
On the Semantics of Conditional Commitment

Shakil M. Khan and Yves Lespérance

Department of Computer Science and Engineering
York University, Toronto, ON, Canada M3J 1P3

{skhan, lesperan}@cs.yorku.ca

Abstract. In this paper, we identify some problems with current for-
malizations of conditional commitments, i.e. commitments to achieve a
goal if some condition becomes true. We present a solution to these prob-
lems. We also formalize two types of communicative actions that can be
used by an agent to request another agent to achieve a goal or perform
an action provided that some condition becomes true. Our account is
set within ECASL [7], a framework for modeling communicating agents
based on the situation calculus.

1 Introduction

In recent years, the importance of agent communication in multiagent systems
has been widely recognized. As a result, many researchers have developed com-
municative multiagent frameworks [3, 5, 6, 14, 17, 22, 23] and attempted to
formalize various types of communicative actions in these frameworks. One im-
portant concept in these is the notion of conditional commitment. A conditional
commitment is a commitment to achieve some goal if some condition becomes
true (e.g. a commitment to ship some goods when payment of an agreed to
amount arrives). Conditional requests are requests that seek to have the ad-
dressee acquire a conditional commitment. Any multiagent framework that deals
with negotiation and cooperation ought to handle conditional commitments. Un-
fortunately, most definitions found in the literature ([5, 26, 22, 1], for example)
are inadequate: they either define conditional commitments as disjunctive goals,
which makes the agents under-committed to the conditional goal, or define them
as conjunctive goals, which renders the agent over-committed.

We will go over some examples to point out the problems associated with the
disjunctive and the conjunctive accounts of conditional commitment. In these,
we use the following modal operators: 3φ, i.e. φ eventually holds, Happens(α),
i.e. the action α is performed next, φ Until ψ, i.e. eventually ψ becomes true,
and as long as ψ is false, φ holds, and Before(ψ, φ), i.e. φ becomes true before ψ
does. The formal semantics of these operators are given in Section 2.

In the disjunctive account, a conditional commitment to achieve some goal
provided that some condition holds is modeled as a commitment to achieve the
goal if the condition holds, i.e. as a simple material implication. For example,
consider an online marketplace domain. Suppose that there are two agents, a
seller agent slr, and a buyer agent byr. If we use a disjunctive account, slr’s

conditional commitment to ship some goods to byr on the condition that byr
pays can be modeled as follows:

CondIntdis(slr,GetPaid,Happens(shipGoods(slr, byr)))
.
=

Int(slr,¬3GetPaid ∨

[¬GetPaid Until (GetPaid ∧ Happens(shipGoods(slr, byr)))])

This says that slr’s conditional commitment to ship the goods when byr pays
amounts to slr having the intention that byr eventually pays and after that she
ships the goods, if byr eventually pays (as mentioned above, we assume that the
Until construct above implies that 3GetPaid and 3Happens(shipGoods(slr,-
byr))). One problem with this account of conditional intention is that there is a
counter-intuitive way to satisfy a conditional intention, namely, the agent may
commit to the triggering condition remaining false and deliberately perform some
action that makes it remain false. Thus, in the example, to satisfy her conditional
intention, slr may intentionally perform some action to stop byr from paying
her, such as blocking debits from byr. In other words, there is nothing in this
formalization of conditional intention that stops slr from intending not to get
paid and not to send the goods. However, this is counter-intuitive and a model
of conditional commitment should not support this. Thus, with the disjunctive
account of conditional commitment, the agent seems under-committed to the
goal. Some examples in the literature that formalize conditional commitments
as disjunctive goals include [22] and [1].

In the conjunctive account, a conditional commitment to achieve a goal pro-
vided that a condition holds is modeled as a temporally ordered conjunctive
commitment to the triggering condition and the conditional goal, where the
triggering condition is achieved first. Although this model may seem appropri-
ate in many cases, it often leads to problems. For example, suppose that slr
has the conditional commitment to ship a replacement unit provided that byr
reports and returns a defective good. If we use a conjunctive account, this can
be modeled as follows:

CondIntcon(slr,DefGoodRet,Happens(shipRepl(slr, byr)))
.
=

Int(slr,Before(Happens(shipRepl(slr, byr)), DefGoodRet)

∧ 3Happens(shipRepl(slr, byr))).

This says that slr’s conditional commitment to ship a replacement unit pro-
vided that byr returns a defective good can be modeled as slr’s intention that
eventually byr returns a defective good, and slr ships the replacement unit after
that. Note that, according to this definition, since slr has the intention that the
defective product is returned before she ships the replacement unit, and that she
eventually ships the replacement units, it follows that slr has the intention that
byr eventually returns a product, i.e. Int(slr,3DefGoodRet). So slr may delib-
erately perform some action, such as shipping a defective good in the first place,
to achieve this intention. Thus, the conjunctive account of conditional commit-
ment results in over-committed agents. Both [5] and [26] formalize conditional
commitments as conjunctive goals.

In this paper, we propose a solution to these problems (the under/over-
commitment problems, henceforth). Our solution involves using an additional
constraint with the disjunctive account to eliminate the under-commitment prob-
lem. We use the Extended Cognitive Agent Specification Language (ECASL) [7]
as our base formal framework for this. Our account is formulated for inter-
nal/mental states semantics for communication acts. Nevertheless, similar issues
arise for public/social-commitment semantics (as discussed in Section 5). In what
follows, we will use the terms ‘intention’ and ‘commitment’ interchangeably. We
also discuss some simple properties of conditional commitment, and formalize
two communicative action types that can be used by an agent to request another
agent to achieve a goal, or perform an action, provided that some condition holds.

The paper is organized as follows: in the next section, we outline the ECASL
framework. In Section 3, we present our model of conditional commitment and
discuss some of its properties. In Section 4, we present some communicative acts
that allow agents to make requests that result in conditional commitments. In
Section 5, we compare our approach to previous work on conditional commit-
ments. Finally in Section 6, we summarize our results and discuss possible future
work.

2 ECASL

The Extended Cognitive Agent Specification Language (ECASL) [7], an exten-
sion of CASL [20, 21], is a framework for specifying and verifying complex com-
municating multiagent systems that incorporates a formal model of means-ends
reasoning. In this section, we outline the part of ECASL that is needed for our
formalization of conditional commitment.

In ECASL, agents are viewed as entities with mental states, i.e., knowledge
and goals, and the specifier can define the behavior of the agents in terms of
these mental states. ECASL combines a declarative action theory defined in
the situation calculus with a rich programming/process language, ConGolog [4].
Domain dynamics and agents’ mental states are specified declaratively in the
theory, while the agents’ behavior is specified procedurally in ConGolog.

In ECASL, a dynamic domain is represented using an action theory [16]
formulated in the situation calculus [11], a (mostly) first order language for
representing dynamically changing worlds in which all changes are the result of
named actions. ECASL uses a theoryD that includes the following set of axioms:

– action precondition axioms, one per action,
– successor state axioms (SSA), one per fluent, that encode both effect and

frame axioms and specify exactly when the fluent changes [15],
– initial state axioms describing what is true initially including the mental

states of the agents,
– axioms identifying the agent of each action,
– unique name axioms for actions, and
– domain-independent foundational axioms describing the structure of situa-

tions [9].

Within ECASL, the behavior of agents is specified using the notation of the
logic programming language ConGolog [4], the concurrent version of Golog [10].
A typical ConGolog program is composed of a sequence of procedure declara-
tions, followed by a complex action. Complex actions can be composed using
constructs that include primitive actions (a), waiting for a condition (φ?), se-
quence (δ1; δ2), nondeterministic branch (δ1 | δ2), nondeterministic choice of
arguments (πx.δ), conditional branching (If φ Then δ1 Else δ2 EndIf), while
loop (While φ Do σ EndWhile), and procedure call (β(−→p)). Intuitively, πx.δ
nondeterministically picks a binding for the variable x and performs the pro-
gram δ for this binding of x. ConGolog also supports nondeterministic iteration,
concurrent execution with and without priorities, and interrupts. To deal with
multiagent processes, primitive actions in ECASL take the agent of the action
as argument.

The semantics of the ConGolog process description language is defined in
terms of transitions, in the style of structural operational semantics [13]. Two
special predicates Final and Trans are introduced, and are characterized by
defining axioms for each of the above constructs, where Final(δ, s) means that
program δ may legally terminate in situation s, and where Trans(δ, s, δ′, s′)
means that program δ in situation s may legally execute one step, ending in
situation s′ with program δ′ remaining.1 The overall semantics of a program is
specified by the Do relation:

Do(δ, s, s′)
.
= ∃δ′ · (Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)).

Do(δ, s, s′) holds if and only if s′ can be reached by performing a sequence of
transitions starting with program δ in s, and the remaining program δ′ may
legally terminate in s′. Here, Trans∗ is the reflexive transitive closure of the
transition relation Trans.

ECASL incorporates a branching time temporal logic, where each situation
has a linear past and a branching future. In this framework, one can write both
state formulas and path formulas. A state formula φ(s) takes a single situation
as argument and is evaluated with respect to that situation. On the other hand,
a path formula ψ(s1, s2) takes two situations as arguments and is evaluated with
respect to the interval (finite path) [s1, s2]. We often use φ (and ψ) to denote a
formula whose fluents may contain a placeholder constant now (now and then,
resp.) that stands for the situation in which φ (ψ, resp.) must hold. φ(s) (and
ψ(s1, s2)) is the formula that results from replacing now with s (now and then
with s1 and s2, resp.). Where the intended meaning is clear, we sometimes
suppress the placeholder(s).

ECASL allows the specifier to model agents in terms of their mental states
by including operators to specify agents’ information (i.e., their knowledge),
and motivation (i.e., their goals or intentions). We usually use state formulas
within the scope of knowledge, and path formulas within the scope of intentions.

1 Since we have predicates that take programs as arguments, we need to encode pro-
grams and formulae as first-order terms as in [4]. For notational simplicity, we sup-
press this encoding and use formulae and programs as terms directly.

Following [12, 18], ECASL models knowledge using a possible worlds account
adapted to the situation calculus. K(agt, s′, s) is used to denote that in situation
s, agt thinks that she could be in situation s′. s′ is called a K-alternative situation
for agt in s. Using K, the knowledge or belief of an agent, Know(agt, φ, s), is
defined as ∀s′(K(agt, s′, s) ⊃ φ(s′)), i.e. agt knows φ in s if φ holds in all of
agt’s K-accessible situations in s. In ECASL, K is constrained to be reflexive,
transitive, and Euclidean in the initial situation to capture the fact that agents’
knowledge is true, and that agents have positive and negative introspection.
As shown in [18], these constraints then continue to hold after any sequence of
actions since they are preserved by the successor state axiom for K.

ECASL supports knowledge expansion as a result of sensing actions [18]
and some informing communicative actions. Here, we restrict our discussion to
knowledge expansion as a result of inform actions. The preconditions of inform
are as follows:

Poss(inform(inf, agt, φ), s) ≡ Know(inf, φ, s)

∧ ¬Know(inf,Know(agt, φ, now), s).

In other words, the agent inf can inform agt that φ, iff inf knows that φ currently
holds, and does not believe that agt currently knows that φ. The successor state
axiom (SSA) for K is defined as follows:

K(agt, s∗, do(a, s)) ≡ ∃s′. [K(agt, s′, s) ∧ s∗ = do(a, s′) ∧ Poss(a, s′) ∧

∀inf, φ. (a = inform(inf, agt, φ) ⊃ φ(s′))].

This says that after an action happens, every agent learns that it was possible
and has happened. Moreover, if the action involves someone informing agt that
φ holds, then agt knows this afterwards. Note that this axiom only handles
knowledge expansion, not revision.

ECASL also incorporates goal expansion and a limited form of goal con-
traction. Goals or intentions are modeled using an accessibility relation W over
possible situations. The W -accessible situations for an agent are the ones where
she thinks that all her goals are satisfied. W -accessible situations may include
situations that the agent thinks are impossible, unlike Cohen and Levesque’s [2]
G-accessible worlds. But intentions are defined in terms of the more primitive
W and K relations so that the intention accessible situations are W -accessible
situations that are also compatible with what the agent knows, in the sense that
there is a K-accessible situation in their history. This guarantees that agents’
intentions are realistic, that is, agents can only intend things that they believe
are possible. Thus we have:

Int(agt, ψ, s)
.
= ∀s′, s∗. [W (agt, s∗, s) ∧K(agt, s′, s) ∧ s′ ≤ s∗] ⊃ ψ(s′, s∗).

This means that the intentions of an agent in s are those formulas that are true
for all intervals between situations s′ and s∗ where the situations s∗ are W -
accessible from s and have a K-accessible situation s′ in their history. Intentions
are future oriented, and any goal formula will be evaluated with respect to a

finite path defined by a pair of situations, a current situation now and an ending
situation then. This formalization of goals can deal with both achievement goals
and maintenance goals. An achievement goal φ is said to be eventually satisfied
if φ holds in some situation between now and then, i.e., if 3(φ, now, then),
which is defined as ∃s′. (now ≤ s′ ≤ then ∧ φ(s′)).2 In [19], Shapiro showed
how positive and negative introspection of intentions can be modeled by placing
some constraints on K and W . To make sure that agents’ wishes and intentions
are consistent, W is also constrained to be serial.

ECASL provides an intention transfer communication action, request, which
is defined in terms of inform. This is similar to Herzig and Longin’s account [6],
where a request is defined as informing about one’s intentions, and the requested
goals are adopted via cooperation principles. The request action can be used by
an agent to request another agent to achieve some state of affairs. Formally, we
have:

request(req, agt, φ)
.
= inform(req, agt, Int(req, φ, now)).

The SSA for W which handles intention change in ECASL, has the same struc-
ture as a SSA for a domain dependent fluent. In the following, W+(agt, a, s∗, s)
(W−(agt, a, s∗, s), respectively) denotes the conditions under which s∗ is added
to (dropped from, respectively) W as a result of the action a:

W (agt, s∗, do(a, s)) ≡W+(agt, a, s∗, s) ∨ (W (agt, s∗, s) ∧ ¬W−(agt, a, s∗, s)).

An agent’s intentions are expanded when it is requested something by another
agent. After the request(req,agt,ψ) action, agt adopts the goal that ψ, unless she
has a conflicting goal or is not willing to serve req for ψ. Therefore, this action
should cause agt to drop any paths in W where ψ does not hold. This is handled
in W−:

W−(agt, a, s∗, s)
.
= [∃req, ψ. a = request(req, agt, ψ)

∧ Serves(agt, req, ψ, s) ∧ ¬Int(agt,¬ψ, s)

∧ ∃s′. K(agt, s′, s) ∧ s′ ≤ s∗ ∧ ¬ψ(do(a, s′), s∗)].

A limited form of intention contraction is also handled in ECASL. Agents
intentions are contracted as a result of a cancelRequest action. ECASL also in-
corporates a formal model of means-ends reasoning and commitment to rational
plans to achieve intentions. See [7] for details.

Table 1 shows some abbreviations that will be used throughout the paper.

2 We sometimes use 3 with a path formula ψ argument, in which case, we mean that
ψ holds over some interval [s, then] that starts at some situation s between now and
then; see Table 1 for the formal definition.

Table 1. Some Definitions of Temporal Operators

1. 3(ψ, now, then)
.
= ∃s′. now ≤ s′ ≤ then ∧ ψ(s′, then),

2. 2(ψ, now, then)
.
= ¬3(¬ψ, now, then),

3. [φ Until ψ](now, then)
.
= ∃s′. now ≤ s′ ≤ then ∧ ψ(s′, then)
∧ ∀s′′. now ≤ s′′ < s′ ⊃ φ(s′′),

4. Before(ψ, φ, now, then)
.
= ∃s′. now ≤ s′ ≤ then ∧ ψ(s′, then) ⊃

∃s′′. now ≤ s′′ < s′ ∧ φ(s′′),
5. E3(φ, now)

.
= ∃s. now ≤ s ∧ φ(s),

6. A2(φ, now)
.
= ¬E3(¬φ, now),

7. Happens(a, now, then)
.
= do(a, now) ≤ then,

8. Happens
C

(δ, now, then)
.
= ∃s′. s′ ≤ then ∧Do(δ, s′, then).

3 Conditional Commitments

Having presented our framework, we now return to our discussion about condi-
tional commitments. Informally, an agent agt has a conditional commitment or
intention that ψ on the condition that φ if agt intends to achieve ψ as soon as
the condition φ holds. In our specification, we assume that φ is an achievement
goal, whereas ψ can be any kind of goal (achievement, maintenance, etc.). In
other words, the trigger condition φ of a conditional intention is a state formula
that takes a single situation now as argument, unlike the goal formula ψ, which
is a path formula and takes two situations now and then as arguments.3 If one
wishes to use an achievement goal φ′ for ψ, one can use 3(φ′, now, then). For
simplicity, we also assume that the trigger condition φ is a one-time goal, i.e.
once φ becomes true, it remains true forever.

So we now propose a formalization of conditional intentions that avoids the
under/over-commitment problem:

CondInt(agt, φ, ψ, s)
.
=

Int(agt,DisjGoal(φ, ψ, now, then)

∧NoUnderComm(agt, φ, now, then), s),

DisjGoal(φ, ψ, now, then)
.
=

[¬φ Until (φ ∧ ψ)](now, then) ∨ ¬3(φ, now, then),

NoUnderComm(agt, φ, now, then)
.
=

2([Int(agt,2(¬φ, now, then), now) ⊃

Know(agt,A2(¬φ, now), now)], now, then).

That is, agt conditionally intends that ψ provided that φ, iff agt intends that
the following conditions hold:

3 We could also handle trigger conditions that are not achievement goals. However, in
these cases, since the trigger condition holds over a time interval, it is not always
clear when exactly the triggering of the commitment to the conditional goal should
occur. To avoid these complications, we stick to state formulas as triggers.

1. either (a) φ eventually holds, and ψ holds immediately from the time φ

comes to hold, or (b) φ never holds, and
2. if in any situation agt intends that φ never comes to hold, she must also

know in that situation that it can never become true.

Intuitively, this says that one way to fulfill an agent’s conditional intention
is to (1a) satisfy ψ after φ comes to hold, and a second way is that (1b) φ
never comes to hold in the future. This part of our account is as in the dis-
junctive approach. However, we add to this that (2) the agent does not in-
tend that φ never comes to hold unless she knows that it can never hold.
Thus we require that if at some situation, agt intends that φ never comes
true, it must be the case that she knows in that situation that φ can never
become true, and she only intends this because it has become inevitable. So
the additional constraint that NoUnderComm(agt, φ, now, then) ensures that
agt will not do anything intentionally to make the triggering condition φ re-
main false. One might be tempted to define NoUnderComm(agt, φ, now, then)
as 2(¬Int(agt,2(¬φ, now, then), now), now, then), i.e. agt never intends that φ
never holds. However, since some event may make φ impossible to achieve, there
is a possibility that agt may come to intend that φ always be false, if this be-
comes inevitable. The only case in which agt intends that φ always be false is
when she knows that it can never become true.

Consider once again our online marketplace example given in Section 1
for the disjunctive account. Using this definition of conditional commitment,
a seller slr’s intention to send the goods when a buyer byr pays, CondInt(slr,-
GetPaid(byr, slr),Happens(shipGoods(slr, byr), now, then), s) can be formalized
as follows:

Int(slr,DisjGoal(GetPaid(byr, slr),

Happens(shipGoods(slr, byr), now, then), now, then)

∧NoUnderComm(slr,GetPaid(byr, slr), now, then), s).

slr’s intention can be further expanded to:

Int(slr, [GetPaidAndThenSendGoods(byr, slr, now, then)

∨ ¬3(GetPaid(byr, slr), now, then)] ∧

[2((Int(slr,2¬GetPaid(byr, slr), now) ⊃

Know(slr,A2(¬GetPaid(byr, slr), now), now)), now, then)], s),

where,

GetPaidAndThenSendGoods(byr, slr, now, then)
.
=

[¬GetPaid(byr, slr) Until

(GetPaid(byr, slr) ∧ Happens(shipGoods(slr, byr), now, then))](now, then).

From this, we can see that there are only two ways by which slr can satisfy this
conditional intention: either at some future or current situation byr pays slr and

then slr sends the goods to byr, or, byr never pays slr, and as long as slr does
not know that byr will never pay her, she does not intend not to get paid. Since
slr cannot intend not to get paid, she cannot deliberately perform anything (for
example block the payment from byr) to make the triggering condition remain
false. If at a later situation, slr learns that it has become impossible for byr to
ever pay her, slr will inevitably intend that byr never pays her, but otherwise she
cannot acquire this intention. Thus, our formalization of conditional commitment
does not suffer from the under-commitment problem.

Moreover, since we use the disjunctive approach, our account does not suffer
from the over-commitment problem associated with the conjunctive approach.
Consider the second example given in Section 1, where slr has the intention to
ship a replacement unit when byr returns a defective good. Using our definition,
this can be expanded to slr’s intention that either byr never returns a defec-
tive product, or byr returns a defective product and slr ships the replacement
unit after that. Thus slr is not over-committed and will not perform something
deliberately so that byr returns a product. The additional constraint that slr
never intends that byr never return a product unless she knows that byr will
never return a product does not seem to lead to any over-commitment. Thus
our formalization of conditional intention is also free from the over-commitment
problem.

Note that, our account allows the agent who has a conditional intention to
intend not to know whether the condition holds. We could easily strengthen the
definition to rule this out, but it is not clear that this is always appropriate.

Next, we show a simple property of conditional intention. Assume that the
domain theoryD (as discussed in Section 2) includes our definition of conditional
commitment given above. Then we have the following theorem that says that if
an agent agt conditionally intends that ψ provided that φ in situation s, and if
she knows that φ holds in s, then agt intends that ψ in s.

Theorem 1.

D |= CondInt(agt, φ, ψ, s) ∧ Know(agt, φ, s) ⊃ Int(agt, ψ, s).

So when the agent knows that the condition has become true, a conditional
intention reduces to an ordinary intention.

It would be interesting to prove additional results about conditional inten-
tions, for instance, that a conditional intention persists as long as its condition
is known to remain false and not known to have become impossible. We leave
this for future work.

4 Conditional Requests

We now discuss two communicative acts, requestWhen and reqActWhen, that can
be used by an agent to request someone to achieve ψ or to execute a program
δ respectively, on the condition that φ becomes true. Recall that, in ECASL
the SSA for W determines whether an agent adopts a goal when requested; the

requested goal is adopted by the requestee via cooperation principles encoded in
the SSA for W . Thus, we model requests as informing about intentions, rather
than as primitives. In the following, we use CondIntCont(agt, φ, ψ) as an ab-
breviation for the content of a conditional intention DisjGoal(φ, ψ, now, then)∧
NoUnderComm(agt, φ, now, then). Now, one simple way to model a requester
req’s request to requestee agt to achieve ψ on the condition that φ is as follows:

requestWhensim(req, agt, φ, ψ)
.
=

request(req, agt, CondIntCont(req, φ, ψ)).

This says that, req’s conditional request to agt to achieve ψ provided that φ
amounts to req’s request to agt to fulfill the content CondIntCont(req, φ, ψ) of
her own conditional intention. Using the definition of request, this conditional
request amounts to req informing agt that she currently intends to achieve ψ
provided that φ. However, note that the content CondIntCont(req, φ, ψ) of this
conditional intention includes mental attitudes that refer to req, rather than
agt. Since the SSA for W does not automatically replace the agent parame-
ters of mental state operators used in a goal formula, if we model conditional
request as above, given appropriate conditions (i.e., when agt agrees to serve
req on CondIntCont(req, φ, ψ) and does not currently have the intention that
¬CondIntCont(req, φ, ψ)), agt will adopt the intention that CondIntCont(req,-
φ, ψ), but not that CondIntCont(agt, φ, ψ). Thus she will not have the condi-
tional intention to achieve ψ provided that φ after the conditional request is
performed, and this simple definition is not quite correct.

For example, suppose that the manager agent mgr wants to conditionally
request the seller slr in situation s to ship the goods when the buyer byr pays
her. So mgr can do this by performing the following action in s:

requestWhensim(mgr, slr,GetPaid(byr, slr),

Happens(shipGoods(slr, byr), now, then)),

which can be expanded to:

request(mgr, slr, CondIntCont(mgr,GetPaid(byr, slr),

Happens(shipGoods(slr, byr), now, then))).

After the request is performed, if slr agrees to servemgr on CondIntCont(mgr,-
GetPaid(byr, slr),Happens(shipGoods(slr, byr), now, then)), and does not in-
tend that ¬CondIntCont(mgr,GetPaid(byr, slr),Happens(shipGoods(slr, byr),-
now, then)), the SSA for W will ensure that:

Int(slr, CondIntCont(mgr,GetPaid(byr, slr),

Happens(shipGoods(slr, byr), now, then)), sr),

which can be expanded to:

Int(slr,DisjGoal(GetPaid(byr, slr),

Happens(shipGoods(slr, byr), now, then), now, then)

∧NoUnderComm(mgr,GetPaid(byr, slr), now, then), sr),

where sr is the situation that results from performing the requestWhen ac-
tion in s. Now, using the definition of conditional intention, we can see that
in sr, slr does not have the conditional intention of sending the goods pro-
vided that byr pays her. The problem is with the mental state operators in the
NoUnderComm(mgr, . . .) part of slr’s intention: they say that mgr will not
intend that the payment not occur unless she knows it can never occur. What
we need is for this constraint to hold for slr.

To deal with this problem, we propose the following model of conditional
requests:

requestWhen(req, agt, φ, ψ)
.
=

request(req, agt, CondIntCont(agt, φ, ψ)).

This says that req’s request to agt to conditionally achieve ψ provided that φ
amounts to req’s request to agt to fulfill the content of agt’s conditional intention
to achieve ψ provided that φ, i.e., CondIntCont(agt, φ, ψ). Using the definition
of request, this can be further expanded to:

requestWhen(req, agt, φ, ψ)
.
=

inform(req, agt, Int(req, CondIntCont(agt, φ, ψ), now)).

That is, req can request agt to achieve ψ on the condition that φ by informing agt
that she intends that CondIntCont(agt, φ, ψ). Note that, the agent parameter
of CondIntCont(agt, φ, ψ) is now the requestee agt, rather than the requester
req. This guarantees that given that agt serves req and does not has the opposite
intention, she will conditionally intend to achieve ψ provided that φ after req
conditionally requests her this. Thus this formalization of conditional request
does not suffer from the above mentioned problem.

We also define a special type of conditional request, namely, the request to
perform an action when some condition holds:

reqActWhen(req, agt, φ, δ)
.
=

requestWhen(req, agt, φ,HappensC(δ, now, then)).

This states that req’s conditional request to agt to execute the program δ pro-
vided that φ amounts to req’s conditional request to agt to execute δ starting
in the situation where φ holds.

Now consider what happens when mgr conditionally requests slr to ship the
goods when byr pays her, that is, when mgr performs the reqActWhen(mgr, slr,
GetPaid(byr, slr), shipGoods(slr, byr)) action. Given that slr agrees to serve
mgr and does not have the opposite intention, the SSA for W will make slr
adopt the following intention:

Int(slr, CondIntCont(slr,GetPaid(byr, slr),

HappenC(sendGoods(slr, byr), when, then)),

and thus, by the definition of conditional intention, she will conditionally intend
to send the goods when byr pays her. Thus, our formalization of conditional

requests allows the proper transfer of conditional intention from the requester
to the requestee.

We next present a theorem that shows how agents’ intentions are affected
by the requestWhen action. Assume that the domain theory D includes our
definition of these new communicative actions. We can show that:

Theorem2.

D |= [¬Int(agt,¬CondIntCont(agt, φ, ψ), s)

∧ Serves(agt, req, CondIntCont(agt, φ, ψ), s)

∧ Poss(requestWhen(req, agt, φ, ψ), s)] ⊃

CondInt(agt, φ, ψ, do(requestWhen(req, agt, φ, ψ), s)).

This says that if in some situation s, an agent agt does not intend not to fulfill
the content of her conditional intention to achieve ψ provided that φ, and if she
serves another agent req on the content of this conditional commitment in s,
then she will have the conditional intention to achieve ψ given that φ after req
conditionally request her this in s, provided that the request is possible in s.

It would be useful to extend our framework with a communication act that
allows a conditional commitment created as a result of a requestWhen to be
cancelled. We believe that the existing ECASL cancelRequest action can be used
to define such a conditional commitment cancelling act. We leave this for future
work.

5 Related Work

The under-commitment problem that we pointed out in Section 1 is related to
another problem involving intentions discussed by Cohen and Levesque [2]. In
that paper, they consider a robot who drops the intention of bringing a bottle
of beer by breaking the last available bottle and thus making the intention
impossible to achieve. Their solution was twofold: (1) they formalize intentions
as persistent goals and (2) they assume that existing intentions act as a screen
of admissibility over new intentions. In their framework, an agent’s intentions
persist until she knows that they have been achieved, or knows that it has become
impossible to achieve them. Since the robot intends to bring a bottle of beer,
she will not drop this goal until she achieves it or gets to know that it has
become impossible to achieve. However, the robot can break the last available
bottle to make her goal unachievable. But since an agent’s current intentions
provide a screen of admissibility for adopting new intentions, she cannot have
these two conflicting intentions at the same time. Thus since she intends to bring
a bottle, she cannot adopt the intention to break the only available bottle. Note
that while this problem has similarities with the one addressed here, it does not
involve conditional intentions.

In the literature, there has been some work on conditional intention. How-
ever, as mentioned earlier, all of the proposed treatments that we are aware

of seem to suffer from the under- or over-commitment problems. Although it
does not explictly address conditional intentions, the FIPA agent communica-
tion language specification [5] defines a type of communication act that leads
to conditional intentions. In that framework, an agent can conditionally request
another agent to execute an action when some condition holds. This is modeled
as follows: req’s conditional request to agt to perform act when φ holds amounts
to req informing agt that she has the intention that agt execute act and that φ
be true just before that. Note that req’s intention amounts to the conjunction
that φ be true at some point and agt executes act right after that. Thus, this
treatment of conditional intention can be viewed as a conjunctive account where
the intention is to first achieve the triggering condition φ, and then to achieve the
conditional goal. As discussed in Section 1, this leads to the over-commitment
problem.

Yolum and Singh [26] present a different model of conditional commitment
that relies on a social obligation-based semantics rather than a traditional one
based on mental states. Their main concern was the study of communication
protocols that accommodate exceptions and take advantage of opportunities.
They model interaction protocols using commitment machines that supply a
content to protocol states and actions in terms of the social commitments of the
participating agents. In their formal semantics, which is only briefly described,
they adopt a branching time temporal model. The semantics for commitments
involves a modal accessibility relation for commitments C that relates a state
of the protocol (i.e. a time-point) s, a debtor agent x, and a creditor agent y
to a set of paths P . Intuitively, x is responsible to y for satisfying φ in state s
iff φ holds at time-point s along all paths p that are C-accessible from (x, y, s).
To model conditional commitment, they introduce a strict implication operator
(denoted by ;) that requires the consequent to hold when the antecedent holds.
The strict implication is false when the antecedent is false. Their semantics says
that φ ; φ′ holds in a state s iff φ holds in s and for all s′ that satisfy φ, every
s′′ that is similar to s′ (i.e. s ≈ s′) also satisfies φ′. What they mean by the
similarity relation ≈ is not explained. Thus for them, a conditional commitment
C(x, y, φ ; φ′) holds in state s iff on all C-accessible paths p, φ holds at s,
and whenever some s′ satisfies φ, every s′′ that is similar to s′ satisfies φ′. Since
they model conditional commitments using the ; operator, which behaves like
a conjunction with some additional constraints, it appears that their formaliza-
tion suffers from the over-commitment problem. It is also not clear how their
formalization ensures that the goal is achieved after the condition along the
paths.

Both [1] and [22] model conditional commitment as a disjunctive goal. In
their social commitment and argument network based framework, Bentahar et
al. [1] define conditional commitments as a simple implication. Their semantics
of conditional commitment goes as follows: M, s |= CondIntBen(agt1, agt2, φ, ψ)
iff M, s |= EF+φ ⇒ M, s |= ABC(agt1, agt2, ψ), where s,E,F+, and ABC de-
notes a timepoint, there exists a path, sometime in the future, and absolute
commitment, respectively. This says that agt1 is committed to agt2 to achieve

ψ on the condition that φ means that agt1 is unconditionally committed to agt2
to achieve ψ if φ holds at some timepoint over some path in the future. Be-
sides suffering from the under-commitment problem associated with disjunctive
accounts, this seems to require commitment to the goal too early, before the
condition becomes true.

In [22], Shapiro et al. describe a framework for specifying communicative
multiagent systems using ConGolog [4] within the situation calculus, an early
version of CASL. Since they were lacking a goal-revision mechanism at that
point, they introduced a type of conditional request, the requestUnless action,
in an attempt to avoid the need for goal-revision. requestUnless(req, agt, φ, ψ)
means that req is requesting agt to adopt the goal that ψ unless φ is obtained.
The execution of requestUnless(req, agt, φ, ψ) makes agt adopt the goal that
φ∨ψ. This amounts to modeling conditional intentions as disjunctive goals, and
hence the account suffers from the under-commitment problem.

6 Conclusion

In this paper, we identified some problems with many existing formalizations of
conditional commitments. These seem to either have the agents over-committed,
intending to achieve the condition under which the goal would have to be
achieved, or under-committed, possibly intending that this condition remain
false forever. We could not find any problem-free account in the literature. We
presented a definition of conditional intentions that does not suffer from these
problems. We then formalized two types of communicative actions that allow
agents to make requests that lead to conditional commitments. We also proved
some properties of conditional commitments and conditional requests. Finally,
we discussed previous work on conditional commitments.

The theory presented here is a part of our ongoing research on the seman-
tics of speech acts and agent communication in the situation calculus. In [8], we
present an extended version of this work where we model some simple commu-
nication protocols that deal with conditional requests. Much work remains. In
the future, we would like to prove other properties of conditional commitments,
for example, about the persistence and revision of such commitments. We also
plan to formalize complex interaction protocols, such as the Contract Net pro-
tocol [25] and the Net Bill protocol [24], using our formalization of conditional
intention.

Acknowledgements

We thank Hector Levesque and the reviewers for useful comments on this work.

References

1. Bentahar, J., Moulin, B., Meyer, J.-J. Ch., Chaib-draa, B.: A Logical Model of
Commitment and Argument Network for Agent Communication. In: Proceedings of

the Third International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS-04), New York, USA (2004) 792–799

2. Cohen, P., Levesque, H.: Intention is Choice with Commitment. Artificial Intelli-
gence, 42:(2-3), (1990) 213–361

3. Cohen, P., Levesque, H.: Rational Interaction as the Basis for Communication. In:
Cohen P., Morgan, J., Pollack, M. (eds.): Intentions in Communication. Cambridge,
MA, MIT Press (1990) 221–255

4. De Giacomo, G., Lespérance, Y., Levesque, H.: ConGolog, a Concurrent Program-
ming Language Based on the Situation Calculus. Artificial Intelligence, 121 (2000)
109–169

5. Foundations for Intelligent Physical Agents: FIPA Communicative Act Library
Specification. Document 37 (1997-2002)

6. Herzig, A., Longin, D.: A Logic of Intention with Cooperation Principles and with
Assertive Speech Acts as Communication Primitives. In: Proc. of AAMAS 02 (2002)

7. Khan, S., Lespérance, Y.: ECASL: A Model of Rational Agency for Communicating
Agents. In: Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-05), Utrecht University, The Netherlands
(2005)

8. Khan, S.: A Situation Calculus Account of Multiagent Planning, Speech Acts, and
Communication. M.Sc Thesis. Dept. of Computer Science, York University. In prepa-
ration (2005)

9. Lakemeyer, G., and Levesque, H.: AOL: A Logic of Acting, Sensing, Knowing, and
Only-Knowing. In: Proc. of KR 98 (1998) 316–327

10. Levesque, H., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.: GOLOG: A Logic
Programming Language for Dynamic Domains. J. of Logic Programming, 31 (1997)

11. McCarthy, J., Hayes, P.: Some Philosophical Problems from the Standpoint of
Artificial Intelligence. Machine Intelligence, 4 (1969) 463–502

12. Moore, R.: A Formal Theory of Knowledge and Action. In: Hobbs J., Moore, R.
(eds.): Formal Theories of the Commonsense World. Ablex (1985) 319–358

13. Plotkin, G.: A Structural Approach to Operational Semantics. Technical Report
DAIMI-FN-19, Computer Science Dept., Aarhus University, Denmark (1981)

14. Rao, A., Georgeff, M.: Modeling Rational Agents within a BDI-architecture. In:
Fikes, R., Sandewall, E. (eds.): Proc. of KR&R 91 (1991) 473–484

15. Reiter, R.: The Frame Problem in the Situation Calculus: A Simple Solution (Some-
times) and a Completeness Result for Goal Regression. In: Lifschitz, V. (ed.): Artifi-
cial Intelligence and Mathematical Theory of Computation: Papers in the Honor of
John McCarthy. San Diego, CA, Academic Press (1991)

16. Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press (2001)

17. Sadek, D.: Communication Theory = Rationality Principles + Communicative Act
Models. In: Proc. of AAAI 94 Workshop on Planning for Interagent Comm. (1994)

18. Scherl, R., and Levesque, H.: Knowledge, Action, and the Frame Problem. Artificial
Intelligence, vol. 144(1-2) (2003)

19. Shapiro, S.: Specifying and Verifying Multiagent Systems Using CASL. PhD The-
sis. Dept. of Computer Science, University of Toronto. (2004)

20. Shapiro, S., Lespérance, Y.: Modeling Multiagent Systems with the Cognitive
Agents Specification Language - A Feature Interaction Resolution Application. In:
Castelfranchi, C., Lespérance, Y. (eds.): Intelligent Agents Vol. VII - Proc. of ATAL
00, LNAI 1986 (2001) 244–259

21. Shapiro, S., Lespérance, Y., and Levesque, H.: The Cognitive Agents Specification
Language and Verification Environment for Multiagent Systems. In: Castelfranchi,
C., and Johnson, W. (eds.): Proc. of AAMAS 02 (2002) 19–26

22. Shapiro, S., Lespérance, Y., Levesque, H.: Specifying Communicative Multi-Agent
Systems. In: W. Wobcke, M. Pagnucco, C. Zhang, (eds.): Agents and Multi-Agent
Systems – Formalisms, Methodologies, and Applications, LNAI 1441, Springer-Verlag
(1998) 1–14

23. Singh, M.: Multiagent Systems: A Theoretical Framework for Intentions, Know-
How, and Communications. LNAI 799 (1994)

24. Sirbu, M. A.: Credits and debits on the Internet. In: M. N. Huhns, M. P. Singh
(eds.): Readings in Agents, Morgan Kaufmann (1998) 299–305

25. Smith, R. G.: The Contract Net Protocol: High Level Communication and Control
in a Distributed Problem Solver. In: IEEE Transactions on Computers, C-29(12).
December (1980) 1104-1113

26. Yolum, P., Singh, M. P.: Commitment Machines. In: J.-J. Ch. Meyer and M. Tambe
(eds.): Intelligent Agents VIII : 8th International Workshop, ATAL ’01, LNAI 2333
(2002) 235–247

