

Aπθk (s, a), g (ϵ, Aπθk (s, a))

)
(3.33)

where

g(ϵ, A) =

(1 + ϵ)A A ≥ 0

(1− ϵ)A A < 0

36

It can be seen that during the evaluation of L (s, a, θk, θ), if the value of the advantage function Aπθk (s, a) is

positive, it means that the action a can bring positive benefits in the current state. Then the algorithm will

default that the appearance frequency of a in s will increase in the subsequent training process, and conse-

quently, the value of the objective function also increases. At this time, the expression of the approximated

objective function is:

L (s, a, θk, θ) = min

(
πθ(a | s)
πθk(a | s)

, (1 + ϵ)

)
Aπθk (s, a) (3.34)

However, because PPO does not want the value of the objective function to change too drastically and thus

potentially mislead the agent, it will limit the growth of the objective function. Once πθ(a | s) > (1+ϵ)πθk(a |

s), the value of the objective function will reach a ceiling, and the objective function will take the value no

more than (1+ ϵ)Aπθk (s, a). In this way, limiting the update magnitude of the objective function also limits

the distance of the new policy from the old one.

In the second case, if the value of the advantage function Aπθk (s, a) is negative, this means that the action

in the current state is not ideal and does not bring positive benefits to the whole policy. At this point, the

algorithm will default to the fact that the frequency of the action a will decrease in the subsequent training

process in state s; hence, the value of the objective function will increase. The expression of the objective

function will become:

L (s, a, θk, θ) = max

(
πθ(a | s)
πθk(a | s)

, (1− ϵ)

)
Aπθk (s, a) (3.35)

Similar to when the advantage function is positive, when πθ(a | s) < (1 − ϵ)πθk(a | s), the value of the

objective function will reach a ceiling and the objective function will take no more than (1− ϵ)Aπθk
(s,a), thus

also limiting the update magnitude of the policy. The peudocode of PPO is shown in Algorithm 6, where

line 5 updates the policy by adding the trust region to ensure that the new policy does not benefit by going

far away from the old policy, and then it will update the corresponding value function of the current policy

in line 6.

37

Algorithm 6 Proximal Policy Optimization (PPO)

Input: initial policy parameters θ0, initial value function parameters ϕ0

1: for k = 0, 1, 2, . . . do
2: Collect set of trajectories Dk = {τi} by running policy πk = π (θk) in the environment.
3: Compute the reward R̂t

4: Compute advantage estimates, Ât (using any method of advantage estimation) based on the current
value function Vϕk

.
5: Update the policy by maximizing the PPO-Clip objective:

θk+1 = argmax
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min

(
πθ (at | st)
πθk (at | st)

Aπθk (st, at) , g (ϵ, Aπθk (st, at))

)
via stochastic gradient ascent with Adam optimizer.

6: Fit value function by regression on mean-squared error:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vϕ (st)− R̂t

)2
via gradient descent algorithm.

7: end for

38

Chapter 4

New Algorithms for Reward Machines

in Deep Reinforcement Learning

Currently, the deep RL algorithms combined with reward machines in related work are DDPG and the

option-based Hierarchical Reinforcement Learning (HRL). However, with the constant development of deep

RL algorithms, the performance of DDPG and HRL has been surpassed by newer algorithms in many test-

ing environments. Therefore, in order to further improve the learning efficiency of RM-based algorithms, we

choose three mainstream deep RL algorithms: Soft Actor-Critic (SAC) [10], Twin Delayed Deep Determin-

istic Policy Gradient (TD3) [7], and Proximal Policy Optimization (PPO) [18] as our baseline algorithms,

combine them with CRM and evaluate their performance. The new algorithms are called SAC-CRM, TD3-

CRM, and PPO-CRM, respectively1.

4.1 Soft Actor-Critic (SAC) with CRM

First, we use SAC as the baseline algorithm and propose a new algorithm, SAC-CRM, that exploits the task

structure made visible by the RM. In SAC-CRM, the agent still uses the entropy value from the baseline

SAC when updating the Q-function and continues the Energy Based Policy model from the baseline SAC. In

contrast to the baseline, SAC-CRM changes the type of learning experience compared to the baseline SAC

and adds CRM’s counterfactual experience. The pseudocode of SAC-CRM is shown in Algorithm 7.

In combination with reward machines, the learning environment of SAC-CRM becomes an MDPRM, so

the RM experience in the RM environment will be added to the experience. The actual experience learned

1The code of SAC-CRM, TD3-CRM, and PPO-CRM, as well as all the tasks mentioned in this thesis, are available at
https://github.com/haolinsun0907/Exploiting_Reward_Machines_with_Deep_Reinforcement_Learning

39

https://github.com/haolinsun0907/Exploiting_Reward_Machines_with_Deep_Reinforcement_Learning

by the agent will change from the original ⟨s, a, r, s′⟩ to ⟨s, ū, a, r̄, s′, ū′⟩, where ū and ū′ are the RM states

before and after the action a. Also, CRM will generate a set of counterfactual experiences for each RM state

after the agent takes an action, which is shown in line 7 of the pseudocode.

To generate the counterfactual experience, the agent will traverse each RM state ū ∈ U after making an

action. If the agent’s action in ū causes the environmental state s change to the next environmental state s′,

then the next RM state will become ū′ = δu (ū, L (s, a, s′)), and the agent will receive a reward given by the

RM, which is r̄ = δr(ū) (s, a, s
′). The CRM generates a set of counterfactual experiences whose expression

is:

{(s, ū, a, δr(ū) (s, a, s′) , s′, δu (ū, L (s, a, s′))) | ū ∈ U}

Correspondingly, SAC-CRM will learn the information provided by CRM when updating the policy. Specifi-

cally, the agent will consider both the actual experience and counterfactual experiences. In terms of reward,

the agent will now consider the RM reward provided by the state-reward function. At this point, since the

agent learns in an MDPRM, SAC-CRM will not only consider the actual environmental state but the cross-

product of the environmental state and the RM state, as well as the counterfactual experiences provided by

CRM (line 9 to line 15 in the pseudocode). As such, the soft Q-function used to evaluate the policies in

SAC-CRM is changed from equation 3.11 to:

Qπ
soft(s, ū, a) = E

st,ūt,at∼ρπ

[∞∑
t=0

γtr̄ (st, ūt, at) + α

∞∑
t=1

γtH (π (· | st, ūt)) | s0 = s, ū0 = u, a0 = a

]
(4.1)

which considers the cross product of the environmental state st and RM state ūt at time t. Similarly, the

Energy Based Policy model also changes from equation 3.14 to:

π (at | st, ūt) ∝ exp

(
1

α
Qsoft (st, ūt, at)

)
(4.2)

Finally, SAC-CRM will aim to minimize the value of the loss function based on both the actual experience

and the counterfactual experience (line 15 in the pseudocode). Thus, the new loss function for the temporary

policy πϕ in the RM setting can be obtained from equation 3.17 as follows:

Jπ(ϕ) = DKL

(
πϕ (· | st, ūt) ∥ exp

(
1

α
Qθ (st, ūt, ·)− logZ (st, ūt)

))
= Est,ūt∼D,at∼πϕ

[
log

(
πϕ (at | st, ūt)

exp
(
1
αQθ (st, ūt, at)− logZ (st, ūt)

))]

= Est,ūt,∼D,at∼πϕ

[
log πϕ (at | st, ūt)−

1

α
Qθ (st, ūt, at) + logZ (st, ūt)

] (4.3)

40

Algorithm 7 Soft Actor-Critic with counterfactual experiences for RMs (CRM).

Input: initial policy parameters θ,Q-function parameters ϕ1, ϕ2, empty replay buffer D, labelling function
L, a finite set of states U , a finite set of terminal states F , state-transition function δu, state-reward
function δr, initial RM state u0 ∈ U

1: Set target parameters equal to main parameters ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

2: Initialize u← u0 and s← EnvInitialState()
3: repeat
4: Observe state s and select action a ∼ πθ(· | s, u)
5: Execute a in the environment and observe next state s′

6: Compute the reward r ← δr(u) (s, a, s
′) and next RM state u′ ← δu (u, L (s, a, s′)), and done signal d

to indicate whether s′ is terminal
7: Set experience ← {(s, ū, a, δr(ū) (s, a, s′) , s′, δu (ū, L (s, a, s′)) , d) | ū ∈ U}
8: Store experience in replay buffer D
9: If s′ is terminal or ū ∈ F , reset environment state.

10: if it’s time to update then
11: for j in range (however many updates) do
12: Randomly sample a batch B of transitions from D
13: Compute targets for the Q functions:

y (r̄, s′, ū′, d) = r + γ(1− d)

(
min
i=1,2

Qϕtarg,i
(s′, ū′, ã′)− α log πθ (ã

′ | s′, ū′)

)
, ã′ ∼ πθ (· | s′, ū′)

14: Update Q-functions by one step of gradient descent using

∇ϕi

1

|B|
∑

(s,ū,a,r̄,s′,ū′,d)∈B

(Qϕi
(s, ū, a)− y (r̄, s′, ū′, d))

2
for i = 1, 2

15: Update policy by one step of gradient ascent using

∇θ
1

|B|
∑

s,ū∈B

(
min
i=1,2

Qϕi
(s, ū, ãθ(s, ū))− α log πθ (ãθ(s, ū) | s, ū)

)

where ãθ(s, ū) is a sample from πθ(· | s, ū) which is differentiable wrt θ via the reparametrization
trick.

16: Update target network with

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2

17: end for
18: end if
19: until convergence or maximum training step reached

41

4.2 Twin Delayed Deep Deterministic Policy Gradient (TD3) with

CRM

Then, the next baseline algorithm we choose to adapt with CRM is Twin Delayed Deep Deterministic Policy

Gradient (TD3). The pseudocode of TD3-CRM is shown in Algorithm 8. Because the TD3 algorithm has a

similar update process in the Q-function and policy network as DDPG, combining TD3 with CRM is similar

to DDPG. First, because the learning environment becomes an MDPRM, the information from the reward

machine needs to be added to the learning experience. That is, we use the cross-product states to replace

the environmental states in the actual experience. As such, the agent’s actual experience will be changed

from ⟨s, a, r, s′⟩ to ⟨s, u, a, r, s′, u′⟩. Also, because CRM has been added, CRM will generate a corresponding

counterfactual experience for each RM state after the agent executes each action (line 7 of the pseudocode)

which contains the next RM state ū′ calculated using the state-transition function δu(ū), and the RM reward

r̄ calculated by the state-reward function δr(ū). The set of counterfactual experiences is expressed as:

{(s, ū, a, δr(ū) (s, a, s′) , s′, δu (ū, L (s, a, s′))) | ū ∈ U}

Following the updated experiences, the actor and critic networks of TD3-CRM will be updated with

reference to the current environmental state s and the next environmental state s′, as well as the current

RM state ū and the next RM state ū′ derived from δu(ū). In terms of reward, TD3-CRM will refer to the

RM reward r̄ provided by the state-reward function δr(ū). Specifically, both of the Q-functions of TD3-CRM

are changed from equation 3.18 to:

Qθ (st, ūt, at) = r̄t + γE [Qθ (st+1, ūt+1, at+1)]− δt

= r̄t + γE [r̄t+1 + γE [Qθ (st+2, ūt+2, at+2)− δt+1]]− δt

= Esi,ūi,∼pπ,ai∼π

[
T∑
i=t

γi−t (r̄i − δi)

] (4.4)

Here, the RM state ū is added for the update reference, and the reward is changed from the original

environmental reward r to the RM reward r̄.

Accordingly, the Q-value with the addition of Gaussian noise will also refer to the next RM state as well

as the RM reward, changing from equation 3.21 to

y = r̄ + γQθ′ (s′, ū′, πϕ′ (s′, ū′) + ϵ) (4.5)

42

As we can see in the pseudocode of TD3-CRM, in line 6, the corresponding RM state and the RM reward

are calculated after the agent has taken an action. In lines 7 and 8, the counterfactual experience generated

by CRM is added to the agent’s replay buffer. From line 10 to line 17, TD3-CRM updates its policies in the

same way as the original TD3, where line 13 computes the target actions using the Target Policy Smoothing

Regularization, line 14 computes the target Q-function, line 15 updates the Q-function by minimizing the

MSBE, line 16 applies the delayed updating mechanism, and the policy will be updated in line 17 with the

reference of both the actual experience and the counterfactual experience.

Algorithm 8 TD3 with counterfactual experiences for RMs (CRM).

Input: initial policy parameters θ,Q-function parameters ϕ1, ϕ2, empty replay buffer D, labelling function
L, a finite set of states U , a finite set of terminal states F , state-transition function δu, state-reward
function δr, initial RM state u0 ∈ U

1: Set target parameters equal to main parameters ϕtarg,1 ← ϕ1, ϕtarg,2 ← ϕ2

2: Initialize u← u0 and s← EnvInitialState()
3: repeat
4: Observe state s and select action a = clip (µθ(s) + ϵ, aLow , aHigh), where ϵ ∼ N
5: Execute a in the environment and observe next state s′

6: Compute the reward r ← δr(u) (s, a, s
′) and next RM state u′ ← δu (u, L (s, a, s′)), and done signal d

to indicate whether s′ is terminal
7: Set experience ← {(s, ū, a, δr(ū) (s, a, s′) , s′, δu (ū, L (s, a, s′)) , d) | ū ∈ U}
8: Store experience in replay buffer D
9: If s′ is terminal or ū ∈ F , reset environment state.

10: if it’s time to update then
11: for j in range (however many updates) do
12: Randomly sample a batch B of transitions from D
13: Compute target actions

a′ (s′, ū′) = clip
(
µθtarg (s

′, ū′) + clip(ϵ,−c, c), aLow , aHigh

)
, ϵ ∼ N (0, σ)

14: Compute targets

y (r̄, s′, ū′, d) = r̄ + γ(1− d) min
i=1,2

Qϕtarg,i (s
′, ū′, a′ (s′, ū′))

15: Update Q-functions by one step of gradient descent using

∇ϕi

1

|B|
∑

(s,ū,a,r̄,s′,ū′,d)∈B

(Qϕi
(s, ū, a)− y (r̄, s′, ū′, d))

2
for i = 1, 2

16: if j mod policy − delay = 0 then
17: Update policy by one step of gradient ascent using

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi for i = 1, 2

θtarg ← ρθtarg + (1− ρ)θ

18: end if
19: end for
20: end if
21: until convergence or maximum training step reached

43

4.3 Proximal Policy Optimization (PPO) with CRM

The last baseline algorithm we choose to adapt with CRM is called Proximal Policy Optimization (PPO).

Integrating CRM into the PPO algorithm is unique and different from SAC and TD3. First, because PPO

is an on-policy algorithm, there is no replay buffer in PPO to store the experience previously learned by

the agent. Unlike the off-policy algorithms, PPO is learned by generating multiple different trajectories

after randomly sampling the state distribution and actions of the whole task. A trajectory represents a

sequence of states and actions, including a possible sequence of states that the agent will experience during

the execution of the task and the actions the agent will perform in each state. Specifically, a trajectory τ

can be represented as:

τ = (s0, a0, s1, a1, . . .) (4.6)

where the initial state s0 is randomly sampled from the initial state distribution. Subsequently, the next

state st+1 can be derived from the action at selected by the current policy in the current state st. And so

on, a complete trajectory performed by the agent in a task can be obtained.

The form of the trajectory indicates that in PPO, the agent learns via planned routes, implying that

the single-step experience generation approach used in off-policy algorithms is no longer applicable in PPO.

As a result, if the agent wishes to perform PPO in an MDPRM while using CRM, the RM states for each

environmental state s must be computed using the state-transition function δu. As the learning proceeds,

PPO must calculate the corresponding RM state and add it to the trajectories constantly. Furthermore,

CRM will generate one counterfactual experience for each RM state after each action. However, unlike the

off-policy algorithms, PPO does not have a replay buffer to store the counterfactual experiences. Thus, we

made several changes to adapt CRM into PPO.

First, in order for the agent to learn in an MDPRM, we switch the learning environment from a traditional

MDP to an MDPRM. As such, all the trajectories will include the environmental states and the corresponding

RM states, and the reward will become the RM reward. Specifically, in an MDPRM, an actual trajectory τ

is a sequence:

(s0, u0, a0, s1, u1, a1, . . . , sk, uk, ak, sk+1, uk+1) (4.7)

such that

ui+1 = δu(ui, L(si, ai, si+1)),∀i : 0 < i ≤ k (4.8)

44

The reward of such a trajectory is:

r(τ) =

k∑
i=0

γiδr(ui)(si, ai, si+1) (4.9)

where γ is the discount factor.

Then, we adapt the counterfactual experiences into the form of the trajectories. As mentioned before,

CRM will generate one counterfactual experience per RM state after each action. The form of the counter-

factual experience is the same as in SAC-CRM and TD3-CRM, which is:

{(s, ū, a, δr(ū) (s, a, s′) , s′, δu (ū, L (s, a, s′))) | ū ∈ U}

However, this experience cannot be used by PPO directly since it is a different form from the trajectory.

Thus, we extract some useful information from the original counterfactual experiences and recombine them

into the form of the trajectory.

For every trajectory sampled from the counterfactual experiences, we take the cross product of the current

environmental state s and the current RM state ū as the initial state and use the current policy to generate

the rest of the trajectory. Since this form of trajectory is sampled from counterfactual experiences, we call

it a counterfactual trajectory. As such, the set of counterfactual trajectories is:

C(τ) = {(s0, u′
0, a0, s1, u

′
1, a1, . . . , sk, u

′
k, ak, sk+1, u

′
k+1)|u′

i ∈ U,∀i : 0 < i ≤ k, u′
k+1 ∈ U ∪ F} (4.10)

and the number of such counterfactual trajectories is |u|k. Then, we add C(τ) to the original trajectory set

and use both the actual trajectories and the counterfactual trajectories to do the policy updates. Since the

number of counterfactual trajectories can quickly become very large, one could consider ways of constraining

them.

Subsequently, during the policy update, the maximum value of the objective function will be determined

by the environmental state s as well as the RM state ū because of the addition of the RM information. The

new objective function will change from equation 3.31 to:

θk+1 = argmax
θ

E
s,ū,a∼πθk

[L (s, ū, a, θk, θ)] (4.11)

Also, in the calculation of the approximation function, the policy π will consider the RM information, the

45

new approximation function is changed from equation 3.32 to:

L (s, ū, a, θk, θ) = min

(
πθ(a | s, ū)
πθk(a | s, ū)

Aπθk (s, ū, a), clip

(
πθ(a | s, ū)
πθk(a | s, ū)

, 1− ϵ, 1 + ϵ

)
Aπθk (s, ū, a)

)
(4.12)

The pseudocode of PPO-CRM is shown in Algorithm 9. In line 3, the set of actual trajectories is collected.

In line 4, all the counterfactual experiences will be converted to counterfactual trajectories and be added to

the actual trajectory set. From line 5 to line 8, PPO-CRM will update in the same way as the original PPO,

where line 7 updates the policy by adding the trust region to ensure that the new policy does not benefit by

going far away from the old policy, and then it will update the corresponding value function of the current

policy in line 8 with the reference of both the actual trajectories and the counterfactual trajectories.

Algorithm 9 PPO with counterfactual experiences for RMs (CRM).

Input: initial policy parameters θ0, initial value function parameters ϕ0, labelling function L, a finite set of
states U , a finite set of terminal states F , state-transition function δu, state-reward function δr, initial
RM state u0 ∈ U

1: Initialize u← u0 and s← EnvInitialState()
2: for k = 0, 1, 2, . . . do
3: Collect set of actual trajectories Dk = {τi} by running policy πk = π (θk) in the environment.
4: Collect set of counterfactual trajectories C(τ) and add C(τ) to Dk.
5: Compute the RM reward R̂t.
6: Compute advantage estimates Ât based on the current value function Vϕk

.
7: Update the policy by maximizing the PPO-Clip objective:

θk+1 = argmax
θ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

min

(
πθ (at | st, ūt)

πθk (at | st, ūt)
Aπθk (st, ūt, at) , g (ϵ, Aπθk (st, ūt, at))

)
via stochastic gradient ascent with Adam optimizer.

8: Fit value function by regression on mean-squared error:

ϕk+1 = argmin
ϕ

1

|Dk|T
∑
τ∈Dk

T∑
t=0

(
Vϕ (st, ūt)− R̂t

)2
via gradient descent algorithm.

9: end for

4.4 Discussion

Overall, adapting CRM with off-policy deep RL algorithms such as SAC and TD3 is relatively straightfor-

ward. There are two major things we need to do to combine CRM with such off-policy algorithms. First,

we need to change the learning environment from a traditional MDP to an MDPRM. Then, we need to add

the counterfactual experiences to the replay buffer in addition to the actual experience. The main challenge

we faced when adapting CRM with off-policy algorithms is to understand the update mechanism of each

46

algorithm and think about whether they are going to have any synergy with CRM.

On the other hand, adapting CRM with an on-policy deep RL algorithm is not trivial. An on-policy

algorithm such as PPO does not have a replay buffer, and since there is no place to store the previously learned

experience, counterfactual experience cannot be utilized properly. Moreover, on-policy algorithms usually

learn through trajectories, which have low sampling efficiency, and the generation process of counterfactual

experience requires a lot of data input and output, which will further increase the sampling time. Last

but not least, since the expression form of trajectories is different from that of counterfactual experience,

we also need to adapt the form of counterfactual experience to the form of the trajectories to make the

learning proceed, which will lose some useful information, such as the single-step reward value. Based on

the above, it seems that adding counterfactual experience to an on-policy algorithm can provide little help

to the algorithm but further increase the sampling time.

47

Chapter 5

Experimental Evaluation

In this chapter, we will test the proposed new algorithms in continuous action domains and compare the

performance of the new algorithms with the existing algorithms for reward machines. The new algorithms

include SAC-CRM, TD3-CRM, and PPO-CRM, while the existing algorithms include DDPG-CRM and

HRM [23]. The test environments are two different types of continuous action domains in OpenAI gym,

which are the Half-Cheetah domain in 2D and the Ant domain in 3D [3]. All CRM-based algorithms have

a batch size of 100n, where n = |U | and U is the number of non-terminal RM states. For HRM, the option

policies are learned using DDPG, and the high-level policy uses DQN. In the following experiments, because

HRM uses deep neural networks to learn the policies, we will use Option-DHRM as the legend name to

represent the results. In Option-DHRM, the batch size is 100n, where n represents the number of available

options. The neural networks of all the algorithms in this thesis use two hidden layers, each with 256 units

with RELU as the activation function. The CPU used for all experiments was the Intel Core i9-9900K with

a maximum frequency of 5 GHz, the GPU was the NVIDIA GeForce RTX 2080 with 8 GB of video memory,

and the memory was 32 GB of DDR4 at a maximum speed of 3000 MHz. Also, we expect each trial of all

the algorithms to finish the training process within ten hours, so we stop each trial after ten hours.

In both domains, the agent’s task is to reach a number of different points located in different locations

in a specific order. We define this type of task for two purposes. One purpose is to examine the capability

of each algorithm to control the movement of the agent through the cooperation between the limbs of the

agent. Since both the cheetah robot in the Half-Cheetah domain and the ant robot in the Ant domain move

the entire body through cooperation between its limbs, the degree of cooperation between the robots’ limbs

directly affects their movement speed, thus affecting the number of steps required for the robots to reach the

specified point. In the body control part, the learning efficiency of the baseline algorithms will determine

48

how fast the robots can move after learning within the specified maximum number of learning steps. Another

purpose is to examine how much CRM can help the agent complete the task. Because the environments

in the experiment are RM environments, and a task contains multiple target points with high complexity,

it would be challenging for the agent to complete the task only using the cross-product baseline of reward

machines. However, because the addition of CRM can give the agent more specific information about the

task, the efficiency of the agent in completing the task of reaching multiple target points will be improved

with CRM.

5.1 Results in the Half-Cheetah Domain

The first domain in our experiments is Half-Cheetah, which has a continuous action space. In this envi-

ronment, the agent is a cheetah-like robot. The robot has six joints that it must learn to control to stand

up, move forward, or backwards. The robot chooses the moving angle and the amount of force to apply to

each joint at each step, making the action space infinite. The state space is also continuous, including the

location and velocities of each joint. An abstract representation of this domain is shown in Figure 5.1, which

includes the starting position of the cheetah robot and the points distribution.

Figure 5.1: The Half-Cheetah domain

In this domain, we will be testing the new algorithms on five tasks including the original two tasks

defined by Toro Icarte et al. [23]. Table 5.1 shows the tasks and their descriptions. We will use these tasks

to test and compare the performance of the proposed new algorithms, which are SAC-CRM, TD3-CRM

and PPO-CRM. We will also compare the performance of new algorithms with the existing algorithms for

reward machines, which are DDPG-CRM and Option-DHRM. For all the tasks, the agent will start from

an arbitrary position between point A and point B. At the same time, to give the agent more reference and

prevent the agent from stopping to explore new actions, after each transition of the RM state, the agent will

receive a small negative reward value, denoted as Control Penalty (CP).

Task 1 is to have the agent go back and forth between points A and B as many times as possible in 1000

training steps. The task’s RM automaton is shown in Figure 5.2.

49

Table 5.1: Tasks for the Half-CHeetah domain.

Task No. Description

1
Start from an arbitrary position between points A and B,
first go to point B, then repeatedly go back and forth between A and B.

2
Start from an arbitrary position between points A and B,
first go to point A, then to point B then to point C,
and then back to point B and then to point A and then repeat indefinitely.

3
Start from an arbitrary position between points A and B,
first go to point A, then to point B then to point C,
go back to point B, then return to point C, then reach point D and stop.

4
Start from an arbitrary position between points A and B,
either go to point A or to point B,
then go to point C and then reach point D and stop.

5
Start from an arbitrary position between points A and B,
first go to point B, then pass through points C, D, and E,
and then reach point F and stop.

Figure 5.2: The RM automaton of Task 1 in the Half-Cheetah domain.

Task 2 is a more complex version of Task 1, which increases the distance between the leftmost point

(point A) and the rightmost point (point C). In order to take advantage of the fact that reward machines

can decompose tasks, we added an intermediate point between point A and point C. This allows the task of

going back and forth between point A and point C to be decomposed into first going from point A to point

B and then from point B to point C, which shortens the distance between the points and allows the agent

to use less time to explore and thus learn to complete the task more efficiently. The RM automaton of the

second task is shown in Figure 5.3.

Figure 5.3: The RM automaton of Task 2 in the Half-Cheetah domain.

Task 3 further increases the distance between the starting point and the ending point and adds the

operation of turning back halfway. The agent can make full use of the counterfactual experience of CRM in

50

this task; after finishing the task of turning back, the agent can continue forward more quickly through the

experience already learned. The RM automaton of Task 3 is shown in Figure 5.4.

Figure 5.4: The RM automaton of Task 3 in the Half-Cheetah domain.

Task 4 adds alternatives to the target points of the agent’s subtasks, demonstrating reward machines’

ability to define complex tasks. The agent can choose among different subtasks by following the task

description given by the RM and completing the whole task under the RM’s guidance. The RM automaton

of Task 4 is shown in Figure 5.5.

Figure 5.5: The RM automaton of Task 4 in the Half-Cheetah domain.

Task 5 is the most challenging task in the Half-Cheetah domain. The RM automaton of Task 5 shown in

Figure 5.6. First, the distance between the starting and ending points is the longest of all tasks. Although

Figure 5.6: The RM automaton of Task 5 in the Half-Cheetah domain.

we can use RM to add multiple intermediate points between the starting and ending points to shorten the

distance in each subtask, because of the considerable distance between the starting and ending points and

sparser reward, the agent needs to do a lot of exploration. More importantly, in this task, the agent’s goal

is to keep moving forward without any backward step, so the counterfactual experience learned in CRM has

little effect on this task. Task 5 is designed more to verify the suitability of CRM for this specific type of

task.

During the training process, the algorithms’ exploration of the actions is random, which leads to different

reward values obtained by the algorithms in each training round. Therefore, to reflect the true performance

51

of the algorithms for all the tasks in this domain, we ran four independent trials and reported the average

episode reward for SAC-CRM, DDPG-CRM, and Option-DHRM. The lines in the figures below show the

average episode reward over those four trials, and the shadowed areas show the range between the highest

and the lowest episode reward among those four trials at their specific training steps. We chose to run these

algorithms four times because the average reward was pretty stable after four trials; also, since each trial run

required up to ten hours of execution time, four trials is what we were able to do during the time period.

Additionally, because TD3-CRM and PPO-CRM did not perform well in the initial experiments, we showed

one of the typical trials of TD3-CRM and PPO-CRM for each task to show their actual performance over

time.

5.1.1 Performance on Task 1 and Task 2

The first two tasks are similar, involving going back and forth between two designated points. When the

agent completes a round trip between two endpoints, it will receive a reward value of 1000.

In the first two tasks, because the agent is moving back and forth between two points, its movement

route is fixed, which means the agent can take full advantage of the counterfactual experience generated

by the CRM. Specifically, in Task 1, since the agent is in two different RM states at point A and point B,

after the agent completes a back-and-forth movement between point A and point B, the experience of how

to switch from the RM state at point A to the RM state at point B will be stored. The next time when the

agent starts from point A, since the task is still to reach point B, which is the same as the previous task,

the agent knows what kind of actions it needs to do to transfer the RM state at point A to the RM state

at point B as soon as possible so it can reach point B faster. Similarly, when the agent returns to point A

from point B, it can also use the previously stored counterfactual experience that can make the RM states

change to transfer between RM states, and thus to return to point A as soon as possible.

More importantly, CRM can make the agent learn in parallel. Suppose the agent’s current goal is to

get to point B and then to point A, but it arrives at point A before getting to point B. By referring to the

counterfactual experience, the agent can learn that going backward is disadvantageous when going towards

B, but advantageous when going towards A. As such, CRM has already made progress in learning how to

get to point A, so as long as the agent gets to point B, it can use the experience of how to get to point A to

finish the task more quickly.

In Task 2, the distance between the two endpoints is longer than Task 1. In this task, two advantages of

CRM can be exploited. One advantage is that RM can break down a complex task into subtasks, and the

other is that CRM provides counterfactual experience for faster learning of subtasks. Specifically, we can

52

add intermediate points in the middle between the two endpoints and use a reward machine to decompose

this task into several subtasks, which will be potentially more straightforward for the agent to learn. Because

multiple intermediate points are added in the middle, the agent does not consider the two endpoints as the

initial learning goal, but each point between the two endpoints as a subgoal to learn. In this way, although

the distance between the endpoints is far, the agent can learn more efficiently by reaching each intermediate

point as a subgoal. The agent will record the experience of reaching the next subgoal after completing the

previous so that it can use the experience when it has the same subgoal later.

First, to verify that the algorithms can take advantage of the counterfactual experiences provided by

CRM, we picked SAC and DDPG as the baseline algorithms and compared their performance with SAC-

CRM and DDPG-CRM in the first two tasks. The baseline algorithms run on the cross-product baseline of

reward machines. The environment is an MDP, where the states are the cross-product of the environment

states and the RM states. As the first two tasks are two of the simplest tasks, and SAC and DDPG are

algorithms with good overall performance (which can be seen in the later part of this chapter), we believe

that if the baseline SAC and DDPG cannot perform well in the first two tasks, they will not perform well in

more complex tasks.

Figure 5.7: CRM vs baselines in Half-Cheetah Task 1

Figure 5.7 and 5.8 show the performance of the baseline SAC and DDPG compared to SAC-CRM and

DDPG-CRM, where the horizontal coordinate represents the total number of training steps, which is three

million, and the vertical coordinate represents the total reward value received by the agent within an episode

(of 1000 training steps). It is evident that in this kind of continuous action domain, the agent cannot learn

53

Figure 5.8: CRM vs baselines in Half-Cheetah Task 2

a good policy with just the baseline algorithms, and CRM-based algorithms vastly outperform the baselines

in terms of learning speed and reward. This is because CRM can efficiently share counterfactual experiences

among different RM states. For example, in Task 1, the agent using CRM can learn to achieve one task

while trying to achieve a different one (reaching point A while trying to get to point B), which the baseline

algorithms cannot do since the counterfactual experiences are not provided.

As such, in the rest of this chapter, since the baseline algorithms have much worse performance than

the RM-based algorithms in the simplest tasks we consider, we will only compare the performance of the

RM-based algorithms.

Figure 5.9: Results for Task 1 in the Half-Cheetah domain

54

Figure 5.10: Results for Task 2 in the Half-Cheetah domain

Figures 5.9 and 5.10 show the performance of all the proposed and existing RM-based algorithms in

Task 1 and Task 2, respectively. The results show that the performance of SAC-CRM is the best among all

the algorithms, with a much faster learning speed and a higher reward value than the other algorithms. In

terms of learning speed in Task 1, SAC-CRM can achieve the same level of performance as the second-best

performer, DDPG-CRM (with its highest episode reward value), in 150,000 training steps, which is up to

20 times faster than DDPG-CRM. In terms of reward, the mean reward value after two million training

steps of SAC-CRM is up to 30% higher than DDPG-CRM. It can be seen from the graph that the highest

episode reward of SAC-CRM is about 11,000, and considering the fact that the agent will receive a reward

value of 1,000 each time it completes the task, which means that the agent trained using SAC-CRM can

successfully complete the task about eleven times in one episode, three more than DDPG-CRM. SAC-CRM

also performs the best in Task 2, with the fastest learning speed and the highest episode reward.

It can also be seen that the other algorithms do not perform as well as SAC-CRM. In Task 1, DDPG-

CRM has the second-best performance, and its learning curve is more stable than SAC-CRM’s. However, in

Task 2, the learning curve of DDPG-CRM has a noticeable fluctuation during the middle of the learning, and

it tends to be stable after 2.4 million steps. Option-DHRM also performs reasonably well, but the rewards

it gets are not as high as SAC-CRM and DDPG-CRM. TD3-CRM cannot complete the task within the

training period.

In addition, we can find that the curve length of PPO-CRM in the figure is short and does not complete

three million steps. This is because PPO-CRM spends a lot of time on sampling and calculating the RM

states of the trajectories, resulting in very slow iterations during the training process. In fact, the curves of

55

PPO-CRM in the figures are the results of ten hours of training. In contrast, all the other algorithms can

complete the training of three million steps in less than ten hours. It can be seen that the combination of

CRM and PPO is not practical compared to other algorithms in actual training, mainly because of its poor

sampling efficiency.

Since the learning speed of PPO-CRM is very slow, we wondered if the PPO algorithm with the cross-

product baseline could have better performance. Because the cross-product baseline of PPO does not generate

any counterfactual experience, the amount of data it needs to deal with will be significantly less than that of

PPO-CRM. Thus, the baseline PPO should have a faster learning speed and potentially learn better policies

than PPO-CRM. To evaluate this, we tested the baseline PPO in the first two tasks of the Half-Cheetah

domain. Figures 5.11 and 5.12 show the learning curves of PPO-CRM and the baseline PPO algorithm in

Tasks 1 and 2, respectively. Since the running time of all algorithms is limited to ten hours, it can be seen

from the curves that the learning speed of the baseline PPO is much faster than that of PPO-CRM. In fact,

the curve of the baseline PPO in Task 1 is the result of running for less than 30 minutes. For each hour, the

baseline PPO can complete more than 5 million learning steps; in contrast, PPO-CRM can only complete

less than 0.5 million steps after ten hours of learning. The situation is similar in Task 2, where the baseline

PPO can complete nearly 5 million steps in an hour, while PPO-CRM can only complete less than 0.25

million steps in ten hours.

Figure 5.11: PPO-CRM vs baseline PPO in Half-Cheetah Task 1

In terms of rewards, the baseline PPO can get slightly better rewards than PPO-CRM in the first two

tasks, but it is not ideal overall. The policies learned by the baseline PPO improve faster than those of

56

Figure 5.12: PPO-CRM vs baseline PPO in Half-Cheetah Task 2

PPO-CRM, but similarly to the baseline SAC and baseline DDPG, they don’t really improve over time.

To summarize, the baseline PPO learns quickly but not well, at least in these Half-Cheetah domain tasks.

When the results of the baseline SAC and baseline DDPG are taken into account, it can be seen that CRM

is still an indispensable part if the agent wants to learn a good policy in an MDPRM.

5.1.2 Performance on Task 3

Task 3 adds the operation of making the agent fold back midway, which is more complex compared to the

first two tasks. Figure 5.13 shows the performance of all the algorithms in Task 3. In this task, SAC-CRM

still performs well, with higher reward values and faster learning speeds than other algorithms. It can be

recognised that SAC-CRM performs well in the first three tasks, indicating that SAC-CRM would be the best

choice for tasks where the agent needs to move back and forth between endpoints and with some foldback

operations.

In addition, it can be seen that the performance of TD3-CRM and PPO-CRM is still much worse

compared to the other algorithms. As with the first two tasks, PPO-CRM still has a very slow learning

speed.

57

Figure 5.13: Results for Task 3 in the Half-Cheetah domain

5.1.3 Performance on Task 4

Figure 5.14 shows the performance of all the algorithms in Task 4. SAC-CRM still has the best performance

in this task, and its lead is larger than in the other tasks. DDPG-CRM still performs reasonably well, but

its learning speed in the early period is significantly slower than SAC-CRM. Option-DHRM is also able

to maintain the same level of performance as DDPG-CRM in this task, but the performance gap between

Option-DHRM and SAC-CRM becomes larger compared to that in the previous tasks. TD3-CRM and

PPO-CRM still don’t perform well, and PPO-CRM still has a very slow learning speed.

According to the experimental data of the first four tasks, it is obvious that SAC-CRM is the best

performer among all the algorithms. There are several reasons for the excellent performance of SAC-CRM.

The first reason is that the SAC algorithm is more exploratory than the DDPG algorithm because of

the incorporation of maximum entropy. Because the agent’s control is continuous in the Half-Cheetah

environment, the agent must have precise control over each joint and part of its limbs in order to move in

the target direction. In other words, the higher the degree of cooperation between each part, the faster the

movement speed of the agent. Compared with SAC-CRM, the agent trained by DDPG-CRM and Option-

DHRM can complete the task with a reasonable reward. However, DDPG-CRM and Option-DHRM explore

less than SAC-CRM, and the algorithm’s understanding of the optimal solution will fall into a local optimum

too early. In other words, DDPG-CRM and Option-DHRM can make the limbs of the agent cooperate to

complete the movement, but the degree of cooperation between the limbs is not optimal, so that the agent

moves at a slower speed. In contrast, SAC-CRM is more exploratory, so each joint can try more types of

58

Figure 5.14: Results for Task 4 in the Half-Cheetah domain

cooperation to make the agent move faster and get a higher reward.

Meanwhile, let us take a closer look at the SAC-CRM learning process. According to the learning curve,

even when it already reaches a high reward value, we can see that it sometimes produces obvious fluctuations

in the reward value obtained by each episode. The reason for the fluctuations is that in SAC, because of the

inclusion of maximum entropy, even if the agent can achieve a high reward value with the current policy,

SAC will still encourage the agent to continue exploring by maximising the entropy and keeping trying new

actions. The later part of the curve with significant declines indicates that not all new actions tried by

the agent have positive effects, and sometimes inappropriate actions can seriously reduce the reward value.

However, the continuous exploration of new actions by SAC is the key factor leading to a more coordinated

performance of the agent’s limbs and a higher average reward.

5.1.4 Performance on Task 5

Figure 5.15 shows the performance of all algorithms in Task 5. It can be seen that although SAC-CRM

performs better than TD3-CRM and PPO-CRM, it does not often reach F, resulting in low reward values.

SAC-CRM fails to perform well on this task for two main reasons. First, CRM does not play a prominent role

in this task. In the previous tasks, there were repetitive movement routes, so the agent could take advantage

of the counterfactual experience provided by CRM and could learn quickly when encountering a previously

travelled route. However, in the fifth task, the agent has only one unique movement direction and does not

have any backward movement. As a result of not taking any previously traveled routes in this task, the agent

59

does not experience the same RM states as previously during the learning process. Moreover, the state space

it traverses is different for each subtask. Thus, the counterfactual experience provided by CRM has little

effect on this task. The second reason is the SAC algorithm’s entropy maximisation property. As mentioned

before, SAC is highly exploratory; it can continuously make the agent try to move back and forth within a

short distance, which was needed in the previous tasks. However, in the fifth task, the agent’s movement

direction is fixed, so the high exploratory nature of SAC has a negative impact in this task, which causes

the agent to make many movements that are opposite to the target direction while exploring, resulting in

a significantly lower probability of the agent making the correct movement, and thus a significantly lower

quality of the policy learned and the average reward. As demonstrated by this task, the highly exploratory

nature of new actions is not always advantageous, and it can even be detrimental when dealing with tasks

that require monotone actions.

Figure 5.15: Results for Task 5 in the Half-Cheetah domain

In contrast, DDPG-CRM performs better in this task. The reason is that the exploratory nature of

DDPG-CRM is relatively weak among these algorithms, and the agent can determine the action of moving

in the target direction earlier and keep exploiting this kind of action. During the early learning phase, when

the agent happens to reach point F and receive the reward, DDPG-CRM will assume that a single type of

movement in the target direction is enough to receive the reward and will reduce the exploration of other

movements in the opposite target direction. This extensive use of existing actions will assist the agent in

receiving higher reward values for this task. So, the low rate of exploration and high exploitation of actions

are good for this task; they can help the agent get a higher reward value.

Among the other algorithms, it can be seen that the most suitable algorithm for learning this task is

60

Option-DHRM. Option-DHRM is ahead of the other algorithms both in terms of learning speed and final

reward value. As mentioned earlier, Option-DHRM can quickly reach the local optimal solution with the

help of options. In this task, since the agent’s goal is to keep moving in one direction, each intermediate

point reached by the agent is equivalent to reaching a local optimal goal. The local optimal option in this

task is very close to the global optimal solution; that is, the local optimal policies learned by Option-DHRM

are actually the global optimal policies. Therefore, the agent in this task with Option-DHRM can derive the

global optimal solution very quickly.

The performance of TD3-CRM is still not good in this task; the reward values it gets are the lowest

among all the five tasks by far. Similar to its performance in the previous tasks, PPO-CRM continued to

learn very inefficiently in this task, and after more than ten hours of learning, PPO-CRM is still unable to

complete the required number of learning steps. Moreover, it can be observed that the reward value achieved

by all CRM algorithms in this task is relatively low compared to the previous tasks. The main reason for

this is that CRM’s counterfactual experience in this task cannot assist the agent in reducing exploration.

Moreover, the distance between the starting point and the endpoint in this task is the longest, so the reward

in this task is the most sparse compared to the other tasks. The sparsity of the reward will lower the chance

that the agent completes the task and increase the workload of the exploration, thus decreasing the agent’s

learning efficiency.

5.2 Results in the Ant Domain

To further increase the complexity of the environment and tasks, we also tested the performance of all the

algorithms in the Ant domain. The Ant robot is a three-dimensional robot with one torso (a free rotational

body) and four legs (each with two links). By applying torques to the eight hinges connecting the two links

of each leg and the torso, the primary goal of the Ant robot is to coordinate the four legs to move in any

direction on the plane. An abstract representation of the Ant domain is shown in Figure 5.16.

There are reasons to choose the Ant domain. First, the Ant domain is a 3D environment, and the agent

will have a larger moving space, which means that this environment can make the agent produce more types

of states. Second, the Ant robot has more joints and thus requires more complex movement coordination

mechanisms to make the body move, making learning the movements more difficult. In this domain, all

the algorithms will face more complex motion characteristics, environmental states, and greater learning

pressure. Thus, the Ant domain is ideal for testing how well the RM-based algorithms can perform in a

more complex environment.

We will test three tasks in the Ant environment. In all three tasks, the ant robot’s starting point will be

61

Figure 5.16: The Ant domain

a random location near the origin. The tasks are shown in Table 5.2. Task 1 is similar to the first task in the

Half-Cheetah domain, in which the robot starts from the starting point, reaches point B, then point A, and

then repeatedly moves back and forth between point A and point B. Task 2 is also like the second task in

the Half-Cheetah domain, which is a more complex version of Task 1. Note that in the Ant domain, points

A, B, and C are not along a straight line, which will make the task more complex than in the Half-cheetah

domain. Also, the agent’s starting point in this domain is an arbitrary location near the origin, which is

different from that in the Half-Cheetah. Finally, to try to reach the limit of these algorithms, we designed

Task 3 with the most constraints in all environments. First, the agent can choose one point among point A

Table 5.2: Tasks for the Ant domain.

Task No. Description

1
Start from an arbitrary position around the origin,
first go to point B, then repeatedly go back and forth between A and B.

2
Start from an arbitrary position around the origin,
first go to point A, then to point B then to point C,
and then back to point B and then to point A and then repeat indefinitely.

3

Start from an arbitrary position around the origin,
choose either point A or point B, and go to the chosen point,
then go to point C, and then to point D.
From point D, if it chose to go to point A before, it must return to point A;
if it chose to go to point B before, it must return to point B.
After reaching the chosen point, stop.

62

and point B and move there, then move to point C, then move to point D. From D, if it chose to move to

point A before, then it must return to point A. If it chose to move to point B before, then it must return to

point B. The RM automaton of Task 3 is shown in Figure 5.17. In this domain, we will also show the average

and max/min episode reward in four independent trials for SAC-CRM, DDPG-CRM, and Option-DHRM.

The line and shadow colours for all the algorithms are the same as in the Half-Cheetah domain.

Figure 5.17: The RM automaton of Task 3 in the Ant domain.

5.2.1 Performance on Task 1 and Task 2

Figures 5.18 and 5.19 show the learning curves of all the algorithms in the first two tasks, respectively. Only

SAC-CRM and DDPG-CRM can obtain significant rewards in the first two tasks within the specified number

of learning steps, while the other algorithms cannot.

Figure 5.18: Results for Task 1 in the Ant domain

According to the learning curves, it can be seen that SAC-CRM still performs the best among all the

63

Figure 5.19: Results for Task 2 in the Ant domain

algorithms. Compared to DDPG-CRM, SAC-CRM has a significant lead in learning speed and reward values.

The main reason for this is the higher exploration feature of the SAC algorithm. In the Ant domain, the

agent’s movement changed from backward and forward in Half-Cheetah to backward, forward, left, and right,

which means a larger movement space. The high exploratory tendency of SAC plays an essential role in trying

new directions in the environment and exploring the coordination between joints, which allows the agent

to try more different directions and explore the coordination between limbs, thus improving the movement

speed faster than the other algorithms. DDPG-CRM, on the other hand, slows down its exploration rate as

it learns, so its performance improves slowly.

We can also draw other conclusions about SAC-CRM from the learning curves and the average episode

rewards. First, the figures of the first two tasks show that the curves of SAC-CRM fluctuate more compared

to the similar tasks in the Half-Cheetah domain. Moreover, the difference between the maximum reward

value and the average episode reward value after two million steps is larger, which indicates that the policy

obtained by SAC-CRM is still not close to optimal, even at the later stage of learning. The main reason is

that the Ant domain is a complex environment, and the diversity of environmental states and actions puts

pressure on the agent’s learning.

It is noteworthy that Option-DHRM performs poorly in this domain. Even when the tasks are similar,

the performance of Option-DHRM in the Ant domain has a large gap compared to that in the Half-Cheetah

domain. As previously stated, Option-DHRM is good at quickly finding a local optimal solution, but its

shortcoming is that policies learned through options easily fall into the local optimal. In the Half-Cheetah

64

domain, because the environmental complexity is lower than in the Ant domain, the agent can still rely on the

local optimal policy to achieve relatively high reward values. However, the gap between local optimal policy

and global optimal policy becomes bigger in more complex environments; in a more complex environment,

the local optimal policy will not be sufficient for the agent to get a high reward, which is the direct reason

for the poor performance of Option-DHRM in the Ant domain. For TD3-CRM, it can be seen that its

performance is similar to that in the Half-Cheetah domain, and it still performs poorly. Also, PPO-CRM

still suffers from a very long learning time and underperforms.

5.2.2 Performance on Task 3

Task 3 adds the most constraints to the agent’s movement. In this task, the agent not only has to select

to move to the target points as soon as possible but also needs to remember the points it has previously

selected and perform precise folding operations to get back to the selected points in the subsequent task

process. The complexity of this task further increases the learning difficulty for the agent.

Figure 5.20: Results for Task 3 in the Ant domain

The results in Figure 5.20 show that SAC-CRM is able to maintain a relatively high reward value most

of the time even though the task becomes more complex, which shows that SAC-CRM is still the best choice

for the tasks in the Ant domain. Although the learning curve of DDPG-CRM fluctuates less, it does not

have the same level of performance as SAC-CRM in terms of reward. TD3-CRM and PPO-CRM still do

not perform well. Option-DHRM in this task also has similar performance to the first two tasks, which is

not ideal.

65

5.3 Discussion

5.3.1 Overall Performance of SAC-CRM

From the experimental results, it can be seen that SAC-CRM has the best performance in most of the tasks.

Except for Task 5 in the Half-cheetah domain, SAC-CRM outperforms other RM-based algorithms, both in

terms of the learning speed and the quality of the policy. The lead of SAC-CRM is significant in the Half-

cheetah domain; in the more complex Ant domain, SAC-CRM’s lead is more even pronounced. It can be

concluded that SAC-CRM is the best choice for agents to learn most types of tasks in both the Half-Cheetah

and Ant domains.

SAC-CRM has such a lead mainly because of its unique entropy-based policy update mechanism. Since

the experimental environments are continuous, there will be a considerable number of action combinations

that can make the agent move. Among them, some combinations will make the agent fail; some will make

the agent move in the desired direction but at a slow speed; others will make the agent move at a faster

speed. As such, allowing the agent to find the most appropriate combination of actions for moving in each

direction will be the key to influencing the speed and efficiency of the agent’s movement and thus the reward

it can get. The consideration of the entropy value makes SAC-CRM more exploratory. It allows the policy

to be as random as possible to avoid it falling into a local optimum early. Thus, it can ensure that the agent

can keep a high degree of exploration while trying to maximize the reward value.

Another key to the success of SAC-CRM is that the type of policy it generates is a stochastic policy. In

seeking optimal actions, especially in the continuous action domain, there is often more than one optimal

action. For example, the Cheetah robot in the experiments can achieve the same speed through various

kinds of cooperation of limbs. In a deterministic policy, the output of an action combination is unique,

which limits the possibility for the agent to discover better action combinations. In contrast, SAC-CRM

learns a stochastic policy; in each state, instead of outputting only one action combination, the policy will

save all the available actions in this state and set the probabilities of these actions according to their Q-

values. As such, when the agent is in the same state next time, it will no longer be limited to selecting only

the optimal action of the current state (with a high probability of being locally optimal), but will have a

chance to select some of the sub-optimal actions (which may be globally optimal) and thus have a chance to

find a better combination of actions. While SAC-CRM has a broader ”vision” in action selection, different

combinations of actions can be tried frequently, resulting in faster learning for problems such as controlling

robots that require multi-limb coordination.

However, SAC-CRM does not always perform well. In Half-Cheetah Task 5, it can be seen that the

policy that SAC-CRM learned is not on the same level as DDPG-CRM and Option-DHRM. Therefore,

66

the conclusion that can be drawn is that when the counterfactual experiences of reward machines can be

effectively utilized, the policies learned by SAC-CRM are more dominant because there is some overlap in the

relevant action spaces for different RM states; the robots trained by SAC-CRM can have faster movement

speed and thus get higher reward values within the specified number of steps.

5.3.2 Overall Performance of DDPG-CRM

Although the rewards that DDPG-CRM can get in all the tasks are not the highest, its performance is more

consistent compared to the other RM-based algorithms. In the Half-Cheetah domain, SAC-CRM performs

the best in the first four tasks; however, it does not do well in the fifth task. In the fifth task, although

Option-DHRM performs the best both in terms of the learning speed and the reward it gets, DDPG-CRM’s

performance is still at the top tier level. When it comes to the Ant domain, Option-DHRM falls back in

performance, while DDPG-CRM can still maintain a reasonable level of performance, and its learning curves

are usually very stable.

The weakness of DDPG-CRM is its slow learning speed, and the relatively low reward it can get. As

shown in the experimental results, in most of the tasks, DDPG-CRM performs worse than SAC-CRM,

both in terms of the learning speed and the rewards it gets. Moreover, when facing the more complex Ant

domain, the gap between DDPG-CRM and SAC-CRM has been further increased. Compared to SAC-CRM,

DDPG-CRM is less exploratory because it learns a deterministic policy, which limits the agent in seeking

better action combinations. Also, DDPG-CRM still learns based on a traditional Q-function, which can

over-estimate the Q-values and result in the agent falling into a local optimum too early.

Overall, DDPG-CRM is a robust algorithm since it has consistent performance across all the tasks. For

a relatively simple environment, such as Half-Cheetah, DDPG-CRM may be the best choice if robustness

is more important than optimal performance. It can handle almost all types of tasks and has relatively

stable performance. However, the rewards that DDPG-CRM offers are not the best; when the environment

becomes complex, DDPG-CRM cannot achieve the same level of reward as SAC-CRM, so it is no longer an

appropriate choice for most tasks in complex environments.

5.3.3 Overall Performance of Option-DHRM

From the experimental results, it can be seen that Option-DHRM performs reasonably well in the Half-

cheetah domain. In the first four tasks, although Option-DHRM is not as good as SAC-CRM, it can still

achieve the same level of performance as DDPG-CRM, both in terms of learning speed and reward. Moreover,

Option-DHRM performs exceptionally well in the fifth task in the Half-Cheetah domain; its learning speed

67

and reward are the best among all the algorithms.

However, once the environment is switched to the Ant domain, the performance of Option-DHRM falls

drastically. This is because Option-DHRM is only good at finding local optimums, but the difference between

the local optimum and the global optimum becomes larger when the environment and the tasks become more

complex, so Option-DHRM loses its advantages when facing a complex environment. Therefore, in practical

applications, Option-DHRM is a good algorithm for environments with low complexity. Although the final

policy may not be the global optimum, Option-DHRM is capable of dealing with various types of tasks,

especially tasks with sparse rewards. However, in more complex environments, the advantages of Option-

DHRM will no longer apply, and it may no longer be a usable algorithm.

5.3.4 Overall Performance of TD3-CRM

For TD3-CRM, it can be seen that its learning performance in all the tasks is far from ideal, and the rewards

it gets are the lowest among all the algorithms. The reason is the conflict between CRM and the policy

updating mechanism of TD3.

Firstly, TD3-CRM learns two Q-functions for an action and always assigns the lower Q-value to the action.

This is reasonable for the pure TD3 in an MDP because the Q-values in an MDP are usually overestimated.

However, this is not the case in an MDPRM. In an MDPRM, the RM information is critical for the agent to

transfer from one RM state to another; specifically, the actions that can make the RM state change usually

have high Q-values, which encourage the agent to keep using these actions to make transitions between the

RM states. Nevertheless, TD3 always tries to ”underestimate” the Q-values, which will avoid these beneficial

actions.

Moreover, the target policy smoothing regularization of TD3 also restricts the agent from choosing the

most appropriate actions. Because of the added noise to the actions, TD3-CRM will not choose the best

actions that can cause the RM state changes. Instead, it always chooses the actions that are close to the

best ones. On the one hand, CRM always encourages the agent to perform the best actions so far that can

cause the RM state to change; on the other hand, TD3 always discourages the agent from doing so, which

will confuse the agent. As a result, the agent can rarely perform the right actions, which leads to its poor

performance.

5.3.5 Overall Performance of PPO-CRM

PPO-CRM is unique among all the algorithms. PPO is an on-policy algorithm; it learns through sampled

trajectories, and the previous experience will not be stored in the process of learning the policies, which

68

makes it difficult to exploit the benefits of CRM. Meanwhile, if PPO wants to learn in an MDPRM, it

must first sample a very large number of trajectories and then, as the learning progresses, calculate the

corresponding RM states and RM rewards and place them into the trajectories. This series of operations

includes a lot of data input and output, which is time-consuming and leads to poor learning efficiency. It can

be seen through the experiments that the PPO-CRM has a very slow learning speed compared to our other

algorithms, and it shows that PPO-CRM is not a good choice in an MDPRM. Through the experiments, it

can be seen that it is tough to combine CRM with such an on-policy algorithm to produce good results, and

the combination with off-policy algorithms will be the better choice for using CRM.

69

Chapter 6

Conclusion

The development of AI has provided many conveniences to human beings’ daily lives. AI technologies such

as machine automation have significantly improved productivity and will play an indispensable role in future

human life. In this thesis, we use deep reinforcement learning to train intelligent agents and define various

types of tasks to simulate real-world application scenarios that intelligent robots might encounter.

Training a usable deep RL agent for a specific scenario usually requires a large amount of training data

and a long training time. Moreover, the environment in which the agent is placed is usually partially

observable — as such, trying to learn high-quality policies from the limited information is a major challenge

for deep RL. Therefore, observing more information from the environment and learning how to fully use this

information will be the key to improving the training efficiency of an agent. Based on these challenges, we

have done some work on this thesis.

In order to observe more valuable data from the environment, we applied the framework of reward

machines to the underlying environment. A reward machine can convey the high-level idea of a task to the

agent, so that the agent has a deeper understanding of the reward function. For information utilization,

we investigate some of the current state-of-the-art deep RL algorithms and combine these algorithms with

reward machines to help the agent learn more efficiently.

The research in this thesis is inspired by previous work on reward machines and deep RL algorithms,

especially the work of Toro Icarte et al. [23]. Based on the related work, we make the following contributions.

6.1 Summary of Contributions

The contributions of the thesis are summarized in this section. In Chapter 3, we discussed three popular

recently proposed deep RL algorithms: SAC, TD3, and PPO. Then in Chapter 4, we combined the reward

70

machine model with several current mainstream deep RL algorithms and proposed three new algorithms

based on reward machines, called SAC-CRM, TD3-CRM, and PPO-CRM, respectively. We also showed

how to combine typical deep RL algorithms with reward machines and how to incorporate counterfactual

experiences into the algorithms. In Chapter 5, in order to simulate the tasks that an intelligent agent might

encounter in the real world, we defined a total of eight different types of tasks in two simulated continuous

action domains, including two previously existing tasks from the work of Toro Icarte et al. [25] and six

brand new tasks. On this basis, we tested the performance of all RM-based deep RL algorithms in eight

tasks and found that the newly proposed SAC-CRM performed the best in most of the tasks. Last but not

least, we compare the performance of all the RM-based deep RL algorithms, analyze their advantages and

disadvantages for different task types, and recommend different algorithms for different application scenarios.

6.2 Future Work

In this thesis, we propose three novel algorithms by combining reward machines with some of the most

cutting-edge deep RL algorithms. Meanwhile, we test and analyze the performance of all the RM-based

deep RL algorithms in two different continuous action domains with a total of eight tasks. However, we have

not explored the full potential of these algorithms. In this section, we propose several aspects that could be

improved in the future.

1. Additional Parameter Tuning

A deep RL algorithm typically contains dozens of parameters; each parameter can affect the algorithm’s

performance. For each specific task, it is usually necessary to perform a large number of tuning and

testing operations on an algorithm to bring out its best performance. Because there are various task

types and algorithms in this thesis and the time constraints, for all the algorithms, we use uniform

parameters in the testing of all the tasks, which may not allow each algorithm to perform at its best. In

subsequent work, additional tuning of the parameters for each task may further improve the algorithms’

performance.

2. More Experimental Evaluation

The test environment in this thesis contains two continuous action domains and a total of eight tasks.

However, these domains and tasks can represent only a small portion of application scenarios. In other

words, some algorithms may perform well in the specific tasks and domains included in this thesis,

but this does not mean that these algorithms can still maintain good performance in other tasks or

domains. Therefore, adding more domains with more task types in subsequent work can test the

71

robustness of the algorithms more comprehensively. This would also help us understand better what

environment and task characteristics are most suitable for each algorithm.

3. Studying Ways of Ensuring that SAC-CRM Produces More Stable and Robust Policies

From the experimental results, it can be seen that SAC-CRM has the best performance among all the

existing RM-based algorithms in most of the environments and tasks, both in terms of learning speed

and reward. However, the learning curve of SAC-CRM fluctuates considerably in some tasks. Even

at the late stage of learning, the policies of SAC-CRM remain unstable compared to those of other

algorithms. Therefore, if we can find ways to make the policies of SAC-CRM more stable, then the

robustness of SAC-CRM can be brought to a higher level and make it a more reliable algorithm.

4. Studying Ways of Improving the Learning Efficiency of PPO-CRM

In this thesis, we combine the PPO algorithm, which is one of the typical on-policy algorithms, with

CRM. However, the learning speed of PPO-CRM is very slow due to the addition of the counterfactual

trajectories. The way we combine PPO and CRM is relatively brute force, and the results show that

our approach can bring little help to the baseline PPO and will significantly drag down the learning

efficiency. Thus, in future work, one can examine what can be done to optimize the learning mechanism

of PPO-CRM.

5. Exploiting a Reward Machine with an On-policy Algorithm

In this thesis, we try to adapt CRM with the PPO algorithm, but the experimental results of our

approach are not ideal, and we have not found a way to adapt CRM with such an on-policy algorithm

yet. Maybe one approach that could be tried is to adapt CRM with some version of SARSA [27], which

is an algorithm that can be used in the discrete action domain, and it updates the policy based on a

single action experience rather than a whole trajectory. In any case, how to use a RM to learn faster

with an on-policy algorithm still remains an open problem.

6. Adding Reward Shaping to the CRM-based Algorithms

In all of our experiments, we use reward machines to break a complex task into several subtasks to let

the agent learn phase by phase. However, the agent only receives the reward when it completes the

whole task; it does not receive any reward when it completes any of the subtasks. Hence, the reward for

a complex task is very sparse. In order to make the reward less sparse, Toro Icarte et al. also proposed

a method called Automated Reward Shaping (RS) [16], which provides some intermediate rewards in

some subtasks as the agent gets closer to completing the task. This method can encourage the agent

72

to make progress towards solving the task. Toro Icarte et al. have exploited RS in discrete domains

and achieved some better results [25]. In future work, we can also try to add the RS mechanism to the

existing CRM-based algorithms to potentially further improve the learning speed.

7. Applying the RL algorithms to real-world hybrid domains

Many real-world control problems are in a hybrid domain [14], which involves both discrete decision

variables and continuous decision variables. For example, in autonomous driving, discrete variables

include the actions of moving forward or backward, whereas continuous variables include speed and

turning angle. However, fully continuous or fully discrete action domains are frequently used to ap-

proximate the corresponding optimal control or reinforcement learning problem. These modifications

try to adapt the problem to a specific algorithm, which will only be able to handle a single kind of

action domain. In this thesis, the RM-based algorithms, such as SAC-CRM and DDPG-CRM, are

only able to solve continuous control problems. So in the future, if there were ways to apply these

algorithms to hybrid domains, it will have a more practical impact on solving real-world problems.

6.3 Concluding Remarks

In this thesis, we addressed two long-standing challenges in deep RL: partial observability and learning

efficiency. Our main contribution consists of combining the current mainstream deep RL algorithms with

reward machines. We also defined various types of tasks in different continuous action domains to simulate

real-world robot control problems. Our experimental evaluation of these algorithms on these tasks shows

tremendous potential use cases that RL may have in the future and provides additional references for the

future development of AI robot control.

73

Bibliography

[1] David Bachman. Advanced Calculus Demystified. McGraw-Hill, 2007.

[2] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive elements that

can solve difficult learning control problems. IEEE Trans. Syst. Man Cybern., 13(5):834–846, 1983.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and

Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

[4] Stephan Bütikofer, Diethard Klatte, and Bernd Kummer. On second-order Taylor expansion of critical

values. Kybernetika, 46(3):472–487, 2010.

[5] Robert Dadashi, Léonard Hussenot, Damien Vincent, Sertan Girgin, Anton Raichuk, Matthieu Geist,

and Olivier Pietquin. Continuous control with action quantization from demonstrations. In Kamalika

Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, Inter-

national Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,

volume 162 of Proceedings of Machine Learning Research, pages 4537–4557. PMLR, 2022.

[6] A. Feinberg. Markov Decision Processes: Discrete Stochastic Dynamic Programming (Martin L. Put-

erman). SIAM Rev., 38(4):689, 1996.

[7] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function Approximation Error in Actor-

Critic Methods. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International

Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,

2018, volume 80 of Proceedings of Machine Learning Research, pages 1582–1591. PMLR, 2018.

[8] Giuseppe De Giacomo and Moshe Y. Vardi. Linear Temporal Logic and Linear Dynamic Logic on Finite

Traces. In Francesca Rossi, editor, IJCAI 2013, Proceedings of the 23rd International Joint Conference

on Artificial Intelligence, Beijing, China, August 3-9, 2013, pages 854–860. IJCAI/AAAI, 2013.

74

[9] Antonio Guillen-Perez and Maŕıa-Dolores Cano. Learning from oracle demonstrations - A new ap-

proach to develop autonomous intersection management control algorithms based on multiagent deep

reinforcement learning. IEEE Access, 10:53601–53613, 2022.

[10] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy Max-

imum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Jennifer G. Dy and Andreas

Krause, editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,

Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning

Research, pages 1856–1865. PMLR, 2018.

[11] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash

Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic Algorithms

and Applications. CoRR, abs/1812.05905, 2018.

[12] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa, Tom

Erez, Ziyu Wang, S. M. Ali Eslami, Martin A. Riedmiller, and David Silver. Emergence of Locomotion

Behaviours in Rich Environments. CoRR, abs/1707.02286, 2017.

[13] Richard M. Karp, Michael Luby, and Neal Madras. Monte-Carlo Approximation Algorithms for Enu-

meration Problems. J. Algorithms, 10(3):429–448, 1989.

[14] Boyan Li, Hongyao Tang, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng, and Li Wang.

Hyar: Addressing discrete-continuous action reinforcement learning via hybrid action representation.

In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April

25-29, 2022. OpenReview.net, 2022.

[15] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David

Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua Bengio

and Yann LeCun, editors, 4th International Conference on Learning Representations, ICLR 2016, San

Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

[16] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:

Theory and application to reward shaping. In Ivan Bratko and Saso Dzeroski, editors, Proceedings of

the Sixteenth International Conference on Machine Learning (ICML 1999), Bled, Slovenia, June 27 -

30, 1999, pages 278–287. Morgan Kaufmann, 1999.

[17] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust Region

Policy Optimization. In Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd Interna-

75

tional Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR

Workshop and Conference Proceedings, pages 1889–1897. JMLR.org, 2015.

[18] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy

Optimization Algorithms. CoRR, abs/1707.06347, 2017.

[19] Richard S. Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy Gradient

Methods for Reinforcement Learning with Function Approximation. In Sara A. Solla, Todd K. Leen,

and Klaus-Robert Müller, editors, Advances in Neural Information Processing Systems 12, [NIPS Con-

ference, Denver, Colorado, USA, November 29 - December 4, 1999], pages 1057–1063. The MIT Press,

1999.

[20] Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and Semi-MDPs: A Framework

for Temporal Abstraction in Reinforcement Learning. Artif. Intell., 112(1-2):181–211, 1999.

[21] Haoran Tang and Tuomas Haarnoja. Learning diverse skills via maximum entropy deep reinforce-

ment learning. Unpublished manuscript available at: https://bair.berkeley.edu/blog/2017/10/06/soft-

q-learning/, Berkeley AI Research, Oct 2017.

[22] Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization. In

The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Inno-

vative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on

Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020,

pages 5981–5988. AAAI Press, 2020.

[23] Rodrigo Toro Icarte. Reward Machines. PhD thesis, University of Toronto, Canada, 2022.

[24] Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A. McIlraith. Us-

ing reward machines for high-level task specification and decomposition in reinforcement learning. In

Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Ma-

chine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of

Proceedings of Machine Learning Research, pages 2112–2121. PMLR, 2018.

[25] Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and Sheila A. McIlraith. Reward

machines: Exploiting reward function structure in reinforcement learning. J. Artif. Intell. Res., 73:173–

208, 2022.

[26] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double Q-

Learning. In Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the Thirtieth AAAI

76

Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA, pages 2094–2100.

AAAI Press, 2016.

[27] Yin-Hao Wang, Tzuu-Hseng S. Li, and Chih-Jui Lin. Backward Q-learning: The combination of Sarsa

algorithm and Q-learning. Eng. Appl. Artif. Intell., 26(9):2184–2193, 2013.

[28] Christopher J. C. H. Watkins and Peter Dayan. Technical Note Q-Learning. Mach. Learn., 8:279–292,

1992.

[29] Ronald J. Williams. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement

Learning. Mach. Learn., 8:229–256, 1992.

77

	Abstract
	Dedication
	Acknowledgments
	Contents
	List of Figures
	Introduction
	Motivation
	Our Approach and Contribution
	The Combination of Reward Machines and Popular Deep RL Algorithms
	Defining Various Types of Tasks and Validating Algorithm Performance
	Contributions

	Outline of the Thesis

	Background
	Discrete and Continuous Action Domains
	Deterministic vs Stochastic Policies and their Representation
	Stochastic Policy Output in Discrete Action Domains
	Stochastic Policy Output in Continuous Action Domains

	Exploration and Exploitation
	Decaying -greedy Method
	 Sampling and KL Divergence
	On-policy and Off-policy Update
	Actor-Critic Architecture

	Related Work
	Reward Machines, CRM and HRM
	Reward Machines
	Counterfactual Experience for reward machines (CRM)
	Hierarchical Reinforcement Learning for Reward Machines (HRM)

	Deep Deterministic Policy Gradient (DDPG)
	DDPG with CRM
	Maximum Entropy Reinforcement Learning and Soft Actor-Critic (SAC)
	Maximum Entropy Reinforcement Learning (MERL)
	Soft Actor-Critic (SAC)

	Twin Delayed Deep Deterministic Policy Gradient (TD3)
	Several Improvements of TD3 based on DDPG
	TD3 implementation

	Proximal Policy Optimization (PPO)
	Stochastic Gradient Ascent
	Trust Region
	PPO Implementation

	New Algorithms for Reward Machines in Deep Reinforcement Learning
	Soft Actor-Critic (SAC) with CRM
	Twin Delayed Deep Deterministic Policy Gradient (TD3) with CRM
	Proximal Policy Optimization (PPO) with CRM
	Discussion

	Experimental Evaluation
	Results in the Half-Cheetah Domain
	Performance on Task 1 and Task 2
	Performance on Task 3
	Performance on Task 4
	Performance on Task 5

	Results in the Ant Domain
	Performance on Task 1 and Task 2
	Performance on Task 3

	Discussion
	Overall Performance of SAC-CRM
	Overall Performance of DDPG-CRM
	Overall Performance of Option-DHRM
	Overall Performance of TD3-CRM
	Overall Performance of PPO-CRM

	Conclusion
	Summary of Contributions
	Future Work
	Concluding Remarks

	Bibliography

