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Abstract

One of the greatest challenges of the modern era is to empower AI systems with the ability to deliberate and

act autonomously while mitigating the risks that arise from granting such power. To address this challenge,

a promising approach is to incorporate behavioral specifications within AI systems using formal languages,

especially linear temporal logics. We are interested in efficiently combining temporal logics on finite traces

with automated planning, which is an AI model-based approach to producing autonomous behavior and

solving the problem of sequential decision-making. Despite the ample literature on the application of linear

temporal logics on finite traces, ltlf and ldlf , in planning and related fields, limited attention has been

given to the study and use of the pure-past linear temporal logics and their potential for specifying temporal

goals in planning. Furthermore, the application of temporal logics to other related research areas where

planning techniques have been successfully employed, such as business process management and business

automation, has been given relatively little focus, and there is a lack of principled research on the topic. In

this dissertation, we propose (i) an in-depth study of the pure-past linear temporal logics, (ii) their effective

applicability as formal languages to specify temporally extended goals in deterministic and nondeterministic

planning, and (iii) the application of planning techniques to solve the declarative trace alignment in business

process management while envisioning new methods to solve workflow construction from natural language

in business automation. More specifically, we first review the pure-past linear temporal logics, ppltl and

ppldl, and we show how we can exploit a foundational result on reverse languages to get an exponential

improvement over ltlf/ldlf , when computing the corresponding deterministic automata. Given this key

result, we introduce an efficient technique to cleverly evaluate the truth of pure-past formulas given the truth

value of a small set of subformulas, thus enabling the development of more efficient algorithms. Consequently,

in the context of deterministic and nondeterministic planning for pure-past temporally extended goals, we

present a novel efficient encoding into standard planning for final-state goals with minimal overhead, and

that is at most linear in the size of the goal formula and does not add additional spurious actions. As for

declarative trace alignment, we extend process model specifications to full ltlf/ldlf , provide a reduction to

cost-optimal planning, and devise new practical encodings. Finally, focusing on the enterprise use of business
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automation, we look into the latest techniques in natural language understanding and large language models

to translate English instructions to ltl formulas, bridging the gap between the end user and reasoning

engines used to construct automatic workflows.
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Chapter 1

Introduction

1.1 Context

The ability to make decisions is a critical aspect of human intelligence. Making decisions is vital not only to

individuals but also to organizations that rely on them, namely companies, institutions, governments, and

users of computer-based systems. Unfortunately, the complexity of decision making can make it challenging

to arrive at optimal choices, while poor decisions can have severe consequences. This is why, in the context

of computer-based systems, the ultimate goal of the scientific research is to endow such systems with de-

liberation capabilities. This is among the driving reasons behind the proliferation of Artificial Intelligence

(AI) systems. Recent advancements have equipped AI agents with the ability to act autonomously in the

surrounding world, that is, without human intervention. At the same time, empowering an AI agent with

the ability to self-deliberate its own behavior carries significant risks and so must be balanced with safety

measures. Therefore, such an autonomous ability should be guarded by human-guided specifications and

oversight, verifiable and comprehensible in human terms and, ultimately, trustworthy.

In the last decades, various computational techniques have been proposed to try to address these grand

challenges in devising intelligent autonomous systems. To this end, formal languages and logics have stood

out as great tools to ensure safety measures of AI agents. In fact, the role of formal languages and logics in

Computer Science (CS) and, later, in AI has long been a subject of scientific investigation. The first attempts

date back at least to the late ’30s when Turing, Church, and Tarski demonstrated the undecidability of first-

order logic. However, the real sparkles for the application of logics in CS happened when Church (1957)

showed the groundbreaking connection between digital circuits and logic, and when Pnueli (1977) advocated

the use of temporal logics for expressing properties of computer programs. These two pioneering works have
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given birth to entirely new research fields in CS, such as model checking (Clarke and Emerson, 1981; Quielle

and Sifakis, 1981) and reactive system synthesis (Pnueli and Rosner, 1989).

All these applications rely on ltl that is interpreted on infinite sequences of states. However, unlike the

original problems in CS, such as the specification of concurrent programs, in AI, tasks are inherently of finite

nature, meaning that their execution stops after a finite number of steps. Therefore, although AI research

started employing ltl, over the years, the AI community has naturally shifted to the use of ltlf , the finite

traces variant of ltl. At the beginning, the distinction between interpreting formulas on infinite or finite

sequences of states was often blurred but later became more distinctive. Fortunately, focusing on finite-trace

variants of ltl also turned out to be advantageous from a practical perspective, given that algorithms for

dealing with ltl on infinite traces are computationally challenging (Fogarty et al., 2015), whereas those for

finite-trace variants are much better behaved (Tabakov and Vardi, 2005).

Given these remarkable findings, temporal logics on finite traces have been quite favored by the AI and

Formal Methods communities. For instance, a non-exhaustive list of works where temporal logics on finite

traces have been employed are (De Giacomo and Vardi, 2015, 2016; Zhu et al., 2017; Camacho et al., 2018)

for finite temporal synthesis, (Camacho et al., 2017; De Giacomo and Rubin, 2018; Camacho and McIlraith,

2019; Brafman and De Giacomo, 2019a) in the context of fully observable nondeterministic planning, (Lacerda

et al., 2015; Brafman et al., 2018; Brafman and De Giacomo, 2019b; De Giacomo et al., 2020b) in the theory

of Markov decision processes, (Camacho et al., 2019b; De Giacomo et al., 2019) in the area of reinforcement

learning, (De Giacomo et al., 2014, 2016, 2017, 2022) to declaratively specify and monitor business processes,

and many others.

Among such applications, a prominent area of AI highly related to the problem of sequential decision-

making is that of Automated Planning (or simply planning) (Ghallab et al., 2004; Geffner and Bonet, 2013).

Planning is the model-based approach to sequential decision-making to generate autonomous behavior. In

simpler terms, planning is the research area concerned with the problem for an agent of selecting the actions

to do next. Specifically, for a given agent, planning is the problem of finding a sequence of actions mapping

a given initial state to a certain goal state, under several configurations of the agent itself and of the

environment where the agent acts in. Depending on such configurations, several forms of planning have been

identified and studied over the years, ranging from the simplest and basic one (e.g., STRIPS planning (Fikes

and Nilsson, 1971)) to the most general one (e.g., decision-theoretic planning (Blythe, 1999) and multi-

agent epistemic planning (Bolander and Andersen, 2011)). While basic models make multiple assumptions

about the environment (e.g., deterministic, static, fully observable, etc.), some planning problems do not

satisfy these strict assumptions. Thus, other variants and extensions of simple forms of planning have

been considered. For instance, the model that an agent has of the surrounding environment may be flawed
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and imprecise, or there might be unexpected and unpredictable events/changes that need to be taken into

account.

An interesting extension of standard planning considers goals that do not refer only to reaching a final

goal state but also to intermediate states. Clearly, achieving these kinds of goals is a more general task and

faithfully accounts for many real-world scenarios. Indeed, in most cases, realistic goals require properties to

hold over time on a sequence of planning states. In the literature, these types of temporal goals are known as

temporally extended goals, and are often expressed using formal languages that specify properties on finite or

infinite sequences of states, including ltl, its variant interpreted on finite sequences ltlf , the extension of

ltlf to regular expressions Linear-time Dynamic Logic on finite sequences (ldlf ) (De Giacomo and Vardi,

2013), the Property Specification Language (psl) (Eisner and Fisman, 2006), and the Computation Tree

Logic (ctl) (Clarke and Emerson, 1981), to name a few.

Another reason underpinning the growing popularity of automated planning is represented by its effec-

tive use in many applications. Indeed, despite its high computational complexity, classical planning can

be efficiently solved by modern heuristic search-based algorithms for most real-world problem instances.

For instance, among others, planning has been successfully applied in a number of domains ranging from

penetration testing in cybersecurity (Shmaryahu et al., 2018), robotics (Cashmore et al., 2015), web service

composition (Chakraborti et al., 2022), building automation solutions for the enterprise (Vukovic et al.,

2019), and business process management (De Giacomo et al., 2016, 2017). The latter application is of par-

ticular interest in the context of analyzing traces of events produced by a process under execution. In this

respect, planning allows scalable solutions to the alignment of traces of events that do not comply with the

specified declarative models expressed using finite-trace temporal logics, such as ltlf (De Giacomo et al.,

2017).

In this dissertation, we aim to advance the development of efficient techniques for planning with tempo-

rally extended goals expressed in linear temporal logics on finite traces and enable a more effective application

of planning within the business process management and business automation areas.

1.2 Motivation

Given the context, the work presented in this dissertation has been motivated by the following gaps identified

in the literature. All recent works dealing with linear temporal logics on finite traces have studied and applied

formalisms referring only to the present and future. Thus, especially in the AI community, the use of past

versions of ltlf and ldlf , namely Pure-Past Linear Temporal Logic (ppltl) and Pure-Past Linear Dynamic

Logic (ppldl), has been given only limited attention. However, as pointed out in (Lichtenstein et al., 1985),
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in some cases, it is easier and more natural to express properties by referring to the past. For instance, the

use of past temporal logics has been advocated in some applications for non-Markovian rewards in Markov

decision processes (Bacchus et al., 1996), for non-Markovian models in reasoning about actions (Gabaldon,

2011), for preferred explanations in the context of dynamical diagnosis (Sohrabi et al., 2011), for normative

properties in multi-agent systems (Fisher and Wooldridge, 2005; Knobbout et al., 2016; Alechina et al.,

2018), and for synthesis (Cimatti et al., 2020). Historically, except for the works just mentioned, ppltl

and ppldl have been introduced only as a technical means to get results for both ltl and ltlf (Maler

and Pnueli, 1990; Zhu et al., 2019). Moreover, the use of ppltl and ppldl could bring great benefits in

terms of computational complexity, given their native backward interpretation of traces that simplifies the

construction of the corresponding automaton (Chandra et al., 1981).

Looking at temporal logics on finite traces to specify sophisticated goals in planning, different approaches

have been developed to solve planning for temporally extended goals in both deterministic and nondeter-

ministic domains. The main idea underlying nearly all such approaches is to compile temporally extended

goals into standard “reachability” goals, i.e., into final-state goals.

In deterministic domains, existing encodings of ltlf into classical planning are either worst-case ex-

ponential (Baier and McIlraith, 2006a) or significantly increase the plan length (Torres and Baier, 2015).

Additionally, in the nondeterministic setting, state-of-the-art encodings (Camacho et al., 2017; Camacho and

McIlraith, 2019) are worst-case exponential for dealing with the stochastic and adversarial nondeterminism,

and, for this reason, introduce a lot of bookkeeping machinery that dramatically affects performances. Hence,

in both settings, there is still much room for improvement.

Recently, given the good performances shown, planning techniques have been employed in many other

closely related fields, including business process management and business automation for the enterprise.

Nevertheless, the application of temporal logics to these research areas has attracted comparatively little

attention, and there is limited principled work on the topic.

Planning has been particularly fruitful in Business Process Management (BPM), where an interesting

problem is the one called trace alignment, also known as conformance checking. The trace alignment problem

consists in “aligning” the execution trace of a generic process (e.g., an agent’s behavior execution) with

minimal-cost modifications in such a way that the resulting trace/execution conforms to a given specification,

usually expressed in temporal or dynamic logics on finite traces.

To solve the trace alignment problem, state-of-the-art approaches make use of automated planners.

However, existing techniques either focus only on a restricted set of predefined template modeling formulas

(i.e. DECLARE (van der Aalst et al., 2009)), which is limited in expressiveness, or do not terminate, as they

are based on ad-hoc implementations of the A∗ algorithm, which do not scale well as the input complexity
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increases.

Finally, still in the context of business processes, another research area of prominent application and

interest is the development of workflow construction systems for business automation. In general, workflow

construction systems are concerned with streamlining routine business processes to improve efficiency. This

is often achieved through the automation and integration of various services. However, one of the major

obstacles is the high barrier of entry for end users in terms of the expected expertise when writing flow

construction specifications. This is among the reasons at the base of the recent use of Natural Language

interfaces as means of user input in such applications.

In this setting, there has been limited work on the application of planning for goals expressed using tem-

poral logics as a substrate for workflow specification. Currently, state-of-the-art applications like (Brachman

et al., 2022) depend on parser-specific code to look for specific patterns requested by the user. Therefore,

significant developer overhead is required to investigate the particular parser used (e.g., parse trees from

Abstract Syntax Representations (Astudillo et al., 2020)) to write code for it that is limited in scope (limited

by human effort) while eventually producing code is not reusable once the system upgrades to a different

parser.

1.3 Dissertation Outline and Contributions

We now present an overview of the contributions of this dissertation divided by chapter. Chapter 2 is

a preliminary chapter and provides the necessary background on finite automata theory, linear temporal

logics on infinite and finite traces, and automated planning. Chapters 3 to 6 are the core contributions of

this dissertation. In these chapters, we focus on pure-past linear temporal logics and their application as

formal languages to specify temporally extended goals in deterministic and nondeterministic planning. Then,

Chapters 7 and 8 explore the application of automated planning to (i) solve declarative trace alignment in

business process management and (ii) help solving workflow construction from natural language instructions.

Finally, Chapter 9 includes a summary of the contributions of the dissertation, their impact, and directions

for future work.

Let us outline these in more detail.

Chapter 2: Preliminaries

This chapter reviews the relevant background necessary for this dissertation. First, we review finite automata

theory, describing the main types of automata on finite words: alternating (afa), nondeterministic (nfa),

and deterministic (dfa). Second, we provide an overview of the linear temporal logics on infinite and finite
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traces, namely ltl, ltlf , and ldlf . We also provide background on the translation of such temporal logics

to automata, which is key to understanding the techniques we later exploit in the dissertation. Finally,

we formally define and explain the problem of automated planning in classical settings, nondeterministic

settings and what is the role played by temporally extended goals.

Chapter 3: Pure-Past Linear Temporal Logics

In this chapter, we review ppltl and ppldl, the pure-past versions of the well-known logics on finite traces

ltlf and ldlf , respectively. Beyond reviewing the main properties of ppltl and ppldl, we show how we

can exploit a foundational result on reverse languages from (Chandra et al., 1981) to get an exponential

improvement over ltlf/ldlf , when computing the corresponding deterministic automata. To do so, we

provide an in-depth theoretical discussion explaining why ppltl and ppldl formulas can be translated into

their corresponding deterministic automata in worst-case single exponential time and present a concrete

algorithm. Moreover, given this key result, we are able to fully formalize the reasoning and expressive power

of both ppltl and ppldl. In particular, we establish that ppltl (resp., ppldl) has the same expressive

power as ltlf (resp., ldlf ), but also observe that transforming a ppltl (resp., ppldl) formula into its

equivalent ltlf (resp., ldlf ) is computationally prohibitive. Then, we provide translations in ppltl of

commonly used PDDL3 modal operators and of DECLARE patterns, showing how pure-past formulas can be

helpful in expressing properties over time. Finally, we give an overview of the impact that the exponential

improvement has of employing pure-past temporal logics on well-known sequential decision-making problems

involving temporal specifications, such as planning and decision problems in nondeterministic and non-

Markovian domains, compared to ltlf and ldlf .

Chapter 4: Handling Pure-Past Linear Temporal Logic Formulas

In this chapter, we formally develop the theoretical foundations to efficiently handle and evaluate ppltl

formulas. Specifically, we exploit the well-known fixpoint characterization of temporal logics formulas on

finite traces to characterize when ppltl formulas become true. From the fixpoint characterization, we observe

that (i) given a ppltl formula, we only need the truth value of its subformulas to evaluate it, (ii) every

ppltl formula can be put in a form where its evaluation depends on the current propositional evaluation

and the evaluation of a key set of ppltl subformulas at the previous instant, and (iii) we can recursively

compute and keep the value of such a small set of subformulas as additional propositional variables in the

application domain. Therefore, we devise a way to exploit these observations, and formally prove that

they suffice to establish the evaluation of a given ppltl formula. We also provide comprehensive examples

showing how the novel evaluation technique is effective and how it relates to automata. Lastly, this novel
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evaluation technique enables the development of more efficient algorithms, including the ones about planning

for temporally extended goals that we study in Chapters 5 and 6.

Chapter 5: Classical Planning for Temporally Extended Goals in Pure-Past Linear Temporal

Logic

In this chapter, we explore classical planning for temporally extended goals expressed in ppltl. We show

that although ppltl is as expressive as ltlf , it is computationally much more well-behaved for planning.

Specifically, by exploiting the novel evaluation technique of Chapter 4, we show that planning for ppltl goals

can be encoded into classical planning with minimal overhead, introducing only a number of new fluents

that is at most linear in the ppltl goal and no spurious additional actions. Moreover, we formally prove

the correctness of the approach. We also implemented an open-source system called Plan4Past, which can

be used along with state-of-the-art classical planners to solve the task. An empirical analysis demonstrates

the practical effectiveness of Plan4Past, showing that a classical planner generally performs better with

our compilation method than with other existing compilation methods for ltlf goals over the considered

benchmarks.

Chapter 6: FOND Planning for Temporally Extended Goals in Pure-Past Linear Temporal

Logic

In this chapter, we study nondeterministic planning (FOND) for temporally extended goals expressed in

ppltl. Although ppltl is as expressive as ltlf , FOND planning for ppltl goals remains EXPTIME-

complete, as for standard FOND planning, instead of becoming 2EXPTIME-complete as when ltlf is used.

As for classical planning, we introduce a direct novel technique for FOND planning for ppltl goals that is

optimal with respect to computational complexity and is also effective in practice. In particular, we present

a notably simple encoding of FOND planning for ppltl goals into standard FOND planning for reachability

goals, which is based on the observations made in Chapter 4. As was the case for classical planning examined

in Chapter 5, the new encoding only introduces few fluents (at most linear in the ppltl goal) without adding

any spurious actions and allows planners to lazily build the relevant part of the deterministic automaton for

the goal formula on-the-fly during the planning search. Additionally, we provide an encoding variant that

does not introduce derived predicates, which are not well supported by FOND planners. Such an encoding

variant is still polynomially related to the size of the ppltl goal formula. We formally prove the correctness

of the approach and implement both encodings in the open-source system Plan4Past, which can be used

along with state-of-the-art FOND planners. Finally, we provide experimental evidence of its effectiveness

when compared to existing approaches that handle ltlf temporally extended goals.
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Chapter 7: Declarative Trace Alignment via Automated Planning

In this chapter, we consider the problem of declarative trace alignment, where the process model is a for-

mal specification expressed by ltlf or ldlf formulas. After describing the problem of trace alignment in

business process management, we provide a formally correct reduction of such a problem to cost-optimal

planning that allows us to resort to state-of-the-art automated planners. Then, we devise two different PDDL

encodings solving the trace alignment problem along with several optimizations to increase performance and

scalability. We implement such encodings in an open-source tool called TraceAligner, which is currently

the best-performing tool to align log traces. TraceAligner is released under the MIT license. Finally, we

empirically evaluate TraceAligner on a set of extensive benchmarks, showing that our approach significantly

outperforms existing ad-hoc solutions.

Chapter 8: Natural Language to Flow Construction via Automated Planning

In this chapter, we describe a practical industrial application combining some of the topics we have previously

tackled in the dissertation. In particular, we give an overview of our newly released Python package NL2LTL

that leverages the latest techniques in natural language understanding (NLU) and large language models

(LLMs) to translate English inputs to ltl formulas. Such an interface allows direct translation to formal

languages that a reasoning system can use while, at the same time, allowing the end user to provide inputs

in natural language without having to understand the details of the underlying formal language in a system.

The package comes with support for a set of default ltl patterns, corresponding to popular DECLARE

templates, but is also fully extensible to new domains so adopters of the package can configure it to their

needs. The package has been open-sourced and is free to use for the AI community under the MIT license.

Finally, we provide a glimpse of the envisioned industrial use of NL2LTL for business automation.

Chapter 9: Conclusions

This chapter concludes the dissertation by providing a summary of the contributions presented. We also

provide an overview of the impact that our work has already had on the AI and Formal Methods communities.

Finally, we describe the most relevant open research questions that remain to be explored.

Collaborations

All the works presented in this dissertation were developed together with several collaborators. Besides

contributing with ideas and discussions, my specific contributions to each work are highlighted in the following

paragraphs.
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My specific contribution to the joint work in Chapter 3 has concerned the development of the algorithm

to transform a ppltl (resp., ppldl) formula into a dfa in single exponential time and most of the theoretical

results on the relationship between ppltl/ppldl and all other related formalisms, including first-order logic,

regular expressions, and ltlf/ldlf .

For the works in Chapters 4, 5, and 6, my specific contribution has been both theoretical and practical.

On the one hand, I developed the theoretical foundations of the technique, devised the compact encoding,

and proved its correctness. On the other hand, I am the main author and contributor of the implementation

of the novel encoding in Plan4Past.

In the work in Chapter 7, my contribution has been both theoretical and practical. While I partially

contributed to the extension of some theoretical results presented before in (De Giacomo et al., 2017), I

devised several new encodings in PDDL independently. From a practical perspective, I am the main author

and contributor of the implementation of new encodings in TraceAligner, which I experimentally tested.

Lastly, the work in Chapter 8 was started, and a significant portion of it completed, during an internship

in the AI Composition Lab at IBM Research, Cambridge (USA) in Summer 2022, mentored by Tathagata

Chakraborti. My specific contribution to this joint work has concerned theoretical and practical aspects,

ranging from the problem definition to the implementation.

1.4 Publications

The findings in this dissertation are based on several publications presented, accepted, or to be submitted

to premier conferences or journals in Artificial Intelligence. In chronological order:

• Giuseppe De Giacomo, Antonio Di Stasio, Francesco Fuggitti, and Sasha Rubin. Pure-Past Linear

Temporal and Dynamic Logic on Finite Traces. In Proceedings of the Twenty-Ninth International

Joint Conference on Artificial Intelligence (IJCAI), pages 4959–4965, Survey Track, 2020.

• Luigi Bonassi, Giuseppe De Giacomo, Marco Favorito, Francesco Fuggitti, Alfonso Emilio Gerevini, and

Enrico Scala. Planning for Temporally Extended Goals in Pure-Past Linear Temporal Logic. In Proceed-

ings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS),

pages 61–69, 2023.

– This work received the Best Student Paper Award.

• Francesco Fuggitti and Tathagata Chakraborti. NL2LTL – A Python Package for Converting Natural

Language (NL) Instructions to Linear Temporal Logic (LTL) Formulas. In Proceedings of the Thirty-
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Third International Conference on Automated Planning and Scheduling (ICAPS), System Demonstra-

tion Track, 2023, GitHub: https://github.com/IBM/nl2ltl.

– This work received the Best System Demonstration Award Runner-Up.

• Luigi Bonassi, Giuseppe De Giacomo, Marco Favorito, Francesco Fuggitti, Alfonso Emilio Gerevini,

and Enrico Scala. FOND Planning for Pure-Past Linear Temporal Logic Goals. In Proceedings of the

Twenty-Sixth European Conference on Artificial Intelligence (ECAI), pages 279–286, 2023.

• Giuseppe De Giacomo, Francesco Fuggitti, Fabrizio Maria Maggi, Andrea Marrella, and Fabio Patrizi.

Declarative Trace Alignment via Automated Planning. To be submitted to the Journal of Artificial

Intelligence Research, 2023.

My doctoral work has also partly been devoted to developing and maintaining research tools, which

have been published and presented in the system demonstration tracks of premier conferences on Artificial

Intelligence or published in software journals. In chronological order:

• Francesco Fuggitti. LTLf2DFA. In Zenodo Repository, 2019. Doi: 10.5281/zenodo.3888410, GitHub:

https://github.com/whitemech/LTLf2DFA, Website: http://ltlf2dfa.diag.uniroma1.it.

• Francesco Fuggitti. FOND4LTLf. In Zenodo Repository, 2021. Doi: 10.5281/zenodo.4876281, GitHub:

https://github.com/whitemech/FOND4LTLf.

• Giuseppe De Giacomo and Francesco Fuggitti. FOND4LTLf : FOND Planning for ltlf/ppltl Goals

as a Service. In Proceedings of the International Conference on Autonomous Planning and Scheduling

(ICAPS), System Demonstration Track, 2021.

• Marco Favorito and Francesco Fuggitti. pddl. In the official AI-Planning GitHub organization, 2022.

GitHub: https://github.com/AI-Planning/pddl.

• Tathagata Chakraborti, Yara Rizk, Vatche Isahagian, Burak Aksar, and Francesco Fuggitti. From

Natural Language to Workflows: Towards Emergent Intelligence in Robotic Process Automation. In

Proceedings of the Robotic Process Automation Forum at the Business Process Management Conference

(RPA @ BPM), pages 123–137, 2022.

• Francesco Fuggitti and Tathagata Chakraborti. NL2LTL – A Python Package for Converting Natural

Language (NL) Instructions to Linear Temporal Logic (LTL) Formulas. In Proceedings of the Thirty-

Seventh AAAI Conference on Artificial Intelligence (AAAI), pages 16428–16430, System Demonstra-

tion Track, 2023, GitHub: https://github.com/IBM/nl2ltl.

10

https://github.com/IBM/nl2ltl
https://github.com/whitemech/LTLf2DFA
http://ltlf2dfa.diag.uniroma1.it
https://github.com/whitemech/FOND4LTLf
https://github.com/AI-Planning/pddl
https://github.com/IBM/nl2ltl


• Giuseppe De Giacomo, Francesco Fuggitti, Fabrizio Maria Maggi, Andrea Marrella, and Fabio Patrizi.

A Tool for Declarative Trace Alignment via Automated Planning. In the Journal of Software Impacts,

volume 16, May 2023, GitHub: https://github.com/whitemech/TraceAligner.
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Chapter 2

Preliminaries

In the following sections, we will briefly introduce some of the basic notations and concepts pertaining to

finite automata theory, temporal logic formalisms, and automated planning that will be used throughout the

rest of the dissertation.

2.1 Finite Automata Theory

Finite-state automata are one of the most fundamental mathematical models of computation in Computer

Science. For this reason, finite-state automata are often at the basis of theoretical developments as they

represent computational devices, which can be implemented with hardware or software to simulate digital

circuits or computer programs (Hopcroft et al., 2001).

2.1.1 Regular Languages

There is a tight connection between automata theory and formal languages. In fact, alphabets, strings, and

languages are among the basic concepts revolving around automata theory. Following (Hopcroft et al., 2001),

an alphabet is a finite, nonempty set of symbols that is commonly denoted as Σ. A string (or simply word)

represents a finite sequence of symbols drawn from an alphabet Σ. The empty string is defined as a string

without any occurrences of symbols, and it is usually denoted as ϵ. The length of a word w is denoted as |w|.

The notation Σ∗ defines the set of all possible strings, including the empty string, that can be formed using

the symbols in an alphabet Σ. Finally, a set of words chosen from some alphabet Σ∗ is called a language.

Given an alphabet Σ and a language L ⊆ Σ∗, we say that L is a language over Σ. Observe that, although

languages may have an infinite number of words, the alphabet over which they are defined must be finite.

Regular languages are a specific class of languages that can be expressed with a regular expression (re)
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or a finite automaton. In this way, automata can be seen as devices to tell whether a certain language is

recognized (i.e., accepted) or not. Also, finite automata are often classified based on the recognized language

as, e.g., in the well-known Chomsky hierarchy (Chomsky, 1956).

2.1.2 Deterministic Finite-state Automata

Given a finite nonempty alphabet Σ, a finite word is an element of Σ∗, i.e., a finite sequence σ0, . . . , σn

of symbols from Σ. Automata on finite words define (finitary) languages, namely, sets of finite words.

Following (Vardi, 1996), we recall the definitions of different types of finite-word automata.

A Deterministic Finite-state Automaton (dfa) is a tuple A = ⟨Σ, Q, q0, δ, F ⟩, where (i) Σ is a finite input

alphabet ; (ii) Q is a finite non-empty set of states; (iii) q0 ∈ Q is the initial state; (iv) δ : Q × Σ → Q is

the transition function that prescribes how the automaton moves from a state q to a state q′ while reading

a symbol σ; (v) F ⊆ Q is the set of accepting states.

A run of an automaton A on a finite word w = σ0, . . . , σn ∈ Σ∗ is a finite sequence of states q0, . . . , qn ∈ Q

such that q0 is the initial state and qi+1 = δ(qi, σ) for 0 ≤ i < n. Consequently, deterministic automata

have a unique run on a single input. Also, for convenience, when the transition function is deterministic, the

transition function can be generalized to a function of the form δ∗ : Q×Σ∗ → Q for sequences of symbols in

Σ inductively as δ∗(q, ϵ) = q for empty strings and δ∗(q, wσ) = δ(δ∗(q, w), σ) for any state q ∈ Q, any word

w ∈ Σ∗ and symbols σ ∈ Σ. A run on a word w is accepting if δ∗(q0, w) ∈ F , and the set of words accepted

by A, written as L(A), is called the language of A.

Generally, an automaton is represented as an edge-labeled directed graph, where nodes represent automa-

ton states; edges are labeled by symbols in Σ; there is an initial state; and some set of states is considered

accepting. A graphical representation of a deterministic automaton is depicted in Figure 2.1. If the transition

function is defined for all states in Q and all symbols in Σ (i.e., it is a total function), the dfa is said to be

complete. An arbitrary dfa can always be completed by introducing a dummy sink state and updating the

definition of the transition function to the sink state when previously undefined. This procedure is called

completion.

In general, automata support structural operations. Structural operations change the structure of the

automata without modifying the recognized language. Given a dfa A = ⟨Σ, Q, q0, δ, F ⟩, there exists a

unique equivalent minimal dfa Am such that L(A) = L(Am) and |Qm| ≤ |Q| and there is no other dfa

A′ accepting the same language with fewer states than |Qm| (modulo state renaming). Moreover, any dfa

can be minimized through the well-known minimization algorithm. The best complexity known for the

minimization algorithm is O(n log n), where n is the number of states of the automaton (Hopcroft et al.,
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Figure 2.1: A graphical representation of a deterministic finite-state automaton that accepts strings of zeros
and ones with an even number of zeros. Circles represent automaton states; double circles represent those
automaton states that are accepting. Arrows are labeled with symbols and represent automaton transitions.
The initial state is the circle with an incoming edge labeled with “start”.

2001).

Another way to simplify an automaton is the trimming procedure. Basically, the trimming procedure

removes all the unreachable states from the initial state and all the states that do not reach an accepting

state, thus leaving only those states that are reachable from the initial state and lead to an accepting state.

Boolean Operations on Deterministic Automata

Deterministic automata are closed under Boolean operations: complementation, intersection, and union. In

particular, the complement of a complete dfa A = ⟨Σ, Q, q0, δ, F ⟩ is denoted as Ā = ⟨Σ, Q, q0, δ, Q − F ⟩.

Basically, the completion of A consists of inverting the acceptance condition. Thus, Ā accepts only the words

that are not accepted by A, formally, L(Ā) = Σ∗ − L(A).

Given two deterministic complete automata A1 = ⟨Σ, Q1, q
1
0 , δ1, F1⟩ and A2 = ⟨Σ, Q2, q

2
0 , δ2, F2⟩ defined

over the same alphabet Σ, their product under one of the Boolean binary operator ⊙ ∈ {∧,∨} is a dfa

A⊙ = ⟨Σ, Q1 × Q2, (q
1
0 , q

2
0), δ, F

′⟩, where the new transition function δ is defined as δ((q1, q2), σ) = (q′1, q
′
2)

if and only if q′1 = δ1(q1, σ) and q
′
2 = δ2(q2, σ) and F

′ = {(q1, q2) | q1 ∈ F1 ⊙ q2 ∈ F2}. Intuitively, the new

transition function δ prescribes the simultaneous execution of the two automata. In the case of intersection,

the acceptance condition specifies that A∩ accepts a word w if both A1 and A2 accept w. Thus, the language

L(A∩) recognized by A∩ is formally defined as L(A∩) = L(A1) ∩ L(A2). On the contrary, in the case of

union, the acceptance condition specifies that A∪ accepts a word w if at least one of the two dfas A1 or A2

accepts w. Formally, L(A∪) = L(A1) ∪ L(A2).

2.1.3 Nondeterministic Finite-state Automata

A Nondeterministic Finite-state Automaton (nfa) is a tuple defined exactly as a dfa except for the transition

δ. In the case of nfas, the transition function δ becomes a transition relation as δ : Q× Σ×Q. Intuitively,

a transition can be seen as a triplet (q, σ, q′) ∈ δ. For nondeterministic automata, there can be two triplets

(q, σ, q′) ∈ δ and (q, σ, q′′) ∈ δ with q′ ̸= q′′. In other words, in nondeterministic automata, for every state
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and symbol, there can be multiple possible transitions. Alternatively, a transition function δ returning sets of

states can be defined as δ(q, σ) = {q′ | (q, σ, q′) ∈ δ}. In this way, deterministic automata can be considered

a special case of nondeterministic automata (i.e., when |δ(q, σ)| = 1, for all q ∈ Q and σ ∈ Σ). As for dfas, a

run of an automaton A on a finite word w = σ0, . . . , σn ∈ Σ∗ is a finite sequence of states q0, . . . , qn ∈ Q such

that q0 is the initial state and (q, σ, qi+1) ∈ δ for 0 ≤ i < n. The run is accepting when qn ∈ F . However,

unlike dfas, an nfa can have multiple runs on a specified input word. Thus, a word w is accepted by A if

there exists an accepting run of A on w.

Surprisingly, every language that can be represented by an nfa can also be described by some dfa. In fact,

an nfa An can be converted to an equivalent dfa Ad recognizing the same language (i.e., L(An) = L(Ad))

through the so-called subset construction (Rabin and Scott, 1959). Intuitively, the subset construction

involves building all subsets of the set of states of an nfa. The subset construction is also known as the

process of determinization. Generally, an nfa characterized by n states (i.e., |Q| = n) can be determinized,

getting a dfa that is exponentially larger than the nfa, namely with 2n states. Hence, although both nfas

and dfas are equally expressive formalisms, nfas are exponentially more succinct than dfas. However,

empirical evidence has demonstrated that oftentimes, the size of the resulting dfa is comparable to or even

smaller (after minimization) than the original nfa (Tabakov and Vardi, 2005).

Often, in automata theory, a nondeterministic automaton is said to be nonempty if L(A) ̸= ∅, whereas

it is nonuniversal when L(A) ̸= Σ∗. Checking whether an automaton is nonempty or nonuniversal is one of

the most common algorithmic techniques employed in automata theory. For instance, as we will see later,

the algorithm for the satisfiability of temporal logic is based on a nonemptiness test.

Boolean Operations on Nondeterministic Automata

As dfas, nondeterministic automata are closed under intersection and union. Given two nondeterministic

automata A1 = ⟨Σ, Q1, q
1
0 , δ1, F1⟩ and A2 = ⟨Σ, Q2, q

2
0 , δ2, F2⟩ defined over the same alphabet Σ, their

intersection is an nfa A∩ that simultaneously runs both A1 and A2 on the input word. Specifically, the

intersection A∩ is a tuple ⟨Σ, Q1 ×Q2, (q
1
0 , q

2
0), δ, F1 × F2⟩, where δ is defined as ((q, t), σ, (q′, t′)) ∈ δ if and

only if (q, σ, q′) ∈ δ1 and (t, σ, t′) ∈ δ2. As in the case of dfas, the language L(A∩) recognized by A∩ is

formally defined as L(A∩) = L(A1) ∩ L(A2).

Similarly, given two nfas as previously defined, the union of these two nondeterministic automata is an

nfa A∪ = ⟨Σ, Q1∪Q2, q0, δ, F1∪F2⟩, where δ = δ1∪δ2, that is (q, σ, q′) ∈ δ1 if q ∈ Q1, otherwise (q, σ, q
′) ∈ δ2

if q ∈ Q2, and q0 is the new starting state. In other words, the union A∪ is simply built by introducing

a new starting state q0 with two ϵ-transitions from q0 to q10 and q20 , respectively. In general, ϵ-transitions

generalize the definition of nfa, allowing the automaton to have transitions that do not consume any input
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symbol. Every nfa with ϵ-transitions can be easily converted to a standard nfa. Moreover, without loss

of generality, we assume Q1 and Q2 are disjoint. Analogously, the language L(A∪) recognized by A∪ is

L(A∪) = L(A1) ∪ L(A2).

Regarding complementation, while complementing the acceptance condition suffice for a dfa, since an nfa

can have many runs on a given input word, all runs should reject such an input word. Thus, complementing

an nfa requires to determinize it first.

2.1.4 Alternating Finite-state Automata

An Alternating Finite-state Automaton (afa) is a tuple A = ⟨Σ, Q, q0, δ, F ⟩, where (i) Σ is a finite input

alphabet ; (ii) Q is a finite non-empty set of states; (iii) q0 ∈ Q is the initial state; (iv) δ : Q×Σ→ B+(Q) is

the transition function, where B+(Q) is the set of positive Boolean formulas over Q (i.e., built from states of Q

using ∧, ∨, and the constants true and false); (v) F ⊆ Q is the set of accepting states. While nondeterministic

automata have the power of existential choice over transitions, alternating automata are computational

models with the power of both existential and universal choice over transitions (Brzozowski and Leiss, 1980;

Chandra et al., 1981). In fact, the automaton transition function δ can be generally represented with formulas

from B+(Q), commonly denoted with θ. For instance, the transition δ(q, σ) = {q1, q2, q3} of an nfa, can be

rewritten as δ(q, σ) = q1 ∨ q2 ∨ q3. While in alternating automata δ(q, σ) can be any arbitrary formula from

B+(Q), in nfas no transition uses the ∧ connective, and in dfas no transition uses the ∨ connective. An

example of a possible transition of an afa is δ(q1, σ) = q2 ∨ (q3 ∧ q4), meaning that the automaton accepts

the input σw, with σ is a symbol and w is a word, from state q1 when it accepts the input w from q2 or from

both q3 and q4.

The possibility of universal choice in afa transitions changes the definition of run for afas. While a run

for dfas and nfas is defined as a sequence of states, a run for afas is a tree.

A tree T is a directed connected acyclic graph with a (finite or infinite) collection of nodes, which we

denote as nodes(T ). In general, in the structure of a tree, one node is called root, and it is denoted by ε.

Every non-root node has a unique parent – we say that s is the parent of t, and t is a child of s if there is

an edge from s to t – and the root ε has no parent. Each node can have an arbitrary number of children,

and nodes without any children are called leaves. The level of a node x (denoted by level(x)) represents the

shortest distance or depth of x from the root ε. Obviously, level(ε) = 0. A branch β = x0, x1, . . . of a tree

is a (finite or infinite) maximal sequence of nodes such that x0 is the root ε and xi is the parent of xi+1 for

all i ≥ 0. Given a finite alphabet Σ, we define a Σ-labeled tree a pair (T, T ) of a tree T and a mapping T

from nodes(T ) to Σ assigning a symbol in Σ to every node of T . In this way, T is often referred to as the

16



labeled tree. A branch β = x0, x1, . . . of T defines a word T (β) = T (x0), T (x1), . . . comprising the sequence

of labels assigned along the branch.

Therefore, a run of an afa A on a finite word w = σ0, . . . , σn can be seen as a finite Q-labeled tree R

such that R(ε) = q0 and given a node x, if level(x) = i < n with R(x) = q and δ(q, σ) = θ, then the node x

has k children x1, . . . , xk for some k ≤ |Q|, and {R(x1), . . . , R(xk)} satisfies θ.

For instance, if δ(q0, σ0) = (q1 ∨ q2) ∧ (q3 ∨ q4), then the nodes at the first level of the run-tree comprise

either q1 or q2 and also include q3 or q4. The depth of R is at most n, but not all branches need to reach

such depth because if δ(R(x), σi) = true, then the node x does not need to have any children. On the other

hand, if |x| = i < n and R(x) = q, then we cannot have δ(q, σi) = false, since false is not satisfiable. A

run-tree is accepting if all nodes at depth n are labeled by states in F .

Another way to define the acceptance of a word for an afa is given in terms of a function Acc : Σ∗ → 2Q,

where q ∈ Acc(w) is read “input w is accepted from state q”. The function Acc is inductively defined as (i)

Acc(ϵ) = F , meaning that the empty string ϵ is accepted by the set of final states F ; and (ii) q ∈ Acc(σw)

if and only if V |= δ(q, σ) for some V ⊆ Acc(w) with V ⊆ Q, meaning that the input σw is accepted from

a state q if and only if there exist a set of states V such that V ⊆ Acc(w) that also satisfies the Boolean

formula δ(q, σ). Hence, a run of an afa on a finite word w is accepted if q0 ∈ Acc(w). The alternative

acceptance condition for an afa based on the Acc function is equivalent to the one based on the definition

of a run-tree. In fact, an easy induction shows that q ∈ Acc(w) if and only if there is a run-tree on the input

w whose root is labeled by q (Vardi, 1996).

Finally, alternating automata have the same expressive power as nondeterministic automata, but they are

exponentially more succinct. Indeed, given an afa Aa = ⟨Σ, Q, q0, δ, F ⟩, we can compute an equivalent nfa

An = ⟨Σ, 2Q, {q0}, δn, Fn⟩, where Fn = 2F and δn(T, a) = {T ′ | T ′ satisfies
∧
t∈T δ(t, a)} that recognizes the

same language, i.e., L(Aa) = L(An) (Fellah et al., 1990). Such a transformation may require an exponentially

larger number of states in the resulting nfa An, namely 2|Q|. Additionally, converting an afa with |Q| = n

to an equivalent dfa requires 22
n

states in the worst case (Chandra et al., 1981).

Boolean Operations on Alternating Automata

Contrary to nfas, afas are closed under the three main Boolean operations, namely complementation,

intersection, and union. Since intersection and union operations on afas are analogous to the ones on nfas,

we only report the complementation.

To begin with, we define the dual operation on formulas in B+(Q). In particular, given a formula

θ ∈ B+(Q), the dual of θ, denoted as θ, can be obtained applying the following operations: (i) q = q, (ii)

true = false, (iii) false = true, (iv) α ∧ β = α ∨ β, and (v) α ∨ β = α ∧ β. For instance, the dual formula of
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x ∨ (y ∧ x) is x ∨ (y ∧ x) = x ∧ (y ∨ x).

Therefore, the complement of an afa A = ⟨Σ, Q, q0, δ, F ⟩ is another afa denoted as Ā = ⟨Σ, Q, q0, δ, Q−

F ⟩, where δ(q, σ) = δ(q, σ) for all q ∈ Q and σ ∈ Σ. Basically, we apply the previously defined dual

operation to the transition function. Thus, Ā accepts only the words that are not accepted by A, formally,

L(Ā) = Σ∗ − L(A).

2.2 Linear-time Temporal Logic

Linear-time Temporal Logic (ltl) is a well-known temporal logic with modalities referring to time that was

originally introduced in (Pnueli, 1977) as a specification language for the formal verification of computer

programs. Consequently, ltl has been widely employed to formally describe complex properties over time

in a myriad of applications and contexts, including Formal Methods, Artificial Intelligence, and Business

Process Management.

Syntax

An ltl formula φ is defined over a nonempty set of propositional symbols P, it is closed under the Boolean

connectives (∧,∨,¬), the unary temporal operator next-time (X) and the binary temporal operator until (U).

Formally, given a set of propositional symbols P, ltl formulas over P are formally defined by the following

grammar:

φ ::= p | ¬φ | φ ∧ φ | Xφ | φUφ

where p ∈ P. There are also other logical and temporal operators that are abbreviations of primitive ones.

For common logical abbreviations, we have: (i) φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2), (ii) φ1 → φ2 ≡ ¬φ1 ∨ φ2, (iii)

φ1 ↔ φ2 ≡ (φ1 → φ2) ∧ (φ2 → φ1), (iv) true ≡ p ∨ ¬p, and (v) false ≡ ¬true. As for other temporal

operators, we have the eventually (F) operator Fφ ≡ true Uφ, the always (G) operator Gφ ≡ ¬F¬φ; and the

release (R) operator φ1 Rφ2 ≡ ¬(¬φ1 U¬φ2). Two formulas φ and ψ are equivalent φ ≡ ψ if and only if

they define the same language, i.e., L(φ) = L(ψ).

Intuitively, the next-time operator indicates that a certain proposition must hold in the next time step,

whereas the until operator indicates that a proposition must hold now and at all points in the future until

another proposition becomes true.

Semantics

ltl formulas are interpreted on infinite traces, i.e., ω-words over the alphabet 2P . A trace τ = τ0, τ1, . . . is
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an infinite linearly ordered sequence of states where each state τi is a set of propositional symbols, namely

τi ∈ 2P , for i ∈ N. Given an instant i, the state τi defines a propositional evaluation. Given an infinite trace

τ , an ltl formula φ and a position i ≥ 0, we inductively define when φ holds at position i, written τ, i |= φ,

as follows:

• τ, i |= p iff p ∈ τi (for p ∈ P);

• τ, i |= ¬φ iff τ, i ̸|= φ;

• τ, i |= φ1 ∧ φ2 iff τ, i |= φ1 and τ, i |= φ2;

• τ, i |= Xφ iff τ, i+1 |= φ;

• τ, i |= φ1 Uφ2 iff there exists j ≥ i such that τ, j |= φ2, and τ, k |= φ1 for all k with i ≤ k < j.

A trace τ satisfies φ, written τ |= φ, if the trace τ satisfies the formula φ at the first instant, i.e., τ, 0 |= φ.

Thus, we say that τ is a model of φ.

2.3 Linear-time Temporal and Dynamic Logic on Finite Traces

Although ltl has been widely employed as a specification formalism, many interesting problems, especially

in Artificial Intelligence, have a finite horizon, assuming that the execution stops after a specific task/goal is

achieved. Therefore, many recent works studied and applied versions of ltl evaluated on finite, instead of

infinite, traces. The difference between infinite and finite length traces might look subtle, but in some cases,

the interpretation of a formula on a finite trace completely changes its meaning and its algorithmic usage

with respect to the one on infinite traces. While the idea of using finite-trace semantics for ltl appeared in

some works in the early 2000s (e.g., in (Bacchus and Kabanza, 1996; Baier and McIlraith, 2006b)), the first

formal and thorough study of finite-trace versions of ltl dates back to (De Giacomo and Vardi, 2013).

In this section, we look at Linear-time Temporal Logic interpreted on finite traces (ltlf ) and its proper

extension Linear-time Dynamic Logic (ldlf ) interpreted on finite traces. Analogously to ltl, these logics

express temporal properties in a “pure-future” fashion; namely, their temporal operators only refer to the

present and to the future.

As previously mentioned, ltlf and the extension ldlf have been extensively applied in Artificial In-

telligence and Computer Science. For instance, they have been employed as specification formalisms for

Planning (Bacchus and Kabanza, 1996; Baier and McIlraith, 2006a; Patrizi et al., 2011; Torres and Baier,

2015; De Giacomo and Rubin, 2018; Camacho and McIlraith, 2019), Synthesis (De Giacomo and Vardi, 2015,

2016; Zhu et al., 2017; Camacho et al., 2018), Reinforcement Learning (Camacho et al., 2019b; De Giacomo
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et al., 2019, 2020b), Business Process Management (van der Aalst et al., 2009; Pešić et al., 2010; De Giacomo

et al., 2017), and in many other areas.

2.3.1 Linear-time Temporal Logic on Finite Traces

Syntax

The syntax of ltlf is essentially the same as ltl except for the following additional temporal operators: the

weak-next (WX) operator defined as WXφ ≡ ¬X¬φ, and the end of the trace final ≡WXfalse,

Semantics

As mentioned before, ltlf formulas are evaluated on finite traces. A finite trace τ = τ0, . . . , τn ∈ (2P)∗ is a

finite sequence of states τi, where τi at instant i is a propositional interpretation over the alphabet 2P . We

denote the length n+ 1 of a trace τ with length(τ) and the last element of τ by last(τ) = sn. Given a finite

trace τ , an ltl formula φ and a position i ≥ 0, we inductively define when φ holds at position i < length(τ),

written τ, i |= φ, as follows:

• τ, i |= p iff p ∈ τi (for p ∈ P);

• τ, i |= ¬φ iff τ, i ̸|= φ;

• τ, i |= φ1 ∧ φ2 iff τ, i |= φ1 and τ, i |= φ2;

• τ, i |= Xφ iff i < length(τ)− 1 and τ, i+ 1 |= φ;

• τ, i |= WXφ iff i = length(τ)− 1 or τ, i+ 1 |= φ;

• τ, i |= φ1 Uφ2 iff there exists i ≤ j < length(τ) such that τ, j |= φ2, and τ, k |= φ1 for all k with

i ≤ k < j.

An ltlf formula φ is true in τ , formally written as τ |= φ, if τ, 0 |= φ, namely, it is true in the first instant.

Compared to the semantics on infinite traces of ltl, ltlf semantics is basically the one of ltl but bounded

on the indexes for the next-time and the until operators to characterize the finite nature of the evaluation

trace. Interestingly, on finite traces, we have that ¬Xφ ̸≡ X¬φ, and end ≡ Gfalse characterizes that the trace

is ended.

Usually, sub(φ) denotes the set of all subformulas of φ obtained from the abstract syntax tree of φ (De

Giacomo and Vardi, 2013). For instance, if φ = a ∧ ¬X(b ∨ (c ∨ d)), where a, b, c, d are atomic, then

sub(φ) = {a, b, c, d, (c∨ d), b∨ (c∨ d),X(b∨ (c∨ d)),¬X(b∨ (c∨ d)), a∧¬X(b∨ (c∨ d))}. Thus, the cardinality

of sub(φ), denoted as |sub(φ)|, defines the size of an ltlf formula φ.
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In the following, we report some of the most common ltlf formula example patterns.

Example 2.1. Remarkable ltlf formula patterns are:

• Safety: Gφ, which means “always till the end of the trace φ holds”;

• Liveness: Fφ, which means “eventually before the end of the trace φ holds”;

• Response: GFφ, which means “for any point in the trace, there exists a point later in the trace where

φ holds”;

• Persistance: FGφ means that “there is a point in the trace such that from then on until the end of the

trace φ holds”.

As shown in Example 2.1, no direct nesting of eventually and always temporal operators is significant

in ltlf . However, indirect nesting of eventually and always operators can still produce meaningful and

interesting properties. One example could be G(ψ → Fϕ), which stands for “always, before the end of the

trace, if ψ holds, then ϕ will eventually hold”.

2.3.2 Linear-time Dynamic Logic on Finite Traces

ldlf represents an interesting variation of ltlf . In particular, ldlf can be considered as a merge between

ltlf and Regular Temporal Specifications (ref ), which are basically Regular Expressions (re) interpreted

as a form of temporal specification on finite traces, cf. (De Giacomo and Vardi, 2013).

Although ref is strictly more expressive than ltlf , the absence of a direct construct for negation and for

conjunction makes ref not convenient and suitable to express temporal specifications easily. Furthermore,

since negation may give rise to an exponential blow-up of the size of a ref , operations like intersection and

complementation are not straightforward. Therefore, borrowing the syntax from the Propositional Dynamic

Logic (pdl), a logic for computer programs introduced in (Fischer and Ladner, 1979), De Giacomo and Vardi

(2013) introduced ldlf as a natural extension of ltlf that also captures ref on finite traces.

Syntax

Given a set of propositional symbols P, an ldlf formula φ is formally defined as follows:

φ ::= tt | ¬φ | φ ∧ φ | ⟨ϱ⟩φ

ϱ ::= ϕ | φ? | ϱ+ ϱ | ϱ; ϱ | ϱ∗

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ
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where p ∈ P, tt is a syntactic construct that stands for the true ldlf formula (not to be confused with the

propositional true ∈ P, which is an abbreviation for p∨¬p, for some p ∈ P), and ϱ denotes path expressions,

which are re over propositional formulas ϕ with the addition of the test construct φ?, typical of pdl. ldlf

shares the common abbreviations for logical operators as in ltl. Other abbreviations are: [ϱ]φ ≡ ¬⟨ϱ⟩¬φ as

in pdl, ff ≡ ¬tt for the false ldlf formula, ϕ ≡ ⟨ϕ⟩tt to denote the occurrence of the propositional formula

ϕ, end ≡ [true]ff to express that the trace has ended, and final ≡ ⟨true⟩end to denote the last element of the

trace.

Intuitively, ⟨ϱ⟩φ states that, from the current instant in the trace, there exists an execution satisfying

the re ϱ such that its last instant satisfies φ. On the other hand, [ϱ]φ states that, from the current instant,

all executions satisfying the re ϱ are such that their last instant satisfies φ. Test constructs put into the

execution path a check for the satisfaction of additional ldlf formulas.

Semantics

Like ltlf , ldlf formulas are interpreted on finite traces. Given a finite trace τ = τ0, . . . , τn, we denote by

τi,j the sub-trace τi, . . . , τj−1 if j ≤ length(τ), or the sub-trace τi, . . . , τn when j > length(τ). Note that when

i ≥ length(τ), τi,j denotes the empty trace. Given a finite, possibly empty, trace τ , an ldlf formula φ, and

an instant i, we say that φ holds at i, written τ, i |= φ, by (mutual) induction, when:

• τ, i |= tt ;

• τ, i |= ¬φ iff τ, i ̸|= φ;

• τ, i |= φ1 ∧ φ2 iff τ, i |= φ1 and τ, i |= φ2;

• τ, i |= ⟨ϱ⟩φ iff there exists a j such that i ≤ j and τi,j ∈ R(ϱ) and τ, j |= φ,

where the relation τi,j ∈ R(ϱ) is inductively defined as:

• τi,j ∈ R(ϕ) if j = i+ 1, i < length(τ), and τi |= ϕ;

• τi,j ∈ R(φ?) if j = i and τ, i |= φ;

• τi,j ∈ R(ϱ1+ϱ2) if τi,j ∈ R(ϱ1) or τi,j ∈ R(ϱ2);

• τi,j ∈ R(ϱ1; ϱ2) if there exists i ≤ k ≤ j such that τi,k ∈ R(ϱ1) and τk,j ∈ R(ϱ2);

• τi,j ∈ R(ϱ∗) if j = i or there exists k such that τi,k ∈ R(ϱ) and τk,j ∈ R(ϱ∗).

If i ≥ length(τ), the above definitions still apply. A trace τ satisfies an ldlf formula φ, written τ |= φ, if

τ, 0 |= φ.

In the following, we report some ldlf formula examples and how such formulas translate to the ltlf

patterns shown in Example 2.1.
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Example 2.2. Remarkable ldlf formula patterns are:

• Safety: [true∗]φ is equivalent to the ltlf formula Gφ;

• Liveness: ⟨true∗⟩φ is equivalent to the ltlf formula Fφ;

• Conditional Response: [true∗](φ1 → ⟨true∗⟩φ2) is equivalent to the ltlf formula G(φ1 → Fφ2);

• Ordered occurrence: ⟨true∗;φ1; true
∗;φ2; true

∗⟩end is equivalent to the ref (true∗;φ1; true
∗;φ2; true

∗),

as ldlf captures any ref ϱ with the formula ⟨ϱ⟩end (De Giacomo and Vardi, 2013; Brafman et al.,

2018);

• Alternating occurrence: ⟨(ψ;φ)∗⟩end is equivalent to the ref (ψ;φ)∗.

The Alternating occurrence pattern shown in the previous example is a typical formula that cannot be

directly translated to ltlf . In general, ltlf (and ltl) are not able to capture regular structural properties

on a path (Wolper, 1981).

2.3.3 Expressiveness

Generally, two logics are equally expressive when they recognize the same set of languages. In our case,

ltlf is as expressive as First-Order Logic (fol) on finite linear ordered sequences1 (Gabbay et al., 1980; De

Giacomo and Vardi, 2013) and star-free re (McNaughton and Papert, 1971). However, re on finite traces

(i.e., ref ) is strictly more expressive than ltlf (De Giacomo and Vardi, 2013). In particular, ref is as

expressive as Monadic Second-Order Logic (mso) on bounded sequences (Khoussainov and Nerode, 2001).

On the other hand, ldlf has exactly the same expressive power of mso (De Giacomo and Vardi, 2013),

and, therefore, as ref . As a consequence, from an expressiveness perspective, ldlf brings advantages over

ltlf . In fact, without any additional computational cost, ldlf is strictly more expressive than ltlf but

keeps almost all the readability and convenience of ltlf .

Finally, according to (De Giacomo and Vardi, 2013), ltlf and ref can be translated in ldlf in linear

time (the inverse does not always hold), whereas the translation of ldlf in ref is, in general, non-elementary.

For completeness, we report the following recursive translation function ldlf(·) from (De Giacomo and Vardi,

1More precisely, monadic first-order logic on finite linearly ordered domains, sometimes also denoted as FO[<].
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2013) to translate every ltlf formula as input into an equivalent ldlf formula in linear time:

ldlf(ϕ) = ⟨ϕ⟩tt

ldlf(¬φ) = ¬ldlf(φ)

ldlf(φ1 ∧ φ2) = ldlf(φ1) ∧ ldlf(φ2)

ldlf(Xφ) = ⟨tt⟩ldlf(φ ∧ ¬end)

ldlf(φ1 Uφ2) = ⟨(ldlf(φ1)?; tt)
∗⟩ldlf(φ2 ∧ ¬end)

2.4 From Linear Temporal and Dynamic Logics on Finite Traces

to Automata

The translation from ltlf and ldlf to automata is one of the main building blocks of several reasoning ap-

proaches developed in Computer Science and Artificial Intelligence, such as Reactive Synthesis (De Giacomo

and Vardi, 2015; Zhu et al., 2017; Camacho et al., 2018), FOND Planning for temporally extended goals (De

Giacomo and Rubin, 2018; Camacho and McIlraith, 2019), and Reinforcement Learning with non-Markovian

rewards (Camacho et al., 2019b; De Giacomo et al., 2019, 2020b).

In general, the translation of ltlf and ldlf to automata includes several steps. Usually, the first one

consists of building an afa, from which one can derive an nfa, and finally apply determinization techniques

to get a dfa. Overall, this approach requires doubly-exponential time (De Giacomo and Vardi, 2013) in the

worst case, as the resulting dfa can be of doubly exponential size with respect to the size of the formula.

In the following sections, we only provide the basic algorithm to translate an ltlf formula to the corre-

sponding finite-state automata (De Giacomo and Vardi, 2013; Brafman et al., 2018), and then we provide

an overview of the recent state-of-the-art approaches and tools. For the algorithm’s extension to ldlf , we

refer the reader to (Brafman et al., 2018).

2.4.1 Translation to Alternating Finite-state Automata

Given an ltlf formula φ, the set of finite traces τ that satisfy φ defines the language of φ. Formally,

L(φ) = {τ | τ |= φ}. We can build an automaton Aφ that accepts the same set of finite traces that makes

φ true, i.e., they define the same language L(φ) = L(Aφ). First, we see how one can build an alternating

automaton from a given ltlf formula in linear time (Chandra et al., 1981; Leiss, 1981; Büchi, 1990).

The key idea of the translation algorithm is to use subformulas as states of the automaton and generate

suitable transitions mimicking the inductive semantics of temporal formulas (De Giacomo and Vardi, 2013).

In particular, the technique uses a generalization of the concept of subformulas derived from the well-known
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Fischer-Ladner closure, introduced for pdl by Fischer and Ladner (1979), which we denote as cl(φ). We may

also refer to the Fischer-Ladner closure simply as the syntactic closure. Specifically, the syntactic closure

of an ltlf formula comprises its subformulas, and it is computed by exploiting the well-known fixpoint

characterization of ltl operators (Gabbay et al., 1980; Manna, 1982; Emerson, 1990) through the following

expansion laws:

Fϕ ≡ ϕ ∨ X(Fϕ)

Gϕ ≡ ϕ ∧WX(Gϕ)

ϕ1 Uϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ X(ϕ1 Uϕ2))

ϕ1 Rϕ2 ≡ ϕ2 ∧ (ϕ1 ∨WX(ϕ1 Rϕ2)).

Here, observe that the laws for the G and R temporal operators are slightly different from the usual ltl

laws. The difference lies in the presence of the WX operator instead of the X one. The reason for this

change in ltlf is to account for the finiteness of traces, as the WX operator checks the existence of the next

state. When we consider ltlf formulas, the fixpoint characterization splits the formula into a propositional

formula on the current instant and a temporal formula to be checked at the next instant. The fixpoint

characterization of an ltlf formula can be computed by recursively applying the following transformation

function xnf(·):

• xnf(p) = p;

• xnf(¬ϕ) = ¬xnf(ϕ);

• xnf(ϕ1 ∧ ϕ2) = xnf(ϕ1) ∧ xnf(ϕ2);

• xnf(ϕ1 ∨ ϕ2) = xnf(ϕ1) ∨ xnf(ϕ2);

• xnf(Xϕ) = Xϕ;

• xnf(WXϕ) = WXϕ;

• xnf(Fφ) = xnf(φ) ∨ X(Fφ);

• xnf(Gφ) = xnf(φ) ∧WX(Gφ);

• xnf(ϕ1 Uϕ2) = xnf(ϕ2) ∨ (xnf(ϕ1) ∧ X(ϕ1 Uϕ2));

• xnf(ϕ1 Rϕ2) = xnf(ϕ2) ∧ (xnf(ϕ1) ∨WX(ϕ1 Rϕ2)).

Proposition 2.3 (Li et al. (2019)). Every ltlf formula φ can be converted to its xnf (neXt Normal Form)

in linear-time in the size of the formula. Moreover, xnf(φ) is equivalent to φ.
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Now, the syntactic closure of an ltlf formula is composed of the resulting subformulas after applying

the expansion of the fixpoint characterization. In particular, the syntactic closure cl(φ) of an ltlf formula

φ is the smallest set of ltlf formulas satisfying the following axioms and rules:

• φ ∈ cl(φ);

• ¬p ∈ cl(φ) if p ∈ cl(φ);

• p ∈ cl(φ) if ¬p ∈ cl(φ);

• φ1 ∧ φ2 ∈ cl(φ) implies φ1, φ2 ∈ cl(φ);

• φ1 ∨ φ2 ∈ cl(φ) implies φ1, φ2 ∈ cl(φ);

• Xφ ∈ cl(φ) implies φ ∈ cl(φ);

• WXφ ∈ cl(φ) implies φ ∈ cl(φ);

• Fφ ∈ cl(φ) implies φ,X(Fφ) ∈ cl(φ);

• Gφ ∈ cl(φ) implies φ,WX(Gφ) ∈ cl(φ);

• φ1 Uφ2 ∈ cl(φ) implies φ1, φ2,X(φ1 Uφ2) ∈ cl(φ);

• φ1 Rφ2 ∈ cl(φ) implies φ1, φ2,WX(φ1 Rφ2) ∈ cl(φ);

• end ∈ cl(φ) implies Gfalse, false ∈ cl(φ).

Observe that given an ltlf formula φ, we can compute cl(φ) in linear time. Also, for simplicity, we assume

formulas to be in Negation Normal Form (nnf) using the nnf(φ) function. A formula is in nnf when

it exploits the common logical abbreviations, and negations are pushed inside the formulas as much as

possible, leaving negations only in front of atomic propositions. Putting a formula in nnf can be done in

linear time.

The construction of the alternating automaton Aφ = ⟨Σ, Q, q0, ∂, F ⟩ corresponding to an ltlf formula

φ is straightforward once we characterize the transition function ∂. In particular, the transition function

∂(φ,Π) takes as input an ltlf formula φ (implicitly quoted, i.e., viewed as an atomic proposition) in nnf and

a propositional interpretation Π for P and returns a positive Boolean formula whose atoms are (implicitly

quoted) subformulas of φ.
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∂(p,Π) = true if p ∈ Π

∂(p,Π) = false if p /∈ Π

∂(¬p,Π) = false if p ∈ Π

∂(¬p,Π) = true if p /∈ Π

∂(φ1 ∧ φ2,Π) = ∂(φ1,Π) ∧ ∂(φ2,Π)

∂(φ1 ∨ φ2,Π) = ∂(φ1,Π) ∨ ∂(φ2,Π)

∂(Xφ,Π) = φ ∧ ¬end ≡ φ ∧ Ftrue

∂(WXφ,Π) = φ ∨ end ≡ φ ∨ Gfalse

∂(φ1 Uφ2,Π) = ∂(φ2,Π) ∨ (∂(φ1,Π) ∧ ∂(X(φ1 Uφ2),Π))

∂(Fφ,Π) = ∂(φ,Π) ∨ ∂(X(Fφ),Π)

∂(Gφ,Π) = ∂(φ,Π) ∧ ∂(WX(Gφ),Π)

(2.1)

Intuitively, for the atomic case, given the subformula p – representing the automaton state – and the

symbol Π read from a trace, the function ∂(p,Π) evaluates to true if p belongs to Π. The ∂(p,Π) function

directly follows the semantics of ltlf formulas. This is clear when comparing it with the expansion laws

previously seen.

For empty traces ϵ, we define ∂(ψ, ϵ) inductively exactly as above except for the following cases:

∂(p, ϵ) = false

∂(¬p, ϵ) = false

∂(Xφ, ϵ) = false

∂(WXφ, ϵ) = true

∂(φ1 Uφ2, ϵ) = false

∂(Fφ, ϵ) = false

∂(Gφ, ϵ) = true

(2.2)

Observe that ∂(φ, ϵ) is always either true or false.

Given an ltlf formula φ, an equivalent afa Aφ is a tuple Aφ = ⟨Σ, Q, q0, ∂, F ⟩, where Σ = 2P is the

input alphabet; Q = cl(φ) is the set of states; q0 = φ is the initial state; ∂(ψ,Π) is the transition function;
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and F = {ψ | ψ ∈ Q and ∂(ψ, ϵ)} is the set of accepting states.

2.4.2 Translation to Nondeterministic Finite-state Automata

Interestingly, the ∂(ψ,Π) function can be directly employed as an auxiliary function in the algorithm to build

the nondeterministic automaton for the ltlf formula. In fact, Algorithm 2.1 takes as input an ltlf formula

φ and outputs an nfa Aφ = ⟨2P , Q, q0, δ, F ⟩ that accepts exactly the traces satisfying φ. The algorithm is a

variant of the one presented in (De Giacomo and Vardi, 2015). The ∂ function is used in lines 3, 9, and 13.

In particular, the one in line 9 is used as a rule to check whether the formula within the condition satisfies

the Boolean formula resulting from ∂(ψ,Π). This means that in order to get the nfa, we do not need to go

through the afa construction beforehand. In other words, when running the algorithm, we just implement

the non-determinization algorithm using recursive calls in line 9 to compute new states of the automaton.

Algorithm 2.1 Algorithm to translate a ltlf formula into its corresponding nfa

Require: ltlf formula φ
Ensure: nfa Aφ = ⟨2P , Q, q0, δ, F ⟩
1: q0 ← {φ}
2: F ← {∅}
3: if (∂(φ, ϵ) = true) then
4: F ← F ∪ {q0}
5: end if
6: Q← {q0, ∅}
7: δ ← ∅
8: while (Q or δ change) do
9: for (q ∈ Q) do

10: if (q′ |= ∧
(ψ∈q) ∂(ψ,Π)) then

11: Q← Q ∪ {q′}
12: δ ← δ ∪ {(q,Π, q′)}
13: if (

∧
(ψ∈q′) ∂(ψ, ϵ) = true) then

14: F ← F ∪ {q′}
15: end if
16: end if
17: end for
18: end while

The algorithm builds the nfa Aφ for an ltlf formula φ in a forward fashion. In particular, the algorithm

visits every state q seen so far, checks for all the possible transitions from that state, and collects the

results, determining the next state q′, the new transition (q,Π, q′) and if q′ is a final state. Intuitively, the

auxiliary function ∂ emulates the semantic behavior of every ltlf subformula after seeing the propositional

interpretation Π. Obviously, the algorithm continues until it converges, i.e., when states and transitions do

not change.

The states of automaton Aφ are sets of atoms (each atom is a quoted φ subformula) to be interpreted
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as conjunctions. The empty conjunction ∅ stands for true. Then, q′ is a set of quoted subformulas of φ

denoting a minimal interpretation Π such that q′ |= ∧
(ψ∈q) ∂(ψ,Π). Trivially, we have (∅, p, ∅) ∈ δ for every

p ∈ 2P . The following result holds:

Theorem 2.4 (De Giacomo and Vardi (2015)). Algorithm 2.1 is correct, i.e., for every finite trace τ : τ |= φ

if and only if τ ∈ L(Aφ). Moreover, the algorithm terminates in at most an exponential number of steps and

generates a set of states Q whose size is at most exponential in the size of the formula φ.

We further explain how the algorithm works with the following example.

Example 2.5. In this example, we see the execution of the Algorithm 2.1 given the ltlf formula G(a)

with “a” being atomic. At the end of line 7, the components of the nfa are the following: P = {a}, 2P =

{{a}, ∅}, q0 = {Ga}, Q = {q0, ∅}, F = {q0, ∅}, and δ = {(∅, {}, ∅), (∅, {a}, ∅)}. In the following, we examine

each iteration of the algorithm over automaton states:

1. Iteration: we pick the first state q = {Ga}

• with Π = {a} we have:

q′ |=
∧

(ψ∈q)

∂(ψ,Π)

|= ∂(Ga,Π)

|= ∂(a,Π) ∧ ∂(WXGa,Π)

|= true ∧ (“Ga” ∨ “Gfalse”)

The formula true ∧ (“Ga”∨“Gfalse”) is a propositional formula with ltlf formulas as atoms. As

a minimal interpretation we have both q′ = {“Ga”} and q′ = {“Gfalse”}. In both cases, we have

that ∂(ψ, ϵ) = true (where ψ = Ga and ψ = Gfalse), thus our automaton becomes q0 = {Ga}, Q =

{q0, {Gfalse}, ∅}, F = {q0, {Gfalse}, ∅}, and δ = {(∅, {}, ∅), (∅, {a}, ∅), (q0, {a}, q0), (q0, {a}, {Gfalse})}.

• with Π = {} we have:

q′ |=
∧

(ψ∈q)

∂(ψ,Π)

|= ∂(Ga,Π)

|= ∂(a,Π) ∧ ∂(WXGa,Π)

|= false ∧ (“Ga” ∨ “Gfalse”)
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{Ga}start {Gfalse} {}

{a}

{a}

{}, {a}

Figure 2.2: The graphical representation of the nfa computed with Algorithm 2.1 corresponding to the ltlf
formula φ = G(a).

In this case, the propositional formula false ∧ (“Ga”∨ “Gfalse”) always evaluates to false. Hence,

the automaton does not change.

2. Iteration: we pick the new state q = {Gfalse}

• With both Π = {} and Π = {a} we have that:

q′ |=
∧

(ψ∈q)

∂(ψ,Π)

|= ∂(Gfalse,Π)

|= ∂(false,Π) ∧ ∂(WXGfalse,Π)

|= false ∧ (“Gfalse” ∨ “Gfalse”)

As before, the formula is always false. Thus, there are no changes.

The nfa Aφ = ⟨2{a}, Q, q0, δ, F ⟩ is depicted in Figure 2.2.

The translation algorithm for ldlf is analogous to the one presented here for ltlf except for the use

of a slightly different definition of the ∂(ψ,Π) function, which takes into account the different semantics of

ldlf .

Determinization

In order to obtain a dfa, the nfa Aφ can be determinized in exponential time following the procedure

in (Rabin and Scott, 1959). Thus, we can transform a ltlf formula into a dfa of double exponential size.

In the following, we report the simple algorithm.

Algorithm 2.2 Algorithm to translate a ltlf formula into its corresponding dfa

Require: ltlf formula φ
Ensure: dfa Aφ = ⟨2P , Q, q0, δ, F ⟩
1: Compute the nfa with Algorithm 2.1 (exponential)
2: Apply determinization (exponential)
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{{Ga},
{Gfalse}}start

{a}

Figure 2.3: The graphical representation of the dfa computed with Algorithm 2.2 corresponding to the ltlf
formula φ = G(a).

Figure 2.3 reports the dfa resulting from the determinization of the nfa in Figure 2.2.

Interestingly, there is also another way to directly evaluate a trace on a dfa that does not require the

construction of the automaton. This technique has been introduced in (Brafman et al., 2018) and is called

on-the-fly. Intuitively, the idea behind the on-the-fly construction is that while reading trace symbols,

one can progress all possible states that the nfa can be in and, at the end of the trace, check whether,

among those resulting states, there is an accepting state. Formally, let every state be a collection of nfa

states as Q = {q1, . . . , qn}, often called a macrostate, and let Π be the next trace symbol. Initially, we

have Q = Q0 = {q0} = {{φ}}. Then, we can compute the next set of states Q′ as Q′ = {q′ | ∃q ∈

Q such that q′ |= ∧
(ψ∈q) ∂(ψ,Π)}. Observe that the condition q′ |= ∧

(ψ∈q) ∂(ψ,Π) is exactly the same as

the one in Algorithm 2.1. By iterating the above procedure, we can check whether a given input trace τ

satisfies a formula φ, i.e., τ |= φ, starting from the initial macrostate Q0, if and only if the last state includes

{true}, considering their evaluation in the empty trace ∂(ψ, ϵ). We refer the reader to (Brafman et al., 2018)

for further details.

2.4.3 Other Translations

In the previous sections, we have reviewed the translations to automata that we call standard since the

construction of the dfa follows the lowest theoretical complexity path. Overall, this approach requires

doubly-exponential time (De Giacomo and Vardi, 2013) in the worst case, as the resulting dfa can be of

doubly exponential size with respect to the size of the formula. Nonetheless, practical evidence has shown

that, when applying determinization, the size of the resulting dfa is typically manageable (Tabakov and

Vardi, 2005; Tabajara and Vardi, 2020; Zhu et al., 2021). Clearly, this observation is key when contrasting

the recent growing interest in finite trace semantics with older works focusing on infinite trace semantics. In

fact, working with the infinite traces semantics is hampered by the well-known determinization intractability

of Büchi automata (Fogarty et al., 2015). In this section, we review alternative approaches that exploit other
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key observations in translating linear temporal logics on finite traces to automata.

Interestingly, state-of-the-art transformation tools, such as Syft (Zhu et al., 2017), Lisa (Bansal et al.,

2020) and Lydia (De Giacomo and Favorito, 2021), use various highly-optimized techniques that are actually

nonelementary2 in the worst case. In particular, they apply aggressive minimization approaches to the

(partial) automata built during the construction. Despite such high complexity, minimization turned out to

be crucial in order to obtain a scalable approach (Klarlund et al., 2002; Zhu et al., 2021).

The first two alternative techniques to transform an ltlf formula to a dfa exploits the intermediate

translation to fol. In particular, given that ltlf has the same expressive power of fol on finite sequences,

Zhu et al. (2017) proposed an encoding of ltlf formulas into fol formulas and used the highly optimized

Mona tool (Henriksen et al., 1995) to perform the actual translation to dfa. The Mona tool implements

an efficient semi-symbolic (i.e., explicit in the states, symbolic in the transitions) representation of the

automaton and applies aggressive automata minimization.

Some years later, Bansal et al. (2020) proposed a hybrid approach to the problem of dfa construction.

Assuming the starting ltlf formula φ is of the form φ =
∧n
i=1 φi where φ1, . . . , φn are n subformulas, they

decompose the outermost conjunction of φ and transform each subformula φi into a dfa Aφi through Mona.

Then, to build the resulting dfa, they compute the product between all automata Aφi
, always monitoring the

size of such product. In the case where the size of the product automaton exceeds a user-defined threshold,

the approach converts the automata into a symbolic representation and continues computing the products,

though forgoing minimization. That is why the technique in (Bansal et al., 2020) is referred to as hybrid.

Tools associated with techniques in (Zhu et al., 2017; Bansal et al., 2020), Syft and Lisa respectively, have

been shown to outperform state-of-the-art tools such as Spot (Duret-Lutz et al., 2016), which implements

procedures to translate ltl formulas to automata on infinite words, but can also be used in the case of

the finite semantics (i.e., ltlf ) by exploiting its encoding into ltl proposed in (De Giacomo and Vardi,

2013). Both Syft and Lisa use Mona as the underlying engine to transform fol formulas to dfas. Given

the various operations of multiple determinization and projection to handle quantifiers, Mona implements a

nonelementary procedure in the worst case. Interestingly, such a high worst-case complexity does not show

in practice, and that is the reason why, from a practical perspective, Syft and Lisa perform better than direct

techniques previously mentioned, which, instead, are worst-case double exponential.

Lately, starting from the hybrid approach in (Bansal et al., 2020), De Giacomo and Favorito (2021)

took a step further and provided a sound and complete technique to directly transform ltlf/ldlf formulas

into a dfa. In particular, De Giacomo and Favorito (2021) introduced a bottom-up, fully compositional

2In computational complexity theory, a nonelementary problem is a problem that does not belong to the elementary class.
Therefore, a nonelementary problem has an unbounded number of exponentiations.
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approach to automata construction. The approach first computes the automata for the deepest subformulas

in the syntactic tree of the formula and then proceeds bottom-up along the tree, incrementally combining

the computed automata for the visited subformulas, via automata operations (e.g., union, intersection),

based on the encountered operators. De Giacomo and Favorito (2021) implemented their technique in a tool

called Lydia, which despite its nonelementary complexity, is now considered the state-of-the-art tool for the

translation of temporal logics formulas on finite traces to automata.

2.4.4 Reasoning

As usual in classical logic, we say that an ltlf/ldlf formula φ is satisfiable if it is true in some trace τ

and is valid if it is true in every trace τ . Moreover, we say that an ltlf/ldlf formula φ logically implies

another ltlf/ldlf formula ψ if and only if ψ is true in all traces where φ is true. The satisfiability and

validity of ltlf and ldlf formulas are characterized by known complexity results. Specifically, satisfiability,

validity, and logical implication for ltlf/ldlf formulas are PSPACE-complete (De Giacomo and Vardi, 2013).

Additionally, since the ltlf/ldlf are propositionally closed, checking for validity and logical implication

can be easily reduced to satisfiability. The classical procedure to check the satisfiability of an ltlf/ldlf

formula is as follows:

Algorithm 2.3 ltlf/ldlf Satisfiability

Require: Given an ltlf/ldlf formula φ
1: Compute the afa for φ (linear)
2: Compute the corresponding nfa (exponential)
3: Check the nfa for nonemptiness (nlogspace)
4: Return the result of the check

2.5 Automated Planning

One of the central topics in this dissertation is Automated Planning, a well-known subfield of research in

Artificial Intelligence (AI). Automated Planning, or just planning for short, represents the model-based

approach to producing autonomous behavior where the agent behavior is automatically derived from a

model of the world state, actions, sensors, and goals. Planning is also connected with the decision making

performed by autonomous agents when trying to achieve some goals, which is a fundamental capability that

intelligent systems should have.

In the following sections, we will describe in more detail some of the various well-known models to

formalize AI planning problems.
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2.5.1 Classical Planning

Following Geffner and Bonet (2013), a planning domain model describes the dynamics of an environment

and is formally represented by a tupleM = ⟨2F , A, α, tr⟩, where 2F is the set of possible states and F is a set

of fluents; A is the set of actions; tr : 2F ×A→ 2F is the deterministic transition function (i.e., |tr(s, a)| = 1

for all s ∈ 2F and a ∈ A) determining the successor state s′ that follows the execution of action a in state

s; and α(s) ⊆ A is the set of applicable actions in state s, such that a ∈ α(s) if and only if tr(a, s) ̸= ∅. In

general, a planning state s is a truth assignment for all fluents in F . A classical planning problem is a tuple

Γ = ⟨M, s0, G⟩, whereM is a domain model, s0 is the initial state, and G is the set of goal states.

The mathematical model describing the planning problem Γ is often represented as a transition system.

Transition systems are commonly depicted as directed edge-labeled graphs with an initial state and a set

of goal states. In general, nodes represent domain states, edges are transitions or actions, and a plan is

a sequence of actions corresponding to a path from the initial state to one of the goal states. For these

reasons, in the specific case of planning, transition systems are also known as state spaces. From a common

terminology in graph theory, a state s is said to be reachable if s is reachable from the initial state s0.

Clearly, when the problem is large, the explicit enumeration of the state space is not feasible. That is

why most often, compact or factored representations of transition systems have been studied and employed

over the years. The key to such compact representations is that states are complete assignments to a set of

propositions. In planning, fluents are atomic propositions that are true or false depending on what holds

in a given state of the domain. Such a compact representation is known as a STRIPS (Fikes and Nilsson,

1971) representation. However, over the years, other languages have been studied, and the Planning Domain

Definition Language (PDDL) (McDermott et al., 1998) has become a de-facto standard to represent planning

domains. In particular, PDDL can be seen as the extension of STRIPS supporting first-order predicates with

variables and constants. Another notable compact representation used in planning, especially in the internals

of solvers, is SAS+ (Bäckström and Nebel, 1995).

We can define a compact representation of the planning domain as a tuple D = ⟨F ,Fder,X , A, pre, eff ⟩

where F is a set of fluents (i.e., a set of positive literals), Fder is a set of derived predicates, X is a set of

axioms, A is a set of action labels, pre and eff are two functions that define the preconditions and effects of

each action a ∈ A.

A planning state s is a subset of F , and a positive literal f holds true in s if f ∈ s; otherwise, f is false in

s. Axioms have the form d← ψ where d ∈ Fder and ψ is a propositional formula over F ∪ Fder. An axiom

d ← ψ specifies that d is derived to be true from a state s if and only if we can prove that s |= ψ, possibly

using other axioms from X . We assume that the set of axioms X is stratified (Hoffmann and Edelkamp,
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2005) – this guarantees that given a state s and a derived predicate d, it is possible to efficiently and uniquely

determine whether d holds true in s. Thus, it is always possible to determine whether a formula ψ over

F∪Fder is satisfied by a state s. Both functions pre and eff take an action label a ∈ A as an input and return

a propositional formula over F ∪ Fder and an effect eff, respectively. The effect eff is a set of conditional

effects each of the form c ▷ e, where c is a propositional formula over F ∪ Fder and e ⊆ F ∪ {¬f | f ∈ F} is

a set of literals from F .

Example 2.6. In this example, we report a simplified version of the Yale shooting scenario domain. In

general, the Yale shooting problem involves shooting at a turkey with the objective of eventually killing it.

• Fluents F = {alive, loaded} to represent that the turkey is alive and the gun is loaded in the current

situation;

• Derived Predicates Fder = ∅;

• Axioms X = ∅;

• Actions A = {load, shoot, wait} to represent the loading of the gun, the shooting, and a no-operation;

• Preconditions pre:

– pre(load) = ¬loaded;

– pre(shoot) = true;

– pre(wait) = true;

• Effects eff :

– eff (load) = {true ▷ loaded};

– eff (shoot) = {loaded ▷ ¬loaded, loaded ▷ ¬alive};

– eff (wait) = ∅.

An action a can be applied in a state s if pre(a) holds true in s, formally, s |= pre(a). A conditional

effect c ▷ e is triggered in a state s if c is true in s. Applying a in s yields a successor state s′ determined by

the deterministic outcome of eff (a). The new state s′ is such that ∀f ∈ F , f holds true in s′ if and only if

either (i) f was true in s and no conditional effect c ▷ e ∈ eff triggered in s deletes it (¬f ∈ e) or (ii) there

is a conditional effect c ▷ e ∈ eff triggered in s that adds it (f ∈ e). In case of conflicting effects, similarly to

other works (Röger et al., 2014), we assume delete-before-adding semantics.
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A classical planning problem combines a domain with an initial state and a goal and consists in looking for

a sequence of actions that transforms the initial state into a desired goal state. Formally, a planning problem

is a tuple Γ = ⟨D, s0, G⟩, where D is the domain model, s0 is the initial state, i.e., an initial assignment to

fluents in F , and G is a set of literals over F called the reachability goal, all compactly represented.

A solution to planning problem Γ is a sequence of actions a ∈ A called plan π = a0, . . . , an−1 such

that, when executed, induces a finite state-trace s0, . . . , sn, where si+1 = tr(si, ai) and ai ∈ α(si) for

0 ≤ i ≤ n−1, and sn |= G. Sometimes, a cost function mapping each action in the model to a non-negative

cost determines a preference for plans with lower cost. The cost of a plan is defined as the sum of all action

costs: Cπ =
∑n−1
i=0 c(ai). When a plan has minimum cost among the space of all possible plans achieving

a certain goal, it is said to be optimal. In the case action costs are not defined, costs are assumed to be

unitary. Thus, in such a case, the shortest plans are those preferred.

Decision problems of (i) whether a plan exists for a given problem, and (ii) whether a plan of length less

than k exists given a positive constant value k, are both PSPACE-complete (Bylander, 1994). In general,

these results depend on the fact that plans can become exponentially long. However, if one restricts the

plan’s length to be polynomial in the size of the planning task, then the problem becomes NP-complete.

Although planning problems are theoretically intractable in the worst case, current planning approaches

based on heuristic search can typically solve large problem instances fast, regardless of their worst-case

guarantees.

2.5.2 Fully Observable Nondeterministic Planning

Although classical planning models a wide variety of sequential decision-making problems, in many real-world

environments, the outcome of an action is not always certain and can depend on various factors such as the

state of the environment, exogenous and unpredictable events, and even randomness. For these reasons,

researchers have studied variations and extensions of classical planning to account for this uncertainty in

action effects.

In this dissertation, we focus on problems where the domain is Fully Observable and NonDeterministic

(FOND). In this way, the planning agent can anticipate and plan for these unpredictable events, allowing it

to make more robust and adaptive decisions.

Analogously to the classical planning setting, a FOND domain model is formally described by a tuple

M = ⟨2F , A, α, tr⟩. However, unlike classical planning, where actions are deterministic, in FOND planning,

some action effects have an uncertain outcome when executing an action. In other words, the transition

function tr : 2F × A → 22
F

is nondeterministic (i.e., |tr(s, a)| > 1 for some states s and a). Intuitively, a
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nondeterministic domain evolves as follows: from a given state s, the agent chooses a possible action a (i.e.,

a ∈ α(s)), after which the environment chooses a successor state s′ with s′ ∈ tr(s, a). A FOND planning

problem is represented as a tuple Γ = ⟨M, s0, G⟩, where M is a nondeterministic domain model, s0 is the

initial state, and G is the set of goal states.

In general, FOND domain models are represented as transition systems too. However, although counter-

intuitive, the automaton built starting from a transition system representing a FOND domain is determin-

istic. This is because, when progressing, the automaton reads both the action and its effect. Specifically,

the nondeterminism in the environment (which is demonic) is not translated into a nondeterminism in the

automaton (which is angelic) (De Giacomo and Rubin, 2018).

We compactly represent FOND domains as a tuple D = ⟨F ,Fder,X , A, pre, eff ⟩, where each component

is the same as in classical planning, except for the eff function. In particular, while in classical planning the

function eff returns only a single effect eff, in FOND planning the function eff returns a set {eff1, . . . , effn} of

effects, where each effect effi ∈ eff (a) is a set of conditional effects defined as in classical planning. In FOND,

the application of action a in state s yields a successor state s′ determined by an outcome nondeterministically

drawn from eff (a).

Example 2.7. Following Example 2.6, here we report the nondeterministic variant of the Yale shooting

scenario.

• Fluents F = {alive, loaded, jammed} to represent that the turkey is alive, the gun is loaded, and the

gun is jammed in the current situation;

• Derived Predicates Fder = ∅;

• Axioms X = ∅;

• Actions A = {load, shoot, wait} to represent the loading of the gun, the shooting, and a no-operation;

• Preconditions pre:

– pre(load) = ¬loaded;

– pre(shoot) = true;

– pre(wait) = true;

• Effects eff :

– eff (load) = {{true ▷ loaded, true ▷ ¬jammed}, {true ▷ loaded, true ▷ jammed}};
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– eff (shoot) = {{loaded ∧ ¬jammed ▷ ¬loaded, loaded ∧ ¬jammed ▷ ¬alive, loaded ∧ jammed ▷

¬jammed}};

– eff (wait) = {∅}.

Solutions to FOND Planning

Solutions to FOND planning problems are policies that instruct an agent on how to act in an environment

with the guarantee of satisfying a given goal specification. A policy is defined as a partial function mapping

non-goal states into actions. A policy π for a FOND problem Γ, starting from the initial state s0, induces a

set of (possibly infinite) state trajectories (or executions) Λ of the form τ = s0, s1, . . . , where s0 is the initial

state, si+1 ∈ tr(si, ai), and ai = π(si) for i ≥ 0. If for a certain sequence of states τ = s0, . . . , sn we have

that π(sn) is undefined (no action prescribed), then the generated execution τ is a finite trace.

Solution policies guarantee that their executions satisfy the goal. As usual, we consider two kinds of

solutions to FOND planning problems: strong solutions and strong-cyclic solutions (Cimatti et al., 2003).

Intuitively, strong policies are solutions whose executions guarantee goal satisfaction, regardless of how the

environment reacts to agents’ actions. A policy π is a strong solution to Γ, if every generated execution

is a finite trace τ such that last(τ) |= G. On the other hand, a policy is a strong-cyclic solution to Γ if

every generated execution that is a stochastic-fair trace is also a finite trace such that last(τ) |= G. In

fact, in the FOND planning literature, the environment is commonly assumed to be fair, meaning that the

environment manifests the nondeterminism in all of its spectrum. Over the years, a long thread of works

studied different notions of fairness, e.g., (Daniele et al., 1999; Pistore et al., 2001; Cimatti et al., 2003;

D’Ippolito et al., 2018; Aminof et al., 2020). The two most common notions of fairness are the stochastic

fairness and language-theoretic fairness. The former assumes that some unknown distribution assigns a

nonzero probability to each of the alternative effects and that such a distribution is used to select the effect.

Formally, given a finite sequence of actions, stochastic fairness prescribes that each finite sequence of possible

effects will occur infinitely often (Cimatti et al., 2003; Aminof et al., 2020, 2022). On the contrary, the latter

notion can be expressed as a property of traces. In particular, this notion says that if an action a is taken

from a state s infinitely often in the trace, and if s′ is a possible effect of action a, then s′ is the resulting

effect of action a from state s infinitely often. Interestingly, when dealing with reachability goals, stochastic

and language-theoretic fairness coincide (Aminof et al., 2020).

When a policy π is a solution (either strong or strong-cyclic, depending on the kind of solution we are

interested in), we say that π is winning. Furthermore, policies can be compactly represented as finite-state

controllers (fsc) (Geffner and Bonet, 2013). A controller is a finite-state machine that, given the observation
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of a state, returns actions. More precisely, an fsc is a tuple C = ⟨Q,T, q0⟩, where Q is a set of control states,

T : Q × 2F → Q × A is a (partial) fully observable transition function, and q0 ∈ Q is the initial controller

state. Clearly, transitions do not depend on explicit input sequences but only on the current planning

state. Finite-state controllers are essentially Mealy machines (Mealy, 1955) and have a natural graphical

representation.

2.5.3 Planning for Temporally Extended Goals

Many real-world scenarios require achieving more general goals than just reachability goals. In most cases,

realistic goals require properties to hold over time on a sequence of planning states. These types of temporal

goals, also called temporally extended goals, are often expressed using temporal logics on finite or infinite

sequences of states, including ltl, ltlf , ldlf , psl, and ctl, just to name a few. Some common formula

patterns have also been integrated into the language PDDL3 (Gerevini et al., 2009). Also, recent works

witnessed lively interest in the topic. For instance, Bonassi et al. (2022) recently proposed an alternative

way of expressing plan constraints and control knowledge through constraints over trajectories of actions

rather than states. Temporally extended goals have also been considered over classical goals because they

allow us to restrict the manner used by the plan to reach the goals.

Example 2.8. Consider the well-known FOND domain model called Triangle-Tireworld, depicted in

Figure 2.4. In this domain, locations are connected by roads, and the agent can drive on them. The objective

is to drive from one location to another. However, while driving between locations, a tire may go flat, and

if there is a spare tire in the location of the car, then the car can use it to fix the flat tire. In Figure 2.4,

circles represent locations, roads are represented by arrows, spare tires are depicted as tires, and the agent

is depicted as a car. In the Triangle-Tireworld domain, a classical goal would be reaching a certain
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Figure 2.4: Triangle-Tireworld FOND domain model.

location (e.g., reaching location 32). On the other hand, a suitable temporal goal would restrict the path
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followed by the agent to reach a certain location (e.g., reaching location 32 passing through location 41).

In general, classical goals cannot express any preference or constraint on the plan to reach a chosen

location. Instead, temporally extended goals are able to capture a richer class of plans where restrictions on

the whole sequence of states must be satisfied as well, also in the presence of nondeterminism.

Planning for temporally extended goals has a long tradition in AI Planning, including pioneering work

in the late ’90s (Bacchus et al., 1996; Bacchus and Kabanza, 1996; Bacchus et al., 1997; Bacchus and

Kabanza, 2000), work on planning via Model Checking (Cimatti et al., 1997; De Giacomo and Vardi, 1999;

Giunchiglia and Traverso, 1999), and work on declarative and procedural constraints (Baier and McIlraith,

2006a; Baier et al., 2008). In this dissertation, we focus on temporally extended goals expressed in linear

temporal logics on finite traces. Specifically, deterministic planning for ltlf goals has already been studied

and fully characterized in, e.g., (Baier and McIlraith, 2006a; De Giacomo and Vardi, 2013; Torres and Baier,

2015). More recently, nondeterministic planning for ltlf goals has been fully characterized in, e.g., (De

Giacomo and Vardi, 2015; Camacho et al., 2017; De Giacomo and Rubin, 2018; Camacho and McIlraith,

2019). Formally, a planning problem for temporally extended goals is a tuple Γ = ⟨D, s0, φ⟩, where D is

a (possibly nondeterministic) domain model, s0 is the initial state, and φ is a temporal formula over the

fluents F .

Plans, Policies, and Strategies

When dealing with temporally extended goals and deterministic domain models, the solution to a planning

problem remains a sequence of actions, but in some cases could have additional spurious actions. However,

turning to nondeterministic domains, the presence of temporally extended goals changes the definition of

policy to a partial function π : (2F )+ → A mapping traces (i.e., nonempty sequence of states) into applicable

actions as temporally extended goals can express non-Markovian properties over traces (Gabaldon, 2011).

Therefore, in general, a solution must take into account the histories of states, not just the last one. For

this reason and the tight relationship between FOND planning and reactive synthesis (cf. (De Giacomo

and Vardi, 2015; De Giacomo and Rubin, 2018; Camacho et al., 2019a)), the updated and more general

definition of policy corresponds to the notion of strategy. A strategy π for a FOND planning problem Γ,

starting from the initial state s0, induces a set of (possibly infinite) state trajectories (or executions) of the

form τ = s0, s1, . . . , where s0 is the initial state, si+1 ∈ tr(si, ai), and ai = π(s0, . . . , si) for i ≥ 0. If for

a certain sequence of states τ = s0, . . . , sn we have that π(τ) is undefined (no action prescribed), then the

generated execution τ is a finite trace. Hence, given a temporal goal φ, π is a solution to Γ if every state

trajectory induced by π is finite and satisfies φ.
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Complexity

The complexity of classical and FOND planning for temporally extended goals is now well-understood. Clas-

sical planning for ltlf goals is PSPACE-complete for deterministic domains, just like for classical reachability

goals (Bylander, 1994). In this case, the added expressiveness of ltlf goals is paid off in terms of algorithmic

sophistication but not in worst-case complexity. On the contrary, the complexity of FOND planning for ltlf

goals is EXPTIME-complete in the domain specification as for standard reachability goals (Rintanen, 2004)

and 2EXPTIME-complete in the ltlf goal formula (De Giacomo and Rubin, 2018). In this case, instead,

the added expressiveness of ltlf goals worsens the worst-case goal complexity to 2EXPTIME-complete, com-

pared to the EXPTIME-complete of reachability goals. That is because, in FOND planning, it is required to

(implicitly or explicitly) translate ltlf goal formulas into a dfa, which is double exponential in the worst

case.

Encodings to Planning for Reachability Goals

In the literature, two techniques have been mainly exploited to deal with temporally extended goals. The

first one uses automata-theoretic approaches, whereas the second one integrates the automaton dynamics

directly within the compactly represented domain model. In the following, we are going to describe the main

points of the two approaches.

The first approach, formerly developed in a classical setting in (De Giacomo and Vardi, 1999), and later

applied to the context of FOND domain models (De Giacomo and Rubin, 2018), is based on automata-

theoretic techniques that directly exploit the various properties of automata to compute policies. The latter

work is of particular interest because it focuses on FOND planning for ltlf and ldlf goals. These automata-

theoretic approaches compute the Cartesian product between the automaton resulting from the temporal

formula and the automaton representing the domain model. While in classical planning, computing the

nfa for the formula suffices (incurring only a worst-case single exponential blow-up), in FOND planning,

the automata resulting from the formula must be determinized in some way. Indeed, the automaton de-

terminization step, which involves a worst-case exponential blow-up, is mandatory because otherwise, there

is a basic mismatch between the non-determinism of nfas and the strategic behavior. In particular, while

nfas have perfect foresight (i.e., they see the whole world and guess the best path), strategic behavior means

making a decision only based on what has been seen so far. In any case, at the end, a plan/policy can be

easily derived from the product automaton.

On the other hand, the second approach has been mainly investigated in (Baier and McIlraith, 2006a;

Patrizi et al., 2011; Torres and Baier, 2015; Camacho et al., 2017; Camacho and McIlraith, 2019) and focuses
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on integrating the automaton resulting from the goal specification within the domain model, assumed to be

compactly represented, e.g., in PDDL. Although there are many variants on how to encode the automaton

dynamics, they all share the same underlying idea. Given a planning domain model Γ with an initial state

and a goal formula φ, the approach works in the following steps.

Algorithm 2.4 Reduction of a planning for ltlf/ldlf goals into planning for reachability goals

Require: Planning problem Γ, ltlf/ldlf goal formula φ
1: Transform the goal formula φ into the corresponding automaton
2: Build a new planning problem Γ′ by augmenting Γ with the states and the dynamics of the automaton
3: Solve Γ′ using any off-the-shelf classical or FOND planner
4: Extract from Γ′ a solution to Γ

With these steps, the problem of planning for a temporal goal is reduced to the problem of planning

for simple reachability goals. This is actually very convenient because one can directly use any available

classical or FOND off-the-shelf planner to solve the task.

Generally, executions of an augmented planning domain model have two distinct modes. The “world”

mode, which follows the domain dynamics, and the “synchronization” mode, in which the automaton is

updated. In other words, the “world” mode allows the execution of actions from the original domain model

only, whereas, in the “synchronization” mode, only actions that update the state of the automaton can be

executed. Intuitively, the new augmented planning problem Γ′ has additional parts used to sequentially syn-

chronize the dynamics between the domain and the automaton. Specifically, domain fluents are augmented

with automaton states and flags for adequately switching between modes; domain actions preconditions are

modified to allow executions only in “world” mode, whereas actions effects are modified to allow executions

of synchronization actions; then, the automaton transition function is encoded as a new domain operator

with conditional effects; finally, the initial and goal states are modified accordingly. This leads to having

plans/executions of the form π = a1t1, . . . , antn, where ai ∈ A is the real domain actions, and t1, . . . , tn

are sequences of synchronization actions, which, in the end, are ignored to extract the desired policy. Some

encodings, such as (Baier and McIlraith, 2006a), do not require synchronization actions. Thus, the obtained

plan for the modified planning problem does not need to be reworked to get the plan for the original planning

problem.

As previously mentioned, encodings of temporally extended goals to classical and FOND planning have a

long tradition in the planning community (Baier and McIlraith, 2006a; Patrizi et al., 2011; Torres and Baier,

2015; Camacho et al., 2017; Camacho and McIlraith, 2019). Although these works have investigated the

problem thoroughly providing several clever optimizations, it is worth mentioning that when the properties

of interest correspond to syntactically large formulas whose automata are small, building the full automaton

(nfa for classical planning, dfa for FOND planning) a priori and encoding the dynamics of the automaton
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within a domain specification through additional actions to account for the automaton transition function,

as done for example in (Fuggitti, 2019; De Giacomo and Fuggitti, 2021), results in faster encoding times.

Obviously, techniques that construct the automaton a priori and blindly encode all automaton transitions

are näıve since they do not exploit any insights about the temporally extended goal formulation.
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Chapter 3

Pure-Past Linear Temporal Logics

In this chapter, we review ppltl and ppldl, the pure-past versions of the well-known logics on finite traces

ltlf and ldlf , respectively. ppltl and ppldl are logics about the past, so scan the trace backward from

the end towards the beginning. Because of this, we can exploit a foundational result on reverse languages to

get an exponential improvement, over ltlf/ldlf , for computing the corresponding dfa. This exponential

improvement is reflected in several forms of sequential decision-making problems involving temporal specifica-

tions, such as planning and decision problems in nondeterministic and non-Markovian domains. Interestingly,

ppltl (resp., ppldl) has the same expressive power as ltlf (resp., ldlf ), but transforming a ppltl (resp.,

ppldl) formula into its equivalent ltlf (resp., ldlf ) is quite expensive. Hence, to take advantage of the

exponential improvement, properties of interest must be directly expressed in ppltl/ppldl.

Part of the content of this chapter has been published in (De Giacomo et al., 2020a) at the International

Joint Conference on Artificial Intelligence 2020.

3.1 Motivation

All recent works dealing with linear temporal logics on finite traces have studied and applied formalisms

referring only to the present and future. Thus, especially in the AI community, the use of pure-past versions

of ltlf and ldlf , namely Pure-Past Linear Temporal Logic (ppltl) and Pure-Past Linear Dynamic Logic

(ppldl), have been given only limited attention. However, as pointed out in (Lichtenstein et al., 1985), in

some cases, it is easier and more natural to express properties while referring to the past. For instance, using

ltlf or other pure-future formalisms, it is not straightforward to specify that an agent has accomplished a

task, and since the agent was decontaminated, it has been in clean areas only.

In fact, over the years, past temporal logics have been taken into account and advocated in some appli-
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cations for non-Markovian rewards in MDPs (Bacchus et al., 1996), for non-Markovian models in reasoning

about actions (Gabaldon, 2011), for preferred explanations in the context of dynamical diagnosis (Sohrabi

et al., 2011), and for normative properties in multi-agent systems (Fisher and Wooldridge, 2005; Knobbout

et al., 2016; Alechina et al., 2018). On the other hand, except for the works just mentioned, ppltl has been

introduced only as a technical means to get results for both ltl and ltlf (Maler and Pnueli, 1990; Zhu

et al., 2019). Only recently, Cimatti et al. (2020) proposed a new ltl fragment with both future and past

operators. This new fragment, with atoms of arbitrary ppltl formulas within the scope of future operators,

has shown to behave well for the synthesis problem. Nevertheless, they are yet to be better explored.

In this dissertation, instead, we consider ppltl, and its extension ppldl, as first-class citizens. In the

following, we review the pure-past versions of ltlf and ldlf , respectively ppltl and ppldl, and study their

main theoretical properties.

3.2 Pure-Past Linear Temporal Logic

ppltl is the variant of ltlf (De Giacomo and Vardi, 2013), reviewed in the previous chapter, that talks

about the past instead of the future. Indeed, differently from the pure-future specification languages, we

consider pure-past formulas to express temporal properties in a “pure-past fashion”, i.e., referring only to

the present and to the past.

Syntax

A ppltl formula φ is defined over a set of propositional symbols P, and it is closed under the Boolean

connectives (∧,∨,¬), the unary past temporal operator yesterday (Y) and the binary past temporal operator

since (S). Formally, given a set of propositional symbols P, ppltl formulas over P are formally defined by

the following grammar:

φ ::= p | ¬φ | φ ∧ φ | Yφ | φSφ

where p ∈ P. Abbreviations of logical operators are analogous to the ones for pure-future temporal logics,

and also for ppltl, some temporal operators are abbreviations of primitive ones. In particular, we have

the once (O) operator Oφ ≡ true Sφ, the historically (H) operator Hφ ≡ ¬O¬φ; the weak-yesterday (WY)

operator defined as WYφ ≡ ¬Y¬φ; and the start of the trace start ≡WY⊥.

Intuitively, the yesterday operator indicates that there exists a previous state where the property holds,

whereas the since operator indicates that there was a past state where a proposition held, and a proposition

has held since then.
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Semantics

Interestingly, ppltl formulas are typically interpreted on finite traces because the past has happened and is

always bounded by the current instant, namely the last instant, and the starting state of the system – this is

important as some other logics have been interpreted on traces that are infinite in both the past and future.

As such, every finite state sequence τ = τ0, . . . , τn is such that τn ∈ 2P is the interpretation of the current

instant, and there always exists a state without its predecessor, namely τ0.

Given a finite trace τ of length length(τ) = n+1, a ppltl formula φ and a position i ≥ 0, we inductively

define when φ holds at position i, written τ, i |= φ, as follows:

• τ, i |= p iff p ∈ τi (for p ∈ P);

• τ, i |= ¬φ iff τ, i ̸|= φ;

• τ, i |= φ1 ∧ φ2 iff τ, i |= φ1 and τ, i |= φ2;

• τ, i |= Yφ iff i > 0 and τ, i− 1 |= φ;

• τ, i |= φ1 Sφ2 iff there exists k, with 0 ≤ k ≤ i, such that τ, k |= φ2 and τ, j |= φ1 for all j, with

k < j ≤ i.

We say that a ppltl formula φ is true in τ , formally denoted as τ |= φ, if τ, length(τ)− 1 |= φ.

Analogously to the temporal formalisms reviewed in Chapter 2, given a formula φ, we can define its set

of subformulas as sub(φ) obtained from the nodes of the syntactic tree of the formula φ. For instance, if

φ = a ∧ ¬Y(b ∨ c), where a, b, c are atomic, then sub(φ) = {a, b, c, (b ∨ c),¬Y(b ∨ c),Y(b ∨ c), a ∧ ¬Y(b ∨ c)}.

In general, a formula φ has linearly many subformulas. Also, |sub(φ)| defines the size of a ppltl formula φ.

The following example shows how ppltl can be easily employed to express temporal properties.

Example 3.1. The property “we are now at location p23 and we have passed through location p12” can be

easily expressed in ppltl with (p23∧Op12). Another interesting property is “every time you took the bus, you

bought a new ticket beforehand” that can be expressed in ppltl with H(takeBus→ Y(¬takeBusS buyT icket)).

This latter ppltl formula recognizes exactly the same set of traces as the corresponding ltlf formula

(buyT icketR takeBus) ∧ G(takeBus→ (buyT icket ∨ X(buyT icketR¬takeBus)) (Cimatti et al., 2004).

As shown in Example 3.1, ppltl formulas have their corresponding translation to ltlf . However,

depending on the application, one formalism may be preferred over the other for the readability of the

specified property. We will elaborate more on this later in Section 3.5.
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3.3 Pure-Past Linear Dynamic Logic

Along the same lines as the development of ldlf (De Giacomo and Vardi, 2013), ppldl represents the

natural pure-past extension of ppltl merged with regular expressions re on finite traces.

Syntax

Given a set of propositional symbols P, a ppldl formula φ is formally defined as follows:

φ ::= tt | ¬φ | φ ∧ φ | ⟨⟨ϱ⟩⟩φ

ϱ ::= ϕ | φ? | ϱ+ ϱ | ϱ; ϱ | ϱ∗

where ϕ denotes propositional formulas over P, tt is the true ppldl formula, and ϱ denotes path expressions,

which are re over propositional formulas ϕ with the addition of the test construct φ?, typical of pdl. ppldl

shares the common abbreviations for logical operators as in ldlf . Other abbreviations are the past “box”

operator [[ϱ]]φ ≡ ¬⟨⟨ϱ⟩⟩¬φ, and start ≡ [[true]]ff to express that the trace has just started.

Intuitively, ⟨⟨ϱ⟩⟩φ states that there exists a point in the past, reachable (going backward) through the

regular expression ϱ from the current instant, where φ holds. On the other hand, [[ϱ]]φ states that, from the

current instant, all executions satisfying the re ϱ are such that their initial instant in the past satisfies φ.

Semantics

The semantics of ppldl formulas is given in terms of finite traces, and it is similar to the one of ldlf .

Given a finite trace τ = τ0, . . . , τn, we denote by τi,j the sub-trace τi, . . . , τj if j < length(τ), or the sub-trace

τi, . . . , τn when j ≥ length(τ). Given a finite, possibly empty, trace τ , an ldlf formula φ, and an instant i,

we say that φ holds at i, written τ, i |= φ, by (mutual) induction, when:

• τ, i |= tt ;

• τ, i |= ¬φ iff τ, i ̸|= φ;

• τ, i |= φ1 ∧ φ2 iff τ, i |= φ1 and τ, i |= φ2;

• τ, i |= ⟨⟨ϱ⟩⟩φ iff there exists a j with 0 ≤ j ≤ i such that τj,i ∈ Rp(ϱ) and τ, j |= φ,

where the relation τj,i ∈ Rp(ϱ) is inductively defined as:

• τj,i ∈ Rp(ϕ) if j = i− 1, i ≥ 1, and τi |= ϕ ;

• τj,i ∈ Rp(φ?) if j = i and τ, i |= φ;
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• τj,i ∈ Rp(ϱ1+ϱ2) if τj,i ∈ Rp(ϱ1) or τj,i ∈ Rp(ϱ2);

• τj,i ∈ Rp(ϱ1; ϱ2) if there exists j ≤ k ≤ i such that τk,i ∈ Rp(ϱ1) and τj,k ∈ Rp(ϱ2);

• τj,i ∈ Rp(ϱ
∗) if j = i or there exists j ≤ k ≤ i such that τk,i ∈ Rp(ϱ) and τj,k ∈ Rp(ϱ

∗).

We say that a trace τ satisfies a ppldl formula φ, written τ |= φ, if τ, length(τ)−1 |= φ.

An example of a ppldl formula is given in the following.

Example 3.2. The property “every time, if the cargo-ship departed (cargo), then beforehand there was an

alternation of grab and unload of containers” can be expressed in ppldl as

[[true∗]]
(
⟨⟨cargo⟩⟩tt → ⟨⟨(unl; grab)∗; (unl; grab)⟩⟩start

)
.

3.4 From Pure-Past Linear Temporal Logics to Automata

As we have already seen in Chapter 2 (cf. Section 2.4), there is an intimate connection between linear

temporal/dynamic logic and automata theory. This is also true for pure-past logics like ppltl and ppldl.

Actually, as we will see in the following sections, the translation of pure-past temporal and dynamic logics

is even more interesting as it directly exploits the “backward” interpretation of pure-past formulas.

3.4.1 Reverse Languages and Alternation

The reverse of a trace τ = τ0, . . . , τn is defined as the trace τR = τn, . . . , τ0 that reads the input backwardly,

from the last propositional interpretation τn till the initial one τ0. Thus, the reverse of a language L is

denoted as the language LR = {τR | τ ∈ L}; namely, it is the set of all reverse traces from the language L.

Interestingly, while the conversion of an afa with |Q| = n states to an equivalent dfa requires 22
n

states in the worst case (Chandra et al., 1981), the minimal dfa for the reverse language is at most single

exponentially larger than an equivalent afa (Chandra et al., 1981). The single exponentially larger afa can

be easily constructed as follows.

Given an afa A = ⟨Σ, Q, q0, δ, F ⟩ recognizing the language L, we define the dfa AR = ⟨Σ, S, s0, ρ, F ′⟩

that recognizes the reverse language LR where:

• S = 2Q;

• s0 = F ;

• for v ∈ S and σ ∈ Σ, we define ρ(V, σ) to be the set of all states q such that V |= δ(q, σ);
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• let V ∈ F ′ iff q0 ∈ V .

The size of AR is therefore 2O(|A|), where |A| represents the size of A. Moreover, AR can be computed in

exponential time. In the following, we report the theoretical result from (Chandra et al., 1981) along with

a fairly short and completely self-contained proof.

Theorem 3.3 (Chandra et al. (1981)). Given an afa A = ⟨Σ, Q, q0, δ, F ⟩ recognizing the language L, there

exists a dfa AR = ⟨Σ, S, s0, ρ, F ′⟩, constructed as above, that recognizes the reverse language LR.

Proof. Before proving the theorem, we introduce a generalization of the Acc function defined in Section 2.1.4

as q ∈ Fwd(τ,X), which is intuitively read as “the automaton reads τ forward from state q and results in a

state in the set X”. Formally, we define the function Fwd : Σ∗ × 2Q → 2Q inductively as follows:

Fwd(ϵ,X) = X; (3.1)

Fwd(στ,X) = {q | Fwd(τ,X) |= δ(q, σ)}. (3.2)

Intuitively, the Fwd function states that either the automaton remains in a state of X if reading the empty

string ϵ or the input στ is processed forward from all the states q such that the Boolean formula δ(q, σ) is

satisfied by Fwd(τ,X). Observe that the function Acc is definable in terms of the function Fwd, namely,

q ∈ Acc(τ) if and only if q ∈ Fwd(τ, F ). In other words, the Fwd function processes the input word τ in

the forward direction.

Likewise, to process the input word τ in the backward direction, we define the functionBck : Σ∗×2Q → 2Q

inductively as follows:

Bck(ϵ,X) = X; (3.3)

Bck(τσ,X) = Bck(τ, {s | X |= δ(s, σ)}). (3.4)

By (3.2) and (3.4), it is easy to derive the property Bck(τσ, Fwd(τ ′, X)) = Bck(τ, Fwd(στ ′, X)) replacing

X with Fwd(τ ′, X). This property corresponds to the shift from (τσ)τ ′ to τ(στ ′). Then, we show that

Bck(τ,X) = Fwd(τ,X) for all τ,X. Consider two cases: (i) τ = ϵ, and (ii) τ = τ ′σ for some τ ′, σ. For

the base case τ = ϵ, the hypothesis is true from the definitions of Fwd and Bck. For the inductive case, we

start from Bck(τ,X) = Bck(τ ′σ,X) and we get Bck(τ ′σ,X) = Bck(τ ′σ, Fwd(ϵ,X)) by replacing X with

Fwd(ϵ,X). Then, by (3.2) and (3.4), we have that Bck(τ ′σ, Fwd(ϵ,X)) = Bck(τ ′, Fwd(σ,X)). Analogously,

by induction on the length of τ ′, we can show that Bck(τ ′, Fwd(τ ′′, X)) = Bck(ϵ, Fwd(τ ′τ ′′, X)) and

therefore that Bck(τ ′, Fwd(σ,X)) = Bck(ϵ, Fwd(τ ′σ,X)). The base case τ ′ = ϵ is immediate. For the
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inductive case τ ′ = τ ′′′σ, we have that Bck(τ ′, Fwd(τ ′′, X)) = Bck(τ ′′′σ, Fwd(τ ′′, X)), which by (3.2)

and (3.4) is equal to Bck(τ ′′′, Fwd(στ ′′, X)). Now, by induction, we have that Bck(τ ′′′, Fwd(στ ′′, X)) =

Bck(ϵ, Fwd(τ ′′′στ ′′, X)). Hence, we get Bck(ϵ, Fwd(τ ′τ ′′, X)) as required. At this point, by definition of

Bck in (3.3), we know that Bck(ϵ, Fwd(τ ′σ,X)) = Fwd(τ ′σ,X). Hence, given that τ = τ ′σ, we have

Bck(τ,X) = Fwd(τ,X) as required. Intuitively, Bck(τ,X) = Fwd(τ,X) means that the automaton can

process the input word τ both forward and backward.

Returning to the proof of Theorem 3.3, we prove, by induction on the input word τ , that q0 ∈ Fwd(τ, V )

if and only if the dfa AR accepts τR from some states in V . For the base case τ = ϵ, both sides are

equivalent to q0 ∈ V , by (3.1) and (3.3). Now, consider τ = τ ′σ. Then, by applying the previous result,

we get Fwd(τ ′σ, V ) = Bck(τ ′σ, V ). But, Bck(τ ′σ, V ) = Bck(τ ′, {s | V |= δ(s, σ)}) = Bck(τ ′, ρ(V, σ)) from

(3.4) and from the construction of dfa above. Finally, we have Bck(τ ′, ρ(V, σ)) = Fwd(τ ′, ρ(V, σ)). Thus,

q0 ∈ Fwd(τ ′σ, V ) = Fwd(τ ′, ρ(V, σ)) if and only if AR accepts (τ ′)R from state ρ(V, σ) (by induction), if

and only if AR accepts σ(τ ′)R = (τ ′σ)R from state V , as required. Hence, A accepts τ if and only if AR

accepts τR.

3.4.2 Translation to Automata

Given the tight connection between temporal logics on finite traces and finite-state automata, we can take

advantage of the single exponential language-theoretic reduction of an afa to a dfa for the reverse language

to get a dfa for ppltl/ppldl formulas. Therefore, the dfa resulting from a ppltl or a ppldl formula is

single exponential in the size of the original formula.

We introduce the syntactic notion of swap, denoted as ·sw, which, given a ppltl/ppldl formula, produces

an ltlf/ldlf formula by syntactically replacing each past operator with its corresponding future operator.

For ppltl formulas, the Y operator corresponds to the X operator, and the S operator corresponds to the

U operator. On the other hand, for ppldl formulas, the ⟨⟨ϱ⟩⟩ operator corresponds to the ⟨ϱsw⟩, and the

[[ϱ]] operator corresponds to [ϱsw], where ϱsw is the regular expression ϱ, with all formulas in test constructs

replaced by the corresponding swapped formulas. Formally, we define the swap φsw of a formula φ by

induction as follows:

• psw = p (for all p ∈ P) and ttsw = tt ;

• (¬φ)sw = ¬φsw and (φ1 ∧ φ2)
sw = φsw

1 ∧ φsw
2 ;

• (Yφ)sw = Xφsw;

• (φ1 Sφ2)
sw = φsw

1 Uφsw
2 ;
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• (⟨⟨ϱ⟩⟩φ)sw = ⟨ϱsw⟩φsw and ([[ϱ]]φ)sw = [ϱsw]φsw;

• ϕsw = ϕ, and (φ?)sw = (φsw)?, and (ρ1 + ρ2)
sw = ρsw1 + ρsw2 ;

• (ρ1; ρ2)
sw = (ρsw1 ; ρsw2 ), and (ρ∗)sw = (ρsw)∗.

Likewise, we can swap an ltlf/ldlf formula φ into a ppltl/ppldl formula φsw. Given the set of all traces

satisfying a temporal formula ϕ, called the language of ϕ and denoted as L(ϕ), the process of swapping

the temporal formula ϕ intuitively consists in finding another temporal formula ψ such that ψ is true in

exactly those traces that are the reverse of the ones in L(ϕ), namely L(ψ) = LR(ϕ). Due to the connection

of ppltl/ppldl semantics with ltlf/ldlf semantics, the process of swapping temporal formulas only

amounts to a syntactic replacement of temporal operators and/or regular expressions. The following lemma

summarizes the relation between formulas and their swaps.

Lemma 3.4. If φ is a ppltl/ppldl (ltlf/ldlf , resp.) formula, its swap φsw is an ltlf/ldlf (ppltl/ppldl,

resp.) formula of size |φ| such that τ |= φ if and only if τR |= φsw, i.e., LR(φ) = L(φsw).

Proof. The size of the swap is immediate by construction. The reverse language can be shown by structural

induction on the formula φ and by applying the semantics of the temporal operators. First, we prove that a

ppltl formula φ is such that τ, i |= φ if and only if τR, length(τ)−1−i |= φsw, where φsw is the corresponding

ltlf swap formula.

• φ = p. By the ppltl semantics, we have that τ, i |= φ iff p ∈ τi. By definition of reverse

trace, we have that τi = τRlength(τ)−1−i, therefore we have τ, i |= φ iff p ∈ τRlength(τ)−1−i. Now,

p ∈ τRlength(τ)−1−i iff τR, length(τ)−1−i |= p = φsw. Hence, the thesis holds.

• φ = Yφ′. By the semantics, we have that τ, i |= Yφ′ iff i > 0 and τ, i−1 |= φ′. Then, by applying the

ppltl semantics and by definition of reverse trace, we have length(τ)− 1− i > 0 and τR, (length(τ)−

1 − i) − 1 |= φ′, which are i < length(τ) − 1 and τR, length(τ)−2−i |= φ′. After that, we have

τR, length(τ)−2−i |= φ′ iff τR, length(τ)−1−i |= Xφ′sw, which is φsw. Hence, the thesis holds.

• ϕ = ϕ1 Sϕ2. By the semantics, we have τ, i |= φ1 Sφ2 iff ∃k with 0 ≤ k ≤ i such that τ, k |= φ2

and ∀j with k < j ≤ i such that τ, j |= φ1. By definition of reverse trace, such conditions are iff

∃k with length(τ)− 1 ≤ k ≤ length(τ)−1−i such that τR, k |= φ2 and ∀j with k ≤ j ≤ length(τ)−1−i

such that τ, j |= φ1. Also in this case, by looking at the ltlf semantics, we obtain that τ, i |= φ1 Sφ2

if and only if τR, length(τ)−1−i |= φsw
1 Uφsw

2 . Hence, the thesis holds.

• φ = φ1 ∧ φ2 or φ = ¬φ′. The thesis holds by structural induction.
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An analogous line of reasoning can be applied for ltlf , ldlf and ppldl formulas and their swap.

The swapping operation must not be confused with the semantic operation of translation from one logic

to the other. In the latter case, we want to find the formula of the other logic that is true on exactly the

same set of traces (keeping the direction of the traces). We will discuss the semantic translation later in

Section 3.5.2. To this end, we present two examples that illustrate the syntactic (vs. semantic) relationship

between a formula and its swap.

Example 3.5. Consider the ppltl formula “inRoom ∧ roomDecontaminated ∧ O(getPermit)”. The

swapped ltlf formula is “inRoom ∧ roomDecontaminated ∧ F(getPermit)”. Although the two formulas

are syntactically similar, they have different meanings. The former says that the robot is in a decontami-

nated room, and it acquired the permit to enter the room beforehand. The latter, instead, says that the robot

is in a decontaminated room, and later (!), it will get the permit to enter.

Example 3.6. Consider the ltlf formula “batteryCharged ∧ F(useNotebook)” and its swapped ppltl

formula “batteryCharged∧O(useNotebook)”. Again, they have two different meanings. While the first says

that the battery is now charged and you can eventually use the notebook, the ppltl formula says that you

used the notebook in the past, but the battery is charged now.

We are ready to show that transforming a ppltl/ppldl formula into the corresponding dfa can be done

in exponential time (vs. double exponential time as for ltlf/ldlf formulas):

Theorem 3.7. For every ppltl/ppldl formula φ, there exists an equivalent dfa Aφ whose size is at most

2O(|φ|), and which is computable in at most exponential time.

Proof. To see the theorem holds, we can swap the given ppltl/ppldl formula φ, getting the ltlf/ldlf

φsw. Then, from φsw, we can construct the afa Aφsw , and, finally, build the dfa Aφ = ARφsw . By Lemma 3.4

and Theorem 3.3, we get that Aφ has size 2O(|φ|) and L(φ) = L(Aφ).

As a result, as we have seen in Chapter 2 (cf. Section 2.4 – Algorithm 2.2), we can define an analogous

algorithm to translate ppltl/ppldl formulas into dfas based on Theorem 3.7.

Algorithm 3.1 Algorithm to translate a ppltl/ppldl formula into its corresponding dfa

Require: Given a ppltl/ppldl formula φ
1: Swap φ into the corresponding ltlf/ldlf φ

sw (linear)
2: Compute afa for φsw (linear)
3: Compute dfa for the reverse language from afa (exponential)

Observe that Algorithm 3.1 allows computing the dfa corresponding to a ppltl/ppldl formula in worst-

case single exponential time vs. the worst-case double exponential time of Algorithm 2.2 for the ltlf/ldlf
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case. This implies that using pure-past temporal logics as a means to express temporal properties reduces

the theoretical complexity of several problems, as we will see later in Section 3.7.

Here, it is important to observe that this procedure is the best-known way to transform a ppltl/ppldl

formula to dfa from a theoretical standpoint. In fact, to transform a ppltl/ppldl formula into a dfa, it is

also possible to follow similar approaches to the standard one for ltlf/ldlf formulas, seen in Section 2.4.

Nevertheless, given that the ppltl/ppldl semantics (backward evaluation) is opposite to how automata

read input symbols of traces, the first step of the transformation would need to go through special versions

of an afa (e.g., the two-way afa (Vardi, 1998; Finkbeiner and Sipma, 2004)), accounting for the backward

direction of traces and for which the subsequent transformation to a standard nfa comes at an additional

cost (Geffert and Okhotin, 2014). However, in this dissertation, we have not delved further into these options.

3.5 Relationship to Other Formal Languages

We have just shown that when ppltl and ppldl are employed as temporal specification formalisms, they

give an exponential advantage over ltlf and ldlf , respectively. This is possible by exploiting the well-

known language theoretic property characterizing alternating automata. However, having a computational

advantage in transformation is not often a helpful and reliable indicator of differences or similarities in

expressive power. Therefore, we examine in detail the general relationship of ppltl and ppldl to other

formal languages.

3.5.1 Expressive Power

We start by establishing that ppltl and ltlf have the same expressive power by using fol as an intermediate

logic. As mentioned in Section 2.3.3, fol formulas are interpreted on finite traces viewed as labeled linear

orders. In such settings, fol formulas can use: (i) variables x that vary over instants and that can be

quantified existentially and universally, (ii) the binary predicate < denoting the order of instants, (iii)

equality = between instants, and (iv) unary (sometimes called monadic) predicates P for the labels. See (De

Giacomo and Vardi, 2013) for formal definitions.

We start by observing that ppltl and ltlf can be translated into fol on finite traces by mimicking the

semantics of these logics as fol formulas, and can be done in linear time:

Theorem 3.8 (De Giacomo and Vardi (2013); Zhu et al. (2019)). ppltl and ltlf can be translated into

fol on finite traces in linear time.

For the converse, it is known that fol (on finite traces) can be translated into ltlf (Gabbay et al., 1980).
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Here, we exploit this result to show that fol can also be translated into ppltl.

Theorem 3.9 (cf. (Kamp, 1968)). fol on finite traces can be translated into both ppltl and ltlf .

Proof. Given an fol formula φ replace x < y by y < x to get an fol φsw for the reverse language, i.e., w |= φ

if and only if wR |= φsw. Then, translate the fol formula φsw into an equivalent ltlf formula ψ (Gabbay

et al., 1980). Then, the ppltl formula ψsw is equivalent to the original fol formula φ.

Putting these results together, we immediately get the following.

Theorem 3.10. ppltl and ltlf have the same expressive power.

Considering the results on ltlf in (De Giacomo and Vardi, 2013), we can fully characterize the expressive

power of ppltl.

Theorem 3.11. ppltl has exactly the same expressive power as fol on finite traces, namely, star-free

regular expressions.

Now, we study the expressive power of ppldl. Similar to what we did for ppltl, we exploit the already

known expressive power equivalences with intermediate logics to get results for ppldl. In particular, we

follow results from (De Giacomo and Vardi, 2013), which use re on finite traces to derive results for ldlf .

Theorem 3.12. re on finite traces is as least as expressive as ppldl.

Proof. We can apply Theorem 3.7 to get a dfa and then use Kleene’s Theorem (existence of a finite au-

tomaton for any regular expression) to get an equivalent regular expression.

The reverse direction of the previous theorem holds.

Theorem 3.13. ppldl is as least as expressive as re on finite traces.

Proof. Given a regular expression ϱ, we compute the reverse regular expression and return ⟨⟨ϱ⟩⟩start.

At this point, given that re has the same expressive power as mso on bounded sequences (De Giacomo

and Vardi, 2013), it is easy to derive the expressiveness relationship of ppldl.

Theorem 3.14. ppldl has the same expressive power as re, and as mso on finite traces.

Putting everything together, we immediately get the following characterization.

Theorem 3.15. ppldl has the same expressive power as ldlf .
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3.5.2 Translations to Other Formal Languages

In this section, we are interested in studying ways to translate pure-future temporal and dynamic logics on

finite traces (ltlf and ldlf ) into semantically equivalent pure-past temporal and dynamic logics (ppltl

and ppldl), respectively.

Starting with ppltl and ltlf , the results we have just seen in the previous section give us a way to

translate one into the other and vice versa. In particular, we can first translate ltlf (ppltl, resp.) into fol

and then translate fol into ppltl (ltlf , resp.). However, we remark that the transformation of an fol

formula into an ltlf (ppltl, resp.) formula can be, in general, non-elementary (i.e., not bounded by any

finite tower of exponentials) in the size of the fol formula (Gabbay, 1987). Hence, exploiting an intermediate

translation to fol to get the translation of ltlf (ppltl, resp.) formulas into ppltl (ltlf , resp.) formulas

is suboptimal in general.

In fact, we can do better using the following result from the literature:

Theorem 3.16 (Maler and Pnueli (1990)). A dfa accepting star-free regular languages can be translated

into a ppltl formula whose size is at most exponentially larger.

Given this result, we can provide a better translation, which gives us the best-known upper bound for

the translation. Whether such a bound is tight is still an open problem.

Theorem 3.17. For every ppltl (resp., ltlf ) formula φ, there exists an equivalent ltlf (resp., ppltl)

formula whose size is at most triply exponential in the size of φ, and which is computable in at most triply

exponential time.

Proof. Given a ppltl formula φ, we can build an equivalent dfa Aφ by Theorem 3.7. In general, the dfa

may be exponentially larger than φ. Given the dfa, we reverse all of its transitions, thus obtaining an nfa

ARφ that accepts the reverse of the language of Aφ. Then, we can determinize the nfa ARφ to get an equivalent

dfa A′R
φ . Clearly, the dfa A′R

φ may be exponentially larger than ARφ . At this stage, we apply the result

in Theorem 3.16 to transform the dfa A′R
φ into an equivalent ppltl formula ψ. Finally, by computing the

swap ψsw of the ppltl formula ψ, we get a formula that recognizes the reverse language of ψ. In particular,

ψsw represents the ltlf formula equivalent to the original ppltl formula φ. All these transformations may

incur in three exponential blowups.

Similarly, we can obtain a ppltl formula from an ltlf one. Given an ltlf formula φ, we can build an

equivalent dfa Aφ that may be double-exponentially larger than φ. Then, we apply Theorem 3.16 to get an

equivalent ppltl formula, which may be single-exponentially larger.

Next, we bring attention to ppldl and ldlf . We provide a translation bound (and algorithm) that is
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Figure 3.1: Overview of the main transformations among linear temporal and dynamic logics, first-order and
second-order logics, and automata.

the best-known upper bound. However, also in this case, whether these bounds can be further improved or

are tight remains open.

Theorem 3.18. For every ppldl (resp., ldlf ) formula φ, there exists an equivalent ldlf (resp., ppldl)

formula whose size is at most doubly exponential in the size of φ, and which is computable in doubly expo-

nential time.

Proof. From a ppldl formula φ, we can build an equivalent dfa that may be exponentially larger as per

Theorem 3.7. Then, using the Kleene’s Theorem, we convert the obtained dfa into a regular expression that

may be exponentially larger. Finally, we convert the resulting regular expression into an ldlf formula with

constant blow-up (De Giacomo and Vardi, 2013).

The converse case, i.e., from ldlf to ppldl, follows directly by considering the swapped formulas.

Figure 3.1 reports an overview of the main transformations between linear temporal and dynamic logics

with other well-known formal languages and automata.

In light of the previously presented results, while ppltl and ppldl allow for exponentially smaller

equivalent dfa compared to ltlf and ldlf , translating ltlf/ldlf into ppltl/ppldl to take advantage of

the exponential advantage is not advisable because the translation itself is too expensive. Therefore, the

properties of interest should be naturally expressible directly in ppltl/ppldl to really exploit the exponential

improvement when translating them into automata.

Finally, later in the dissertation, especially in the evaluation experiments of Chapters 5 and 6, we will need

to manually translate ppltl formulas to semantically equivalent ltlf ones (and vice versa) for comparability

reasons between our system and existing ones. Given that two formulas are semantically equivalent if they
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define the same language, we can prove equivalence in terms of languages, exploiting the fact that both

ppltl and ltlf can be translated into dfas, for which language equivalence is easy (indeed since every

regular language has a unique minimal dfa modulo state renaming, language equivalence reduces to solving

graph isomorphism). We employed this technique to formally check the correctness of translations for both

tables (PDDL3 and DECLARE) in the next section and all the formulas in our experiments. We computed

the minimal dfas for the formulas using the open-source tool LTLf2DFA1.

3.6 Examples

The limited attention given in some areas of AI – automated planning included – to the pure-past temporal

logics is not a good indicator of their relevance and benefits when employed as specification formalisms. In

fact, contrary to expectations, there are several properties that are natural to express using the past. For

instance, “serve coffee to X only if it has been requested and not already served in the past” is written

in ppltl as “H(CoffeeServed → Y(¬CoffeeServedSCoffeeRequested))”. In general, as mentioned at the

beginning of this chapter, ppltl and ppldl have already been used in several contexts, e.g.,in (Bacchus

et al., 1996; Fisher and Wooldridge, 2005; Gabaldon, 2011; Knobbout et al., 2016; Alechina et al., 2018;

Cimatti et al., 2020), and have shown to be helpful for specifying temporally extended properties.

Therefore, we provide some examples of ppltl formulas – almost all applications have shown a preference

for ppltl over ppldl– to demonstrate that ppltl is an appropriate and helpful formalism to specify temporal

properties or tasks in AI.

In many cases, we want the agent to achieve a goal g after some condition c has been met. In this setting,

we identify the Immediate-Response pattern as g ∧ Y(c) and the Bounded-Response pattern g ∧ Yi(c) for

1 ≤ i ≤ n, where n is the time-bound within which the agent achieves the goal g. These and other patterns

have been employed in the context of MDP rewards in Bacchus et al. (1996).

Then, among common formulas, we also find the Strict-Sequence pattern as O(a ∧ Y(O(b ∧ Y(O(. . . )))))

forcing the agent to achieve tasks a, b, . . . sequentially, and the Eventually-All pattern as
∧n
i=1 O(ai) requiring

to eventually achieve all tasks ai.

Additionally, widely used formula patterns can be found in PDDL3 (Table 3.1) that standardized certain

modal operators (Gerevini et al., 2009) and in DECLARE (Table 3.2) that is the de-facto standard encoding

language for Business Processes behaviors (van der Aalst et al., 2009). Table 3.1 and Table 3.2 are both

a non-exhaustive list of such common patterns, including their translation to equivalent ltlf formulas (De

Giacomo et al., 2014; Camacho et al., 2019a). A contribution of this dissertation is the translation to their

1http://ltlf2dfa.diag.uniroma1.it
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PDDL3 Operator Equivalent ppltl Formula Equivalent ltlf Formula

(at-end θ) θ F(θ ∧ final)
(always θ) H(θ) G(θ)
(sometime θ) O(θ) F(θ)
(sometime-after θ1 θ2) (¬θ1 S θ2) ∨ H(¬θ1) G(θ1 → F(θ2))
(sometime-before θ1 θ2) H(θ1 → Y(O(θ2)) θ2 R¬θ1
(at-most-once θ) H(θ → (θ S (H(¬θ) ∨ start))) G(θ → (θU (G(¬θ) ∨ final)))

(hold-during n1 n2 θ)

∨
0≤i≤n1

(θ ∧ Yi(start))∨∧
n1<i≤n2

H(θ ∨WYi(Y(true)))

∨
0≤i≤n1

Xi(θ ∧ final)∨∧
n1<i≤n2

WXi(θ)

∗ (hold-after n θ)

∨
0≤i≤n(θ ∧ Yi(start))∨

O(θ ∧ Yn+1(O(start)))

∨
0≤i≤n X

i(θ ∧ final)∨
Xn+1(F(θ))

Table 3.1: PDDL3 operators, their equivalent ppltl and ltlf formulas. Superscripts abbreviate nested
temporal operators. θ is a propositional formula. The ∗ tags the operator with the corrected ltlf translation.

equivalent ppltl formulas.

Notably, many, but not all, formulas have a straightforward translation to the corresponding pure-future

ltlf formula. However, even though a systematic translation between ltlf and ppltl (and vice versa) does

exist (cf. Section 3.5.2), such a translation is impractical (3EXPTIME). Such a high upper bound means that

the systematic translation is not simply based on an induction on the structure of the formula. Hence, some

inductive formula patterns like αUβ (or, equivalently, α Sβ) are not easily translatable.

3.7 Impact of Adopting Pure-Past Temporal and Dynamic Logics

Compared to ltlf/ldlf , the exponential gain in transforming ppltl/ppldl formulas into dfas is reflected

in an exponential gain in solving a variety of forms of sequential decision-making problems involving temporal

specifications. All these sequential decision-making problems involving temporal specifications exploit the

intimate connection between linear temporal logics and automata theory. Such a connection relies on the

fact that linear temporal and dynamic logics on finite traces can be transformed into finite automata.

In particular, while Fully Observable Nondeterministic planning (FOND) for ltlf/ldlf goals has been

characterized to be EXPTIME-complete in the domain specification and 2EXPTIME-complete in the ltlf/ldlf

goals (De Giacomo and Rubin, 2018), solving FOND planning for ppltl/ppldl goals becomes EXPTIME-

complete in the domain and EXPTIME-complete in the ppltl/ppldl goals.

Clearly, the exponential gain is only achieved when properties can be succinctly expressed using the past.

In fact, if we first express the specification in ltlf/ldlf and then translate it into ppltl/ppldl, we lose

the advantage given the impractical systematic translation.

The above-mentioned results can be adapted to handle stochastically fair domains (De Giacomo and
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DECLARE Template Equivalent ppltl Formula Equivalent ltlf Formula

init(a) O(a ∧ ¬Y(true)) a
existence(a) O(a) F(a)
absence(a) ¬O(a) ¬F(a)
absence2(a) H(a→WYH(¬a)) ¬(Fa ∧ XF(a))
choice(a, b) O(a) ∨ O(b) F(a) ∨ F(b)
exclusive-choice(a, b) (O(a) ∨ O(b)) ∧ ¬(O(a) ∧ O(b)) (F(a) ∨ F(b)) ∧ ¬(F(a) ∧ F(b))
co-existence(a, b) H(¬a)↔ H(¬b) F(a)↔ F(b)
responded-existence(a, b) O(a)→ O(b) F(a)→ F(b)
response(a, b) (¬aS b) ∨ H(¬a) G(a→ F(b))
precedence(a, b) H(b→ O(a)) (¬bU a) ∨ G(¬b)
succession(a, b) response(a, b) ∧ precedence(a, b)

chain-response(a, b) H(Y(a)→ b) ∧ ¬a G(a→ X(b))
chain-precedence(a, b) H(b→ Y(a)) G(X(b)→ a) ∧ ¬b
chain-succession(a, b)

(H(Y(a)→ b) ∧ ¬a)∧
H(Y(¬a)→ ¬b) G(a↔ X(b))

not-co-existence(a, b) O(a)→ ¬O(b) F(a)→ ¬F(b)
not-succession(a, b) H(b→ ¬O(a)) G(a→ ¬F(b))
not-chain-succession(a, b) H(b→ ¬Y(a)) G(a→ ¬X(b))

Table 3.2: DECLARE templates, their equivalent ppltl and ltlf formulas. a, b are atomic propositions.

Rubin, 2018; Aminof et al., 2020) with the same exponential advantage. Observe that when the domain

is deterministic, the difference in theoretical complexity between ltlf/ldlf and ppltl/ppldl disappears

because, for ltlf/ldlf , we can directly work with an nfa, i.e., and check for nonemptiness (cf. (De Giacomo

and Rubin, 2018)). In both cases, the complexity is PSPACE in both the domain and the temporal goal.

An analogous line of reasoning can be exploited to show an exponential improvement in several other

contexts, as follows.

• Solving Markov Decision Processes (MDP) with non-Markovian rewards (Bacchus et al., 1996; Thiébaux

et al., 2006; Brafman et al., 2018) with ppltl/ppldl rewards is EXPTIME-complete in the domain

and EXPTIME in ppltl/ppldl rewards, while the latter is 2EXPTIME-complete for ltlf/ldlf re-

wards (Brafman et al., 2018);

• Reinforcement Learning where rewards are based on traces (De Giacomo et al., 2019; Camacho et al.,

2019b) with ppltl/ppldl rewards also gains the exponential improvement;

• Planning in non-Markovian domains (Brafman and De Giacomo, 2019a), with both the non-Markovian

domain and the goal expressed in ppltl/ppldl is EXPTIME-complete in the domain and in the goal,

vs. 2EXPTIME-complete in the domain and in the goal in the case these are expressed in ltlf/ldlf ;

• Solving non-Markovian decision processes (NMDP) (Brafman and De Giacomo, 2019b), with both the
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system dynamics and the rewards expressed using ppltl/ppldl, is EXPTIME-complete in the domain

and in the rewards specification.

3.8 Summary and Discussion

In this chapter, we considered the Pure-Past Linear Temporal Logic (ppltl) and its extension Pure-Past

Linear Dynamic Logic (ppldl) as first-class citizens of our research and described their main properties

and characteristics. By exploiting a well-known foundational result on reverse languages, we provided an

algorithm to translate ppltl and ppldl formulas into their corresponding dfa that has an exponential

improvement if compared to the algorithm to translate ltlf and ldlf formulas into dfa. Then, we have

reviewed the relationship between ppltl/ppldl and other formal languages, including fol, re, and mso.

These known results allowed us to expand the research by establishing that ppltl and ppldl have the

same expressive power as ltlf and ldlf , respectively, but transforming a ppltl or ppldl formula into its

equivalent ltlf or ldlf formula is computationally prohibitive (i.e., worst-case 3EXPTIME). Moving beyond

considering only theoretical results for ppltl and ppldl, we have shown their applicability in a range of

domains, giving translations in ppltl of PDDL3modal operators and of DECLARE patterns. Finally, we have

discussed the impact of using pure-past temporal logics on well-known sequential decision-making problems,

such as planning and decision problems in nondeterministic and non-Markovian domains, in comparison with

ltlf and ldlf .
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Chapter 4

Handling Pure-Past Linear Temporal

Logic Formulas

In this chapter, we focus on ppltl only and study the theoretical foundations and properties to develop

an efficient technique for handling and evaluating ppltl formulas. We exploit the well-known fixpoint

characterization of temporal logics formulas on finite traces to determine when ppltl formulas become true.

Then, given some key observations, we devise a novel technique to evaluate the truth of ppltl formulas using

only a small set of subformulas. We formally prove the correctness of this technique and demonstrate its

usefulness in developing more efficient algorithms for various application domains. Specifically, in Chapters 5

and 6, we will examine how this technique can be successfully applied to deterministic and nondeterministic

planning.

4.1 Fixpoint Characterization

From the literature, it is well-known that ltl and variants have a convenient fixpoint characterization

that allows splitting any formula into a propositional formula to be checked at the current instant and a

temporal formula to be checked at the next instant (Gabbay et al., 1980; Manna, 1982; Emerson, 1990)

(cf. Section 2.4.1). The fixpoint characterization property has already been exploited in AI, e.g., in the

MetateM approach (Barringer et al., 1989), and later under the name of “formula progression” in (Bacchus

and Kabanza, 1996), which is perhaps the most influential work on planning for temporally extended goals.

Analogously to the fixpoint characterization of ltl and variants, when we consider ppltl formulas, such a

fixpoint characterization splits the formula into a propositional formula on the current instant and a temporal
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formula on the past to be checked at the previous instant. However, while the future has not happened yet

and needs to be guessed, the past has already happened and needs only to be read. This implies that ppltl

formulas can be easily evaluated by recursively applying their fixpoint characterization. A similar line of

reasoning was exploited to conveniently handle non-Markovian rewards expressed using ppltl in (Bacchus

et al., 1997), but never fully formalized.

To begin with, we observe that any sequence of actions produces a trace on which ppltl formulas can

be evaluated. Therefore, while the planning process goes on, sequences of actions are produced, traces are

generated, and over them, ppltl goals can be evaluated. The difficulty is that evaluating ppltl formulas

requires a trace, and searching through traces is quite demanding. Instead, our technique does not consider

traces at all. In particular, it exploits the following observations:

• to evaluate the ppltl goal formula, we only need the truth value of its subformulas;

• every ppltl formula can be put in a form where its evaluation depends only on the current propositional

evaluation and the evaluation of a key set of ppltl subformulas at the previous instant; and

• one can recursively compute and keep the value of such a small set of formulas as additional proposi-

tional variables in the state of the planning domain.

In the following, we detail these observations.

Temporal operators in ltl and ltlf can be decomposed into present and future components, giving a

fixpoint characterization of the until operator (U) – we remind the reader that other temporal operators as

eventually (F) and always (G) are abbreviations of formulas involving U:

ϕ1 Uϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ X(ϕ1 Uϕ2))

Analogously, ppltl formulas can be decomposed into present and past components, given the fixpoint

characterization of the since operator:

ϕ1 Sϕ2 ≡ ϕ2 ∨ (ϕ1 ∧ Y(ϕ1 Sϕ2)).

Exploiting this equivalence, the formula decomposition can be computed by recursively applying the following

transformation function pnf(·):

• pnf(p) = p;

• pnf(Yϕ) = Yϕ;
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• pnf(ϕ1 Sϕ2) = pnf(ϕ2) ∨ (pnf(ϕ1) ∧ Y(ϕ1 Sϕ2));

• pnf(ϕ1 ∧ ϕ2) = pnf(ϕ1) ∧ pnf(ϕ2);

• pnf(¬ϕ) = ¬pnf(ϕ).

For convenience, we add pnf(Oϕ) = pnf(ϕ) ∨ Y(Oϕ).

A formula resulting from the application of pnf(·) is said to be in Previous Normal Form (pnf). Note that

formulas in pnf have proper temporal subformulas (i.e., subformulas whose main construct is a temporal

operator) appearing only in the scope of the Y operator. Also, observe that the formulas of the form Yϕ in

pnf(φ) are such that ϕ ∈ sub(φ). It is easy to see that the following proposition holds:

Proposition 4.1. Every ppltl formula φ can be converted to its pnf form pnf(φ) in linear-time in the size

of the formula (i.e., |sub(φ)|). Moreover, pnf(φ) is equivalent to φ.

Proof. We can prove φ ≡ pnf(φ) by structural induction on the formula.

• φ = p. Immediate by construction.

• φ = Y(φ′). Immediate by construction.

• φ = φ1 Sφ2. Here, we want to prove the claim τ, i |= φ1 Sφ2 ≡ τ, i |= φ2 ∨ (φ1 ∧ Y(φ1 Sφ2)). By the

semantics of S , we have that τ, i |= φ1 Sφ2 if and only if there exists k, with 0 ≤ k ≤ i, such that

τ0, . . . , τk |= φ2 and τ0, . . . , τj |= φ1 for all j with k < j ≤ i. Now, we distinguish between the cases

k = i and 0 ≤ k < i.

– Let k = i. If k = 1, then τ0, . . . , τk |= φ2 by hypothesis, and thus τ0, . . . , τi |= φ2. Hence, we will

have φ2 ∨ . . . .

– Let 0 ≤ k < i. Then, we have that the claim is equal to τ0, . . . , τi |= φ1 and τ0, . . . , τi−1 |= φ1 Sφ2,

meaning that φ1 must hold now and φ1 Sφ2 must hold at the previous step. Therefore, the second

part can be rewritten as τ0, . . . , τi |= Y(φ1 Sφ2), by definition of the Y operator with i > 0. Hence,

we will have φ1 ∧ Y(φ1 Sφ2).

Combining both cases, we get τ0, . . . , τi |= φ2 ∨ (φ1 ∧ Y(φ1 Sφ2)) as required.

• φ = φ1 ∧ φ2 or φ = ¬φ′. The thesis holds by structural induction.

Then, since no expansion is applied to the Y operator, the conversion cost is at most linear.
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4.2 Evaluation of Pure-Past Linear Temporal Logic Formulas

Interestingly, the pnf decomposition allows us to characterize the evaluation of a ppltl formula φ by only

keeping track of the truth values of all subformulas that are within the Y-scope. To do so, we introduce Σφ

as the set of propositions of the form “Yϕ” containing:

• “Yϕ” for each subformula of φ of the form Yϕ;

• “Y(ϕ1 Sϕ2)” for each subformula of φ of the form ϕ1 Sϕ2.

We interpret these specific subformulas as atomic propositions, denoting them with quotes and collecting

them in a set denoted as Σφ. To keep track of the truth of each proposition in Σφ, we define a specific

interpretation σ:

σ : Σφ → {⊤,⊥}

Intuitively, given an instant i, σi tells us which propositions related to the previous instant (i.e., in Σφ)

are true at the instant i. Therefore, a ppltl formula can simply be evaluated by using the propositional

interpretation in the current instant i and the truth value assigned by σi to propositions related to the

previous instant.

Definition 4.2. Let si be a propositional interpretation over P, σi a propositional interpretation over Σφ,

and ϕ a ppltl subformula in sub(φ), we define the predicate val(ϕ, σi, si), recursively as follows:

• val(p, σi, si) iff si |= p;

• val(Yϕ′, σi, si) iff σi |= “Yϕ′”;

• val(ϕ1 Sϕ2, σi, si) iff val(ϕ2, σi, si) ∨ (val(ϕ1, σi, si) ∧ σi |= “Y(ϕ1 Sϕ2)”);

• val(ϕ1 ∧ ϕ2, σi, si) iff val(ϕ1, σi, si) ∧ val(ϕ2, σi, si);

• val(¬ϕ′, σi, si) iff ¬val(ϕ′, σi, si).

Intuitively, the val(ϕ, σi, si) predicate allows us to determine what is the truth value of any ppltl formula

ϕ ∈ sub(φ) by reading a propositional interpretation si from trace τ and keeping track of the truth value of

propositions in Σφ by means of σi. Observe that rules in Definition 4.2 basically follow the pnf transformation

rules where subformulas within the Y-scope are interpreted as propositions.

Now, given a trace τ = s0, . . . , sn over P, we compute a corresponding trace τ [φ] = σ0, . . . , σn over Σφ,

where:

• σ0(“Yϕ”)
.
= ⊥ for each “Yϕ” ∈ Σφ;
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• σi(“Yϕ”)
.
= val(ϕ, σi−1, si−1), for all i with 0 < i ≤ n.

We can show that for traces of length 1, the following result holds.

Lemma 4.3. Let φ be ppltl formula over P, ϕ ∈ sub(φ) a subformula of φ, and τ = s0 a trace over P of

length 1. Then, s0 |= ϕ iff val(ϕ, σ0, s0).

Proof. By structural induction on the formula ϕ.

• ϕ = p. By definition of val(·), val(p, σ0, s0) iff s0 |= p.

• ϕ = Yϕ′. By definition of σ0, σ0(“Yϕ
′”) = ⊥, and by the semantics, s0 ̸|= Yϕ′. Therefore, the thesis

holds.

• ϕ = ϕ1 Sϕ2. val(ϕ1 Sϕ2, σi, si) iff val(ϕ2, σi, si)∨ (val(ϕ1, σi, si)∧σi |= “Y(ϕ1 Sϕ2)”). By definition of

σ0, σ0(“Y(ϕ1 Sϕ2”)) = ⊥, hence the formula above simplifies to val(ϕ2, σi, si). On the other hand, by

the semantics, s0 |= ϕ1 Sϕ2 iff s0 |= ϕ2. Hence, by induction the thesis holds.

• ϕ = ϕ1 ∧ ϕ2 or ϕ = ¬ϕ′. The thesis holds by structural induction.

Next, we extend the previous result to traces of any length.

Theorem 4.4. Let φ be a ppltl formula over P, ϕ ∈ sub(φ) a subformula of φ, τ a trace over P, and τ [φ]

the corresponding trace over Σφ. Then,

τ |= ϕ iff val(ϕ, last(τ [φ]), last(τ)).

Proof. We prove the thesis by double induction on the length of the trace τ and on the structure of the

formula ϕ.

• Base case: τ = s0. By Lemma 4.3, the thesis holds.

• Inductive step: Let τ = τn−1·sn. By inductive hypothesis, the thesis holds for the trace τn−1 of length

n− 1:

τn−1 |= ϕ iff val(ϕ, last(τ
[φ]
n−1), last(τn−1))

Now, we prove that the thesis also holds for τn−1·sn:

τn−1·sn |= ϕ iff val(ϕ, last((τn−1·sn)[φ]), last(τn−1·sn))
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To prove the claim, we proceed by structural induction on the formula, knowing that last((τn−1·sn)[φ]) =

σn and last(τn−1·sn) = sn:

– ϕ = p. We have that τn−1·sn |= p iff sn |= p. For the val(·) predicate we have that sn |=

p iff val(p, σn, sn). Therefore, the thesis holds.

– ϕ = Yϕ′. We have that τn−1·sn |= Yϕ′ iff τn−1 |= ϕ′. By inductive hypothesis, τn−1 |=

ϕ′ iff val(ϕ′, last(τ
[φ]
n−1), last(τn−1)). For the val(·) predicate val(Yϕ′, σn, sn) iff σn |= “Yϕ′”,

which in turn is defined as val(ϕ′, last(τ
[φ]
n−1), last(τn−1)). Hence the thesis holds.

– ϕ = ϕ1 Sϕ2. In this case it suffices to remember that τn−1·sn |= ϕ1 Sϕ2 iff τn−1·sn |= ϕ2 ∨

(ϕ1 ∧ Y(ϕ1 Sϕ2)). On the other hand, val(ϕ1 Sϕ2, σn, sn) iff val(ϕ2, σn, sn) ∨ (val(ϕ1, σn, sn) ∧

σn |= “Y(ϕ1 Sϕ2)”). By structural induction we have that τn−1·sn |= ϕ1 iff val(ϕ1, σn, sn),

and τn−1·sn |= ϕ2 iff val(ϕ2, σn, sn). Moreover, τn−1·sn |= Y(ϕ1 Sϕ2) iff τn−1 |= ϕ1 Sϕ2, and

σn |= “Y(ϕ1 Sϕ2)” iff val(ϕ1 Sϕ2, last(τ
[φ]
n−1), last(τn−1)). Finally, we have that τn−1 |= ϕ1 Sϕ2 iff

val(ϕ1 Sϕ2, last(τ
[φ]
n−1), last(τn−1)) holds by induction on the length of the trace.

– ϕ = ϕ1 ∧ ϕ2 or ϕ = ¬ϕ′. The thesis holds by structural induction.

Theorem 4.4 gives us the bases of our technique. Specifically, Theorem 4.4 guarantees that by keeping

a suitably updated trace σ, we can evaluate our ppltl goal only using the propositional interpretation in

the current instant and the truth value of the “Yϕ” formulas in σ, without considering the entire trace.

Moreover, Theorem 4.4 can be seen as another way to explore runs of the dfa corresponding to the ppltl

formula φ. In fact, by computing which subformulas of φ are true at every instant while scanning a given

trace τ , one is implicitly building the states of the dfa corresponding to φ on the fly.

4.3 Examples

In this section, we report some examples to clarify how the mathematical construction of the previous section

works.

Example 4.5. Let φ = Y(a) be the ppltl formula under examination. The set of subformulas of φ are

simply sub(φ) = {a,Y(a)}, whereas the pnf(φ) = Y(a). Given the pnf of φ, we can characterize the

evaluation of φ in terms of a subset of its subformulas. In this case where φ = Y(a), from its pnf, we get

that Σφ = {“Y(a)”}. This means that to evaluate the truth value of φ, we only need to keep track of the

truth value of the proposition “Y(a)”.
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Now, we consider the trace τ = {a}, ∅. At the beginning, we know that σ0 = σ0(“Y(a)”) = ⊥ by

definition. For each subsequent instant of time i, following the theory, we can compute the truth value of the

proposition “Y(a)” applying σi(“Y(a)”) = val(a, σi−1, si−1). Hence, by applying the rules in Definition 4.2

and consuming the two symbols we have in the trace τ , we get that:

• σ0(“Y(a)”) = ⊥ by definition;

• σ1(“Y(a)”) = val(a, σ0, s0) = val(a, σ0, {a}) = ⊤ as {a} |= a.

From Theorem 4.4, we have that τ |= φ iff val(φ, σ1, s1) as σ1 and s1 represent the last instants of the

traces τ [φ] and τ , respectively. Substituting the values, we get {a}, ∅ |= Y(a) iff val(Y(a), {“Y(a)”}, {}).

Now, val(Y(a), {“Y(a)”}, {}) is true if and only if, by the rules in Definition 4.2, {“Y(a)”} |= “Y(a)”, which

is trivially true. Thus, the trace τ = {a}, ∅ makes the ppltl formula Y(a) true.

We can represent the evaluation of propositions in Σφ and the truth value of φ graphically as follows.

Propositions in Σφ Trace τ [φ]

“Y(a)”

Formula Trace τ

Y(a)

In particular, we can read the table as the proposition “Y(a)” is true (filled circle) in the last instant of

τ [φ], and therefore the formula Y(a) is true on the trace τ . Given that the formula is a ppltl formula, as

described in Section 3.2, the formula is true in τ if it is satisfied in the last instant of the trace.

Now, we can consider a slightly more complex example.

Example 4.6. Let φ = Y(a) ∧ (¬bS c) be the ppltl formula under examination. The set of subformulas of

φ are sub(φ) = {a, b, c,¬b,Y(a), (¬bS c),Y(a)∧ (¬bS c)}, whereas the pnf(φ) = Y(a)∧ (¬b∨ (c∧Y(¬bS c))).

As before, we characterize the evaluation of φ in terms of a subset of its subformulas, given the pnf of φ.

In this case, we get that Σφ = {“Y(a)”, “Y(¬bS c)”}. This means that to evaluate the truth value of φ, we

only need to keep track of the truth value of the propositions “Y(a)” and “Y(¬bS c)”.

This time, we consider the trace τ = {a}, {a, c}, {a, b}, {c}. For each subsequent instant of time i,

following the theory, we compute the truth value of the propositions “Y(a)” and “Y(¬bS c)” by applying the

predicates val(a, σi−1, si−1) and val(¬bS c, σi−1, si−1). Hence, for σ0, we have that:

• σ0(“Y(a)”) = σ0(“Y(¬bS c)”) = ⊥ by definition.

Analyzing our interpretation σ1, we have:
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• σ1(“Y(a)”) = val(a, σ0, s0) = val(a, σ0, {a}) = ⊤ as {a} |= a; and

• σ1(“Y(¬bS c)”) = val(¬bS c, σ0, s0)

= val(c, σ0, s0) ∨ (val(¬b, σ0, s0) ∧ σ0 |= “Y(¬bS c)”)

= val(c, σ0, {a}) ∨ (¬val(b, σ0, {a}) ∧ {} |= “Y(¬bS c)”)

= ⊥ ∨ (¬⊥ ∧ ⊥) as {a} ̸|= c and {a} ̸|= b

= ⊥.

Therefore, so far, we have σ0 = {} and σ1 = {“Y(a)”}. Continuing with σ2, we get the following:

• σ2(“Y(a)”) = val(a, σ1, s1) = val(a, {“Y(a)”}, {a, c}) = ⊤ as {a, c} |= a; and

• σ2(“Y(¬bS c)”) = val(¬bS c, σ1, s1)

= val(c, σ1, s1) ∨ (val(¬b, σ1, s1) ∧ σ1 |= “Y(¬bS c)”)

= val(c, σ1, {a, c}) ∨ (¬val(b, σ1, {a, c}) ∧ {“Y(a)”} |= “Y(¬bS c)”)

= ⊤ ∨ (¬⊥ ∧ ⊥) as {a, c} |= c and {a, c} ̸|= b

= ⊤.

Thus, σ2 = {“Y(a)”, “Y(¬bS c)”}. We go on and compute the last interpretation σ3 as follows:

• σ3(“Y(a)”) = val(a, σ2, s2) = val(a, {“Y(a)”, “Y(¬bS c)”}, {a, b}) = ⊤ as {a, b} |= a; and

• σ3(“Y(¬bS c)”) = val(¬bS c, σ2, s2)

= val(c, σ2, s2) ∨ (val(¬b, σ2, s2) ∧ σ2 |= “Y(¬bS c)”)

= val(c, σ2, {a, b}) ∨ (¬val(b, σ2, {a, b}) ∧ {“Y(a)”, “Y(¬bS c)”} |= “Y(¬bS c)”)

= ⊥ ∨ (¬⊤ ∧ ⊤) as {a, b} ̸|= c and {a, b} |= b

= ⊥.

Hence, we have σ3 = {“Y(a)”}.

Now, from Theorem 4.4, we have that τ |= φ iff val(φ, σ3, s3) as σ3 and s3 represent the last instants of

the traces τ [φ] and τ , respectively. Substituting the values, we get

{a}, {a, c}, {a, b}, {c} |= Y(a) ∧ (¬bS c) iff val(Y(a) ∧ (¬bS c), {“Y(a)”}, {c}).

Now, by the rules in Definition 4.2, we have:

val(Y(a) ∧ (¬bS c), {“Y(a)”}, {c}) iff val(Y(a), {“Y(a)”}, {c}) ∧ val(¬bS c, {“Y(a)”}, {c}).
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Analyzing the truth value of both parts, we get:

• val(Y(a), {“Y(a)”}, {c}) = ⊤ as {“Y(a)”} |= “Y(a)”; and

• val(¬bS c, {“Y(a)”}, {c}) = val(c, σ3, s3) ∨ (val(¬b, σ3, s3) ∧ σ3 |= “Y(¬bS c)”)

= val(c, σ3, {c}) ∨ (¬val(b, σ3, {c}) ∧ {“Y(a)”} |= “Y(¬bS c)”)

= ⊤ ∨ (¬⊥ ∧ ⊥) as {c} |= c and {c} ̸|= b

= ⊤.

Given that both parts evaluate to true, then we can conclude that the trace τ makes the ppltl formula

Y(a) ∧ (¬bS c) true. Similarly to what we have shown in the previous example, we represent the evaluation

of propositions in Σφ and the truth value of φ graphically as follows.

Propositions in Σφ Trace τ [φ]

“Y(a)”
“Y(¬bS c)”
Formula Trace τ

Y(a) ∧ (¬bS c)

In particular, the proposition “Y(a)” is true from the second instant onward, whereas the proposition

“Y(¬bS c)” is true only on the last but one instant of the trace τ [φ]. Therefore, the formula Y(a) ∧ (¬bS c)

is true on the second and the last instants of the trace τ . Given that the formula is a ppltl formula and

that is satisfied on the last instant of the trace, we conclude that τ |= φ.

4.4 Relationship with Automata

As previously mentioned, given that reasoning on linear temporal logics is usually done by relying on au-

tomata theory, the clever evaluation of ppltl formulas that we have shown in this chapter can also be seen

as another way to explore the dfa associated with the ppltl formula. Specifically, the computation of which

key subformulas of a certain ppltl formula are true at every instant of time along the trace essentially results

in exploring runs of the dfa of the ppltl formula. Clearly, the run depends on the symbols present in the

trace.

In this section, we go through Examples 4.5 and 4.6 of the previous section and describe how the com-

putation of truth values of formula propositions belonging to Σφ relates to the runs of an automaton.

Example 4.7. In Example 4.5, the ppltl formula is φ = Y(a) and the trace is τ = {a}, ∅. By combining

the input trace τ = {a}, ∅ and the trace associated with the ppltl formula τ [φ] = σ0, σ1 (whose components

69



σ0 and σ1 are computed as shown in Example 4.5), we can construct the following augmented trace (τ, τ [φ])

that simultaneously reads both τ and τ [φ]:

s0 = {a}

σ0 = {}

s1 = {}

σ1 = {“Y(a)”}

Now, the minimal dfa corresponding to the ppltl formula Y(a) is as follows. Here, observe that since

transitions in an automaton may be numerous, they are typically compactly represented as Boolean formulas

that represent models of the propositional interpretations for each transition. In this example, a represents

{a}, whereas ¬a represents ∅.

1 2

3

4

¬a

a

¬a

a

¬a a
a

¬a

At this point, it is clear that the red colored part of the dfa actually corresponds to the augmented trace

when projected on τ . In this respect, we can say that depending on the trace τ , the augmented trace (τ, τ [φ])

computed through the technique previously described corresponds to exploring runs of the dfa of the formula.

The same line of reasoning can be applied to show the relationship between the construction in the

Example 4.6 and the runs of the dfa associated with the ppltl formula.

Example 4.8. Given the formula φ = Y(a)∧(¬bS c) and the trace τ = {a}, {a, c}, {a, b}, {c}, the augmented

trace (τ, τ [φ]) is constructed as follows.

s0 = {a}

σ0 = {}

s1 = {a, c}

σ1 = {“Y(a)”}

s2 = {a, b}

σ2 = {“Y(a)”,

“Y(¬bS c)”}

s3 = {c}

σ3 = {“Y(a)”}

The minimal dfa associated with the ppltl formula Y(a) ∧ (¬bS c) is as follows. Again, as before, since

transitions in an automaton may be numerous (as in this particular case), they are compactly represented as

Boolean formulas that represent models of the propositional interpretations for each transition.
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1

2

3

4 5

6

¬a ∧ ¬c

c ∧ ¬a

b ∧ ¬a ∧ ¬c

¬a ∧ (c ∨ ¬b)

a ∧ (c ∨ ¬b)

a ∧ b
∧ ¬c

a
∧
¬c

¬a
∧
¬c

a ∧ c
b ∧ ¬a ∧ ¬c

a ∧ b ∧ ¬c

a ∧ (c
∨ ¬b)

a ∧ ¬c
a
∧ b
∧ ¬
ca

∧ c

a ∧ (c ∨ ¬b)

c ∧ ¬a

a ∧ b ∧ ¬c

¬a ∧ (c ∨ ¬b)

a ∧ (c ∨ ¬b)

¬a ∧ (c ∨ ¬b)

b
∧
¬a
∧
¬c

¬a ∧ (c
∨ ¬b)

b ∧ ¬a ∧ ¬c

Even a small formula like the one under examination may have several transitions. Here, observe that before

compactification, there are as many transitions as models of Boolean formulas that label transitions. As in

the previous case, also here, the red colored part of the dfa corresponds to the augmented trace when projected

on τ . To evaluate ppltl formulas, we do not need to build the whole automaton a priori, using our technique

suffices.

Interestingly, we can do more than just relate our evaluation technique with runs on dfas. Although the

key set of subformulas in Σφ we keep track of does not suffice to fully determine the automaton state, for

small automata we can also characterize which subformulas are true in the automaton state. In particular,

in cases like the one of Example 4.5, we can show how our technique can be used to build the dfa if one

considers every possible run or, equivalently, every possible propositional interpretation from every state of

the automaton.

Example 4.9. Given the ppltl formula Y(a), its subformulas are sub(φ) = {a,Y(a)}, and Σφ = {“Y(a)”}.

The set of all possible propositional interpretations to be considered are {} and {a}. We can build the dfa

for Y(a) by evaluating from every state and for each propositional interpretation read which subformulas are

true in the successor state. The resulting dfa is as follows.
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{} {a}

{“Y(a)”}

{a, “Y(a)”}

{}

{a}

{}

{a}

{} {a}

{a}
{}

Finally, observe that while for this simple case, the resulting dfa corresponds to the minimal dfa of Y(a),

this is not always the case for any formula.

4.5 Summary and Discussion

In this chapter, we have reviewed the fixpoint characterization of ppltl formulas and shown how to exploit

it to derive a formally correct technique able to evaluate ppltl formulas only relying on the truth value of

some key subformulas. Therefore, we introduced a novel approach to handle ppltl formulas that exploits

the native backward feature of ppltl when interpreting traces. In the next two chapters, we are going to

exploit the mathematical construction presented here to devise a particularly effective technique for planning

in deterministic and nondeterministic domains for temporally extended goals expressed in ppltl.
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Chapter 5

Classical Planning for Temporally

Extended Goals in Pure-Past Linear

Temporal Logic

In this chapter, we study classical planning with temporally extended goals expressed in Pure-Past Linear

Temporal Logic (ppltl). As we have discussed before, ppltl is as expressive as Linear-time Temporal Logic

on finite traces (ltlf ), but as shown in this dissertation, it is computationally much better behaved for

planning. Specifically, we show that planning for ppltl goals can be encoded into classical planning with

minimal overhead, introducing only a number of new fluents that is at most linear in the ppltl goal and

no spurious additional actions. Based on these results, we implemented a system called Plan4Past, which

can be used along with state-of-the-art classical planners, such as LAMA (Richter and Westphal, 2010). An

empirical analysis demonstrates the practical effectiveness of Plan4Past, showing that a classical planner

generally performs better with our compilation than with other existing compilations for ltlf goals over the

considered benchmarks.

The content of this chapter has been published in (Bonassi et al., 2023b) at the International Conference

of Automated Planning and Scheduling 2023.

5.1 Context and Motivation

Planning with temporally extended goals has a long tradition in AI Planning, including pioneering work

in the late ’90s (Bacchus et al., 1996; Bacchus and Kabanza, 1996; Bacchus et al., 1997; Bacchus and
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Kabanza, 2000), work on planning via Model Checking (Cimatti et al., 1997, 1998; De Giacomo and Vardi,

1999; Giunchiglia and Traverso, 1999; Pistore and Traverso, 2001), and work on declarative and procedural

constraints (Baier and McIlraith, 2006a; Baier et al., 2008). Also, the presence of trajectory constraints in

PDDL3 (Gerevini et al., 2009) witnesses the relevance of temporally extended goals.

In fact, formalisms such as ltl have been advocated by the Formal Methods community (Baier and

Katoen, 2008) as excellent tools to express properties of processes. While these properties of processes often

have an infinite horizon, in AI Planning, tasks need to terminate. Thus, the finite-trace variant of ltl,

namely ltlf , is usually more appropriate (Baier and McIlraith, 2006a; De Giacomo and Vardi, 2013).

Planning for ltlf goals in deterministic domains requires some properties to be achieved along the

execution of a plan and has already been studied in, e.g., (Baier and McIlraith, 2006a; De Giacomo and

Vardi, 2013; Torres and Baier, 2015). From a theoretical complexity standpoint, we have a clear picture.

Deterministic planning for ltlf goals is PSPACE-complete, just like for classical reachability goals (Bylander,

1994). In fact, in deterministic domains, the added expressiveness of ltlf goals is paid in terms of algorithmic

sophistication but not in worst-case complexity. However, existing encodings of ltlf to classical planning are

either worst-case exponential (Baier and McIlraith, 2006a) or significantly increase the plan length (Torres

and Baier, 2015).

As we have seen in the previous chapter, an interesting alternative to ltlf is ppltl, which has been

attractive in expressing temporal specifications in other areas of AI. Given an initial state, planning for

ppltl goals requires reaching, from a specified initial state, a certain state satisfying the ppltl goal, i.e.,

the state-trace produced to reach such a state satisfies the goal formula. In this chapter, we present an

approach to solve classical planning for ppltl goals that sidesteps altogether the construction of the dfa for

the ppltl formula as done, e.g., in (Baier and McIlraith, 2006a; Torres and Baier, 2015) for ltlf . Our novel

approach shows that classical planning for ppltl goals can be encoded into planning for reachability goals

with minimal overhead by only introducing few new fluents, at most linear in the size of the ppltl goal, and

without adding any spurious action. These new fluents keep track of the satisfaction of few key subformulas

of the temporal goal at planning time, reducing planning for temporally extended goals to classical planning

for reachability goals. In this way, planners lazily build the relevant part of the dfa for the goal formula

on the fly during the planning search. Our solution exploits the fixpoint characterization (Gabbay et al.,

1980; Manna, 1982; Emerson, 1990) of ppltl formulas that, similarly to the one of ltl (Barringer et al.,

1989; Bacchus and Kabanza, 1996), recursively splits the formula into a propositional formula on the current

instant and a temporal formula on the past to be checked at the previous instant. The solution to this

recursion can be obtained by storing previous values of a small number of formulas (at most linear in the

original formula), à la dynamic programming. Intuitively, we examine and take advantage of the key native
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difference between ltlf and ppltl. That is, given the prefix of the trace computed so far, while the ltlf

formula has to consider all possible extensions, a ppltl can simply be evaluated on the history (the prefix of

the trace) produced so far. Therefore, the use of ppltl is crucial to obtain such nice results since it avoids

any form of guessing about the future.

We describe an implementation of our novel compilation approach, called Plan4Past, which can be used

along with state-of-the-art classical planners to solve the task. Finally, we report an experimental analysis

showing the practical effectiveness of Plan4Past by comparing it against existing techniques for ltlf goals.

5.2 Classical Planning for Pure-Past Linear Temporal Logic Goals

5.2.1 Encoding to Classical Planning

We devise a particularly effective technique for classical planning for ppltl goals by exploiting the result in

Theorem 4.4 in Chapter 4. The key idea of the approach is to keep track of the values of the subformulas of

the ppltl goal and update such values when actions are selected during the planning process by exploiting

the pnf. This way, we sidestep altogether the standard construction based on computing the automaton

for the ppltl goal φ and then building the cross-product between such an automaton and the automaton

corresponding to the domain, see (De Giacomo and Rubin, 2018) and cf. Section 2.5.3.

Similarly to other compilation-based approaches dealing with temporally extended goals, e.g., (Baier and

McIlraith, 2006a; Torres and Baier, 2015), we address planning for temporally extended goals in three steps.

First, encode the original planning problem Γ with the temporally extended goal into a planning problem

Γ′ with a reachability goal. Second, invoke any off-the-shelf sound and complete planner to compute a plan

solving the encoded problem Γ′. Third, rework the computed plan to get the solution to the original problem

Γ. In our approach, we exploit Theorem 4.4 to do the compilation in the first step, and since no extra control

actions are introduced, step three trivializes.

Given a planning problem Γ = ⟨D, s0, φ⟩, where D = ⟨F ,Fder,X , A, pre, eff ⟩ is a deterministic domain,

s0 the initial state and φ a ppltl goal, the encoded planning problem is Γ′ = ⟨D′, s′0, G
′⟩, where D′ =

⟨F ′,F ′
der,X ′, A, pre, eff ′⟩ is the encoded planning domain, s′0 is the new initial state and G′ is the new

reachability goal. The domain components are modified as follows.

Fluents. F ′ contains the fluents of F , as well as one fluent for each proposition “Yϕ” in Σφ to keep track

of propositional interpretations σi. Formally, F ′ := F ∪ Σφ.
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Derived Predicates. F ′
der contains the derived predicates of the original domain model Fder, and a

predicate valϕ for every subformula ϕ ∈ sub(φ). Formally, F ′
der := Fder ∪ {valϕ | ϕ ∈ sub(φ)}.

Axioms. We employ axioms (Hoffmann and Edelkamp, 2005), which have the form d← ψ, where d ∈ F ′
der

is a positive literal called derived predicate, and ψ is a propositional formula over a set of predicates. Let s

be a state, axiom x = d← ψ determines that the derived predicate d holds true in s if and only if s |= ψ.

We include an axiom xϕ = valϕ ← ψ for every subformula ϕ ∈ sub(φ). These axioms are intended to

be such that the current state (σi, si) |= valϕ if and only if val(ϕ, σi, si) – without loss of generality, in this

section, we assume that σ and s represent sets of positive literals, and we use (σi, si) to denote the state

σi ∪ si. By mimicking rules in Definition 4.2, we get the following axioms:

• valp ← p;

• valYϕ ← “Yϕ”;

• valϕ1 Sϕ2
← (valϕ2

∨ (valϕ1
∧ “Y(ϕ1 Sϕ2)”));

• valϕ1∧ϕ2 ← (valϕ1 ∧ valϕ2);

• val¬ϕ ← ¬valϕ.

It is easy to see that indeed we have that (σi, si) |= valϕ if and only if val(ϕ, σi, si). Hence, to define Γ′, we

build a set of axioms for every subformula ϕ in sub(φ), i.e., X ′ := X ∪{xϕ | ϕ ∈ sub(φ)}. Axioms allow us to

elegantly model the mathematics of Chapter 4 (i.e., the val(ϕ, σi, si)) and are often convenient when dealing

with more sophisticated forms of planning (see, e.g., Borgwardt et al. (2022)). They also simplify the action

schema and goal descriptions without adding control predicates among fluents, thus simplifying the search,

as shown in Thiébaux et al. (2005).

Actions. Action labels A and precondition functions pre remain unchanged. In fact, every domain’s action

a ∈ A is only modified on its effects eff (a) by adding a way to update the assignments of propositions in

Σφ. For each “Yϕ” ∈ Σφ, we model assignments updates by a set of conditional effects of the form:

valϕ ▷ “Yϕ”

¬valϕ ▷ ¬“Yϕ”

These additional effects are exactly the same for every action a ∈ A. Formally, let effval = {valϕ ▷

{“Yϕ”},¬valϕ ▷ {¬“Yϕ”} | “Yϕ” ∈ Σφ} be the additional effects, then eff ′(a) := eff (a) ∪ effval.
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It is easy to see that since σi maintains values of “Yϕ” in Σφ, action effects are independent of the

effect of the action on the original fluents, which, instead, is maintained in the propositional interpretation

si. This means that we can compute the next value of σ without knowing either which action has been

executed or which effect such action has had on the original fluents. Note that the auxiliary part effval in

eff ′
a deterministically updates subformulas values in Σφ, without affecting any fluent f ∈ F of the original

domain model. This is crucial for the encoding’s correctness.

Initial State. The initial state is the same as the original problem Γ for the original fluents in F , whereas

the new fluents “Yϕ” ∈ Σφ are assigned to the truth value given by σ0. That is s
′
0 = σ0 ∪ s0 – without loss

of generality, here we assume that σ0 and s0 represent sets of positive literals.

Goal. The goal in Γ′ is encoded as G′ = valφ. That is val(φ, σn, sn), associated with the original ppltl

goal formula φ, has to hold true in the last instant, as per Theorem 4.4.

It is easy to see that our encoding is polynomially related to the original problem.

Theorem 5.1. Let Γ be a classical planning problem. The size of Γ′ obtained following the encoding above

is polynomial in the size of Γ. In particular, it is linear in the size of the domain specification and linear in

the size of the goal.

Proof. By construction of the encoding.

Example 5.2. Assume we have a ppltl goal φ = b ∧ (¬aS c). In the following, we describe in detail the

encoding of the formula φ. First, we compute the set of subformulas of φ as sub(φ) = {a, b, c,¬a, (¬a S c), b∧

(¬a S c)}. Given a planning problem Γ = ⟨D, s0, φ⟩, where D = ⟨F ,Fder,X , A, pre, eff ⟩, the compact repre-

sentation of Γ′ is defined as follows.

Given that the pnf(φ) = b ∧ (c ∨ (¬a ∧ Y(¬a S c))), the only key subformula we need to keep track of is

Y(¬a S c), which we maintain in Σφ as “Y(¬aS c)”. Therefore, the new set of fluents F ′ is simply the union

of the original set of fluents F and the new additional fluent {“Y(¬aS c)”}.

At this point, based on the set of subformulas sub(φ), we compute the set of additional derived predicates

{vala, valb, valc, val¬a, val¬a S c, valb∧(¬a S c)}. This set of additional derived predicates is added to the original

set of derived predicates Fder. Formally, F ′
der = Fder ∪ {vala, valb, valc, val¬a, val¬a S c, valb∧(¬a S c)}.

Then, following the rules illustrated in Definition 4.2, we get the following new axioms:

• vala ← a;

• valb ← b;

77



• valc ← c;

• val¬a ← ¬vala.

• val¬a S c ← (valc ∨ (val¬a ∧ “Y(¬aS c)”));

• valb∧(¬a S c) ← (valb ∧ val¬a S c).

which will be added to the original set of axioms X to form X ′.

For each action a ∈ A, while preconditions remain unchanged, action effects eff ′(a) are extended as

follows: eff ′(a) = eff (a) ∪ effval, where effval = {val¬a S c ▷ “Y(¬aS c)”,¬val¬a S c ▷ ¬“Y(¬a S c)”}.

After that, the new initial state is s′0 = σ0 ∪ s0, where σ0(“Y(¬a S c)”) .= ⊥. Finally, the new reachability

goal is G′ = valb∧(¬a S c).

5.2.2 Correctness

Let Γ = ⟨D, s0, φ⟩ be a classical planning problem, where D is a deterministic domain, s0 is the initial state,

and φ is a ppltl goal formula, and let Γ′ = ⟨D′, s′0, G
′⟩ be the corresponding encoded planning problem as

previously defined.

Any trace τ ′ = s′0, . . . , s
′
n on D′ can be seen as τ ′ = zip(τ [φ], τ), where τ = s0, . . . , sn ∈ (2F )+, τ [φ] =

σ0, . . . , σn ∈ (2Σφ)+, where each element of τ ′ is of the form s′i = (σi, si) for all i ≥ 0. Here, we use the

zip(·, ·) function1 to represent the aggregation of the two traces τ [φ] and τ . Given a trace τ ′ = s′0, . . . , s
′
n on

the encoded planning domain D′, there exists a single trace τ ′ |F= τ = s0, . . . , sn on the original planning

domain D. Conversely, given a trace τ = s0, . . . , sn on the original planning domain D, there exists a unique

corresponding trace τ [φ], and hence a single τ ′ = zip(τ [φ], τ) on the encoded domain D′.

Theorem 5.3. Let φ be a ppltl formula over P, ϕ ∈ sub(φ) a subformula of φ, τ a trace over P, and τ [φ]

the corresponding trace over Σφ. Then,

val(ϕ, last(τ [φ]), last(τ)) iff last(τ ′) |= valϕ

Proof. Since σn = last(τ [φ]) and sn = last(τ), we can rewrite the thesis as val(ϕ, σn, sn) iff last(τ ′) |= valϕ.

We prove the thesis by double induction on the length of the trace τ ′ and on the structure of the formula.

1The zip(·, ·)’s name has been inspired by the common functional programming method zip, which takes two input sequences,
and produce an output sequence in which every two elements from input sequences are combined at the same position.
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• Base case: τ ′ = (σ0, s0). Immediate by structural induction on the formula as axiom rules follow the

val(·) predicate (cf. Definition 4.2).

• Inductive step: τ ′ = τ ′′n−1 · (σn, sn). To prove the claim we proceed by structural induction on the

formula.

– ϕ = p. By definition of val(·), we have val(p, σn, sn) iff sn |= p. By construction of axioms, we

have that p iff valp. Thus, the thesis holds.

– ϕ = Yϕ′. By definition of val(·), we have val(Yϕ′, σn, sn) iff σn |= “Yϕ′”. By definition and

construction of axioms, we have that “Yϕ′” iff valYϕ′ . Thus, the thesis holds.

– ϕ = ϕ1 Sϕ2. By definition of val(·), we have val(ϕ1 Sϕ2, σn, sn) iff val(ϕ2, σn, sn)∨(val(ϕ1, σn, sn)∧

σn |= “Y(ϕ1 Sϕ2)”). By structural induction, valϕ2 iff val(ϕ2, σn, sn) and valϕ1 iff val(ϕ1, σn, sn).

Therefore, by definition and construction of axioms, we have that sn |= ϕ1 Sϕ2 iff valϕ1 Sϕ2
.

Thus, the thesis holds.

– ϕ = ϕ1 ∧ ϕ2 or ϕ = ¬ϕ′. The thesis holds by structural induction.

We start by observing that every executable action sequence a0, . . . , an−1 in the deterministic planning

problem Γ for the ppltl goal φ is also executable in the compiled planning problem Γ′ (and vice versa)

since, by definition, the encoding does not have auxiliary actions, actions preconditions do not change, and

additional conditional effects on the original actions are deterministic.

Theorem 5.4 (Correctness). Let Γ be a planning problem with a ppltl goal φ, and Γ′ be the corresponding

compiled planning problem with a reachability goal. Then, every action sequence π = a0, . . . , an−1 is a plan

for Γ iff π = a0, . . . , an−1 is a plan for Γ′.

Proof. The action sequence π is a plan if its induced state trace τ is such that τ |= φ. By Theorem 4.4, we

have that τ |= φ if and only if val(φ, last(τ [φ]), last(τ)). However, by construction of the encoding for Γ′, we

have that val(φ, last(τ [φ]), last(τ)) holds if and only if valφ holds in the last state of the induced state trace

for Γ′, i.e., in τ ′ = zip(τ [φ], τ). In other words, by Theorem 5.3, we have that val(φ, last(τ [φ]), last(τ)) holds

if and only if last(τ ′) |= valφ, as this holds when the encoded problem for reachability goal valφ holds – note

that only the last element of the new trace τ ′ has to satisfy the goal condition. Hence, the thesis holds.

A direct consequence of Theorem 5.4 is that every sound and complete classical planner returns a plan

π for the encoded planning problem Γ′ if a plan π for the original planning problem Γ for ppltl goal exists.

If no solution exists for Γ′, then no solution exists for Γ.
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5.3 Experimental Evaluation

We implemented the approach of Section 5.2.1 in a tool called Plan4Past2 (P4PX for short), written in Python

(approximately 1000 LOC) and currently released under the GNU LGPL-3.0 license. P4PX takes as input a

PDDL description and a ppltl formula and gives as output a new PDDL description, which can be processed

by any classical planner supporting axioms and conditional effects. We also tested an alternative version of

P4PX where all axioms are compiled into conditional effects, i.e., two for each sub-formula ϕ encoding the

truth value of ϕ after each action. However, the resulting compilation proved much less effective than that

using axioms, so we do not consider it in our analysis.

The empirical analysis examines the effectiveness of temporally extended goals formulated in ppltl and

handled by P4PX compared to semantically equivalent temporally extended goals formulated in ltlf and

handled by either LTLExp (Baier and McIlraith, 2006a) or LTLPoly (Torres and Baier, 2015).

To our knowledge, LTLExp and LTLPoly are the best approaches for planning with ltlf goals. In particu-

lar, Baier and McIlraith (2006a) build an nfa for the ltlf formula and compute the Cartesian product with

the planning domain (cf. (De Giacomo and Rubin, 2018)), incurring in a worst-case exponential increase in

the number of states of the nfa. Similarly, Torres and Baier (2015) implicitly construct the nfa for the

goal formula. While the approach in (Torres and Baier, 2015) is optimal with respect to the computational

complexity, it significantly increases the plan length. Indeed, working with nfas during planning requires

choosing not only the next actions in the plan but also the right nondeterministic transition of the nfa. This

translates into extra dummy (synchronization) actions to insert into the plan, making the overall search

harder for the planner. Dealing with spurious actions has already been studied in (Nebel, 2000) theoretically

and practically from a heuristic perspective in, e.g., (Haslum, 2013). Therefore, from a theoretical stand-

point, the advantage of P4PX is clear: under an automata-theoretic view, P4PX exploits the fact that goals

are expressed in ppltl to implicitly and incrementally build a dfa (vs. an nfa) for the temporal formula

while doing planning, keeping optimality with respect to computational complexity and preserving the plan

length.

Next, we want to determine whether this theoretical advantage manifests itself in actual planning per-

formance from a practical perspective. To this end, we tested the three considered systems over a set of

benchmarks and analyzed the number of problems solved (Coverage), the time spent to find a solution (com-

pilation plus search time), the number of expanded nodes, and the plan length. As a classical planner, we

considered LAMA (Richter and Westphal, 2010), a planner built on top of FastDownward (Helmert, 2006),

and FFX (Thiébaux et al., 2005). LAMA is a satisficing planner based on a sophisticated search mechanism

2Available online at https://github.com/whitemech/Plan4Past.
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that runs (in the first iteration) Lazy Greedy Best-First Search driven by the hff (Hoffmann and Nebel, 2001)

and the landmarks counting heuristics. LAMA yields solution plans of decreasing plan cost incrementally;

for our analysis, we take the first generated plan. FFX is yet another satisficing planner based on heuristic

search and enforced hill climbing, and is the one originally used with LTLPoly and LTLExp. Both systems

handle the compiled problems but the remaining of this section will focus attention on LAMA as it was the

system obtaining the highest overall coverage for all compilations. All experiments were run on an Intel

Xeon Gold 6140M 2.3 GHz running Linux CentOS 7, with runtime and memory limits of 1800s and 8GB,

respectively.

5.3.1 Benchmark Domains

Our benchmark suite includes four domains: BlocksWorld, Elevator, Rovers, and OpenStacks.

These domains were introduced in past International Planning Competitions3 (IPC), and all except Ele-

vator have also been used by Torres and Baier (2015). For BlocksWorld, Rovers, and OpenStacks,

we have a set of instances with the same temporally extended goals defined by Torres and Baier (2015)

(hereinafter referred to as TB15) and a second set of instances with temporally extended goals defined by

us (hereinafter referred to as BF22). For Elevator, we only have BF22 goals. TB15 goals were originally

specified in ltlf , and for P4PX we manually translated them to ppltl. We did so for all but one type of

temporally extended goal used in Torres and Baier (2015), namely that of type “h : αUβ” where α or β have

n nested U operators, for which we did not find an easy translation into ppltl. Recall that, as mentioned

in Chapter 3, ltlf and ppltl have the same expressiveness, but the best-known systematic procedure to

translate one into the other is 3EXPTIME (in both directions). However, for each ltlf formula that we

translated in ppltl, we formally and automatically proved their semantic equivalence by verifying that the

two formulations yield the same minimal dfa. BF22 goals were instead designed in ppltl directly, and

analogously to what was done for TB15, we formulated an equivalent formulation in ltlf . TB15 goals are

based on predefined families of formulas that are independent of the domain. Instead, BF22 goals are specific

for each domain and were designed to stress all compilations and understand the planner’s scalability over

non-trivial and large instances. Indeed, all instances with TB15 proved trivial for Plan4Past. For TB15, we

have 15 instances for BlocksWorld, 7 for Rovers, and 10 for OpenStacks. Their definition is provided

by Torres and Baier (2015). BF22 are instead described below.

BlocksWorld. BF22 goals were formulated to study the reach of all compilations with complex temporally

extended goals. Here, BF22 goals specify two intertwined goals, both requiring the existence in the state

3https://www.icaps-conference.org/competitions/
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trajectory of the plan of a particular sequence of states. Consider a problem with n blocks, and let oni,j be

the predicate modeling block i being on block j. The first goal in ppltl is:

O(on1,2 ∧ Y(O(on2,3 ∧ Y(O(. . . ∧ Y(O(onn−1,n))))))).

Its translation in ltlf is:

F(onn−1,n ∧ X(F(onn−2,n−1 ∧ X(F(. . . ∧ X(F(on1,2))))))).

The second goal (for an even number of blocks) in ppltl is:

∧
j∈{6,8,...,n}

O(onj,j−1 ∧ Y(ϕ)),

where ϕ is the formula O(on4,3 ∧ Y(O(on3,2 ∧ Y(O(on2,1))))), which encodes the construction of a bigger

stack. The same constraint formulated in ltlf is:

F(on2,1 ∧ X(F(on3,2 ∧ X(F(on4,3 ∧
∧
j

X(F(onj,j−1))))))).

The formulation for an odd number of blocks is analogous. We generate a temporally extended goal for each

instance of the domain, starting from that with 10 up to 30 blocks.

OpenStacks. In this domain, BF22 goals require that a valid plan ships all specified requests following a

specific production order. The ppltl formula H(madep3 → Y(O(madep2))) ∧ H(madep2 → Y(O(madep1)))

encodes that p1 is made strictly before p2, that in turn must be made before p3. The equivalent ltlf formula

is (madep2)R (¬madep3) ∧ (madep1)R (¬madep2). Every order must be shipped, and this is encoded with

O(shippedorder) in ppltl, and with F(shippedorder) in ltlf .

Rovers. The goal of this domain is to gather and communicate data about soil, rock, and images to the

Earth using a set of rovers. BF22 goals enforce a total order over the communications of the data. This

temporally extended goal implicitly requires the data to be eventually communicated and is encoded in

ppltl as

O(datasoil ∧WY(H(¬datarock))) ∧ O(datarock ∧WY(H(¬dataimage))) ∧ O(dataimage),
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and in ltlf as

(¬datarock)U (datasoil) ∧ (¬dataimage)U (datarock) ∧ F(dataimage).

Also, when the rover reaches the lander, that rover must re-calibrate all cameras (e.g., if the lander is at

waypoint wl and the rover r has 2 cameras, c1 and c2, we have, in ppltl, the formula

((¬atr,wl S calibratedc1) ∧ (¬atr,wl S calibratedc2)) ∨ H(¬atr,wl),

and, in ltlf , the formula

G(atr,wl → (F(calibratedc1) ∧ F(calibratedc2)))).

Elevator. This domain models the problem of scheduling passengers in the use of an elevator. In BF22,

we split the passengers into half VIP passengers and half regular passengers, where VIP passengers must be

served before every regular one. For instance, when there are four passengers p0, p1, p2, p3, with p0, p1 VIP

and p2, p3 regular, we enforce this in ppltl with:

O(servedp2 ∧ servedp3) ∧ O(servedp0 ∧ servedp1 ∧WY(H(¬servedp2 ∧ ¬servedp3))),

that can be expressed in ltlf with

F(servedp2 ∧ servedp3) ∧ (¬servedp2 ∧ ¬servedp3)U (servedp0 ∧ servedp1).

In the constraint, we also model that no passenger may share the elevator with another passenger and do so

in ppltl (resp. ltlf ) with H(boardedp0 → (¬boardedp1 ∧¬boardedp2)) (resp. G(boardedp0 → (¬boardedp1 ∧

¬boardedp2))).

We include a total of 29 BF22 instances for the Elevator domain.

5.3.2 Experimental Results

Table 5.1 reports on the overall performance of all compilations across all domains. Coverage-wise, P4PX

performs equally to or better than both LTLPoly and LTLExp over most instances. For the TB15 instances,

P4PX achieves the same coverage as LTLPoly (the best ltlf -based compilation) but is much faster in terms

of average run-time: P4PX is roughly one order of magnitude faster than LTLPoly; this seems to be justified

by a great reduction in the number of expanded nodes (up to two orders of magnitude in OpenStacks).
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Domain I
Coverage Avg RT Avg EN Avg |π|

P4PX LTLPoly LTLExp P4PX LTLPoly LTLExp P4PX LTLPoly LTLExp P4PX LTLPoly LTLExp

Rovers
TB15 7 7 7 6 1.43 21.11 1.98 12.67 616.83 12.67 5.33 5.67 (74.50) 5.33
BF22 40 33 6 22 35.36 – 24.24 7665.36 – 7826.32 43.68 – 43.50

BlocksWorld
TB15 15 15 15 8 1.41 20.43 13.13 22.12 821.62 21.75 7.50 7.88 (132.88) 7.25
BF22 21 21 1 1 – – – – – – – – –

OpenStacks
TB15 10 10 10 6 6.11 31.66 8.75 52.67 3863.33 52.83 22.00 21.67 (349.00) 22.00
BF22 30 7 5 8 11.88 68.86 19.50 99.80 1207764.80 72.40 24.00 24.00 (841.00) 24.00

Elevator BF22 29 29 4 29 231.83 – 228.09 1712076.48 – 1712090.79 75.48 – 75.48

Total 122 48 80

Table 5.1: Coverage, average Run-Time (Avg RT), Expanded Nodes (Avg EN) and Plan Length (Avg |π|)
achieved by P4PX , LTLPoly and LTLExp. For LTLPoly, we report in parenthesis the average |π| considering
the actions added by the compilation. Averages are only among instances solved by those systems that
obtain at least half of the coverage of the best performer. Column I is the number of instances in a domain.
“–” indicates when a system is excluded by the comparison. In bold the best performers.

This is somehow expected. Indeed, for each planning action taken, LTLPoly needs to interleave quite a

complex automaton synchronization phase, and this is done from the initial state all the way to the goal. On

average, in TB15 instances, 94.3% of actions in plans obtained with LTLPoly come from the automaton’s

synchronization phases.

The situation is different if we look at the BF22 instances. Here, the best performing ltlf compilation

is LTLExp, which is superior to LTLPoly over all instances. BF22 goals are of increasing dimensions and have

been constructed to be computationally more challenging. For example, in BlocksWorld, the hardest

instance in TB15 requires a 22 actions plan, while BF22 instances require up to 652 actions. In the case

of LTLPoly, the planner has to cope with too many synchronization phases and struggles to find solutions.

In particular, in such a case, the only instance solved by LTLPoly of BlocksWorld for BF22 goals has

a plan of 6402 actions; 6298 of those are for the synchronization of the automaton. If we compare P4PX

and LTLExp, we observe that P4PX is again the system performing generally better. The only exception is

for one instance of OpenStacks. LTLExp solves this instance in roughly 739s while P4PX times out. By

looking at the average number of expanded nodes, LAMA’s search turned out to be slightly less informed

with P4PX in this domain, which leads to timing out in that particular instance. For BlocksWorld, P4PX

is instead much more effective than LTLExp; LTLExp only manages to compile 7 instances. Interestingly, the

compilation time seems to be an issue for both ltlf compilations. Indeed, if we look at Figure 5.1 (right),

P4PX compiles 94.7% of the instances within 10s, whereas both LTLPoly and LTLExp converge much more

slowly. Moreover, looking at Table 5.2, the time spent by the compilation of P4PX is negligible compared

to the entire planning process. In contrast, LTLPoly’s compilation run-time is still two orders of magnitude

larger.

Figure 5.1 (left) displays the number of benchmark instances solved with a given timeout. All systems

achieve their maximum coverage quite quickly, with P4PX leaving the others well behind right after the start.
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Domain P4PX LTLPoly LTLExp

BlocksWorld 0.42 3.71 20.97
Elevator 0.50 46.96 3.47
OpenStacks 2.18 115.32 22.68
Rovers 0.59 15.15 4.93

Table 5.2: Average compilation time computed over instances compiled by all systems across all domains.

0 250 500 750 1000 1250 1500 1750
Planning time

0

20

40

60

80

100

120

140

C
ov

er
ag

e

P4PX Exp Poly

1 10 100 1000
Compilation time

0

20

40

60

80

100

120

140

N
um

b
er

of
co

m
pi

le
d

in
st

an
ce

s

P4PX
Exp

Poly

Figure 5.1: Number of solved instances (left) and compiled instances (right) versus computation time.

On the other hand, Figure 5.2 reports on a pairwise comparison P4PX vs LTLExp and P4PX vs LTLPoly over

the number of expanded nodes and runtime, instance by instance. P4PX is generally faster than LTLExp,

apart from 15 instances. The number of expanded nodes between these two systems is surprisingly similar.

Looking at our raw data, we observe that, for most of the instances, LTLExp spends much more time than

P4PX in compilation and slightly more time in evaluating a node of the search. The comparison P4PX vs

LTLPoly confirms our expectation on the number of expanded nodes. P4PX expands nodes more slowly than

LTLPoly, and therefore the runtime advantage of P4PX is related to the fact that P4PX leads LAMA to do

much less search than LTLPoly.

Regarding plan quality, we observed that all compilations yield solution plans to the original problem

(i.e., plans without spurious actions) of similar length, making their overall performance the same in these

terms.

5.4 Summary and Discussion

In this chapter, we examined classical planning with ppltl goals. ppltl is a compelling formalism to

express sophisticated planning goals and, compared to ltlf -based approaches, allows for a polynomial-time

compilation that is optimal with respect to the computational complexity and does not increase the plan

85



100 101 102 103

Exp

100

101

102

103
P

4P
X

Elevator

Rovers

BlocksWorld

OpenStacks

(a) LTLExp vs P4PX (RT)

100 101 102 103

Poly

100

101

102

103

P
4P
X

Elevator

Rovers

BlocksWorld

OpenStacks

(b) LTLPoly vs P4PX (RT)

101 103 105 107

Exp

101

103

105

107

P
4P
X

Elevator

Rovers

BlocksWorld

OpenStacks

(c) LTLExp vs P4PX (EN)

101 103 105 107

Poly

101

103

105

107

P
4P
X

Elevator

Rovers

BlocksWorld

OpenStacks

(d) LTLPoly vs P4PX (EN)

Figure 5.2: Pairwise comparison between P4PX and LTLExp (left plots) and between P4PX and LTLPoly
(right plots) in terms of Run-Time (above) and Expanded Nodes (below).

length. These results suggest that ppltl can be considered a “sweet spot” in expressing temporally extended

goals for planning as it can specify planning goals while having, at the same time, a clear advantage in

practice. Moreover, handling ppltl goals is remarkably simple and elegant, given the direct mapping between

the theoretical formulation (presented in Chapter 4) and the encoding to classical planning without sacrificing

efficiency. We devised an encoding of planning with ppltl goals to classical planning with reachability goals

and demonstrated its practical effectiveness through extensive experiments. Here, we focused only on ppltl.

However, in principle, our approach can be extended to goals expressed in Pure-Past Linear Dynamic Logic

(ppldl) (De Giacomo et al., 2020a), a strictly more expressive variant of ppltl involving regular expressions.

Indeed, also ppldl has a fixpoint characterization of the temporal operators. This extension remains open

to future work. In the next chapter, we are going to see that although we focus on classical planning with

ppltl goals, the mathematical construction in Chapter 4 can also be applied to other forms of planning,

including nondeterministic planning.
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Chapter 6

FOND Planning for Temporally

Extended Goals in Pure-Past Linear

Temporal Logic

In this chapter, we study nondeterministic planning (FOND) for temporally extended goals expressed in

Pure-Past Linear Temporal Logic (ppltl). Although ppltl is as expressive as Linear Temporal Logic on

finite traces (ltlf ), FOND planning for ppltl goals remains EXPTIME-complete, as for standard FOND

planning, instead of becoming 2EXPTIME-complete as for ltlf/ldlf . Here, we present a notably simple

encoding of FOND planning for ppltl goals into standard FOND planning for reachability goals. As for

classical planning examined in the previous chapter, the encoding only introduces a small number of new

fluents (at most linear in the ppltl goal) without adding any spurious action and allows planners to lazily

build the relevant part of the dfa for the goal formula on-the-fly during the search.

We formally prove its correctness and implement this approach in the system Plan4Past, which can be

used along with state-of-the-art FOND planners, such as PRP (Muise et al., 2012) or Paladinus (Fraga Pereira

et al., 2022), and provide experimental evidence of its effectiveness.

The content of this chapter has been published in (Bonassi et al., 2023a) at the European Conference on

Artificial Intelligence 2023.
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6.1 Context and Motivation

Temporally extended goals are fundamental for the specification of a collection of real-world planning prob-

lems. Yet, many of these real-world planning problems have a nondeterministic behavior owing to un-

predictable environmental conditions. Nondeterministic planning (FOND) for ltlf/ldlf goals is a more

challenging problem compared to classical planning and has been of increasing interest only in recent years

with, e.g., (De Giacomo and Vardi, 2015; Camacho et al., 2017; De Giacomo and Rubin, 2018; Camacho and

McIlraith, 2019). By now, the theoretical complexity of such a problem is well understood. FOND planning

for ltlf goals is EXPTIME-complete in the domain as for classical reachability goals (Rintanen, 2004) and

2EXPTIME-complete in the goal formula (De Giacomo and Rubin, 2018). In nondeterministic domains,

since ltlf goals can specify non-Markovian properties (Gabaldon, 2011), the added expressiveness of ltlf

goals worsens the worst-case goal complexity to 2EXPTIME-complete, compared to the EXPTIME-complete

of reachability goals. That is because, in FOND planning, it is required to (implicitly or explicitly) translate

ltlf goal formulas into a deterministic automaton, which is double exponential in the worst case.

Along the same lines as the previous chapter, we study ppltl as a valid alternative to ltlf for ex-

pressing temporally extended goals in nondeterministic planning. In fact, as mentioned in Section 3.7,

employing ppltl as a goal specification language has a theoretical advantage due to a property of reverse

languages (Chandra et al., 1981) for which the dfa corresponding to a ppltl formula can be computed in

single exponential time directly from the formula (De Giacomo et al., 2020a). Obviously, the property of

interest should be naturally expressible in ppltl since translating ltlf into the ppltl (and vice versa) is

generally prohibitive given that the best-known algorithms are 3EXPTIME (De Giacomo et al., 2020a) (cf.

Section 3.5.2).

As in classical planning, given an initial state, FOND planning for ppltl goals requires reaching a certain

state satisfying the ppltl goal, i.e., the state-trace produced to reach such a state satisfies the goal formula.

In this chapter, we present an approach to solve FOND planning for ppltl goals that sidesteps altogether

the construction of the dfa for the ppltl formula as done, e.g., in (Camacho et al., 2017; De Giacomo and

Rubin, 2018; Camacho and McIlraith, 2019) for ltlf . Like for classical planning, the novel approach shows

that nondeterministic planning for ppltl goals can be encoded into planning for reachability goals with

minimal overhead by only introducing few new fluents, at most linear in the size of the ppltl goal, and

without adding any spurious actions. These new fluents keep track of the satisfaction of few key subformulas

of the temporal goal at planning time, reducing planning for temporally extended goals to standard FOND

planning. In this way, planners lazily explore only the relevant part of the dfa for the goal formula on the

fly during the planning search. Similar to the case of classical planning of Chapter 5, the solution for FOND
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planning exploits the fixpoint characterization (Gabbay et al., 1980; Manna, 1982; Emerson, 1990) of ppltl

formulas and the mathematical construction seen in Chapter 4. Intuitively, we examine and take advantage

of the key native difference between ltlf and ppltl. That is, given the prefix of the trace computed so

far, while the ltlf formula has to consider all possible extensions, a ppltl can simply be evaluated on the

history (the prefix of the trace) produced so far. Therefore, since ppltl avoids any form of guessing about

the future, it is essential to obtain such nice results.

To sum up, in this chapter, we make the following contributions. First, we devise an encoding of FOND

planning for ppltl goals into standard FOND planning for reachability goals, which is at most linear in the

size of the formula, formally correct, and readily implementable in PDDL. Moreover, we devise an encoding

variant without the use of derived predicates – not well supported by some FOND planners –, that is still

polynomial in the size of the formula, correct, and readily implementable in PDDL. Both encodings have

been implemented in the tool Plan4Past1. Finally, we empirically demonstrate the practical effectiveness

of Plan4Past through an experimental analysis by using it along with state-of-the-art FOND planners and

comparing it against existing techniques for FOND planning for ltlf goals.

6.2 FOND Planning for Pure-Past Linear Temporal Logic Goals

6.2.1 Encoding to FOND Planning

A great advantage of using ppltl goals in expressing temporally extended goals is that the exact same

encoding used in the classical planning setting works seamlessly for FOND planning too. In fact, so far,

this has never been the case for ltlf goals since FOND planning requires working with dfas to avoid any

possible nondeterminism mismatch, whereas, in classical planning, the use of nfas suffices. Here, instead,

the encoding technique for FOND planning for ppltl goals exploits the result in Theorem 4.4, where the

idea is to keep track of the values of the subformulas of the ppltl goal and update such values when actions

are selected or added to the plan during the planning process by exploiting the pnf. This way, we sidestep

altogether the standard construction based on computing the automaton for the ppltl goal φ and then

building the cross-product between such an automaton and the automaton corresponding to the domain,

see (De Giacomo and Rubin, 2018) and cf. Section 2.5.3.

Given a planning problem Γ = ⟨D, s0, φ⟩, where D = ⟨F ,Fder,X , A, pre, eff ⟩ is a nondeterministic

domain, s0 the initial state and φ a ppltl goal, the encoded planning problem is Γ′ = ⟨D′, s′0, G
′⟩, where D′ =

⟨F ′,F ′
der,X ′, A, pre, eff ′⟩ is the encoded nondeterministic planning domain, s′0 is the new initial state and

1Available online at https://github.com/whitemech/Plan4Past
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Components Encoding

Fluents F ′ F ′ := F ∪ Σφ

Derived Predicates F ′
der F ′

der := Fder ∪ {valϕ | ϕ ∈ sub(φ)}

Axioms X ′

X ′ := X ∪ {xϕ | ϕ ∈ sub(φ)} where xϕ is

valp ← p (ϕ = p)

valYϕ′ ← “Yϕ′” (ϕ = Yϕ′)

valϕ1 Sϕ2
← (valϕ2

∨ (valϕ1
∧ “Y(ϕ1 Sϕ2)”)) (ϕ = ϕ1 Sϕ2)

valϕ1∧ϕ2
← (valϕ1

∧ valϕ2
) (ϕ = ϕ1 ∧ ϕ2)

val¬ϕ′ ← ¬valϕ′ (ϕ = ¬ϕ′)

Action Labels A A := A, i.e., unchanged

Preconditions pre pre(a) := pre(a) for every a ∈ A, i.e., unchanged

Effects eff ′ eff ′(a) := {effi ∪ effval | effi ∈ eff (a)}, where
effval = {valϕ ▷ {“Yϕ”},¬valϕ ▷ {¬“Yϕ”} | “Yϕ” ∈ Σφ}

Initial State s′0 s′0 := σ0 ∪ s0

Goal G′ G′ := valφ

Table 6.1: Components of the encoded FOND planning problem Γ′ = ⟨⟨F ′,F ′
der,X ′, A, pre, eff ′⟩, s′0, G′⟩

using axioms for a given FOND planning problem Γ = ⟨⟨F ,Fder,X , A, pre, eff ⟩, s0, φ⟩.

G′ is the new reachability goal. Table 6.1 compactly summarizes the formal construction of Γ′ presented in

Section 5.2.1. Here, we recall that σ0 present in the initial state s′0 represents the propositional interpretation

of Σφ at the first instant. Moreover, the only difference between the encoding described in Chapter 5 and

the one here in Table 6.1 is that D being nondeterministic, the new effects eff ′(a) will also contain all the

possible nondeterministic outcomes {eff1, . . . , effn} of eff (a). Clearly, as shown in Table 6.1, the additional

part effval in eff ′(a) deterministically updates the assignments of propositions in Σφ without affecting the

nondeterminism of the original domain. This is the main reason why the exact same encoding is correct for

both classical and FOND planning.

The encoding is polynomially related to the original problem.

Theorem 6.1. Let Γ be a FOND planning problem. The size of Γ′ obtained following the encoding of

Table 6.1 is polynomial in the size of Γ. In particular, it is linear in the size of the domain specification and

linear in the size of the goal.

Proof. By construction of the encoding.
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6.2.2 Correctness

Let Γ = ⟨D, s0, φ⟩ be a classical or FOND planning problem, where D is a nondeterministic domain, s0 is the

initial state, and φ is a ppltl goal formula, and let Γ′ = ⟨D′, s′0, G
′⟩ be the corresponding encoded planning

problem as previously defined.

We recall that any trace τ ′ = s′0, . . . , s
′
n on D′ can be seen as the aggregation of τ [φ] and τ , namely

τ ′ = zip(τ [φ], τ), where τ = s0, . . . , sn ∈ (2F )+, τ [φ] = σ0, . . . , σn ∈ (2Σφ)+, where each element of τ ′ is of

the form s′i = (σi, si) for all i ≥ 0. Given a trace τ ′ = s′0, . . . , s
′
n on the encoded planning domain D′, there

exists a single trace τ ′ |F= τ = s0, . . . , sn on the original planning domain D. Conversely, given a trace

τ = s0, . . . , sn on the original planning domain D, there exists a unique corresponding trace τ [φ], and hence

a single τ ′ = zip(τ [φ], τ) on the encoded domain D′.

Theorem 6.2. Let φ be a ppltl formula over P, ϕ ∈ sub(φ) a subformula of φ, τ a trace over P, and τ [φ]

the corresponding trace over Σφ. Then,

val(ϕ, last(τ [φ]), last(τ)) iff last(τ ′) |= valϕ

Proof. Analogous to the one of Theorem 5.3.

Unlike the case of classical planning, when dealing with nondeterministic domain models, we need to

reason about the correspondence of strategies. For every strategy π : (2F )+ → A for the FOND planning

problem Γ with ppltl goal φ, we can build the strategy π′ : (2F
′
)+ → A for Γ′ defined as π′(τ ′) = π(τ ′ | F),

where:

π′(τ ′) = a iff π(τ ′ |F ) = a

π′(τ ′) is undefined iff π(τ ′ |F ) is undefined.

Lemma 6.3. For every strategy π : (2F )+ → A that is a (strong or strong-cyclic) winning strategy for the

FOND planning problem Γ with ppltl goal φ, the strategy π′ : (2F
′
)+ → A, defined as above, is a (strong

or strong-cyclic, resp.) winning strategy for the encoded planning problem Γ′.

Proof. Strategy π is winning if every generated execution τ (that is stochastic-fair, for strong-cyclic solutions)

is finite, i.e., π(τ) is undefined, and such that τ |= φ. Correspondingly, the strategy π′ induces the finite

generated execution τ ′ = zip(τ [φ], τ). Then, val(φ, last(τ [φ]), last(τ)) holds by Theorem 4.4. By construction

of the encoding and by Theorem 6.2, we have that val(φ, last(τ [φ]), last(τ)) if and only if valφ holds in the

last instant, so we have that last(τ ′) |= valφ.
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On the other hand, if a generated execution τ ′ is finite, i.e., such that π′(τ ′) is undefined, then π induces

a corresponding finite generated execution τ = τ ′ |F . The strategy π being winning, it must be the case that

τ |= φ. Hence, by Theorem 4.4, last(τ ′) |= valφ. Thus, if π is winning for Γ, then π′ is winning for Γ′.

Now we consider the converse. For every strategy π′ : (2F
′
)+ → A for the encoded planning problem

Γ′, we can build the strategy π : (2F )+ → A for the original problem Γ with ppltl goal φ defined as

π(τ) = π′(τ ′) (where τ ′ = zip(τ [φ], τ)) with:

π(τ) = a iff π′(τ ′) = a

π(τ) is undefined iff π′(τ ′) is undefined.

Lemma 6.4. For every π′ : (2F
′
)+ → A that is a (strong or strong-cyclic) winning strategy for the encoded

planning problem Γ′, the π : (2F )+ → A, defined as above, is a (strong or strong-cyclic, resp.) winning

strategy for the FOND planning problem Γ with ppltl goal φ.

Proof. Strategy π′ is winning if every generated execution τ ′ (that is stochastic fair, for strong-cyclic so-

lutions) is finite, i.e., such that π′(τ ′) is undefined, and such that last(τ ′) |= valφ. Correspondingly, the

strategy π induces the finite generated execution τ = τ ′ |F . Then, by Theorems 4.4 and 6.2, considering

that val(φ, last(τ [φ]), last(τ)) holds, we have that τ |= φ.

On the other hand, if a generated execution τ is finite, i.e., such that π(τ) is undefined then π′ induces

a corresponding finite generated execution τ ′ = zip(τ [φ], τ). The strategy π′ being winning, we have that

last(τ ′) |= valφ. Hence, by Theorems 4.4 and 6.2, τ |= φ. Thus, if the strategy π′ is winning for Γ′, then the

strategy π is winning for Γ.

By Lemma 6.3 and Lemma 6.4 we immediately get:

Theorem 6.5 (Correctness). Let Γ be a FOND planning problem with a ppltl goal φ, and Γ′ be the

corresponding encoded FOND planning problem with reachability goal G′. Then, Γ has a (strong or strong-

cyclic) winning strategy iff Γ′ has a (strong or strong-cyclic, resp.) winning strategy.

As a result, let Γ be a FOND (strong or strong-cyclic) planning problem with a ppltl goal φ, and Γ′

be the corresponding encoded FOND (strong or strong-cyclic, resp.) planning problem with reachability

goal G′. Then, every sound and complete planner (FOND strong or FOND strong-cyclic, resp.) returns a

winning strategy π′ for Γ′ if a winning strategy π for Γ exists. If no solution exists for Γ′, then there is no

solution for Γ.

Particularly in the nondeterministic case, it is also important to observe that strategies returned by a

FOND planner for Γ′ are going to be “memory-less” policies of the form Π′(s′) = a or Π′(s′) undefined at
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the goal. These can be immediately transformed into trace-based strategies by defining:

π(τ ′) = a iff Π′(last(τ ′)) = a

π(τ ′) is undefined iff Π′(last(τ ′)) is undefined.

This possibility is crucial since strategies for the original problem Γ with a ppltl goal φ may not be memory-

less policies. Intuitively, to see why this is true, it is sufficient to think about a policy that visits the same

state twice but chooses two different actions depending on the satisfaction of the temporally extended goal

along the trace. When FOND planning for temporally extended goals is encoded into FOND planning for

standard reachability goals, then planning states will encode additional fluents accounting for the temporal

goal, and therefore, the policy can be memory-less. In other words, they might need to be finite-state

controllers or transducers. We can use the component σi of s′i = (σi, si) as the state of the transducer,

σi+1(“Yϕ”) = val(ϕ, σi, si) (for each “Yϕ” ∈ Σφ) as the factorized transition function, and Π′(s′i) as the

output function of the transducer. In the case of deterministic domains, we do not need these general forms

of strategies because sequences of actions suffice, and these are in direct correspondence between the two

domains.

6.2.3 Encoding without Derived Predicates

Given that almost all current state-of-the-art FOND planners do not handle axioms well, we describe a variant

of the encoding presented in the previous section that does not introduce additional derived predicates. Like

the previous encoding, this variant introduces a fresh atom of the form “Yϕ” for each temporal component

of φ. However, instead of using the valϕ predicates, it combines quoted atoms with propositions of the

original domain to explicitly represent the pnf of a formula and does so by representing the formula in ppnf

(Propositional Previous Normal Form).

Definition 6.6. Let φ be a ppltl formula. ppnf(φ) is a propositional formula obtained by substituting every

Y(ϕ) with “Y(ϕ)” in pnf(φ).

For instance, if φ = a S b then ppnf(φ) = b ∨ (a ∧ “Y(a S b)”). For any formula φ, the ppnf(φ) captures

the truth of pnf(φ) without using temporal operators, provided that every “Yϕ” ∈ Σφ reflects the truth of

Yϕ. Most importantly, ppnf(φ) is linear in the size of φ.

Lemma 6.7. Let φ be a ppltl formula. The size of ppnf(φ) is linear in the size of φ.

Proof. As for the pnf(φ) in Chapter 4, we observe that the definition of the ppnf(φ) does not recur on the

subformulas of the form “Yϕ” and “Y(ϕ1 Sϕ2)”. Moreover, for each operator in the formula, we recur on its
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Components Encoding

Fluents F ′′ F ′′ := F ∪ Σφ

Derived Predicates Fder Fder := Fder, i.e., unchanged

Axioms X X := X , i.e., unchanged

Action Labels A A := A, i.e., unchanged

Preconditions pre pre(a) := pre(a) for every a ∈ A, i.e., unchanged

Effects eff ′′ eff ′′(a) := {effi ∪ effppnf | effi ∈ eff (a)}, where
effppnf = {ppnf(ϕ) ▷ {“Yϕ”},¬ppnf(ϕ) ▷ {¬“Yϕ”} | “Yϕ” ∈ Σφ}

Initial State s′′0 s′′0 := σ0 ∪ s0

Goal G′′ G′′ := ppnf(φ)

Table 6.2: Components of the encoded FOND planning problem Γ′′ = ⟨⟨F ′′,Fder,X , A, pre, eff ′′⟩, s′′0 , G′′⟩
without additional derived predicates for a given FOND planning problem Γ =
⟨⟨F ,Fder,X , A, pre, eff ⟩, s0, φ⟩.

components only once. Hence, the final size of the ppnf(φ) is linear in the size of φ.

Given a FOND planning problem Γ = ⟨D, s0, φ⟩ where D = ⟨F ,Fder,X , A, pre, eff ⟩ and φ is a ppltl

goal, Table 6.2 formalizes the encoding of an equivalent FOND problem Γ′′ = ⟨D′′, s′′0 , G
′′⟩ with D′′ =

⟨F ′′,Fder,X , A, pre, eff ′′⟩ for a goal G′′. Compared to the encoding of Table 6.1, the function eff ′′ uses the

propositional formula ppnf(ϕ) to update the truth of each quoted atom “Y(ϕ)” ∈ Σφ after every action.

Intuitively, if ppnf(ϕ) holds in s, then Y(ϕ) will hold in the successor state s′, and we keep track of this by

ensuring that “Y(ϕ)” holds true in s′, formalized via conditional effect ppnf(ϕ) ▷ {“Yϕ”}. Analogously, if a

state s does not satisfy ppnf(ϕ), then the conditional effect ¬ppnf(ϕ) ▷ {¬“Yϕ”} will make “Yϕ” false in s′.

These effects are added to each outcome of an action a. Finally, goal G′′ asks to satisfy ppnf(φ).

By comparing the encoding shown in Table 6.1 and the one shown here in Table 6.2, it is easy to see that

the latter encoding is formally correct too. First, by the construction of the ppnf and the derived predicates

of Γ′, for any state s, we have that s |= ppnf(ϕ) if and only if s |= valϕ for all ϕ ∈ sub(φ). Consequently,

the additional conditional effects valϕ ▷ “Y(ϕ)” and ¬valϕ ▷ ¬“Y(ϕ)” of Table 6.1 are triggered by a state s

if and only if the conditional effects of the encoding in Table 6.2, ppnf(ϕ) ▷ “Y(ϕ)” and ¬ppnf(ϕ) ▷¬“Y(ϕ)”,

are triggered. And the same is trivially true for the goal conditions. Thus, the effects eff ′(a) and eff ′′(a) will

induce the same set of possible successor states. Now, given that Γ′′ and Γ′ share the same fluents, initial

state, actions, and precondition function, we have that an action a is applicable in a state s for Γ′ if and

only if it is for Γ′′. Hence, a winning strategy for Γ′, which we previously proved to be winning also for Γ,
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is a winning strategy for Γ′′ as it will induce the same set of traces.

Furthermore, although this second encoding removes additional axioms that the first encoding generates,

it remains polynomially related to the original problem as, intuitively, the biggest part of effppnf is represented

by the conditions ppnf(ϕ) and ¬ppnf(ϕ) when |ϕ| = |φ| (i.e., when the subformula is the formula itself).

6.3 Experimental Evaluation

We implemented the approaches of Sections 6.2.1 and 6.2.3 in the Plan4Past tool, which can be run with

either the intensive conditional effects compilation (P4Pce for short) – approximately 1300 LOC – or with

axioms (P4PX for short). Both configurations take as input a FOND planning problem, written in PDDL,

and a ppltl formula giving as output a PDDL description of a new FOND problem.

Preliminary experiments revealed how current FOND planners struggle to preprocess most problems

compiled by P4Pce. To overcome this issue, we further optimize this encoding by aggregating the set effppnf

of new conditional effects into a dummy action check. Then, we force the encoding to always execute

one occurrence of check before any domain actions. Clearly, such a modification does not undermine our

theoretical results and proves to be much more convenient with the current FOND planners. Thus, we will

hereinafter refer to P4Pce as the compilation with such a modification.

We used two state-of-the-art FOND planners: PRP (Muise et al., 2012) and Paladinus (Fraga Pereira

et al., 2022). Both engines support basic conditional effects. However, although Paladinus fully supports

axioms, it does not support disjunctive conditional effects. Conversely, PRP supports conditional effects

with disjunctive conditions but does not support axioms. Hence, since P4Pce requires disjunctive conditional

effects and no axioms while P4PX requires conjunctive conditional effects and axioms, we use P4Pce with

PRP (P4PPRP
ce for short), and Paladinus with P4PX (P4PPal

X for short).

Our empirical analysis aims to evaluate the effectiveness of temporally extended goals formulated in

ppltl and handled by Plan4Past, and semantically equivalent (polynomially related) temporally extended

goals formulated in ltlf and handled by the state-of-the-art tool ltlfond2fond2 (ltlf2f for short) (Camacho

et al., 2017; Camacho and McIlraith, 2019). ltlf2f is a compilation approach that explicitly computes an

automaton representing the ltlf temporal goal. The advantage of Plan4Past seems clear: the encoding

performed by ltlf2f is exponential, while both compilations performed by P4Pce and P4PX are polynomial

in the size of the ppltl goals. Yet, from a practical standpoint, the impact of this advantage in FOND

planning is unclear. To this end, we tested the three systems over a set benchmark and analyzed the number

2ltlfond2fond is available online at https://bitbucket.org/acamacho/ltlfond2fond and can operate in two modes: one
introduces conditional effects, while the other substitutes such effects with a cascade of actions. In our experiments, we used
the latter, as it always performs better independently from the planner.
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of problems solved (Coverage), the time spent to get a solution (compilation plus search), and the size of

the policies (number of state-action pairs). Like for P4Pce, the problems encoded by ltlf2f are supported by

FOND planners with conditional effects, but in our findings, ltlf2f performs much better with PRP. Hence,

in the following, we only present the ltlf2f results with PRP. All experiments ran up to 1800s on a Xeon-Gold

6140M 2.3 GHz with 8GB of memory.

6.3.1 Benchmark Domains

Our benchmark suite features the FOND domains Rovers, BlocksWorld, and Robot-Coffee used by

Camacho et al. (2017). We tested all compilations on the same instances tested by Camacho et al. (2017) (C17

for short). C17 temporally extended goals were originally specified in ltlf , and therefore, for comparability

reasons, we manually translated them to ppltl. In particular, for each ltlf formula translated in ppltl, we

formally and automatically proved their semantic equivalence by verifying that the two formulations yield

the same minimal dfa (modulo state renaming – cf. Section 3.5.2). We observed that all C17 instances were

trivially solved by the three systems. Hence, to study the scalability of the compilations for each domain, we

generated a new set of instances of increasing dimensions (BF23 for short). The C17 instances are publicly

available, while our newly generated instances are described below, along with other information about the

domain and the translations from ppltl and ltlf .

BlocksWorld. In BlocksWorld, we aim to arrange blocks to a particular configuration. An arm can

pick-up and move blocks on top of other blocks or on the table. In the nondeterministic version, a block

can fall on the table while the arm is holding it. Starting from the 24 C17 instances, we generated bigger

problems considering the four types of formula employed by Camacho et al. (2017):

F(a)U (F(b1) ∧ F(b2) ∧ . . . ∧ F(bn)) (1)

(F(b1) ∨ F(b2) ∨ . . . ∨ F(bn))UF(a) (2)

F(F(b1) ∧ F(b2) ∧ . . . ∧ F(bn) ∧ a) (3)

(aUF(b1)) ∧ (aUF(b2)) ∧ . . . ∧ (aUF(bn)) (4)

where atoms a and bi represent whether a block is on the table or on top of another block. Formulas (1) and

(4) require each atom bi to eventually be true in some state, while formula (2) expresses that a eventually

becomes true. In all three formulas, the “Until” (U) does not add any semantic meaning (i.e., requirements

to be satisfied by the trace) to the formula. For these three lucky cases, the equivalent ppltl formulation

is obtained by simply swapping the future temporal operators with the past ones. For instance, we write

96



formula (4) in ppltl as (aSO(b1)) ∧ (aSO(b2)) ∧ . . . ∧ (aSO(bn)). On the other hand, the formula (3)

expresses that “there exists a state where a is true, and each atom bi is true in the same state or future

states”. In this case, the translation in ppltl is not straightforward: we used the semantically equivalent

formula O(b1 ∧ O(a)) ∧ O(b2 ∧ O(a)) ∧ . . . ∧ O(bn ∧ O(a)). Each temporal goal is used over 10 instances

obtained by adding more blocks on the table, resulting in 40 new instances.

To challenge the different compilations for this domain, we also designed a new type of formula, i.e., seqi,j

where i is the number of blocks, and j is the number of towers to build in a specific order. For example,

formula seq3,2 requires building two towers made of three blocks. In the end, such blocks must be on the

table. In ltlf , this formula is expressed as

F(ona,c ∧ onc,b ∧ XF(onc,b ∧ onb,a ∧ XF(ona,table ∧ onb,table ∧ onc,table))),

whereas in ppltl it is expressed as

O(ona,table ∧ onb,table ∧ onc,table ∧ YO(onc,b ∧ onb,a ∧ YO(ona,c ∧ onc,b))).

We generated a new instance with a goal seqi,j for i = 3, 4 and with j = 1, . . . , i!, for a total of 30 “seq”

problems. Therefore, the total number of instances for BlocksWorld sums up to 94 instances. These

include the 24 original instances from (Camacho et al., 2017), 40 instances that we generated by scaling the

temporal goals from (Camacho et al., 2017), and the 30 “seq” instances.

Rovers. In this domain, the goal is to gather data about soil, rocks, and images of a planet by planning

the activities of one or more rovers. We used the 9 instances in C17 and generated other larger instances

with 4 types of formulas:

F(g1) ∧ F(g2) ∧ . . . ∧ F(gn) (1)

F(F(g1) ∧ F(g2) ∧ . . . ∧ F(gn)) (2)

F(F(g1) ∨ F(g2) ∨ . . . ∨ F(gn)) (3)

G(F(G(g1) ∨ G(g2) ∨ . . . ∨ G(gn))) (4)

where every gi is an atom representing the completion of a task, i.e., the communication of data about soil,

rock, or image. The first two formulas require that each task is accomplished in some state of the trajectory

induced by the execution of the policy. Formula (3) requires that at least one task is eventually completed,

97



whereas the last formula requires that all tasks are satisfied in the last state. The translation for formulas (1),

(2), and (3) is luckily direct; we can simply swap future operators with their past counterparts. For instance,

we write formula (2) in ppltl as O(O(g1) ∧O(g2) ∧ . . . ∧O(gn)). The last formula requires one of the goals

to be achieved in the last state; this could be represented in ppltl without using any temporal operator.

However, for the sake of a fair comparison, we translated such ltlf formula into a ppltl formula with the

same number of nested temporal operators, i.e., H(H(H(g1)∨H(g2)∨ . . .∨H(gn)))∨ (g1∨g2∨ . . .∨gn). These

constraints are used over 40 propositional problems of Rovers from the 5th IPC, giving us 160 instances,

which, added to the 9 C17 instances, gives a total of 169 instances.

Robot-Coffee. In this domain, a robot has to deliver coffee to different offices and can move between

adjacent offices; coffee can be prepared in a kitchen. We considered the 10 problems from C17 and generated

further larger instances with the following types of temporally extended goals:

F(Co1) ∧ . . . ∧ F(Con) (1)

F(F(Co1) ∧ . . . ∧ F(Con)) (2)

F(Co1) ∧ . . . ∧ F(Con) ∧ G(Roi → X(¬Roj )) ∧ . . . (3)

X(X(. . .X(Rkitchen))) (4)

The first two formulas are satisfied by a policy delivering the coffee to all offices. Formula (3) is as formula

(1) but with the requirement that if the robot is in the office oi, then in the next state, it cannot be in office

oj . This in ppltl can be easily expressed with H(Y(Roi)→ ¬(Roj )) ∧ ¬Roi . The last temporally extended

goal requires the robot to be in the kitchen in the k+1-th state, where k is equal to the number of nested

X operators. In ppltl, this can be captured by O(Rkitchen ∧ Y(Y(. . .Y(start)))), where the number of Y

is equal to k. We generated a new set of instances, 15 for each type of formula, increasing the number of

offices. Formulas (1), (2), and (3) scale with the number of offices, whereas the formula of type (4) scales

with k ranging from 7 to 21. This gives us a total of 70 instances.

6.3.2 Experimental Results

Table 6.3 reports the overall results for all systems. The last three rows are for C17, while BF23 is indicated

by “domain-formula” (e.g., BlocksWorld-1 refers to BlocksWorld with goals of type (1)). P4PPRP
ce

achieves the highest coverage, followed by ltlf2f and P4PPal
X . C17 instances are small and trivially solved

by all systems within a few seconds. In contrast, BF23 instances are larger and designed to challenge the

compilations. Indeed, here we observe that P4PPRP
ce solves 80.2% more instances than P4PPal

X and 69.9%
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Domain
Coverage Avg RT Avg |π|

I P4PPRP
ce P4PPal

X ltlf2f P4PPRP
ce P4PPal

X ltlf2f P4PPRP
ce P4PPal

X ltlf2f

BlocksWorld-1 10 10 10 1 69.56 14.98 – 4.00 3.00 –
BlocksWorld-2 10 10 10 10 27.11 10.99 2.72 2.00 1.00 2.00
BlocksWorld-3 10 6 10 2 85.48 5.99 – 5.00 2.00 –
BlocksWorld-4 10 6 10 4 30.04 11.47 19.56 3.00 3.00 3.00
BlocksWorld-seq 30 30 8 20 2.16 32.25 2.29 14.12 14.00 13.75
Robot-Coffee-1 15 12 5 4 5.14 53.99 53.34 56.00 50.50 56.00
Robot-Coffee-2 15 11 5 2 14.96 361.63 – 60.00 54.00 –
Robot-Coffee-3 15 2 0 1 – – – – – –
Robot-Coffee-4 15 15 15 15 15.82 2.59 2.04 15.00 14.47 15.00
Rovers-1 40 24 3 10 8.99 – 23.47 28.40 – 30.50
Rovers-2 40 23 4 7 – – – – – –
Rovers-3 40 37 20 40 27.37 258.75 2.81 6.05 5.90 5.30
Rovers-4 40 23 16 7 32.97 52.34 – 5.62 5.06 –

BlocksWorld 24 24 24 24 2.66 1.85 1.71 7.71 5.21 6.75
Robot-Coffee 10 10 10 10 2.46 10.03 1.97 14.22 12.33 13.44
Rovers 9 9 9 9 3.42 7.41 1.85 9.11 12.56 9.11

Total 252 159 166

Table 6.3: Coverage, average Run-Time (Avg RT), and Policy size (Avg |π|) achieved by P4Pce, P4PX and
ltlf2f. Averages are computed among instances solved by all systems obtaining at least 25% of coverage
compared to the best performer. The policy size is reported without counting spurious actions added by
compilations. Column I is the number of instances in a domain. “–” indicates a system excluded by the
comparison. In bold are the best performers.

more instances than ltlf2f, yet P4PPRP
ce does not dominate the other compilations. P4PPal

X is effective in

handling BlocksWorld-3 and BlocksWorld-4, while P4PPRP
ce times out. Instead, P4PPRP

ce works better

with goals of type “seq”. ltlf2f is extremely effective at handling Rovers-3. Here, temporal goals can be

represented by a very compact automaton, enabling ltlf2f to quickly solve all problems. This advantage can

neither be exploited by P4Pce nor by P4PX ; such compilations work on the syntactic structure of formulas

and are unable to exploit the semantics of temporal goals. Instead, in Rovers and Robot-Coffee, P4PPRP
ce is

more effective than ltlf2f when temporal goals are of type (1) and (2). The automaton blows up when such

instances become larger, and ltlf2f either fails at compilation time or produces problems too complex for

PRP to handle. In Rovers-4, P4PPRP
ce and P4PPal

X perform well, while we observed that in many instances

ltlf2f crashes during the automaton computation. Robot-Coffee-4 is easily handled by all systems, while

Robot-Coffee-3 proved to be challenging for every compilation. Finally, all systems computed policies of

comparable dimensions.

On average, ltlf2f has the lowest runtime in 6 domains (3 are C17 domains featuring small instances),

whereas P4PPRP
ce and P4PPal

X combined have the lowest runtime in 8 domains. To shed some light on this,

Figure 6.1 displays coverage over time for all systems. ltlf2f solves more instances than the other compilations

only at the beginning until the planning time reaches 29.7 seconds (visible in the logarithmic scale plot on
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Figure 6.1: Survival plot in linear (left) and logarithmic (right) scale.
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Figure 6.2: Run-Time comparison of ltlf2f vs P4PPRP
ce and P4PPal

X .

the right). Instead, from that point on, P4PPRP
ce visibly dominates ltlf2f (linear scale plot on the left). In an

instance-by-instance comparison (Figure 6.2, left), we observe that ltlf2f solves many problems (130) before

P4PPRP
ce does. P4Pce introduces complex formulas in conditional effects and goals, and we observed that the

preprocessing of PRP often exceeds the compilation time by orders of magnitude. Overcoming this issue

without introducing axioms is an open question for future work. The runtime pairwise comparison of ltlf2f

with P4PPal
X , Figure 6.2 (right), shows that ltlf2f is faster than P4PPal

X in most instances, and this behavior

can be attributed to Paladinus being slower than PRP in the considered domains.

6.4 Summary and Discussion

In this chapter, we study FOND planning for ppltl goals. ppltl expresses temporal specifications that

solution strategies must comply with. We formally prove that FOND planning for ppltl goals can be poly-
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nomially encoded to FOND planning for reachability goals, presenting two encodings that allow solving more

problems than those solved by a state-of-the-art approach supporting the same equivalent goals expressed

in ltlf . The theoretical and practical advantages of ppltl observed here may definitely make ppltl a

promising candidate to become a mainstream language to express temporal goals in planning. Future work

concerns the development of a FOND planner that can natively handle ppltl goals.
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Chapter 7

Declarative Trace Alignment via

Automated Planning

Analyzing traces of events produced by a process under execution is critical to many tasks in Business

Process Management (BPM). However, modeling, implementation, or human-execution errors often make

a trace non-compliant with respect to a BPM model. Trace Alignment is the problem of aligning process

executions to a process model by “repairing” execution traces with a minimal number of modifications. In

this dissertation, we consider declarative trace alignment, where the process model is a formal specification

expressed in the linear-time temporal or dynamic logics on finite traces. We solve the problem by reducing

it to cost-optimal planning and resorting to state-of-the-art automated planners. The resulting approach

impressively outperforms existing ad-hoc solutions.

The work presented here will be partially included in a submission to the Journal of Artificial Intelligence

Research. All new PDDL encodings have been implemented in a tool called TraceAligner, which currently

represents the best-performing tool for Trace Alignment with declarative specifications. A separate article

describing its structure and functioning has been published in (De Giacomo et al., 2023) on the Journal of

Software Impacts.

7.1 Introduction

Business Process Management (BPM) is the research area concerned with discovering, modeling, analyzing,

and managing business processes (BPs) to measure their productivity and improve their performance (Dumas

et al., 2018). Usually, BPs are high-level processes involving automated and human-based activities such
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that, when executed, generate sequences of activities (or events) called traces, typically collected in a log

(i.e., a set of traces). When activities require manual intervention, it is not uncommon for log traces to be

inconsistent with the expected process behavior. For instance, an insurance claim process where a human

operator is responsible for collecting all the documents related to the claim, checking the information they

contain, and, if correct, starting the claim process, is highly error-prone. Therefore, identifying and analyzing

such traces to prevent errors is of paramount importance, and this is the main objective of what in BPM

is known as Trace Alignment (Adriansyah et al., 2011; Carmona et al., 2018). Existing works from Process

Mining have witnessed that trace alignment is a highly-relevant problem with practical value to uncover

common and frequent deviation patterns in several domains.

An instance of trace alignment includes a log trace, a BP model, or specification, and a cost for each

modification (insertion or deletion of activities) applicable to the input trace. Thus, trace alignment is the

problem of checking whether an actual trace related to a BP execution conforms to the expected process

behavior and, if not, finding a minimal set of changes that aligns the trace to the process. Such changes

mainly consist in adding or deleting activities at some positions in the trace when necessary. To solve the

trace alignment problem, existing approaches, e.g., (de Leoni et al., 2012; de Leoni et al., 2015), are based on

ad-hoc implementations of the A∗ search algorithm, which compromises scalability as the input complexity

increases, namely when there are large specifications and long traces. In this dissertation, we reduce the

trace alignment problem to deterministic cost-optimal planning (Geffner and Bonet, 2013) to exploit the

efficiency, versatility, and customizability of state-of-the-art planners. The work has already been published

in (De Giacomo et al., 2017), where the approach is validated through experimental analysis, and results

show that it outperforms by far ad-hoc techniques included in the ProM toolkit (promtools.org). Such

good results are confirmed and further improved in the recent extension that we present here, which not only

extends the expressiveness of the specification formalism but also analyzes several reductions and evaluates

their effectiveness. As for the encodings, we specifically tested several semantically equivalent variants,

spanning from a very high-level and easily readable one up to grounded STRIPS-like versions. The encodings

differ in many features, such as the presence of conjunctive goals or the way states are encoded.

Trace alignment is interesting for the AI community in two respects. First, the problem can be applied

to executing agents: traces can model agent executions, whereas specifications can model properties that

agent executions are expected to satisfy. In this way, solving the problem can be regarded as an approach

to identify and possibly fix potential deviations of an agent’s behavior from its nominal one. Note that

this is somewhat related to existing works on verifying agent conformance to agent interaction protocols,

e.g., (Baldoni et al., 2005; Ancona et al., 2013; El-Menshawy et al., 2013; Abushark et al., 2017). Second, the

problem is an interesting application of planning, which turns out to be orders of magnitude more efficient
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than state-of-the-art ad-hoc tools, thus witnessing once more the power and generality of planning. Finally,

it is worth noticing that parts of the reduction and encodings devised here are applicable in general to any

problem that includes temporal constraints expressible as finite-state automata and that the experimental

study carried out here provides useful guidelines for an efficient representation of such constraints as part of

a planning domain. Thus, while devised and presented for the specific case of trace alignment, the obtained

results are of general applicability.

7.2 Model Specification Languages

A BP model defines the (possibly partial) execution order of the activities of interest and can be specified

either procedurally or declaratively. A procedural specification consists of an executable model, such as a

Petri net or a BPMN1/BPEL2 specification, whereas a declarative specification consists of a set of formal

constraints over the traces (BP executions). While a procedural specification prescribes the execution steps

of the BP (i.e., when and under which conditions the various activities have to be executed), a declarative

specification uses formal languages to define the set of requirements BP executions have to comply with. The

former approach is well suited for actual execution, while the latter provides a process description amenable

to various forms of analysis.

Previous approaches employing declarative models, such as (de Leoni et al., 2012; de Leoni et al., 2015;

De Giacomo et al., 2016, 2017), are all based on a restricted set of predefined template modeling formulas

called DECLARE (van der Aalst et al., 2009). Although DECLARE identifies useful patterns, it is limited in

its expressiveness. For this reason, in this dissertation, we consider model specifications provided as formulas

in full-fledged linear-time temporal logic and linear-time dynamic logic on finite traces, respectively ltlf and

ldlf (De Giacomo and Vardi, 2013), which are strictly more expressive than DECLARE. But our approach

could be seamlessly extended to consider also ppltl or ppldl formulas. In our case, temporal logics express

properties that involve trace positions, and interpretations are events occurring at different positions of the

trace. As mentioned in Chapter 2, ltlf and ldlf give great flexibility in constraints modeling. While ltlf

is usually sufficient to capture properties of interest without compromising readability, ldlf augments ltlf

with regular expressions, keeping the same complexity properties. Also, in this context from an algorithmic

point of view, the key aspect of using ltlf and ldlf formulas as specification models is being able to exploit

their translation to equivalent finite-state automata (De Giacomo and Vardi, 2013) (cf. Section 2.4).

1https://www.omg.org/spec/BPMN/2.0
2https://www.oasis-open.org/committees/download.php/12791
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7.3 Trace Alignment Problem

A log trace is a trace such that the propositional interpretation associated with each position contains only

one proposition, i.e. a singleton. In this chapter, for simplicity and without loss of generality, we only refer to

log traces. For notational convenience, we use single propositions (not singletons): we write τ = a, b, c instead

of τ = {a}, {b}, {c}. Consider a (log) trace τ = e1, . . . , en over the finite set of events, i.e., propositions, E ,

and an ltlf/ldlf formula φ such that τ ̸|= φ. We want to “repair” τ , i.e., changing it into a new trace

τ̂ such that τ̂ |= φ. We can repair traces by executing the following operations: skip an event, i.e., leave

the event unchanged; delete an event from a position; add a new event at a certain position. We represent

these operations through special events, extending the set of event E with fresh events dele and adde for

every event e ∈ E . We call such events repair events, denote the obtained set as E+, and call traces over

E+ repair traces. Observe that although skip events are technically repair events, they are drawn directly

from E and have no cost. Therefore, in a repair trace, e ∈ E stands for the skipping of event e, dele stands

for deletion of e, and adde for the addition of e. In general, modifications of traces are not allowed but can

be obtained as deletions followed by additions. Intuitively, given a trace τ = e1, . . . , ek, . . . , en, an event p

can be added to τ at position k when 1 ≤ k ≤ n, resulting in τ̂ = e1, . . . , ek−1, p, ek, . . . , en. An event ek

can also be deleted from τ , resulting in τ̂ ′ = e1, . . . , ek−1, ek+1, . . . , en. A repair trace τ+ represents a set

of modifications that transform, when successfully executed, a trace τ into a new trace τ̂ . We say that a

repair trace τ+ is applicable to a log trace τ , if τ+ can be obtained from τ by: (i) inserting any arbitrarily

long sequence of events of the form add∗, with ∗ being any event from E , before the first event, after the

last event, or between any two consecutive events of τ ; (ii) replacing any event e of τ by either itself or

del∗. We formally capture the result of performing the operations of a repair trace by defining the trace

induced by τ+, i.e., the trace τ̂ over E obtained from τ+ by: (i) deleting every occurrence of dele; and (ii)

replacing every occurrence of adde with the event e. For instance, the trace induced by the repair trace

τ+ = delc, adda, b, b, dela, addc is the trace τ̂ = a, b, b, c, and the original trace is τ = c, b, b, a. When τ+

is applicable to a trace τ and induces the trace τ̂ , we say that τ+ transforms τ into τ̂ . Furthermore, we

associate the cost of a repair trace τ+, denoted as cost(τ+), as the number of add∗ and del∗ events occurring

in τ+.

Therefore, the trace alignment problem can be stated as follows: given a trace τ and an ltlf/ldlf

formula φ such that τ ̸|= φ, find a repair trace τ+ of minimal cost that transforms τ into a trace τ̂ such that

τ̂ |= φ. Consequently, when φ is satisfiable, there always exists a solution to the problem as repair events

always allow to obtain any log trace from the original one.

Given a log trace τ = e1, . . . , en, we can associate the trace automaton T = ⟨Eτ , Qτ , qτ0 , ρτ , Fτ ⟩, where
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q0start q1 q2 q3

a

add∗

dela

b

delb

add∗

c

delc

add∗ add∗

Figure 7.1: Repair automaton of trace τ = a, b, c over E = {a, b, c, d}. The subscript ∗ is an abbreviation for
every proposition.

Eτ = {e1, . . . , en} is the input alphabet; Qτ = {qτ0 , . . . , qτn} is the set of n + 1 states; qτ0 is the initial state;

ρτ = {⟨qτi , ei+1, q
τ
i+1⟩ | 0 ≤ i < n} is the transition relation; and F τ = {qτn} is the set of final states. It is easy

to see that by construction T is deterministic and accepts only τ , i.e., LT = {τ}. Similarly, as we have seen

throughout this dissertation, given a temporal formula φ to check τ against, we can obtain a corresponding

nfa A = ⟨E , Q, q0, ρ, F ⟩, which, in this context, we call the formula automaton such that L(φ) = L(A).

We can augment T and A as follows. From T , we define the repair automaton of τ denoted as

T + = ⟨E+τ , Qτ , qτ0 , ρ+τ , Fτ ⟩, where ρ+τ extends ρτ with the following fresh transitions: (i) ⟨q, delp, q′⟩, for

all ⟨q, p, q′⟩ ∈ ρτ ; and (ii) ⟨q, adde, q⟩, for all e in E and q ∈ Qτ . T + accepts repair traces, denoted as LT + .

For instance, the repair automaton of the trace τ = a, b, c over E = {a, b, c, d} is shown in Figure 7.1. By

construction, T + remains deterministic and accepts exactly all the repair traces τ+ over E+ that can be

derived from τ . From A = ⟨E , Q, q0, ρ, F ⟩ we derive the augmented formula automaton of A denoted as

A+ = ⟨E+, Q, q0, ρ+, F ⟩, where E+ = E+τ and ρ+ contains: (i) one transition ⟨q, e, q′⟩ for each transition

⟨q, ψ, q′⟩ ∈ ρ and e ∈ E such that {e} |= ψ; (ii) one transition ⟨q, adde, q′⟩ for each transition ⟨q, ψ, q′⟩ ∈ ρ

and e ∈ E such that {e} |= ψ; and (iii) one transition ⟨q, dele, q⟩ for each q ∈ Q and e ∈ E . Observe that,

from the definition, we have that LA ⊆ LA+ . Intuitively, A+ accepts all repair traces τ+ (including those

not applicable to τ) that induce a trace τ̂ satisfying φ. Figure 7.2a shows the automaton for φ1 = G(a→ Fb),

whereas Figure 7.2b shows the corresponding augmented formula automaton.

Theorem 7.1. Given an ltlf/ldlf formula φ over E, let A and A+ be the corresponding formula automa-

ton and augmented formula automaton, respectively. A repair trace τ+ over E+ is accepted by A+ if and

only if the trace τ̂ over E induced by τ+ is accepted by A.

Proof. By definition, the induced trace τ̂ can be obtained from τ+ by (i) deleting every occurrence of dele,

and (ii) replacing every occurrence of adde with e. We prove that after applying any of these operations,

while the trace τ and the computations τ+ induced on A+ change, the last state of such computations is

preserved. Since this implies preservation of acceptance (or rejection), it follows that τ̂ ∈ LA+ if and only

if τ+ ∈ LA+ . This, together with the fact that τ̂ ∈ LA if and only if τ̂ ∈ LA+ – this is because A and A+

have the same initial, final, and non-final states, and transitions of A are a subset of those of A+ – implies
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q0start q1

¬a
a ∧ ¬b

¬b

b

(a) nfa for formula φ = G(a → Fb).

q0start q1

b, addb, c, addc,
d, addd, del∗

a, adda

a, adda, c, addc,
d, addd, del∗

b, addb

(b) Augmented nfa for formula φ = G(a → Fb).

Figure 7.2: Automaton and augmented formula automaton of G(a→ Fb).

the thesis.

Consider a repair trace τ+ = e+1 , · · · , e+m and let q0
e+1−−→ q1 · · · qm−1 e+m−−→ qm (with q0 = q0) be the generic

computation induced by τ+ on A+ (recall that, in general, A+ is nondeterministic). By the definition of ρ+,

every state of A+ has a self-loop labeled by del∗, thus, for dele+i
occurring in position i ∈ [1,m] of τ+, the

generic computation has the following form:

q0
e+1−−→ q1 · · · qi−2

e+i−1−−−→ qi−1
del

e
+
i−−−→ qi

e+i+1−−−→ qi+1 · · · qm−1 e+m−−→ qm, with qi = qi−1.

Because qi = qi−1 and, from the computation, ⟨qi, e+i+1, q
i+1⟩ ∈ ρ+, it follows that ⟨qi−1, e+i+1, q

i+1⟩ ∈ ρ+.

Consequently, deleting e+i due to dele+i
at position i transforms the computation into the following one,

preserving the last state qm: q0
e+1−−→ q1 · · · qi−2

e+i−1−−−→ qi−1
e+i+1−−−→ qi+1 · · · qm−1 e+m−−→ qm.

As for the replacement of adde with e, since by the definition of ρ+, ⟨q, adde, q′⟩ ∈ ρ if and only if

⟨q, e, q′⟩ ∈ ρ+, it follows that the operation does not affect the states of the generic computation, thus

preserving the computation’s last state. Hence the thesis holds.

Theorem 7.2. Consider a log trace τ and an ltlf/ldlf formula φ, both over E. Let T + be the repair

automaton of τ and A+ the augmented formula automaton obtained from a formula automaton A of φ. A

repair trace τ+ is a solution to the trace alignment problem for τ and φ if and only if τ+ is a trace with

minimal cost(τ+) such that τ+ ∈ LT + ∩ LA+ .

Proof. Knowing that T + is deterministic and accepts all repair traces τ+ over E+ and that A+ accepts all

repair traces τ+ inducing traces τ̂ satisfying φ, we obtain that, given τ and φ, trace alignment is equivalent

to searching for a repair trace τ+ (over E+) that is accepted by both A+ and T +, and has minimal cost,

i.e., contains a minimal number of repair events. Indeed, acceptance by (i) T + and (ii) A+ guarantees that

we are considering all (and only) the repair traces τ+ that (i) can be obtained from τ , and (ii) induce a log

trace τ̂ satisfying φ.

In other words, the search space of our problem is the language LT + ∩ LA+ . In the next section, we
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show how the search can actually be performed by resorting to planning technology. Observe that the

approach can be easily extended to the case of many ltlf/ldlf formulas φ1, . . . , φn just by either taking

the conjunction of such formulas or by computing the augmented formula automaton for each formula, i.e.,

A+
1 , . . . ,A+

n , and then searching for a trace that is accepted by T + and all A+
1 , . . . ,A+

n .

7.4 Declarative Trace Alignment as Optimal Planning

The idea behind the reduction to deterministic cost-optimal planning is to model events from E+ as actions

whose execution triggers state changes in both T + and A+, according to their respective transition function

and relation. The problem then consists in finding a deterministic plan that takes both automata from their

initial state to a final state at a minimum cost, where actions corresponding to add and del are assigned

unitary cost, while skip actions have no cost. The obtained plan is a representation of the repair trace that

solves the problem.

We encode trace alignment into cost-optimal planning as follows. Consider an instance of trace alignment,

i.e., a trace τ and an ltlf/ldlf formula φ, and let T + = ⟨E+τ , Qτ , qτ0 , ρ+τ , Fτ ⟩ and A+ = ⟨E+, Q, q0, ρ+, F ⟩

be the corresponding repair and augmented formula automata, respectively. Without loss of generality, we

assume disjoint Qτ and Q. We define the planning domain D = ⟨S, A, cost, tr⟩ over F = Qτ ∪Q (automata

states are used as fluents), where: (i) S ⊆ {{qτ} ∪ Q′ | qτ ∈ Qτ and Q′ ⊆ Q}, i.e., the states of D are sets

containing exactly one state of T + and a subset of states of A+; (ii) A = E+, i.e., we use events from E+

as actions; in particular, an event e ∈ E models a skip action on e, whereas events adde and dele model the

addition and deletion of event e, respectively; (iii) cost(dele) = cost(adde) = 1 and cost(e) = 0 for all e ∈ E ;

and (iv) for a ∈ A, qτ , q′τ ∈ Qτ , and Q1, Q2 ⊆ Q, tr({qτ} ∪Q1, a) = {q′τ} ∪Q2 if and only if:

1. ⟨qτ , a, q′τ ⟩ ∈ ρ+τ ;

2. there exists a transition ⟨q, a, q′⟩ ∈ ρ+ such that q ∈ Q1;

3. for all q ∈ Q1, if there exists a transition ⟨q, a, q′⟩ ∈ ρ+ then q′ ∈ Q2;

4. for all q′ ∈ Q2, there exists a transition ⟨q, a, q′⟩ ∈ ρ+ such that q ∈ Q1.

D models the synchronous product of T + and A+, where fluents represent the state(s) that each automaton

is in. Since T + is deterministic, every state of the planning domain contains exactly one state from Qτ .

Instead, with A+ possibly being nondeterministic, the domain states include, in general, many states from

Q. Requirements 1 and 2 capture executability: action a can be executed only if the corresponding event is

accepted by T +, in its current state, and by A+, in at least one of its current states. Requirements 3 and 4
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define the successor state, which consists of the (unique) successor state of T + union all the successor states

of A+, with respect to action a and the current states of T + and A+. Although the transition function tr of

domain D is deterministic, the domain accounts for the nondeterministic transitions of A+. Moreover, since

A = E+, every plan for D is also a repair trace.

The cost-optimal planning problem is defined as Γ = ⟨D, s0, G⟩, where (i) s0 = {q0, qτ0}; and (ii)

G = (
∨
q∈F q) ∧ qτf , with qτf the (unique) final state of T +. In other words, s0 models that T + and

A+ start in their initial state, and G models that T + is in its final state and that at least one computation

of A+, which is nondeterministic, ends up in a final state. We call Γ the trace-alignment planning problem.

A solution to this problem is a minimal-cost plan inducing a domain trace that ends in a state satisfying G.

We can show the correspondence between optimal solutions of Γ and solutions to instances of trace

alignment over which Γ is defined.

Theorem 7.3. Consider a log trace τ and an ltlf/ldlf formula φ, both over E. If Γ = ⟨D, s0, G⟩ is the

trace-alignment planning problem of τ with respect to φ, then a plan π is an optimal solution to P if and

only if π is a solution to the trace-alignment problem instance defined by τ and φ.

Proof. By construction, we have that: (i) if π is a plan that solves Γ then it is a repair trace accepted by

both T + and A+; (ii) if, vice versa, τ is a repair trace accepted by both T + and A+, because the transition

function of D accounts for all the transitions of T + and A+ then π is also a solution to Γ. Since the cost of

a plan π for Γ corresponds to that of the corresponding repair trace, by Theorem 7.2 the thesis holds.

Hence, we can resort to planning technology to solve the trace alignment problem. Recall that, in general,

we deal with many formulas instead of just one.

7.5 Encodings in PDDL

In the previous section, we have shown how trace alignment can be reduced to cost-optimal planning and

building, in this way, the theoretical bases for a solution technique that exploits planning technology. In gen-

eral, for a given planning problem, there exist many possible equivalent formulations, each having a different,

possibly dramatic, impact on solution performance. Here, we present two classes of concrete PDDL encoding

variants, along with some possible optimizations, which will be used in the experimental evaluation. Given

an instance of trace alignment consisting of a set of augmented formula automata A+
1 , . . . ,A+

n , corresponding

to n ltlf/ldlf formulas φ1, . . . , φn, and a repair automaton T + obtained from a log trace τ , we show how

to encode the problem in PDDL.
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The first class of encodings includes a high-level general encoding with three other variants: one where

conjunctive formulas are used to encode goal states, one where the number of fluents used to model the

automata states is reduced, and one which combines the two. The encodings from this class have the

advantage of increased readability and understandability at the expense of a slight performance loss, as

shown by the experiments.

The second class of encodings is more low-level and, roughly speaking, can be understood as including

“ground” versions of the variants of the first class. In this case, we propose two encodings: a basic one and

one with conjunctive goals. The advantages of these encodings are dual with respect to those of the first

class; namely, we obtain better performance at the expense of readability.

A further difference between the two classes is the fact that while the first class makes no assumptions on

the input augmented formula automata and can deal directly with nfas, the second class assumes they are

dfas. This difference, however, turns out to be only theoretical and irrelevant in practice since all available

state-of-the-art tools for automata construction output a dfa. Nonetheless, the encoding for the nfas is

potentially useful anyway, as, for instance, one may decide to express the specifications φ1, . . . , φn directly

as nfas or without taking advantage of the available tools, or in case efficient tools will be developed in the

future, which output an nfa.

7.5.1 General Encoding

Planning Domain. We provide two abstract types: event and state. The former captures the events

involved in a transition between two different states of a formula/repair automaton, while the latter is used

to identify the states of each formula automaton uniquely (through sub-type automaton state) and of the

repair trace automaton (through sub-type trace state). To capture the structure of the automata as well

as their evolution stemming from actions executions, we include in D four (Boolean) domain predicates:

(i) (trace ?t1 - repair state ?e - event ?t2 - repair state), meaning that (trace t1 e t2) holds if the

repair automaton has a transition from state t1 to t2 under event e; (ii) (automaton ?s1 - automaton state

?e - event ?s2 - automaton state), meaning that (automaton s1 e s2) holds if there exists a formula au-

tomaton with a transition from state s1 to s2, under event e; (iii) (cur state ?s - state), with (cur state

s) holding if s is the current state of a formula/repair automaton; and (iv) (final state ?s - state) with

(final state s) holding if s is a final accepting state of a formula/repair automaton.

Predicates trace, automaton and final state capture the structure of the repair and the formula automata,

as well as their final states. The values of these predicates are fixed when the planning problem is instantiated

and do not change when actions are executed. Predicate cur state accounts for the current states of both

110



(:action sync

:parameters

(?t1 - trace_state

?e - event

?t2 - trace_state)

:precondition

(and

(cur_state ?t1)

(trace ?t1 ?e ?t2))

:effect

(and

(not (cur_state ?t1))

(cur_state ?t2)

(forall

(?s1 ?s2 - automaton_state)

(when

(and (cur_state ?s1)

(automaton ?s1 ?e ?s2))

(and (not (cur_state ?s1))

(cur_state ?s2))))))

(:action add

:parameters (?e - event)

:effect

(and (increase

(total-cost) 1)

(forall

(?s1 ?s2 - automaton_state)

(when

(and (cur_state ?s1)

(automaton ?s1 ?e ?s2))

(and (not (cur_state ?s1))

(cur_state ?s2))))))

(:action del

:parameters

(?t1 - trace_state

?e - event

?t2 - trace_state)

:precondition

(and

(cur_state ?t1)

(trace ?t1 ?e ?t2))

:effect (and (increase

(total-cost) 1)

(not (cur_state ?t1))

(cur_state ?t2)))

Figure 7.3: PDDL sync, add and del actions.

the formula and the repair automata. Thus, essentially, only such current states contribute to defining the

state space of the domain. Then, to model action costs, we introduce the numeric fluent total-cost, whose

value is increased every time an action is executed by the cost associated with that action.

Planning actions model alignments on the input trace τ , and trigger transitions on the repair and formula

automata. As usual, actions are characterized by preconditions and effects. In this encoding, we have three

actions: sync, to synchronously advance the repair and the formula automata on an event originally occurring

in the input trace, and add and del, to add and delete events to/from the trace, and consequently trigger a

transition on the repair automaton and, as well as, when needed, on the formula automata (Figure 7.3). We

model sync and del in such a way that they can be applied only if there exists a transition from the current

state t1 of the repair automaton to a subsequent state t2, with e the event involved in the transition. Unlike

the reduction presented in Section 7.4, states occur as action parameters to avoid existential quantifiers in

preconditions and effects. Action del yields a single move in the repair automaton only, as, on additions,

the formula automata loop in their current states, thus, there is no need to account for these transitions.

Action sync yields a transition in the repair automaton as well as one per formula automaton (all to be

performed synchronously), all corresponding to the advancement of the respective automaton on event e.

Finally, action add triggers a synchronous transition on the formula automata, depending on their current

states and the event e, while leaves the repair automaton in its current state as, again, this loops in the case
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(define (problem prob-trace)

(:domain alignment)

(:objects

t1 t2 t3 t4 - trace_state S10 s11 s12 S20 s21 s22 - automaton_state act1 act2 act3 -

event

)

(:init

(= (total-cost) 0)

; repair automaton

(cur_state t1) (trace t1 act1 t2) (trace t2 act2 t3) (trace t3 act3 t4) (final_state t4)

; formula automata

; DFA for F(act1) -> F(act2)

(cur_state s10) (final_state s10) (final_state s11) (automaton s10 act1 s12) (automaton

s10 act2 s11) (automaton s12 act2 s11)

; NFA for F(act1 and ((XG act1) or (XG act2)))

(cur_state s20) (final_state s21) (final_state s22) (automaton s20 act1 s21) (automaton

s20 act1 s22) (automaton s21 act2 s20) (automaton s22 act1 s20) (automaton s22 act2 s20)

)

(:goal (and

(or (cur_state s10) (cur_state s11)) (or (cur_state s21) (cur_state s22)) (cur_state t4)

)

)

(:metric minimize (total-cost))

)

Figure 7.4: Example of a PDDL problem instance. Transitions are specified by tuples of the form (x t

e t’), with x replaced by trace for repair automaton transitions and by automaton for formula automata
transitions. The single fluent automaton, which encodes transitions of many formula automata, does not
introduce ambiguities, as the automata have disjoint sets of states. The first block of transitions refers
to the repair automaton, while the other ones to the formula automata. The first formula automaton is
deterministic and corresponds to the ltlf formula F(act1) → F(act2). The second formula automaton is
nondeterministic and captures the ltlf formula F(act1 ∧ ((XG(act1)) ∨ (XG(act2)))).

of an action and there is no need to account for this.

Planning Problem. First, we define the objects needed to model the states of the repair automaton

(type trace state), the states of the formula automata (automaton state), and the involved events (event).

Second, the initial state sets the total cost to zero and defines the exact structure of the repair automaton

and of every formula automaton. Specifically, this includes the specification of all transitions connecting two

distinct states for every automaton. The current state and accepting states are identified as well. Then, the

goal condition is specified as a conjunction of (i) one formula expressing the fact that the repair automaton

is in its (unique) final state; and (ii) one disjunctive formula for each formula automaton, expressing the

fact that the automaton is in at least one of its final states. Finally, we include the specification (:metric

minimize (total-cost)), to require that the returned plan yields minimal overall cost. An example of a

problem instance is shown in Figure 7.4.
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Conjunctive Goals

The presence of disjunctive goals is a drawback of the general encoding. Not all planners support such

forms of goals, which typically yields a decrease in performance (Howe and Dahlman, 2002), as confirmed

in our experiments later. Nevertheless, we can easily rewrite the goal condition as a simple conjunction by

suitably manipulating the involved formula automata when they contain multiple final states, which is the

situation where disjunctive goals arise. A similar technique has been already exploited in the literature,

e.g., (Gazen and Knoblock, 1997). A straightforward way to rewrite the goal condition requires to (i) add

a new dummy state with no outgoing transitions; (ii) add a new special action in the domain definition

(Figure 7.5), executable only in the final states of the original automaton, which makes the automaton move

to the dummy state; and (iii) include only the dummy state in the set of final states.

In detail, we introduce an auxiliary fluent (dummy trans ?s1 - automaton state ?de - dummy act ?s2 -

automaton state), to represent the transitions from the multiple final states of the original formula automata

to the new final dummy state, introduced for every formula automaton. Then, we use dummy trans in the

effect condition of the auxiliary action goto-goal, allowing each formula automaton with multiple final states

to move to the dummy final state whenever at least one of its original final states is reached.

(:action goto-goal

:parameters (?t1 - trace_state ?de - dummy_act)

:precondition (and (cur_state ?t1) (final_state ?t1))

:effect

(forall (?s1 ?s2 - automaton_state)

(when (and (cur_state ?s1) (dummy_trans ?s1 ?de ?s2))

(and (not (cur_state ?s1)) (cur_state ?s2)))

)

)

Figure 7.5: Fragment of the additional goto-goal PDDL action.

In the problem definition, we add new objects to represent the dummy states and the single dummy event.

Additionally, we provide dummy transitions (i.e., dummy trans) only for those formula automata with multiple

final states. With these changes, we easily obtain simple conjunctive goals only.

Shared States

Another drawback that we address is reducing the number of objects needed to represent the automata states.

These, again, may yield an additional overhead in a planner’s grounding phase as the number of automata

increases. Recall that, in general, the nfa obtained from an ltlf/ldlf formula contains up to an exponential

number of states, each represented, in the general encoding, with a distinct object. Although most automata

are often reasonably small, sharing their states to optimize the grounding phase can have a significant impact
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(:action sync

:parameters (?t1 - trace_state ?e - activity ?t2 - trace_state)

:precondition (and (cur_state_trace ?t1) (trace_trans ?t1 ?e ?t2))

:effect (and (not (cur_state_trace ?t1)) (cur_state_trace ?t2)

(forall (?a - automaton ?s1 ?s2 - automaton_state)

(when (and (cur_state ?a ?s1) (automaton_trans ?a ?s1 ?e ?s2))

(and (not (cur_state ?a ?s1)) (cur_state ?a ?s2)))

)

)

)

(define (problem ...)

(:objects

a1 a2 - automaton t1 t2 t3 t4 - trace_state s1 s2 s3 - automaton_state act1 act2 act3 -

event

)

(:init (cur_state_trace t0) ...

; DFA for F(act1) -> F(act2)

(cur_state a1 s1) (final_state a1 s1) (final_state a1 s2) (automaton a1 s1 act1 s2) (

automaton a1 s1 act2 s3) (automaton a1 s2 act2 s3)

(...)

)

(:goal (and (or (cur_state a1 s1) (cur_state a1 s2)) ...)) ...)

Figure 7.6: PDDL sync action in domain with shared states and fragment of a PDDL encoding instance with
shared states.

on the approach’s scalability. To share automata states, we slightly modify the domain and the problem

definition. In the domain, predicates cur state, final state and automaton are parameterized with respect

to the automaton and, consequently, the effects of actions sync and add are universally quantified on the

newly introduced parameter. In addition, we add the new predicate cur state trace to distinguish between

states of the repair automaton, not requiring quantification, and states of formula automata. Figure 7.6

reports how the sync action accounts for these changes.

As for the problem, we introduce one object per formula automaton, N objects for the automaton

states, with N the maximum number of states among all the formula automata. Then, in the initial state,

we associate the automata transitions with each automaton object previously defined. Finally, the goal

condition is as in the general encoding except that predicates are also quantified over the specific formula

automata. Figure 7.6 shows how the previous example is modified according to these modifications.

Conjunctive Goals & Shared States

The above-mentioned encoding optimizations are very effective, as we will see later, in increasing the scala-

bility of the general encoding. Interestingly, they are not mutually exclusive and can be combined to produce

a further variant. As the experiment section shows, such a combination results in one of the best-performing

and most-scalable variants among those proposed here.
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Clearly, in the encodings discussed so far, the domain is independent of the problem instance. That is,

once written, the PDDL domain specification remains unchanged, and only the PDDL problem specification

needs to be modified in order to solve different instances of trace alignment. This aspect is crucial in reducing

the compilation time to transform a trace alignment instance into cost-optimal planning since the domain

does not need to be generated every time a new problem instance is to be solved. In the next section, we

adopt a different approach where this property does not hold anymore and a new domain must be generated

for every different instance.

7.5.2 STRIPS-like Encoding

This encoding stems from the encoding employed in (De Giacomo et al., 2017) for their experiments. Theo-

retically, the encoding does not change, but in this dissertation, we provide a new implementation optimized

and built from scratch.

The idea behind the STRIPS encoding development is to reduce the planner’s grounding time so as to

positively impact scalability as the number of PDDL objects increases. The adopted encoding is provided in

a STRIPS-like language with negative preconditions and essentially corresponds to a grounded version of the

general encoding presented before. As such, the PDDL domain is not independent of the problem instance,

thus requiring one separate domain/problem pair for each considered log trace. Experiments show that this

approach features the best scalability.

Disjunctive Goals

Planning Domain. To write a grounded version of the general encoding presented in Section 7.5.1, we

need to simulate every possible move of the automaton constraints and of the repair trace automaton. The

only PDDL predicate needed to model the planning domain is the cur state predicate, which operates as in

previous encodings.

Given the set of constraint automata, we start by grouping together transitions labeled with a certain log

event linking any pair of distinct states. We do that to build sync and add actions that simultaneously execute

a prescribed transition among all automata containing such a transition. We do not consider loop transitions

because they do not contribute to changing the predicate cur state, as is the case of all other encodings.

Once we have all relevant transitions grouped by log event, we want to model every possible combination of

them so that every possible move is allowed. Specifically, given M to be the number of distinct automata

involved in at least a transition of a certain log event, we find all possible simple combinations of transitions

of length k with 1 ≤ k ≤ M . Among the combinations found, we can ignore all combinations in which the
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same automaton is associated with two or more transitions present in the combination. We do so since we

know that, at any given time instant, an automaton can execute one and only one transition. The following

is the running example for the STRIPS-like encoding.

Example 7.4. Suppose we have only two constraint models: Fa and G(a ↔ Xb) ∧ ¬b. The automata

corresponding to these two formulas are as shown in Figure 7.7.

q01 q11

¬a

a

⊤

(a) dfa for F(a)

q02 q12 q22

¬a ∧ ¬b

a

b

b

¬b

⊤

(b) dfa for G(a ↔ Xb) ∧ ¬b

Figure 7.7: Automata for F(a) and G(a↔ Xb) ∧ ¬b.

In this case, we have just two automata constraints, i.e., M = 2. Transitions we are interested in, grouped

by labels, are a = {q01 ⇝ q11, q02 ⇝ q12, q12 ⇝ q22} and b = {q02 ⇝ q22, q12 ⇝ q02}. Note that the transition

q12 ⇝ q22 appears with label a because it is part of b’s complement, given the actual label of the transition

(i.e., ¬b). At this point, to capture all possible automata moves, we just need to enumerate all possible simple

combinations of transitions. In particular, Table 7.1 summarizes the combinations we can get for each label.

# Label k Involved Transitions Excluded Transitions
ct1

a

1
{q01 ⇝ q11} {q02 ⇝ q12, q12 ⇝ q22}

ct2 {q02 ⇝ q12} {q01 ⇝ q11,(((((q12 ⇝ q22}
ct3 {q12 ⇝ q22} {q01 ⇝ q11,(((((q02 ⇝ q12}
ct4

2
{q01 ⇝ q11, q02 ⇝ q12} {(((((q12 ⇝ q22}

ct5 {q01 ⇝ q11, q12 ⇝ q22} {(((((q02 ⇝ q12}
ct6 {(((((q02 ⇝ q12,(((((q12 ⇝ q22} {q01 ⇝ q11}
ct7

b
1

{q02 ⇝ q22} {(((((q12 ⇝ q02}
ct8 {q12 ⇝ q02} {(((((q02 ⇝ q22}
ct9 2 {(((((q02 ⇝ q22,(((((q12 ⇝ q02} –

Table 7.1: Enumeration of all simple k combinations of constraint automata transitions for each label
appearing in constraint automata between distinct states. Involved transitions are the ones that we consider
as a possible automaton move. Excluded transitions are the ones that do not take part in automata moves.
Canceled transitions are not informative and can be discarded as they belong to an automaton for which
another transition has already been selected for execution. Thus, they would not occur by definition.

The remaining combinations allow us to build the necessary PDDL sync and add actions. In particular,

every combination will correspond to an add action. Preconditions include source states (expressed with

cur state) of transitions belonging to the combination and the negation of all other source states of transitions

that do not belong to the specific combination but that have the same log activity label. Likewise, action
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effects will negate the source states of transitions within the combination and add destination states of the

same set of transitions. Here, we include the unitary action cost for the add action as for all other encodings.

Example 7.5. Recalling the previous example, the add action for the combination ct1 will be as in Figure 7.8.

(:action add-a-ct1

:parameters ()

:precondition (and (cur_state q01) (not (cur_state q02)) (not (cur_state q12)))

:effect (and (not (cur_state q01)) (cur_state q11) (increase (total-cost) 1))

)

Figure 7.8: PDDL add action for combination ct1.

Analogously, we can build a corresponding PDDL sync action to cover the possibility of advancing both the

trace automaton and the constraint automata, assuming that the trace automaton already has a transition

with the same label. In such a case, the sync action would have the same components as the add action,

but differently from the add action, the sync action would also include preconditions and effects associated

to the specific trace automaton transition.

Example 7.6. Assuming there exists a transition in the trace automaton from state t2 to state t3, then the

PDDL sync action corresponding to the ct1 combination will be as in Figure 7.9.

(:action sync-a-ct1

:parameters ()

:precondition (and (cur_state q01) (not (cur_state q02)) (not (cur_state q12)) (cur_state

t2))

:effect (and (not (cur_state q01)) (not (cur_state t2)) (cur_state q11) (cur_state t3))

)

Figure 7.9: PDDL sync action for combination ct1.

Moreover, for each label associated with at least one transition of the trace automaton, we need to give it

the possibility to execute synchronous moves for any other state of constraint automata that does not appear

in the combination of transitions above. In other words, for every label in the trace automaton, we need

to include a PDDL sync action to be executed every time the cur state does not hold constraint automata

states from which a transition with that particular label is available. Most of the time, these additional sync

actions take into account automata loops.

Example 7.7. From previous examples, all constraint automata transitions associated with the label a are

{q01 ⇝ q11, q02 ⇝ q12, q12 ⇝ q22}. If we assume a trace automaton transition with label a as t2 ⇝ t3, then

the additional sync action we would have is as shown in Figure 7.10.
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(:action sync-a-t2t3

:parameters ()

:precondition (and (cur_state t2) (not (cur_state q01)) (not (cur_state q02)) (not (

cur_state q12)))

:effect (and (not (cur_state t2)) (cur_state t3))

)

Figure 7.10: PDDL sync action for transition t2 ⇝ t3.

Here, note that, in action preconditions, the negation of the source states for which a transition in

constraint automata exists is critical to get the action executed correctly.

Additionally, there could be symbols appearing in the trace automaton that do not appear in any con-

straint automata. To handle synchronous moves of that kind of symbols, we also generate a simple sync

action to simulate the trace transition execution.

Example 7.8. Recalling from the previous example, assuming that in the trace automaton the transition

from t3 to t4 the symbol is c, which does not appear in any of the two constraint automata of our running

example, the additional sync action would be like the one shown in Figure 7.11.

(:action sync-c-t3t4

:parameters ()

:precondition (and (cur_state t3))

:effect (and (not (cur_state t3)) (cur_state t4))

)

Figure 7.11: PDDL sync action for transition t3 ⇝ t4.

Finally, we need a way to handle del actions. In particular, we have as many del actions as transitions

in the trace automaton, and their PDDL form is exactly the same of sync actions in Example 7.8, except

that this time del actions include a unitary cost in their effects.

Planning Problem. First, we define all trace automaton states as well as all constraint automata states.

After that, the initial state captures all initial states of both the trace automaton and constraint automata.

This is done using the PDDL predicate cur state. Also, in the initial state, the metric for total cost is

initialized to zero.

The goal condition includes all automata accepting states. Specifically, the goal is the conjunction of the

final state of the trace automaton with all accepting states of constraint automata. Note that if a constraint

automaton has more than one accepting state, then a disjunction in the goal condition is required following

the dfa acceptance condition definition. In other words, in general, the goal condition might be a conjunction

of inner disjunctions. An example of a problem instance is reported in Figure 7.12.
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(define (problem ...)

(:domain alignment)

(:objects

t1 t2 t3 t4 - state q0q q11 q02 q12 q22 - state

)

(:init

(= (total-cost) 0)

; repair and formula automata initial states

(cur_state t1) (cur_state q01) (cur_state q02)

)

(:goal (and (cur_state q11) (cur_state q02) (cur_state t4))

)

(:metric minimize (total-cost))

)

Figure 7.12: Fragment of a PDDL STRIPS-like encoding instance.

Conjunctive Goals

In this section, we address the problem previously raised in Section 7.5.1 about dealing with possible multiple

final accepting states of constraint automata that translate into disjunction in the goal condition.

Although the approach to avoid disjunctions is built upon the same idea of connecting accepting states

to a new dummy state (cf. Section 7.5.1), the actual implementation of such an approach is different.

Specifically, while changes in the planning problem are minimal (i.e., just add the necessary dummy states

to the objects definition and add them in conjunction with other accepting states in the goal condition),

significant changes are required in the corresponding planning domain. Indeed, in the planning domain, we

need to model all possible ways of reaching these new dummy states starting from actual accepting states of

constraint automata. To do so, we generate as many PDDL actions as all possible combinations of accepting

states we may have based on the number of involved constraint automata. Given the number of constraint

automata and fixing the single-accepting states (i.e., fixing those states of automata with a single accepting

state), we compute all possible combinations among those states that are multiple-accepting states. Once

we get all possible such combinations, we generate a PDDL action goto-goal for each combination, allowing

the reaching of new dummy single-accepting states.

Example 7.9. Consider the case where the constraint automata are F(a) and G(a → ¬F(b)) with their

deterministic automata (Figure 7.13).

In this case, after fixing the state q11, which is the only final state for F(a), the possible combinations are:

{q11, q02} and {q11, q12}. In other words, combinations will tell us from what set of states our automata are

accepting. Assuming the final state of the trace automaton is t30, the PDDL actions generated in this case

will be as shown in Figure 7.14.
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q01 q11

¬a

a

⊤

(a) dfa for F(a)

q02 q12 q22

¬a

a

a ∧ b

¬b

b

⊤

(b) dfa for G(a → ¬F(b))

Figure 7.13: Automata for F(a) and G(a→ ¬F(b)).

(:action goto-goal-cs1

:precondition (and (cur_state t30) (cur_state q11) (cur_state q02))

:effect (and (cur_state q2_dummy) (not (cur_state q02))))

(:action goto-goal-cs2

:precondition (and (cur_state t30) (cur_state q11) (cur_state q12))

:effect (and (cur_state q2_dummy) (not (cur_state q12))))

Figure 7.14: PDDL goto-goal for combinations of accepting states.

7.6 Experimental Evaluation

We devised a planning-based alignment tool implementing all PDDL encodings presented in Section 7.5 in a

standard Java tool called TraceAligner3, which can be run through a Command-line Interface. TraceAligner

takes as input a process log, collected in either the XML or the XES (eXtensible Event Stream) format4, and

a set of ltlf/ldlf declarative model formulas on log activities, and produces a set of cost-optimal planning

instances, expressed in PDDL. After that, each planning task can be fed into a State-Of-The-Art (SOTA)

optimal planner.

For the experiments, we use Lydia (De Giacomo and Favorito, 2021) to translate ltlf/ldlf formulas

into their corresponding dfas, and FastDownward (Helmert, 2006) (FD for short) and SymBA*-2 (Torralba

et al., 2014) as representative SOTA planners, which are sound, complete and optimal. We decided to

employ FD and SymBA*-2 as optimal planners since, nowadays, almost all newly developed optimal planners

for recent planning competitions are built upon them. Furthermore, we combined FD with all encodings

described in Sections 7.5.1 and 7.5.2, thus obtaining the following tools: FD-Gen, FD-GenConj, FD-GenShare,

FD-GenConjShare, and FD-Strips. We tested such tools with both the blind and the max heuristics (Bonet

and Geffner, 2001). Instead, since SymBA*-2 does not support conditional effects and universal/existential

quantifiers, we only combined it with the STRIPS-like encoding (Section 7.5.2), obtaining the SymBA*-2-

Strips tool.

3TraceAligner is available online at https://github.com/whitemech/TraceAligner.
4https://www.xes-standard.org/openxes/start
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Baselines. We evaluated every encoding implemented in our tool, combined with FD and SymBA*-2,

against the existing ad-hoc trace-alignment solutions presented in (de Leoni et al., 2012) and in (De Giacomo

et al., 2016), comparing time and scalability performance. Since the solutions proposed in (de Leoni et al.,

2012) and in (De Giacomo et al., 2016) do not offer support for full-fledged ltlf/ldlf , we tested the

approach using the translation of proper DECLARE models to ltlf .

Experiment Types. We ran two types of experiments:

1. Synthetic Logs. In this experiment, we measured the scalability of the different planning-based compi-

lations with respect to the size of the set of constraints (i.e., the model) and the noise in the log traces.

In particular, we tested the approach on synthetic logs of different complexity. This experiment is an

extended version of the one presented in (De Giacomo et al., 2017).

2. Real Log. In this experiment, we evaluated our tool on a real-life log pertaining to a process for

handling loan requests using, as a model, a set of ltlf constraints that should be satisfied by the

process, according to domain experts. The aim of this experiment is to show that our tool can be

successfully employed in an industrial context.

Experiment Setup. We ran the experiments on a machine equipped with a 12-core Intel Core i7-8700

processor running at 3.20 GHz with 32GB of memory and a timeout of 3600 seconds for each log. For

convenience, although the time limit is per log, we report the average result per trace, namely, the sum

of the average compilation time and average planning time per trace. We do that because, in the BPM

community, aligning single traces or a small set of traces is usually more common than aligning the entire

log at once. We used a standard cost function with unitary costs for any alignment step that adds/removes

activities in/from the input trace and no cost for synchronous moves. The correctness of TraceAligner was also

empirically verified by comparing the alignment cost among all the instances of all implemented encodings.

No inconsistencies were found in all solved instances.

Results. For the experiment with synthetic logs, the logs were generated using the log generator presented

in (Di Ciccio et al., 2015). We defined 3 DECLARE models with the same activity alphabet and containing

10, 15, and 20 ltlf constraints, respectively. Then, to create noise in the logs, i.e., behaviors non-compliant

with the original DECLARE models, we changed some of the constraints in these models and generated logs

from them. In particular, we modified the original DECLARE models by replacing 3, 4, and 6 constraints in

each model with their negative counterparts. Each modified model was used to generate 4 logs of 100 traces

containing traces of different lengths, i.e., from 1 to 50 events, from 51 to 100 events, from 101 to 150 events,
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10 Constraints FD-Gen FD-GenConj FD-GenShare FD-GenConjShare FD-Strips SymBA-
Strips

de Leoni et
al.

Alignment
Cost

hblind hmax hblind hmax hblind hmax hblind hmax hblind hmax

log traces length 3 constraints modified

1-50 0.47 0.08 0.08 0.03 0.43 0.07 0.07 0.02 0.03 0.13 0.22 0.34 1.77
51-100 2.46 0.3 0.33 0.11 1.94 0.25 0.29 0.08 0.05 0.3 0.48 1.37 2.11
101-150 11.72 0.93 1.38 0.34 7.81 0.7 1.13 0.25 0.1 0.68 1.09 5.9 3.03
151-200 23.78 1.7 2.57 0.66 13.83 1.19 1.99 0.48 0.15 1.16 2.4 12.98 3.79

log traces length 4 constraints modified

1-50 1.81 0.19 0.26 0.05 1.62 0.17 0.24 0.04 0.04 0.23 0.22 - 2.74
51-100 16.65 1.18 2.12 0.36 12.83 0.97 1.85 0.28 0.11 1.04 0.45 - 5.86
101-150 - 3.25 5.82 1.11 33.2 2.43 4.82 0.83 0.22 2.63 0.99 - 9.68
151-200 - 5.8 10 2.14 - 4.03 7.86 1.54 0.33 4.62 1.9 - 13.4

log traces length 6 constraints modified

1-50 3.82 0.3 0.54 0.08 3.46 0.27 0.51 0.07 0.05 0.33 0.21 - 4.23
51-100 34.61 2.08 4.44 0.61 26.9 1.72 3.91 0.47 0.16 1.8 0.43 - 9.73
101-150 - 4.98 9.81 1.64 - 3.73 8.18 1.21 0.3 4.25 0.93 - 16.23
151-200 - 8.36 15.12 3 - 5.79 11.9 2.14 0.45 6.96 1.94 - 21.63

Table 7.2: Experimental results for the synthetic case study with 10 constraints. The time (in seconds) is
the total time (average compilation time per trace + average planning time per trace). The timeout is set
to 3600 seconds.

15 Constraints FD-Gen FD-GenConj FD-GenShare FD-GenConjShare FD-Strips SymBA-
Strips

de Leoni et
al.

Alignment
Cost

hblind hmax hblind hmax hblind hmax hblind hmax hblind hmax

log traces length 3 constraints modified

1-50 6.09 0.63 0.43 0.12 5.74 0.6 0.4 0.1 0.09 0.13 0.34 1.08 1.71
51-100 - 2.98 4.42 0.63 - 2.71 3.9 0.52 0.18 0.3 0.68 6.64 2.23
101-150 - 8.35 15.08 2.05 - 7.32 12.84 1.65 0.37 0.68 1.42 24.05 3.07
151-200 - 20.46 - 5.5 - 17.37 - 4.38 0.73 1.16 3.14 - 4.2

log traces length 4 constraints modified

1-50 - 4.21 7.56 0.67 - 3.97 7.19 0.59 0.21 0.23 0.35 - 3.8
51-100 - 16.8 - 3.2 - 15.3 33.7 2.64 0.57 1.04 0.63 - 5.94
101-150 - - - 9.9 - - - 8.02 1.28 2.63 1.34 - 9.49
151-200 - - - 18.22 - - - 14.25 1.93 4.62 2.38 - 12.3

log traces length 6 constraints modified

1-50 - 11.37 30.91 1.68 - 10.75 29.56 1.45 0.44 0.33 0.36 - 6.24
51-100 - 32.82 - 5.89 - 29.92 - 4.73 0.99 1.8 0.65 - 9.51
101-150 - - - 14.49 - - - 11.4 1.88 4.25 1.19 - 14.44
151-200 - - - - - - - 23.2 3.09 6.96 2.33 - 20.61

Table 7.3: Experimental results for the synthetic case study with 15 constraints. The time (in seconds) is
the total time (average compilation time per trace + average planning time per trace). The timeout is set
to 3600 seconds.

and from 151 to 200 events, respectively. The experimental results for the experiment with synthetic logs

are summarized in Tables 7.2, 7.3, and 7.4. The results for the experiment with the real-life log are, instead,

reported in Table 7.5.

In general, in the experiment with synthetic logs, the ad-hoc approach of de Leoni et al. (2012) performs

well only for short traces with the smallest amount of noise. For all other cases, i.e., for logs containing

traces with more than 50 events or generated by altering more than 3 constraints in the original model, the

FD-Strips tool associated with the encoding presented in Section 7.5.2, using the blind heuristic, outperforms

every other tool included in the benchmarks. In particular, both the FD-Strips with the blind heuristic and

the SymBA*-2-Strips tools show particularly good results for more complex problems. Here, observe that

the FD-Strips tool with the blind heuristic usually outperforms all other tools except when the number of

constraints and the amount of noise increase. Indeed, in such cases, while the SymBA*-2-Strips planning

time remains steady, the FD-Strips’s time worsens. In fact, results in Table 7.4 indicate that the algorithmic
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20 Constraints FD-Gen FD-GenConj FD-GenShare FD-GenConjShare FD-Strips SymBA-
Strips

de Leoni et
al.

Alignment
Cost

hblind hmax hblind hmax hblind hmax hblind hmax hblind hmax

log traces length 3 constraints modified

1-50 - 0.78 5.32 0.55 - 21.55 4.84 0.47 0.39 - 0.76 3.99 1.86
51-100 - 6.22 - 4.19 - - - 3.41 0.84 - 1.33 34.91 2.61
101-150 - 20.07 - 13.12 - - - 10.5 1.78 - 2.6 - 3.31
151-200 - - - - - - - - 5.07 - 5.67 - 4.44

log traces length 4 constraints modified

1-50 - 5.91 - 4.01 - - - 3.31 1.02 - 0.76 - 3.87
51-100 - - - - - - - 31.81 5.2 - 1.35 - 7.15
101-150 - - - - - - - - 11.37 - 2.55 - 10.16
151-200 - - - - - - - - 19.82 - 4.71 - 14.12

log traces length 6 constraints modified

1-50 - 25.34 - 16.28 - - - 14 3.51 - 0.84 - 6.93
51-100 - - - - - - - - 10.14 - 1.41 - 10.96
101-150 - - - - - - - - 21.05 - 2.48 - 16.23
151-200 - - - - - - - - - - 4.11 - 21.9

Table 7.4: Experimental results for the synthetic case study with 20 constraints. The time (in seconds) is
the total time (average compilation time per trace + average planning time per trace). The timeout is set
to 3600 seconds.

Financial log FD-Gen FD-GenConj FD-GenShare FD-GenConjShare FD-Strips SymBA-
Strips

de Leoni et
al.

Alignment
Cost

hblind hmax hblind hmax hblind hmax hblind hmax hblind hmax

log trace length # traces 16 constraints

3-50 607 - 0.43 0.05 0.01 - 0.43 0.05 0.01 - - - 0.15 0.5
51-75 38 - 4.24 1.68 0.09 - 4.19 1.49 0.07 0.3 7.46 0.66 0.45 2.18
76-100 5 - 6.27 2.56 0.19 - 6.17 2.19 0.15 0.61 10.87 1.12 2.78 2.4
101-128 4 - 5.85 3.4 0.22 - 5.74 2.82 0.17 0.68 12.51 1.49 5.88 2.5

Table 7.5: Experimental results for the real case study. The time (in seconds) is the total time (average
compilation time per trace + average planning time per trace). The timeout is set to 3600 seconds.

choice for the search in the state space is crucial when aligning long traces with relevant noise. In particular,

in this case, the bidirectional A* search employed in SymBA*-2 scales better than the blind A* search of FD.

It is worth noting that the FD-GenConjShare tool with the max heuristic, has good overall performance

too, especially in the case of 10 and 15 constraints. The FD-GenConj tool follows with fairly good results

with the max heuristic, but it scales well up until 15 constraints. On the other hand, both the FD-Gen

and the FD-GenShare tools have similar poor results compared to other tools. Notably, the conjunctive goal

optimization (FD-GenConj) performs better than the optimization with shared states (FD-GenShare).

In addition, the FD-Strips tool is the only encoding showing better results with the blind heuristic than

with the max heuristic. This suggests that when the planner is not leveraged to ground the planning task,

i.e., when the grounding is already performed at compilation time, the max heuristic is not as informative

as it is in all the other encodings and, in some cases, is even negatively affecting the search process.

In the real-life log, the approach in (de Leoni et al., 2012) is always faster than the FD-Strips tool using

the max heuristic, whereas it is faster than the FD-Strips (blind heuristic) and SymBA*-2-Strips tools only

for very short traces, namely those with length 3-50. Moreover, the approach in (de Leoni et al., 2012) shows

better performances than the FD-Gen and the FD-GenShare tools (using both blind and max heuristic), which

confirm their poor results seen on synthetic logs. However, (de Leoni et al., 2012) is not as fast as the other

general encodings, i.e., FD-GenConj and FD-GenConjShare (with both heuristics).
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In general, the FD-GenConj and FD-GenConjShare with max heuristic, corresponding to optimized high-

level encodings, show the fastest alignment time with respect to all other tools. They even perform better

than the STRIPS-based tools. Also, like in the experiments with synthetic logs, the max heuristic improves

the performance of the general encodings, whereas it is not so effective for the FD-Strips tool, which performs

better with the blind heuristic.

Notably, the STRIPS-based tools were timed out on the longest log (607 traces) with short traces (traces

length between 3 and 50). The reason behind this result is due to the high compilation time of such tools.

Indeed, although the STRIPS-based tools scale well even when the alignment problems become significantly

complex (especially in the synthetic case), the results shown are averages per trace. However, when aligning

an entire log at once, the results change because of a higher compilation time that no longer becomes

negligible. Specifically, when the log contains a high number of traces, the compilation time of the STRIPS-

based tools has shown to be two orders of magnitude higher than the one of the high-level encodings. In

such a case, the FD-GenConjShare tool combined with the max heuristic is typically the best choice.

To sum up, we can conclude that, in general, no tool outperforms the others, and the best tool for trace

alignment has to be carefully chosen based on the user’s specific needs.

7.7 Related Work

A number of research works exist on the use of planning techniques in the context of BPM, covering the

various stages of the process life cycle.

For the design-time phase, the existing literature focuses on exploiting planning techniques to automati-

cally generate candidate process models that can achieve some business goals starting from a complete (Fer-

reira and Ferreira, 2006) or an incomplete (Marrella and Lespérance, 2017) description of the process domain.

Some research works also exist that use planning techniques to deal with problems for the run-time phase.

The works in (Marrella et al., 2016, 2014; van Beest et al., 2014) report on approaches to adapt the running

process instances to cope with anomalous situations, including connection anomalies, exogenous events, and

task faults. All these approaches do not automatically use historical information from event logs and use

planning techniques for completely different purposes.

The scientific literature reports various works that use planning and AI-based techniques for conformance

checking. Model checking is used in (Regis et al., 2012; Montali, 2010) to verify properties in process

models. However, these methods only provide a true/false answer without identifying deviations and their

severity. In (López et al., 2016), the authors propose a technique to find optimal alignments using constraint-

satisfaction problems, but their approach is limited to acyclic process models and may not always provide
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optimal solutions.

Some research focuses on verifying process model compliance with business rules encoded as formulas,

e.g., (Belardinelli et al., 2012; Montali, 2010). Existing techniques check trace compliance by representing it

as a set of formulas. However, they only highlight non-compliant formulas and not where deviations occur,

such as when an activity is not executed. This is an easier task than pinpointing deviations since there are, in

general, multiple ways to repair a trace to satisfy a formula. Instead, when multiple formulas are unsatisfied,

finding the least expensive changes to ensure all formulas are satisfied becomes a planning problem.

Recent work has used Process Mining techniques, including conformance checking, to solve AI problems

like goal recognition. Specifically, Polyvyanyy et al. (2020) use off-the-shelf process discovery and confor-

mance checking techniques to solve probabilistic goal recognition when there is incomplete knowledge about

the world the agent operates in. However, their approach is limited to matching an agent’s observed behavior

to Petri nets, thus basing their modeling discovery on a procedural paradigm.

7.8 Summary and Discussion

In this chapter, we addressed the problem of declarative trace alignment, an important problem in the busi-

ness process management area that involves aligning process models with formal specifications expressed in

ltlf or ldlf formulas. We proposed a formally correct reduction to cost-optimal planning and developed

two PDDL encodings with optimizations to improve performance and scalability. Our approach has been im-

plemented in a tool called TraceAligner, which currently stands as the top-performing solution for declarative

trace alignment. We presented an empirical evaluation of TraceAligner on extensive benchmarks, and the

results showed that our approach dramatically outperforms existing ad-hoc solutions in terms of scalability.
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Chapter 8

Natural Language to Flow

Construction via Automated Planning

In this chapter, we describe an industry application that combines some of the topics we have previously

discussed in this dissertation. In particular, we give an overview of our newly released Python package

NL2LTL that leverages the latest techniques in natural language understanding (NLU) and large language

models (LLMs) to translate English inputs to linear temporal logic (ltl) formulas. Such an interface allows

direct translation to formal languages that a reasoning system can use, while at the same time, allowing the

end user to provide inputs in natural language without having to understand the details of the underlying

formal language in a system. The package comes with support for a set of default ltl patterns, corresponding

to popular DECLARE templates, but is also fully extensible to new domains so adopters of the package can

configure it to their needs. The package has been open-sourced and is free to use for the AI community

under the MIT license.

Part of the practical outcome of this research has been published in (Fuggitti and Chakraborti, 2023)

at the System Demonstration track of the AAAI Conference on Artificial Intelligence 2023, and in (Fuggitti

and Chakraborti, 2023) at the System Demonstration track of the International Conference of Automated

Planning and Scheduling 2023.

8.1 Constructing Workflows for Automation

A vast number of automation tools require the user to construct workflows that embody some form of

automation or business process. This user is not the end user but rather the developer or administrator
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of that process. Such applications range from goal-oriented conversational agents such as Dialogflow1 or

Watson Assistant2, and data processing flows such as AutoAI/ML3,4, to web service composition tools such

as in App Connect5 or Zapier6. The examples are many and diverse, but in essence, they take the form

of a workflow or a decision tree. They model a mixture of actions that determine or sense user intent and

compose one or more units of automated and manual processes, realized as steps in that workflow that are

able to satisfy the requirements of that intent.

This is, of course, not new to the BPM community, which has decades of work to show for representing

and reasoning about such processes, including sophisticated specification languages like BPMN7 as well as

workflow construction tools and languages, both commercial and academic, such as YAWL (van Der Aalst

and Ter Hofstede, 2005), FLOWer (van der Aalst et al., 2005), DECLARE (van der Aalst et al., 2009), and

others. One natural outcome of this is that the ability of process administrators to write sophisticated

constraints has significantly grown. However, this has come at the cost of a much higher barrier to entry in

terms of the expected expertise of users who are able to write such specifications.

This limitation is not due to a lack of subject matter expertise on the user’s part but rather due to how

different the modeling paradigms are. For instance, a declarative modeling approach offers an exponential

increase in the complexity of specification relative to the complexity of the realized model but requires a

completely different way of thinking from imperative modeling – not unlike the thought process that goes

into the basics of programming. Increased sophistication of the specification language further increases the

required programming knowledge of the user. As such, the full capabilities of these advanced modeling tools

remain out of reach for non-expert users who have neither training nor experience in declarative modeling

and programming (Reijers et al., 2013). Recent advances in natural language processing offer an intriguing

way out of this conundrum.

8.1.1 Natural Language to Workflow Construction

A host of enterprise applications revolve around the management of workflows – this includes data processing

pipelines in AutoML (He et al., 2021), web service composition (Lemos et al., 2015), dialogue trees in

conversational systems (Muise et al., 2020), and so on. An emerging theme in this area is the adoption

of natural language as a desired input modality (Chakraborti et al., 2022), aimed at reducing the barrier

of entry and expertise required for users looking to adopt workflow management tools. In fact, one of the

1https://developers.google.com/learn/pathways/chatbots-dialogflow
2https://www.ibm.com/products/watson-assistant
3https://aws.amazon.com/machine-learning/automl
4https://cloud.google.com/automl
5https://www.ibm.com/cloud/app-connect
6https://zapier.com/how-it-works
7https://www.omg.org/spec/BPMN/2.0
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fascinating outcomes of recent advances in natural language processing is the emergence of generic language

models that can be instantiated for specific domains to perform non-trivial information processing using only

an interface to natural language instruction from the user (Bommasani et al., 2021).

In rudimentary form, this form of interaction can manifest itself in constructing pipelines in Bash syntax

(command line interface) through natural language (Agarwal et al., 2021) or composing web services through

IFTTT (if-this-then-that) instructions8. In general, this no-code/low-code approach (Hirzel, 2022) applies

to the space of programming through natural language, such as in (Li et al., 2022).9 There are also recent

examples of workflow construction starting from natural language/document or multi-document (Shing et al.,

2018; Feng et al., 2020, 2021; Chambers et al., 2020). However, these flow construction systems do not feature

an active user experience. In fact, among them, only Doc2Dial10 (Feng et al., 2020, 2021) provides a user-

agent dialogue flow, though with an associated grounding-document helping with user utterances semantic

parsing – the documents, and not user specifications, remain the source of knowledge on the workflow.

Linear Temporal Logic as a Substrate for Workflow Specification

As we have seen in Chapter 7, declarative specifications represent one of the scientific advances towards

easier authoring tools for business processes and their management. An important specification language in

this paradigm is ltl, which can be used to address many well-known problems in process management, e.g.,

our contribution of Chapter 7 is one example, while also admitting translations to specifications of standard

reasoning engines such as automated planners (more on this later in Section 8.4).

Natural Language to Linear Temporal Logic

As highlighted throughout the dissertation, while ltl allows for a declarative paradigm, it also has a sec-

ondary benefit: ltl formulas can be readily described in an easy-to-understand natural language format. For

instance, DECLARE templates (van der Aalst et al., 2009) are translatable to ltlf (De Giacomo et al., 2014)

and to ppltl formulas (this dissertation, Table 3.2); moreover, there exists a variety of tools to generate a

human-readable construct given an ltl formula (Cherukuri et al., 2022). In this work, we aim to facilitate

making the journey in the opposite direction – from natural language to ltl. This has two main advantages:

1. unstructured inputs to a system can be translated to a form that reasoning engines can consume;

2. the interface to the end user remains as accessible as possible.

8https://ifttt.com
9Interestingly, although not strictly code, programming languages can be used as an intermediate representation in the task

of converting natural language instruction to workflow representations. This allows the use of off-the-shelf language models
trained on generic code, for which there exists plenty of data. (Groth and Gil, 2009)

10https://doc2dial.github.io
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8.2 Related Work

Existing works in this category fall under two classes: one which provides support for a range of ltl formulas

but compromises on the expressiveness of the input, and the other which admits a range of natural language

inputs but is built for a particular domain and is not readily useful or usable as a general purpose package

for practitioners.

Constrained Natural Language

These works rely on some form of constrained natural language (CNL) to ease the translation – e.g., in (Hahn

et al., 2022; Schmitt, 2022) authors use grammar-based English sentences or structured English patterns for

ltl translation, while (Narizzano et al., 2018; Narizzano and Vuotto, 2017) depends on a different structure

called property specification patterns. While the former is somewhat domain-agnostic, a structured input

means that the end user still has to become accustomed to the input language to use a system relying on

the translator.

Domain-Dependent Natural Language

There are a few approaches that have attempted to parse unstructured natural language but have only done

so in very limited domains. Perhaps, the best examples of this are (Wang et al., 2020; Wang, 2020), which

implement a parser specifically for a robotics domain, and (Nikora and Balcom, 2009), which implements a

translator for jet propulsion systems using a set of predetermined patterns from (Dwyer et al., 1998). Authors

in (Kim et al., 2017; Lignos et al., 2015) also explored ltl translations from user instruction in robotics,

but those translations were done manually in the former, while the latter is more automation-friendly but is

limited to a specific parsing technique.

Reusable Assets

Among these works, other than (Wang, 2020; Narizzano and Vuotto, 2017; Schmitt, 2022), none have publicly

available code and they are therefore not readily usable for practitioners. On the other hand, there are a

couple of code bases that have also attempted natural language to ltl translation (Head, 2015; Zheng, 2020),

but they are at a very rudimentary stage with little to no support or documentation. To the extent of our

knowledge, our package is the first one going public with support for a significant breadth of ltl patterns

and an extensible API to make it usable in different domain-specific contexts. In the next section, we will

briefly describe the key features of the package.
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8.3 NL2LTL: Converting Natural Language Instructions to Linear

Temporal Logic Formulas

NL2LTL11 is a Python package for translating natural language instructions to ltl formulas, with a unique

focus on extensibility: (i) the inputs and outputs are domain agnostic, so it can be used and adapted for

any domain of choice; and (ii) any and all components – be it the natural language understanding module

or the scope of supported ltl formulas – are extendable or modifiable. Before going into the details of the

architecture, we present a few examples of interactions with the package that illustrate these principles.

from nl2ltl import translate

from nl2ltl.engines.rasa.core import RasaEngine

from nl2ltl.engines.utils import pretty

engine = RasaEngine ()

utterance = "Send me a Slack after receiving a Gmail"

ltlf_formulas = translate(utterance , engine)

pretty(ltlf_formulas)

Figure 8.1: The basic NL2LTL API is shown above – the user simply imports their NLU engine of choice and
requests for a translation. The output is shown below in Figure 8.2.

DECLARE Template: (ChainResponse Slack Gmail)

English meaning: Every time activity Slack happens, it must be directly followed by

activity Gmail (activity Gmail can also follow other activities).

Confidence: 0.9999997615814209

DECLARE Template: (ExistenceTwo Slack)

English meaning: Slack will happen at least twice.

Confidence: 1.0441302578101386e-07

DECLARE Template: (RespondedExistence Slack Gmail)

English meaning: If Slack happens at least once, then Gmail has to happen or happened before Slack.

Confidence: 6.342362723898987e-08

DECLARE Template: (Response Slack Gmail)

English meaning: Whenever activity Slack happens, activity Gmail has to happen

eventually afterward.

Confidence: 4.357292482382036e-08

DECLARE Template: (Existence Slack)

English meaning: Eventually, Slack will happen.

Confidence: 4.138687170751609e-09

Figure 8.2: Sample output (pretty print) of NL2LTL, illustrating candidate DECLARE templates suggested
by the package, using the Rasa NLU Engine, for the request: “Send me a Slack after receiving a Gmail”,
along with translations back to English to communicate to the user what the interpretations made by the
system mean (with associated confidence).

11NL2LTL is available online at https://github.com/ibm/nl2ltl.
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DECLARE Template: (ExistenceTwo Slack)

English meaning: Slack will happen at least twice.

LTLf translation: (eventually (and Slack (next (eventually Slack))))

PPLTL translation: (once (and Slack (before (once Slack))))

Confidence: 1.0441302578101386e-07

Figure 8.3: It is possible to translate between different formal representations based on how the output will be
consumed further downstream in an application. In this example, a DECLARE template has been translated
to its corresponding ltlf and ppltl formulas (recall that this conversion may not be easily available for all
formulas).

DECLARE Template: (RespondedExistence Slack Gmail)

English meaning: If Slack happens at least once, then Gmail has to happen or happened before Slack.

Confidence: 1.0

Figure 8.4: An illustration of swapping out the Rasa NLU engine with GPT-4 on the example from Figure 8.1
– note that the interfacing API is exactly the same. However, there will be some changes in behavior based
on the selection of components. For example, GPT-4 always commits to a single formula (compare this with
the output of Figure 8.2).

8.3.1 Sample Interactions

Figure 8.1 illustrates the basic NL2LTL API. The developer loads their desired engine of choice – in this

example, Rasa (Bocklisch et al., 2017) – and requests for a translation. The output (Figure 8.2) is a list of

possible translations, ranked by NL2LTL’s confidence in that translation. Each candidate translation has a

couple of interesting properties:

• Explanations: Each formula is translated back to English to illustrate how the formal representation

interprets it. Depending on the downstream application, the developer can use this to explain to the

end user to what extent the translation matches their original request.

• Alternative Representations: While this particular translation is to DECLARE templates, each

candidate can also be translated to other equivalent representations, such as ltlf and ppltl, as

shown in Figure 8.3.

Finally, note how the NLU engine can be swapped out to get translations from a different service.

Figure 8.4 illustrates this for the GPT-4 model from Open AI API (Brown et al., 2020; OpenAI, 2023).

Interestingly, different NLU engines demonstrate different behaviors – Rasa was found to be better at iden-

tifying the right formulas but grounding them to the correct parameters is much more robust in GPT-4. For

instance, the latter is much more proficient in picking among two candidate formulas F(a, b) and F(b, a) where

the desired ordering can be produced by just swapping keywords such as “before” to “after” in an utterance.

While details of the empirical differences between engines are outside the scope of this dissertation, we hope

to report on them in the future.
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LTLf PPLTL
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PLANNED

Structural Greedy Optimal +
PLANNED

Figure 8.5: Overview of the NL2LTL package illustrating extensible components: (i) declare templates to
translate to; (ii) NLU engines to use as translators; and (iii) Processors for conflicting and subsuming
translations for an optimal parse.

8.3.2 Architecture

As we previously discussed in Figure 8.1, the primary function of NL2LTL is a translation method. This is

assisted by three different components, shown in Figure 8.5.

Templates

Perhaps, the most important component of the package is the supported patterns, or “templates”, to be

identified. In this dissertation, we focused on DECLARE templates (van der Aalst et al., 2009) that are

particularly suited for business process management tasks. As we mentioned before, while this covers a wide

range of ltl formulas, a developer can also add their own templates specific to their application, such as

ones suited for robotics domains where ltl is often used as a means of instruction (Lignos et al., 2015; Kim

et al., 2017). Note that patterns available off-the-shelf already cover many common patterns (and can be

translated among different representations, as shown in Figure 8.3, and so the new patterns are only required

for very specific domain-dependent use cases.

NLU Engines

As demonstrated in Figures 8.2 and 8.4, NL2LTL can be configured with different NLU engines – while the

API remains exactly the same, the characteristics of the results may vary. At the moment, NL2LTL comes

with two engines pre-configured – one based on the intent-entity paradigm from Rasa (Bocklisch et al., 2017)

that is traditionally used for natural language understanding, while the other is a language model-based

extraction, tapping into the Open AI API (Brown et al., 2020). The configuration process for each engine

is different - for instance, the former requires a set of training examples for each pattern to be identified

(and an extra call to the corresponding training method in the API before it can be used, if not using the

prepackaged patterns and model in NL2LTL), while the latter requires a prompt containing the training data.
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As always, newer engines can be added by the user. We are currently experimenting with a Watson NLU12

addition as a third off-the-shelf option.

Filter Functions

Interestingly, the patterns to be identified are not independent: (i) two ltl formulas can conflict with each

other when both cannot be true at the same time, or (ii) one ltl formula can be subsumed by another when

the latter always implies the former. As an example, in Figure 8.2, the first formula implies the third, i.e. if

Gmail is to immediately follow Slack (required by ChainResponse), then Gmail following Slack at some point

(required by RespondedExistence) is redundant. While in the example in Figure 8.2, the choice for which

candidate to pick is pretty clear because of the markedly higher confidence, this need not always be the case.

To alleviate extra human effort in post-processing the set of translations, NL2LTL allows for a set of

“filter functions” that can impose a desired selection policy on the candidate set. For example, a greedy

policy might aggressively select detected patterns by decreasing the order of confidence while rejecting any

that conflicts or subsumes with the already selected set. There can also be structural considerations in a

filter – e.g., preferring binary formulas over unary ones, even if with lower confidence, if two parameters are

identified in the input. In general, finding the optimal filter is a hard problem, but the developer is again

allowed to use the NL2LTL API to implement any filter of choice.

8.4 Envisioned Product Impact: Workflow Construction via Au-

tomated Planning

We are currently working on an illustration of how the package can be adopted for use in real scenarios.

For this, we will build on a system demonstration at AAAI 2022 (Brachman et al., 2022) on a web service

composition task using natural language. The previous system was dependent on code that is specific to the

parser in order to look for specific patterns requested by the user – this means that there is a significant

developer overhead in investigating the particular parser used (in this case, parse trees from Abstract Syntax

Representations (Astudillo et al., 2020) of user utterances), writing code for it which is limited in scope

(limited by human effort), while eventually, that code is not reusable once the system upgrades to a different

parser.

By augmenting the processing pipeline with the NL2LTL package, we are able to remove all parser-specific

code and instead generate the required patterns with zero overhead. The patterns detected using the package,

12Watson Natural Language Understanding: https://www.ibm.com/cloud/watson-natural-language-understanding
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Figure 8.6: An application of NL2LTL to a real industrial application (Brachman et al., 2022).

parallel to the original processing pipeline, are eventually merged into one PDDL input to the automated

planner in the end, using the compilation which receives as input the PDDL specification generated by the

original pipeline along with the ltl patterns detected by the NL2LTL package and produces a compiled PDDL

for the planner where the ltl patterns are enforced as control rules. For the ltl to PDDL compilation, we

encourage the use of the one presented in this dissertation (cf. Chapters 5 and 6) but any existing approach

(Baier and McIlraith, 2006a; Torres and Baier, 2015; Camacho et al., 2017; Camacho and McIlraith, 2019) will

suffice. The modified processing pipeline is illustrated in Figure 8.6. We hope to report on the findings from

this integration, as well as empirical studies on the contrastive translation capabilities (c.f. Section 8.3.1) of

different NLU engines, in the near future.
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Chapter 9

Conclusions

This dissertation represents a humble endeavor to advance and expand the vast body of human scientific

knowledge that tries to formalize and integrate the art of human decision-making into artificial systems,

empowering them with deliberating capabilities and autonomy while, at the same time, balancing the risks

that come from wielding such power. As discussed in the introduction, one prominent approach to ensuring

the safety of autonomous systems is to incorporate human-guided specifications. To address this challenge,

formal languages and logics have been employed.

Within the specific scope of this dissertation, among the numerous applications of linear temporal logics

on finite traces in AI, we particularly focused on developing efficient techniques for automated planning for

goals expressed in pure-past linear temporal logics and on expanding the application of automated planning

to two business domains, namely business process management and business automation, which have a

significant impact on day-to-day lives of human beings.

9.1 Summary of Contributions

We have made a number of contributions to improve existing techniques in automated planning for tem-

porally extended goals expressed using linear temporal logics on finite traces and to expand the use of

automated planning in other closely related research fields, such as business process management. This

section summarizes the specific contributions made in each chapter of this dissertation.

Chapter 3: Pure-Past Linear Temporal Logics

We considered the pure-past versions of the finite trace logics ltlf and ldlf , namely ppltl and ppldl, as

first-class citizens of our research and described their main properties and characteristics. By exploiting a
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well-known foundational result on reverse languages from (Chandra et al., 1981), we provided an algorithm

to translate ppltl and ppldl formulas into their corresponding dfa that has an exponential improvement if

compared to the algorithm to translate ltlf and ldlf formulas into dfa. Then, we reviewed the relationship

between ppltl/ppldl and other formal languages, including fol, ref , and mso. These known results

allowed us to expand the research by establishing that ppltl and ppldl have the same expressive power

as ltlf and ldlf , respectively, but transforming a ppltl or ppldl formula into its equivalent ltlf or

ldlf formula and vice versa is computationally prohibitive (i.e., worst-case 3EXPTIME). Moving beyond

considering only theoretical results for ppltl and ppldl, we have demonstrated their utility in a range

of applications, providing translations in ppltl of PDDL3 modal operators and of DECLARE patterns.

Finally, we have discussed the impact of using pure-past temporal logics on well-known sequential decision-

making problems, such as planning and decision problems in nondeterministic and non-Markovian domains,

in comparison with ltlf and ldlf .

Chapter 4: Handling Pure-Past Linear Temporal Logic Formulas

This chapter established the theoretical mathematical foundations to efficiently handle and evaluate ppltl

formulas. The fixpoint characterization of temporal logic formulas on finite traces is used to characterize

the truth value of ppltl formulas. Based on this characterization, we made three essential observations: (i)

for evaluating a ppltl formula, only the truth values of its subformulas are required; (ii) a ppltl formula

can be put in a form that depends on the current propositional evaluation and the evaluation of a small

set of ppltl subformulas at the previous time; and (iii) the value of this small set of subformulas can be

recursively computed and stored as additional propositional variables in the domain of application. We

exploited these observations to develop a novel and effective evaluation technique, which we proved to be

correct. Additionally, we provided comprehensive examples to illustrate the effectiveness of the technique

and its relationship with automata. Finally, the novel evaluation technique facilitated the development of

more efficient algorithms, including those we examined in Chapters 5 and 6 for planning with temporally

extended goals.

Chapter 5: Classical Planning for Temporally Extended Goals in Pure-Past Linear Temporal

Logic

Chapter 5 explored the problem of classical planning for temporally extended goals expressed in pure-past

linear temporal logic. The results have shown that despite the expressiveness of ppltl being equivalent

to ltlf , deterministic planning for ppltl goals is computationally more efficient than for ltlf goals. By

exploiting the novel evaluation technique presented in Chapter 4, planning for ppltl goals can be trans-
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formed into classical planning with minimal overhead and without introducing spurious additional actions.

Furthermore, the effectiveness of the proposed approach was demonstrated through the implementation of

the open-source system Plan4Past, which was shown to outperform other existing compilations for ltlf goals

on a variety of benchmarks.

Chapter 6: FOND Planning for Temporally Extended Goals in Pure-Past Linear Temporal

Logic

This chapter investigated FOND planning for ppltl goals. In contrast to previous work, we propose a

direct technique for FOND planning for ppltl goals that is optimal in terms of computational complexity

and is also effective in practice. The technique involves a simple encoding of FOND planning for ppltl

goals into standard FOND planning for reachability goals, leveraging the observations made in Chapter 4.

The encoding introduces only a few fluents (at most linear in the ppltl goal), does not add any spurious

actions, and allows planners to explore the relevant part of the deterministic automaton for the goal formula

lazily during the planning search. We also provided an encoding variant that avoids introducing derived

predicates, which are not well supported by existing FOND planners. We proved the correctness of both

encodings and implemented them in the open-source system Plan4Past, which can be used with state-of-

the-art FOND planners. Experimental results demonstrated the effectiveness of our approach compared to

existing methods for handling ltlf temporally extended goals.

Chapter 7: Declarative Trace Alignment via Automated Planning

We delved into the challenge of declarative trace alignment, a problem that arises in business process man-

agement. In this context, the process model is defined by formal specifications expressed in either ltlf or

ldlf formulas. We began by outlining the problem and its significance in the field. To tackle this problem,

we then proposed a formally correct reduction to cost-optimal planning that allows us to use state-of-the-art

automated planners. From a practical perspective, we developed two PDDL encodings to solve the trace

alignment problem, each with various optimizations to enhance performance and scalability. Such encodings

have been implemented in a tool called TraceAligner, which currently stands as the top-performing solution

for declarative trace alignment. We concluded by providing an extensive empirical evaluation of TraceAligner

on a range of benchmarks. The results demonstrated that our approach outperforms existing ad-hoc solutions

in terms of performance and efficiency.
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Chapter 8: Natural Language to Flow Construction via Automated Planning

In this chapter, we presented a novel application that combines several themes addressed in this dissertation

and has practical industry relevance in the field of business automation. We proposed a new Python package,

called NL2LTL, that employs the latest advancements in natural language understanding (NLU) and large

language models (LLMs) to translate English inputs into ltl formulas. This interface provides an efficient

way to translate natural language inputs to formal languages that reasoning systems can consume. Thus,

end users can provide instructions in natural language without needing to understand the underlying formal

notation used by reasoning systems. We featured the package with support for a predefined set of ltl

patterns corresponding to popular DECLARE templates. These patterns can be easily customized to suit

the specific needs of business processes. We have open-sourced the package and made it freely available for

the AI community under the MIT license. Moreover, we provided an envisioned real product impact where

NL2LTL can be used in a business automation context. This integration would help organizations save time

and resources by reducing manual effort and errors that might occur due to misunderstandings.

9.2 Impact of Our Work

Recent publications have cited our works presented in this dissertation and built upon them in various ways.

This witnesses the relevance and potential impact of our work in the field and highlights the importance of

continuing research in this area.

By developing a novel approach capable of recognizing temporally extended goals in FOND planning

domain models, Fraga Pereira et al. (2021) leverage the compilation of FOND planning for ltlf/ppltl

goals into standard FOND planning for reachability goals presented in (De Giacomo and Fuggitti, 2021) to

solve the problem goal recognition. To our knowledge, this is the first attempt to address the recognition

of pure-past formulas. Along the same line of research, Aineto et al. (2021) tackled the Temporal Inference

Problem to reason about the past, present, or future state of some observed agent. While their approach is

restricted to a subset of ltlf formulas that is sufficiently expressive to reason about past, present, and future

in linear trajectories, our findings would allow a generalization of their technique when reasoning about past

observations.

From a theoretical standpoint, a clear formalization of the semantics of ppltl formulas and of the

algorithm translating ppltl formulas into corresponding dfas (cf. Chapter 3) have paved the way for

obtaining new theoretical results. De Giacomo et al. (2021a) use the semantics of ppltl to prove that

all possible safety conditions expressible in ltl, i.e., all first-order (logic) safety properties (Lichtenstein
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et al., 1985), can be specified using ltlf on prefixes. Next, on the one hand, Artale et al. (2022) use such

results to study and characterize the complexity of two novel safety fragments of ltl, namely LTL[X̃,G]

and G(pLTL), for which they show that the finite-trace semantics can significantly decrease the complexity

of both satisfiability and realizability. On the other hand, Cecconi et al. (2022) exploits our translation

algorithm for ppltl formulas to compute the dfa for formulas prescribing behavioral rules of processes.

Finally, our findings related to the clever handling and evaluation of pure-past linear temporal logics have

led to new ongoing research. For instance, De Giacomo and Favorito (2021) aim at exploring a bottom-up

transformation of ppltl/ppldl formulas into dfas, whereas Geatti et al. (2022) have lately been motivated

by our work on automated planning for ppltl goals to develop an effective technique to solve the problem

of reactive synthesis for DECLARE patterns via symbolic automata.

9.3 Future Work

Throughout the dissertation, we have already discussed potential directions for future research that relate

to each of the main contributions. However, in this section, we take a more comprehensive approach and

propose research directions that involve a wider perspective, potentially combining or extending multiple

aspects of the work presented in this dissertation.

Investigating on the Impact of Using PPLTL and PPLDL

In this dissertation, when studying automated planning for temporally extended goals, we focused on goals

expressed in ppltl only. However, in principle, the whole theoretical approach we presented here (cf.

Chapter 4) could be easily extended to goals expressed in ppldl, that we recall to be a strictly more

expressive variant of ppltl. Indeed, ppldl also has its own fixpoint characterization of temporal operators.

Consequently, the contributions of Chapters 5 and 6 could be naturally extended to goals expressed in ppldl.

On the other hand, given that our contributions rely on a clever study of the syntactic structure of temporal

formulas, it would be worth exploring if such studies might be advantageous to the following AI areas:

• Markov Decision Processes with non-Markovian rewards (Bacchus et al., 1996; Thiébaux et al., 2006;

Brafman et al., 2018)

• Reinforcement Learning where rewards are based on traces (De Giacomo et al., 2019; Camacho et al.,

2019b)

• Planning in non-Markovian domains (Brafman and De Giacomo, 2019a)

• Non-Markovian decision processes (Brafman and De Giacomo, 2019b)
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PDDL4.0, Heuristics and Planners

This dissertation shows that deterministic and nondeterministic planning for goals expressed using pure-

past linear temporal logics are much more well-behaved than goals expressed in ltlf/ldlf since they allow

for compilations that are optimal with respect to the computational complexity while having, at the same

time, a clear advantage in practice. Given the advantages of ppltl/ppldl, these formalisms may definitely

become promising candidates to be the mainstream languages to express temporal goals in planning. In this

respect, we firmly believe that, as already happened for ltlf , we could potentially introduce some of the

most common and interesting ppltl/ppldl patterns within PDDL, giving rise to a novel version, i.e., the

PDDL4.0.

Additionally, although our empirical results for planning with temporally extended goals are encourag-

ing, the current classical and FOND planning technologies are faced with the difficulty of finding effective

heuristics that are somewhat “aware” of temporal logics on finite traces and automata structures. The

lack of suitable heuristics for classical and FOND planning for temporally extended goals has been identi-

fied as one of the major challenges to improve the search. Therefore, we envision the development of such

ppltl/ppldl-aware heuristics that could dramatically improve the performance of planning, especially in

the FOND setting.

Finally, the combination of novel ppltl/ppldl-aware heuristics and algorithms able to reason about such

complex temporal specifications ultimately means designing and developing classical and FOND planners

that can natively support goals expressed in ppltl/ppldl.

Enhancing Declarative Trace Alignment

Future directions concerning the declarative trace alignment problem addressed in Chapter 7 might consider

a natural extension to the case of data-aware processes, i.e., where events are not just propositions but carry

a payload in the form of a record, or even a first-order interpretation. In this way, one could fully exploit the

potentialities of our approach. Although oriented more towards verification rather than alignment, a body

of work exists on this class of processes/systems, e.g., see (Calvanese et al., 2018), which could provide a

solid starting point to approach the problem.

A further extension could consider the time-metric dimension, where the process specification requires

events to occur within, before, after, etc., specific time instances. For instance, one might require that

whenever an event a occurs, it must not occur again before 3 time units, while event b must occur no

later than 6 time units. A theoretical approach has already been developed in (De Giacomo et al., 2021b).

However, such a solution has a non-elementary complexity that limits its practical applicability.
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Combining these two extensions is currently a major challenge for the BPM community (Montali et al.,

2013; Burattin et al., 2016; Maggi and Westergaard, 2014), that AI, and in particular planning, could provide

an essential contribution to address.

Alternative NLP Processing Pipeline

As previously mentioned in Chapter 8, by building upon a web service composition task demonstrated

at AAAI 2022 (Brachman et al., 2022), we are currently developing a practical application of the NL2LTL

package to demonstrate its usability in real-world scenarios. To this end, we envision an augmented processing

pipeline able to remove all parser-specific code and instead generate the required patterns with zero overhead.

Then, we could leverage the work of Chapters 5 and 6 to enforce detected patterns as control rules. We hope

to report on the findings from this integration, as well as empirical studies on the contrastive translation

capabilities (c.f. Section 8.3.1) of different NLU engines, in the near future.

Finally, in recent years, there has been a growing popularity in the use of temporal logics such as ltl

and ltlf , prompting researchers to investigate how humans can effectively comprehend instructions given in

these logics. For instance, Greenman et al. (2023) investigated this issue in depth with a two-year empirical

study. This line of research could inspire further analyses evaluating the effectiveness of the NL2LTL package

in comparison to human understanding, building on the insights from (Greenman et al., 2023).
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