
Abstraction in Situation Calculus Action Theories - Extended Version

Bita Banihashemi
York University
Toronto, Canada

bita@cse.yorku.ca

Giuseppe De Giacomo
Sapienza Università di Roma

Roma, Italy
degiacomo@dis.uniroma1.it

Yves Lespérance
York University
Toronto, Canada

lesperan@cse.yorku.ca

Abstract

We develop a general framework for agent abstraction based
on the situation calculus and the ConGolog agent program-
ming language. We assume that we have a high-level specifi-
cation and a low-level specification of the agent, both repre-
sented as basic action theories. A refinement mapping speci-
fies how each high-level action is implemented by a low-level
ConGolog program and how each high-level fluent can be
translated into a low-level formula. We define a notion of
sound abstraction between such action theories in terms of
the existence of a suitable bisimulation between their respec-
tive models. Sound abstractions have many useful properties
that ensure that we can reason about the agent’s actions (e.g.,
executability, projection, and planning) at the abstract level,
and refine and concretely execute them at the low level. We
also characterize the notion of complete abstraction where all
actions (including exogenous ones) that the high level thinks
can happen can in fact occur at the low level.

1 Introduction
Intelligent agents often operate in complex domains and
have complex behaviors. Reasoning about such agents and
even describing their behavior can be difficult. One way to
cope with this is to use abstraction (Saitta and Zucker 2013).
In essence, this involves developing an abstract model of the
agent/domain that suppresses less important details. The
abstract model allows us to reason more easily about the
agent’s possible behaviors and to provide high-level expla-
nations of the agent’s behavior. To efficiently solve a com-
plex reasoning problem, e.g. planning, one may first try to
find a solution in the abstract model, and then use this ab-
stract solution as a template to guide the search for a solution
in the concrete model. Systems developed using abstractions
are typically more robust to change, as adjustments to more
detailed levels may leave the abstract levels unchanged.

In this paper, we develop a general framework for agent
abstraction based on the situation calculus (SitCalc) (Mc-
Carthy and Hayes 1969; Reiter 2001) and the ConGolog (De
Giacomo, Lespérance, and Levesque 2000) agent program-
ming language. We assume that one has a high-level/abstract
action theory, a low-level/concrete action theory, and a re-
finement mapping between the two. The mapping associates
each high-level primitive action to a (possibly nondetermin-
istic) ConGolog program defined over the low-level action

theory that “implements it”. Moreover, it maps each high-
level fluent to a state formula in the low-level language that
characterizes the concrete conditions under which it holds.

In this setting, we define a notion of a high-level the-
ory being a sound abstraction of a low-level theory under
a given refinement mapping. The formalization involves the
existence of a suitable bisimulation relation (Milner 1971;
1989) between models of the low-level and high-level the-
ories. With a sound abstraction, whenever the high-level
theory entails that a sequence of actions is executable and
achieves a certain condition, then the low level must also en-
tail that there exists an executable refinement of the sequence
such that the “translated” condition holds afterwards. More-
over, whenever the low level thinks that a refinement of a
high-level action (perhaps involving exogenous actions) can
occur (i.e., its executability is satisfiable), then the high level
does also. Thus, sound abstractions can be used to perform
effectively several forms of reasoning about action, such as
planning, agent monitoring, and generating high-level ex-
planations of low-level behavior. We also provide a proof-
theoretic characterization that gives us the basis for automat-
ically verifying that we have a sound abstraction.

In addition, we define a dual notion of complete abstrac-
tion where whenever the low-level theory entails that some
refinement of a sequence of high-level actions is executable
and achieves a “translated” high-level condition, then the
high level also entails that the action sequence is executable
and the condition holds afterwards. Moreover, whenever the
high level thinks that an action can occur (i.e., its executabil-
ity is satisfiable), then there exists a refinement of the action
that the low level thinks can happen as well.

Many different approaches to abstraction have been pro-
posed in a variety of settings such as planning (Sacerdoti
1974), automated reasoning (Giunchiglia and Walsh 1992),
model checking (Clarke, Grumberg, and Long 1994), and
data integration (Lenzerini 2002). Most of these do not deal
with dynamic domains. Previous work on hierarchical plan-
ning generally makes major simplifying assumptions (Nau,
Ghallab, and Traverso 2016). In contrast, our approach deals
with agents represented in an expressive first-order frame-
work. We later discuss related work in more details.

2 Preliminaries
The situation calculus is a well known predicate logic lan-
guage for representing and reasoning about dynamically
changing worlds (McCarthy and Hayes 1969; Reiter 2001).
Within the language, one can formulate action theories that
describe how the world changes as a result of actions (Re-
iter 2001). We assume that there is a finite number of ac-
tion types A. Moreover, we assume that the terms of ob-
ject sort are in fact a countably infinite set N of standard
names for which we have the unique name assumption and
domain closure. For simplicity, and w.l.o.g., we assume that
there are no functions other than constants and no non-fluent
predicates. As a result a basic action theory (BAT) D is
the union of the following disjoint sets: the foundational,
domain independent, (second-order, or SO) axioms of the
situation calculus (Σ); (first-order, or FO) precondition ax-
ioms stating when actions can be legally performed (Dposs);
(FO) successor state axioms (SSAs) describing how fluents
change between situations (Dssa); (FO) unique name ax-
ioms for actions and (FO) domain closure on action types
(Dca); (SO) unique name axioms and domain closure for
object constants (Dcoa); and (FO) axioms describing the
initial configuration of the world (DS0). A special predi-
cate Poss(a, s) is used to state that action a is executable in
situation s; precondition axioms in Dposs characterize this
predicate. The abbreviation Executable(s) means that ev-
ery action performed in reaching situation s was possible in
the situation in which it occurred. In turn, successor state
axioms encode the causal laws of the world being modeled;
they replace the so-called effect axioms and provide a solu-
tion to the frame problem.

To represent and reason about complex actions or pro-
cesses obtained by suitably executing atomic actions, vari-
ous so-called high-level programming languages have been
defined. Here we concentrate on (a fragment of) ConGolog
that includes the following constructs:

δ ::= nil | α | ϕ? | δ1; δ2 | δ1|δ2 | πx.δ | δ∗ | δ1‖δ2

In the above, nil is a special program, called the empty pro-
gram, that indicates the fact that nothing remains to be per-
formed. α is an action term, possibly with parameters, and ϕ
is a situation-suppressed formula, i.e., a formula with all sit-
uation arguments in fluents suppressed. We denote by ϕ[s]
the formula obtained from ϕ by restoring the situation ar-
gument s into all fluents in ϕ. The sequence of program δ1
followed by program δ2 is denoted by δ1; δ2. Program δ1|δ2
allows for the nondeterministic choice between programs δ1
and δ2, while πx.δ executes program δ for some nondeter-
ministic choice of a legal binding for variable x (observe
that such a choice is, in general, unbounded). δ∗ performs δ
zero or more times. Program δ1‖δ2 expresses the concurrent
execution (interpreted as interleaving) of programs δ1 and
δ2.

Formally, the semantics of ConGolog is specified in terms
of single-step transitions, using the following two predi-
cates (De Giacomo, Lespérance, and Levesque 2000): (i)
Trans(δ, s, δ′, s′), which holds if one step of program δ
in situation s may lead to situation s′ with δ′ remaining

to be executed; and (ii) Final(δ, s), which holds if pro-
gram δ may legally terminate in situation s. The defini-
tions of Trans and Final we use are as in (De Giacomo,
Lespérance, and Pearce 2010), where the test construct ϕ?
does not yield any transition, but is final when satisfied.
Predicate Do(δ, s, s′) means that program δ, when executed
starting in situation s, has as a legal terminating situation s′,
and is defined as Do(δ, s, s′) .

= ∃δ′.T rans∗(δ, s, δ′, s′) ∧
Final(δ′, s′) where Trans∗ denotes the reflexive transitive
closure of Trans. In the rest, we use C to denote the axioms
defining the ConGolog programming language.

3 Refinement Mappings
Suppose that we have a basic action theory Dl and an-
other basic action theory Dh. We would like to character-
ize whether Dh is a reasonable abstraction of Dl. Here, we
consider Dl as representing the low-level (LL) (or concrete)
action theory/agent andDh the high-level (HL) (or abstract)
action theory/agent. We assume that Dh (resp. Dl) involves
a finite set of primitive action types Ah (resp. Al) and a
finite set of primitive fluent predicates Fh (resp. Fl). For
simplicity, we assume thatDh andDl , share no domain spe-
cific symbols except for the set of standard names for objects
N .

We want to relate expressions in the language of Dh and
expressions in the language of Dl. We say that a function m
is a refinement mapping from Dh to Dl if and only if:

1. for every high-level primitive action type A in Ah ,
m(A(~x)) = δA(~x), where δA(~x) is a ConGolog program
over the low-level theory Dl whose only free variables
are ~x, the parameters of the high-level action type; intu-
itively, δA(~x) represents how the high-level action A(~x)
can be implemented at the low level; since we use pro-
grams to specify the action sequences the agent may per-
form, we require that δA(~x) be situation-determined, i.e.,
the remaining program is always uniquely determined by
the situation (De Giacomo, Lespérance, and Muise 2012);

2. for every high-level primitive fluent F (~x) (situation-
suppressed) in Fh , m(F (~x)) = φF (~x), where φF (~x) is
a situation-suppressed formula over the language of Dl ,
and the only free variables are ~x, the object parameters of
the high-level fluent; intuitively φF (~x) represents the low-
level condition under which F (~x) holds in a situation.

Note that we can map a fluent in the high-level theory to
a fluent in the low-level theory, i.e., m(Fh(~x)) = Fl(~x),
which effectively amounts to having the low-level fluent be
present in the high-level theory. Similarly, one can include
low-level actions in the high-level theory.

Example For our running example, we use a simple logistics
domain. There is a shipment with ID 123 that is initially at
a warehouse (W), and needs to be delivered to a cafe (Cf),
along a network of roads shown in Figure 1 (warehouse and
cafe images are from freedesignfile.com).
High-Level BAT Deg

h At the high level, we abstract over
navigation and delivery procedure details. We have ac-
tions that represent choices of major routes and delivering a
shipment. Deg

h includes the following precondition axioms

a b

Route B

Route C

Route A

L1

L2

e

d

c

f g

hL4

L3

Figure 1: Transport Logistics Example

(throughout the paper, we assume that free variables are uni-
versally quantified from the outside):

Poss(takeRoute(sID , r, o, d), s) ≡ o 6= d ∧AtHL(sID , o, s)
∧ CnRouteHL(r, o, d, s)
∧ (r = RtB ⊃ ¬Priority(sID , s))

Poss(deliver(sID), s) ≡ ∃l.DestHL(sID , l, s)
∧AtHL(sID , l, s)

The action takeRoute(sID , r, o, d) can be performed to
take shipment with ID sID from origin location o to destina-
tion location d via route r (see Figure 1), and is executable
when the shipment is initially at o and route r connects o to
d; moreover, priority shipments cannot be sent by routeRtB
(note that we refer to route X in Figure 1 as RtX). Action
deliver(sID) can be performed to deliver shipment sID and
is executable when sID is at its destination.

The high-level BAT also includes the following SSAs:
AtHL(sID , l, do(a, s)) ≡ ∃l′, r.a = takeRoute(sID , r, l′, l) ∨

AtHL(sID , l, s) ∧ ∀l′, r.a 6= takeRoute(sID , r, l, l′)

Delivered(sID , do(a, s)) ≡
a = deliver(sID) ∨Delivered(sID , s)

For the other fluents, we have SSAs specifying that they are
unaffected by any action.
Deg

h also contains the following initial state axioms:

DestHL(123,Cf , S0), AtHL(123,W, S0),
CnRouteHL(RtA,W,L2, S0), CnRouteHL(RtB , L2,Cf , S0),
CnRouteHL(RtC , L2,Cf , S0)

Note that it is not known whether 123 is a priority shipment.

Low Level BAT Deg
l At the low level, we model naviga-

tion and delivery in a more detailed way. The agent has a
more detailed map with more locations and roads between
them. He also takes road closures into account. Perform-
ing delivery involves unloading the shipment and getting a
signature. The low-level BAT Deg

l includes the following
action precondition axioms:

Poss(takeRoad(sID , t, o, d), s) ≡ o 6= d ∧
AtLL(sID , o, s) ∧ CnRoad(t, o, d, s) ∧ ¬Closed(t, s) ∧
(d = L3 ⊃ ¬(BadWeather(s) ∨ Express(sID , s)))

Poss(unload(sID), s) ≡ ∃l.DestLL(sID , l, s) ∧AtLL(sID , l, s)

Poss(getSignature(sID), s) ≡ Unloaded(sID , s)

Thus, the action takeRoad(sID , t, o, d), where the agent
takes shipment sID from origin location o to destination d
via road t, is executable provided that t connects o to d, sID
is at o, and t is not closed; moreover, a road to L3 cannot be
taken if the weather is bad or sID is an express shipment as
this would likely violate quality of service requirements.

The low-level BAT includes the following SSAs:

Unloaded(sID , do(a, s)) ≡
a = unload(sID) ∨ Unloaded(sID , s)

Signed(sID , do(a, s)) ≡
a = getSignature(sID) ∨ Signed(sID , s)

The SSA forAtLL is like the one forAtHL with takeRoute
replaced by takeRoad. For the other fluents, we have SSAs
specifying that they are unaffected by any actions. Note that
we could easily include exogenous actions for road closures
and change in weather, new shipment orders, etc.
Deg

l also contains the following initial state axioms:
¬BadWeather(S0), Closed(r, S0) ≡ r = Rde,
Express(123, S0), DestLL(123,Cf , S0), AtLL(123,W, S0)

together with a complete specification of CnRoad and
CnRouteLL. We refer to road x in Figure 1 as Rdx.

Refinement Mapping meg We specify the relationship
between the high-level and low-level BATs through the fol-
lowing refinement mapping meg:

meg(takeRoute(sID , r, o, d)) =
(r = RtA ∧ CnRouteLL(RtA, o, d))?;
πt.takeRoad(sID , t, o, L1);πt′.takeRoad(sID , t′, L1, d) |
(r = RtB ∧ CnRouteLL(RtB , o, d))?;
πt.takeRoad(sID , t, o, L3);πt′.takeRoad(sID , t′, L3, d) |
(r = RtC ∧ CnRouteLL(RtC , o, d))?;
πt.takeRoad(sID , t, o, L4);πt′.takeRoad(sID , t′, L4, d)

meg(deliver(sID)) = unload(sID); getSignature(sID)

meg(Priority(sID)) = BadWeather ∨ Express(sID)

meg(Delivered(sID)) = Unloaded(sID) ∧ Signed(sID)

meg(AtHL(sID , loc)) = AtLL(sID , loc)

meg(CnRouteHL(r, o, d)) = CnRouteLL(r, o, d)

meg(DestHL(sID , l)) = DestLL(sID , l)

Thus, taking route RtA involves first taking a road from the
origin o to L1 and then taking another road from L1 to the
destination d. For the other two routes, the refinement map-
ping is similar except a different intermediate location must
be reached. Note that we could easily write programs to
specify refinements for more complex routes, e.g., that take
a sequence of roads from o to d going through intermedi-
ate locations belonging to a given set. We refine the high-
level fluent Priority(sID) to the condition where either the
weather is bad or the shipment is express.

4 m-Bisimulation
To relate high-level and low-level models/theories, we resort
to a suitable notion of bisimulation. Let Mh be a model of
the high-level BAT Dh, Ml a model of the low-level BAT
Dl ∪ C, and m a refinement mapping from Dh to Dl.

We first define a local condition for the bisimulation. We
say that situation sh in Mh is m-isomorphic to situation sl
in Ml, written sh ∼Mh,Ml

m sl, if and only if

Mh, v[s/sh] |= F (~x, s) iff Ml, v[s/sl] |= m(F (~x))[s]
for every high-level primitive fluent F (~x) in Fh and
every variable assignment v (v[x/e] stands for the
assignment that is like v except that x is mapped to e).

A relation B ⊆ ∆Mh

S × ∆Ml

S (where ∆M
S stands for the

situation domain of M) is an m-bisimulation relation be-
tween Mh and Ml if 〈sh, sl〉 ∈ B implies that:

1. sh ∼Mh,Ml
m sl, i.e., sh inMh ism-isomorphic to situation

sl in Ml;
2. for every high-level primitive action type A in Ah ,

if there exists s′h such that Mh, v[s/sh, s
′/s′h] |=

Poss(A(~x), s) ∧ s′ = do(A(~x), s), then there exists s′l
such that Ml, v[s/sl, s

′/s′l] |= Do(m(A(~x)), s, s′) and
〈s′h, s′l〉 ∈ B;

3. for every high-level primitive action type A in Ah ,
if there exists s′l such that Ml, v[s/sl, s

′/s′l] |=
Do(m(A(~x)), s, s′), then there exists s′h such that
Mh, v[s/sh, s

′/s′h] |= Poss(A(~x), s)∧ s′ = do(A(~x), s)
and 〈s′h, s′l〉 ∈ B.
We say that Mh is bisimilar to Ml relative to refinement

mapping m, written Mh ∼m Ml, if and only if there exists
an m-bisimulation relation B between Mh and Ml such that
〈SMh

0 , SMl
0 〉 ∈ B.

Given these definitions, we immediately get the follow-
ing results. First, we can show that m-isomorphic situations
satisfy the same high-level situation-suppressed formulas:
Lemma 1 If sh ∼Mh,Ml

m sl, then for any high-level
situation-suppressed formula φ, we have that:
Mh, v[s/sh] |= φ[s] if and only if Ml, v[s/sl] |= m(φ)[s].

Note that m(φ) stands for the result of substituting every
fluent F (~x) in situation-suppressed formula φ by m(F (~x)).
For proofs of all our results, see appendix.

Given this, it is straightforward to show that in m-
bisimilar models, the same sequences of high-level actions
are executable, and that in the resulting situations, the same
high-level situation-suppressed formulas hold:
Theorem 2 IfMh ∼m Ml, then for any sequence of ground
high-level actions ~α and any high-level situation-suppressed
formula φ, we have that

Ml |= ∃s′Do(m(~α), S0, s
′) ∧m(φ)[s′] if and only if

Mh |= Executable(do(~α, S0)) ∧ φ[do(~α, S0)].

Note that m(α1, . . . , αn)
.
= m(α1); . . . ;m(αn) for n ≥ 1

and m(ε)
.
= nil.

5 Sound Abstraction
To ensure that the high-level theory is consistent with the
low-level theory and mapping m, we require that for every
model of the low-level theory, there is an m-bisimilar struc-
ture that is a model of the high-level theory.

We say that Dh is a sound abstraction of Dl relative to
refinement mapping m if and only if, for all models Ml of
Dl∪C, there exists a modelMh ofDh such thatMh ∼m Ml.

Example Returning to our example of Section 3, it is
straightforward to show that it involves a high-level theory
Deg

h that is a sound abstraction of the low-level theory Deg
l

relative to the mapping meg . We discuss how we prove this
later.

Sound abstractions have many interesting and useful
properties. First, from the definition of sound abstraction
and Theorem 2, we immediately get the following result:

Corollary 3 Suppose that Dh is a sound abstraction
of Dl relative to mapping m. Then for any se-
quence of ground high-level actions ~α and for any
high-level situation-suppressed formula φ, if Dl ∪ C ∪
{∃s.Do(m(~α), S0, s) ∧ m(φ)[s]} is satisfiable, then Dh ∪
{Executable(do(~α, S0))∧φ[do(~α, S0)]} is also satisfiable.
In particular, ifDl∪C∪{∃s.Do(m(~α), S0, s)} is satisfiable,
then Dh ∪ {Executable(do(~α, S0))} is also satisfiable.
Thus if the low-level agent/theory thinks that a refinement
of ~α (perhaps involving exogenous actions) may occur (with
m(φ) holding afterwards), the high-level agent/theory also
thinks that ~α may occur (with φ holding afterwards). If such
a refinement actually occurs it will thus be consistent with
the high-level theory.

We can also show that if the high-level theory entails that
some sequence of high-level actions ~α is executable, and that
in the resulting situation, a situation-suppressed formula φ
holds, then the low-level theory must also entail that some
refinement of ~α is executable and that in the resulting situa-
tion m(φ) holds:
Theorem 4 Suppose that Dh is a sound abstraction of Dl

relative to mapping m. Then for any ground high-level ac-
tion sequence ~α and for any high-level situation-suppressed
formula φ, ifDh |= Executable(do(~α, S0))∧φ[do(~α, S0)],
then Dl ∪ C |= ∃s.Do(m(~α), S0, s) ∧m(φ)[s].

We can immediately relate the above result to planning.
In the situation calculus, the planning problem is usually de-
fined as follows (Reiter 2001):

Given a BAT D, and a situation-suppressed goal for-
mula φ, find a ground action sequence ~a such that
D |= Executable(do(~a, S0)) ∧ φ[do(~a, S0)].

Thus, Theorem 4 means that if we can find a plan
~α to achieve a goal φ at the high level, i.e., Dh |=
Executable(do(~α, S0)) ∧ φ[do(~α, S0)], then it follows that
there exists a refinement of ~α that achieves φ at the low
level, i.e., Dl ∪ C |= ∃s.Do(m(~α), S0, s) ∧m(φ)[s]. How-
ever, note that the refinement could in general be different
from model to model. But if, in addition, we have com-
plete information at the low level, i.e., a single model for
Dl, then, since we have standard names for objects and
actions, we can always obtain a plan to achieve the goal
φ by finding a refinement in this way, i.e., there exists a
ground low-level action sequence ~a such that Dl ∪ C |=
Do(m(~α), S0, do(~a, s))∧m(φ)[do(~a, s)]. The search space
of refinements of ~αwould typically be much smaller than the
space of all low-level action sequences, thus yielding impor-
tant efficiency benefits.

We can also show that if Dh is a sound abstraction of
Dl with respect to a mapping, then the different sequences
of low-level actions that are refinements of a given high-
level primitive action sequence all have the same effects
on the high-level fluents, and more generally on high-level
situation-suppressed formulas, i.e., from the high-level per-
spective they are deterministic:
Corollary 5 If Dh is a sound abstraction of Dl relative to
mapping m, then for any sequence of ground high-level ac-
tions ~α and for any high-level situation-suppressed formula
φ, we have that

Dl ∪ C |= ∀s∀s′.Do(m(~α), S0, s) ∧Do(m(~α), S0, s
′) ⊃

(m(φ)[s] ≡ m(φ)[s′])

An immediate consequence of the above is the following:
Corollary 6 If Dh is a sound abstraction of Dl relative to
mapping m, then for any sequence of ground high-level ac-
tions ~α and for any high-level situation-suppressed formula
φ, we have that

Dl ∪ C |= (∃s.Do(m(~α), S0, s) ∧m(φ)[s]) ⊃
(∀s.Do(m(~α), S0, s) ⊃ m(φ)[s])

It is also easy to show that if some refinement of the se-
quence of high-level actions ~αβ is executable, then there ex-
ists a refinement of β that is executable after executing any
refinement of ~α:
Theorem 7 If Dh is a sound abstraction of Dl relative to
mapping m, then for any sequence of ground high-level ac-
tions ~α and for any ground high-level action β, we have that

Dl ∪ C |= ∃s.Do(m(~αβ), S0, s) ⊃
(∀s.Do(m(~α), S0, s) ⊃ ∃s′.Do(m(β), s, s′))

Notice that this applies to all prefixes of ~α, so using Corol-
lary 6 as well, we immediately get that:
Corollary 8 Suppose that Dh is a sound abstraction of Dl

relative to mapping m. Then for any ground high-level ac-
tion sequence α1, . . . , αn, and for any high-level situation-
suppressed formula φ, then we have that:

Dl ∪ C |= (∃s.Do(m(α1, . . . , αn), S0, s) ∧m(φ)[s]) ⊃
((∀s.Do(m(α1, . . . , αn), S0, s) ⊃ m(φ)[s]) ∧
(∃s.Do(m(α1), S0, s)) ∧∧

2≤i≤n(∀s.Do(m(α1, . . . , αi−1), S0, s) ⊃
∃s′.Do(m(αi), s, s

′)))

These results mean that if a ground high-level action
sequence achieves a high-level condition φ, we can choose
refinements of the actions in the sequence independently
and be certain to obtain a refinement of the complete
sequence that achieves φ. We can exploit this in planning to
gain even more efficiency. If we can find a plan α1, . . . , αn

to achieve a goal φ at the high level, then there exists a
refinement of α1, . . . , αn that achieves m(φ) at the low
level, and we can obtain it by finding refinements of the
high-level actions αi for i : 1 ≤ i ≤ n one by one, without
ever having to backtrack. The search space would typically
be exponentially smaller in the length of the high-level plan
n. If we have complete information at the low level, then
we can always obtain a refined plan to achieve m(φ) in this
way.

Example Returning to our running example,
we can show that the action sequence ~α =
[takeRoute(123, RtA,W,L2), takeRoute(123, RtC , L2,
Cf), deliver(123)] is a valid high-level plan to achieve the
goal φg = Delivered(123) of having delivered shipment
123, i.e., Deg

h |= Executable(do(~α, S0)) ∧ φg[do(~α, S0)].
Since Deg

h is a sound abstraction of the low-level theory
Deg

l relative to the mapping meg , we know that we can
find a refinement of the high-level plan ~α that achieves

the refinement of the goal meg(φg) = Unloaded(123) ∧
Signed(123). In fact, we can show that Deg

l ∪ C |=
Do(meg(~α), S0, do(~a~b~c, S0)) ∧ meg(φg)[do(~a~b~c, S0)] for
~a = [takeRoad(123, Rda,W,L1), takeRoad(123, Rdb,

L1, L2)], ~b = [takeRoad(123, Rdf , L2, L4),
takeRoad(123, Rdg, L4,Cf)], and ~c = [unload(123),
getSignature(123)].

Now, let us define some low-level programs that charac-
terize the refinements of high-level action/action sequences:

ANY1HL
.
= |Ai∈Ah π~x.m(Ai(~x))

i.e., do any refinement of any HL primitive action,

ANYSEQHL
.
= ANY1HL∗

i.e., do any sequence of refinements of HL actions.

How does one verify that one has a sound abstraction?
The following yields a straightforward method for this:

Theorem 9 Dh is a sound abstraction of Dl relative to
mapping m if and only if

(a) Dl
S0
∪ Dl

ca ∪ Dl
coa |= m(φ), for all φ ∈ Dh

S0
,

(b) Dl ∪ C |= ∀s.Do(ANYSEQHL,S0 , s) ⊃∧
Ai∈Ah ∀~x.(m(φPoss

Ai
(~x))[s] ≡ ∃s′Do(m(Ai(~x)), s, s

′)),

(c) Dl ∪ C |= ∀s.Do(ANYSEQHL, S0, s) ⊃∧
Ai∈Ah ∀~x, s′.(Do(m(Ai(~x)), s, s

′) ⊃∧
Fi∈Fh ∀~y(m(φssa

Fi,Ai
(~y, ~x))[s] ≡ m(Fi(~y))[s

′])),

where φPoss
Ai

(~x) is the right hand side (RHS) of the precon-
dition axiom for action Ai(~x), and φssaFi,Ai

(~y, ~x) is the RHS
of the successor state axiom for Fi instantiated with action
Ai(~x) where action terms have been eliminated using Dh

ca.

The above essentially gives us a “proof theoretic” character-
ization of sound abstraction, in the sense that it allows us to
show that we have a sound abstraction by proving that the
number of properties are entailed by the low-level theory.
Conditions (a), (b), and (c) are all properties of programs
that standard verification techniques can deal with. The the-
orem also means that if Dh is a sound abstraction of Dl

wrt m, then Dl must entail the mapped high-level succes-
sor state axioms and entail that the mapped conditions for
a high-level action to be executable (from the precondition
axioms ofDh) correctly capture the executability conditions
of their refinements (these conditions must hold after any
sequence of refinements of high-level actions, i.e., in any
situation s where Do(ANYSEQHL, S0, s) holds).

Example Returning to our running example, it is straight-
forward to show that it involves a high-level theory Deg

h that
is a sound abstraction of the low-level theory Deg

l relative
to the mapping meg . DS0

l entails the “translation” of all the
facts about the high-level fluentsCnRouteHL,DestHL and
AtHL that are in DS0

h . Moreover, Deg
l entails that the map-

ping of the preconditions of the high-level actions deliver
and takeRoute correctly capture the executability condi-
tions of their refinements. Deg

l also entails the mapped
high-level successor state axiom for fluent AtHL and action
takeRoute and similarly for Delivered and action deliver
(other actions have no effects). Thus, Deg

h is a sound ab-
straction of Deg

l relative to meg .

6 Complete Abstraction
When we have a sound abstraction Dh of a low-level the-
ory Dl wrt a mapping m, the high-level theory Dh’s con-
clusions are always sound wrt the more refined theory Dl,
but Dh may have less information than Dl regarding high-
level actions and conditions. Dh may consider it possible
that a high-level action sequence is executable (and achieves
a goal) when Dl knows it is not. The low-level theory may
know/entail that a refinement of a high-level action sequence
achieves a goal without the high level knowing/entailing it.
We can define a stronger notion of abstraction that ensures
that the high-level theory knows everything that the low-
level theory knows about high-level actions and conditions.

We say thatDh is a complete abstraction of Dl relative to
refinement mapping m if and only if, for all models Mh of
Dh, there exists a modelMl ofDl∪C such thatMl ∼m Mh.

From the definition of complete abstraction and Theorem
2, we immediately get the following converses of Corollary
3 and Theorem 4:

Corollary 10 Suppose that Dh is a complete abstraction of
Dl relative tom. Then for any sequence of ground high-level
actions ~α and for any high-level situation-suppressed for-
mula φ, ifDh∪{Executable(do(~α, S0))∧φ[do(~α, S0)]} is
satisfiable, thenDl∪C∪{∃s.Do(m(~α), S0, s)∧m(φ)[s]} is
satisfiable. In particular, if Dh ∪ {Executable(do(~α, S0))}
is satisfiable, Dl ∪ C ∪ {∃s.Do(m(~α), S0, s)} is satisfiable.

Theorem 11 Suppose that Dh is a complete abstraction of
Dl relative to mapping m. Then for any ground high-level
action sequence ~α and any high-level situation-suppressed
formula φ, ifDl ∪C |= ∃s.Do(m(~α), S0, s)∧m(φ)[s], then
Dh |= Executable(do(~α, S0)) ∧ φ[do(~α, S0)].

Thus when we have a high-level theory Dh that is a com-
plete abstraction of a low-level theory Dl wrt a mapping
m, if Dl knows/entails that some refinement of a high-level
action sequence ~α achieves a high-level goal φ, then Dh

knows/entails that ~α achieves φ, i.e., we can find all high-
level plans to achieve high-level goals using Dh.

Note that with complete abstraction alone, we don’t get
Corollary 5, as Dl ∪ C may have models that are not m-
bisimilar to any model of Dh and where different refine-
ments of a high-level action yield different truth-values for
m(F), for some high-level fluent F .

We also say that Dh is a sound and complete abstraction
of Dl relative to refinement mapping m if and only if Dh is
both a sound and a complete abstraction of Dl relative to m.

Example Returning to our running example, the high-
level theory does not know whether shipment 123 is high
priority, i.e., Deg

h 6|= Priority(123)[S0] and Deg
h 6|=

¬Priority(123)[S0], but the low-level theory knows that
it is, i.e., Deg

l |= meg(Priority(123))[S0]. Thus Deg
h

has a model where ¬Priority(123)[S0] holds that is not
meg-bisimilar to any model of Deg

l , and thus Deg
h is

a sound abstraction of Deg
l wrt meg , but not a com-

plete abstraction. For instance, the high-level theory
considers it possible that the shipment can be deliv-
ered by taking route A and then route B, i.e., Deg

h ∪
{Executable(do(~α, S0)) ∧ φg[do(~α, S0)]} is satisfiable for

~α = [takeRoute(123, RtA,W,L2), takeRoute(123, RtB ,
L2,Cf), deliver(123)] and φg = Delivered(123). But
the low-level theory knows that ~α cannot be refined
to an executable low-level plan, i.e., Deg

l ∪ C |=
¬∃s.Do(meg(~α), S0, s). If we add Priority(123)[S0] and
a complete specification of CnRouteHL to Deg

h , then it be-
comes a sound and complete abstraction of Deg

l wrt meg .
The plan ~α is now ruled out as Deg

h ∪ {Priority(123,
S0)} ∪ {Executable(do(~α, S0))} is not satisfiable.

The following results characterize complete abstractions:

Theorem 12 If Dh is a sound abstraction of Dl relative to
mapping m, then Dh is also a complete abstraction of Dl

wrt mapping m if and only if for every model Mh of Dh
S0
∪

Dh
ca ∪ Dh

coa, there exists a model Ml of Dl
S0
∪ Dl

ca ∪ Dl
coa

such that SMh
0 ∼Mh,Ml

m SMl
0 .

Theorem 13 Dh is a complete abstraction of Dl relative
to mapping m iff for every model Mh of Dh, there exists a
model Ml of Dl ∪ C such that SMh

0 ∼Mh,Ml
m SMl

0 and
Ml |= ∀s.Do(ANYSEQHL,S0 , s) ⊃∧

Ai∈Ah ∀~x.(m(φPoss
Ai

(~x))[s] ≡ ∃s′Do(m(Ai(~x)), s, s
′))

and Ml |= ∀s.Do(ANYSEQHL, S0, s) ⊃∧
Ai∈Ah ∀~x, s′.(Do(m(Ai(~x)), s, s

′) ⊃∧
Fi∈Fh ∀~y(m(φssa

Fi,Ai
(~y, ~x))[s] ≡ m(Fi(~y))[s

′])),
where φPoss

Ai
(~x) and φssaFi,Ai

(~y, ~x) are as in Theorem 9.

7 Monitoring and Explanation
A refinement mapping m from a high-level action theory
Dh to a low-level action theory Dl tells us what are the
refinements of high-level actions into executions of low-
level programs. In some application contexts, one is in-
terested in tracking/monitoring what the low-level agent is
doing and describing it in abstract terms, e.g., to a client
or manager. If we have a ground low-level situation term
Sl such that Dl ∪ {Executable(Sl)} is satisfiable, and
Dl ∪ {Do(m(~α), S0, Sl)} is satisfiable, then the ground
high-level action sequence ~α is a possible way of describ-
ing in abstract terms what has occurred in getting to sit-
uation Sl. If Dh ∪ {Executable(do(~α, S0))} is also sat-
isfiable (it must be if Dh is a sound abstraction of Dl

wrt m), then one can also answer high-level queries about
what may hold in the resulting situation, i.e., whether Dh ∪
{Executable(do(~α, S0))∧φ(do(~α, S0))} is satisfiable, and
what must hold in such a resulting situation, i.e., whether
Dh ∪ {Executable(do(~α, S0))} |= φ(do(~α, S0)). One can
also answer queries about what high-level action β might
occur next, i.e., whether Dh ∪ {Executable(do(~αβ, S0))}
is satisfiable.

In general, there may be several distinct ground high-level
action sequences ~α that match a ground low-level situation
term Sl; even if we have complete information and a single
model Ml of Dl ∪ C, there may be several distinct ~α’s such
that Ml |= Do(m(~α), S0, Sl).1

1For example, suppose that we have two high level actions A
and B with m(A) = (C | D) and m(B) = (D | E). Then
the low-level situation do(D,S0) is a refinement of both A and B
(assuming all actions are always executable).

In many contexts, this would be counterintuitive and we
would like to be able to map a sequence of low-level actions
performed by the low-level agent back into a unique abstract
high-level action sequence it refines, i.e., we would like to
define an inverse mapping function m−1. Let’s see how we
can do this. First, we introduce the abbreviation lpm(s, s′),
meaning that s′ is a largest prefix of s that can be produced
by executing a sequence of high-level actions:

lpm(s, s′)
.
=Do(ANYSEQHL, S0, s

′) ∧ s′ ≤ s ∧
∀s′′.(s′ < s′′ ≤ s ⊃ ¬Do(ANYSEQHL, S0, s

′′))

We can show that the relation lpm(s, s′) is actually a total
function:
Theorem 14 For any refinement mappingm fromDh toDl,
we have that:
1. Dl ∪ C |= ∀s.∃s′.lpm(s, s′),
2. Dl ∪ C |= ∀s∀s1∀s2.lpm(s, s1) ∧ lpm(s, s2) ⊃ s1 = s2.

Given this result, we can introduce the notation lpm(s) = s′

to stand for lpm(s, s′).
To be able to map a low-level action sequence back to a

unique high-level action sequence that produced it, we need
the following assumptions:

Assumption 1 For any distinct ground high-level action
terms α and α′ we have that:
(a) Dl ∪ C |= ∀s, s′.Do(m(α), s, s′) ⊃

¬∃δ.Trans∗(m(α′), s, δ, s′)

(b) Dl ∪ C |= ∀s, s′.Do(m(α), s, s′) ⊃
¬∃a∃δ.Trans∗(m(α), s, δ, do(a, s′))

(c) Dl ∪ C |= ∀s, s′.Do(m(α), s, s′) ⊃ s < s′

Part (a) ensures that different high-level primitive actions
have disjoint sets of refinements; (b) ensures that once a re-
finement of a high-level primitive action is complete, it can-
not be extended further; and (c) ensures that a refinement of
a high-level primitive action will produce at least one low-
level action. Together, these three conditions ensure that if
we have a low-level action sequence that can be produced by
executing some high-level action sequence, there is a unique
high-level action sequence that can produce it:
Theorem 15 Suppose that we have a refinement mapping
m from Dh to Dl and that Assumption 1 holds. Let Ml be
a model of Dl ∪ C. Then for any ground situation terms
Ss and Se such that Ml |= Do(ANYSEQHL, Ss, Se), there
exists a unique ground high-level action sequence ~α such
that Ml |= Do(m(~α), Ss, Se).
Since in any model Ml of Dl ∪ C, for any ground situa-
tion term S, there is a unique largest prefix of S that can
be produced by executing a sequence of high-level actions,
S′ = lpm(S), and for any such S′, there is a unique ground
high-level action sequence ~α that can produce it, we can
view ~α as the value of the inverse mapping m−1 for S in
Ml. For this, let us introduce the following notation:

m−1
Ml

(S) = ~α
.
=Ml |= ∃s′.lpm(S) = s′ ∧Do(m(~α), S0, s

′)

where m is a refinement mapping from Dh to Dl and As-
sumption 1 holds, Ml is a model of Dl ∪ C, S is a ground
low-level situation term, and ~α is a ground high-level action
sequence.

Assumption 1 however does not ensure that any low-
level situation S can in fact be generated by executing a
refinement of some high-level action sequence; if it can-
not, then the inverse mapping will not return a complete
matching high-level action sequence (e.g., we might have
m−1Ml

(S) = ε). We can introduce an additional assumption
that rules this out:2

Assumption 2
Dl ∪ C |= ∀s.Executable(s) ⊃ ∃δ.Trans∗(ANYSEQHL, S0, δ, s)

With this additional assumption, we can show that for
any executable low-level situation s, what remains after the
largest prefix that can be produced by executing a sequence
of high-level actions, i.e., the actions in the interval between
s′ and s where lpm(s, s′), can be generated by some (not yet
complete) refinement of a high-level primitive action:

Theorem 16 If m is a refinement mapping from Dh to Dl

and Assumption 2 holds, then we have that:

Dl ∪ C |= ∀s, s′.Executable(s) ∧ lpm(s, s′) ⊃
∃δ.Trans∗(ANY1HL, s′, δ, s)

Example Going back to the example of Section 3, as-
sume that we have complete information at the low
level and a single model Ml of Deg

l , and suppose that
the sequence of (executable) low-level actions ~a =
[takeRoad(123, Rda,W,L1), takeRoad(123, Rdb, L1,
L2)] has occurred. The inverse mapping al-
lows us to conclude that the high-level action
α = takeRoute(123, RtA,W,L2) has occurred, since
m−1Ml

(do(~a, S0)) = α.3 Since Dh |= AtHL(123, L2,

do(α, S0)), we can also conclude that ship-
ment 123 is now at location L2. As well, since
Dh ∪ {Poss(takeRoute(123, RtB , L2,Cf), do(α, S0))}
is satisfiable, we can conclude that high-level action
takeRoute(123, RtB , L2,Cf) might occur next. Anal-
ogously, we can also conclude that high-level action
takeRoute(123, RtC , L2,Cf) might occur next.

8 Discussion
In AI, (Giunchiglia and Walsh 1992) formalize abstraction
as syntactic mappings between formulas of a concrete and a
more abstract representation, while (Nayak and Levy 1995)
present a semantic theory of abstraction. These approaches
formalize abstraction of static logical theories, while our
work focuses on abstraction of dynamic domains. In plan-
ning, several notions of abstraction have been investigated.

2One might prefer a weaker version of Assumption 2. For in-
stance, one could write a program specifying the low level agent’s
possible behaviors and require that situations reachable by execut-
ing this program can be generated by executing a refinement of
some high-level action sequence. We discuss the use of programs
to specify possible agent behaviors in the conclusion.

3If we do not have complete information at the low level,
m−1

M (~a) may be different for different modelsM ofDl. To do high
level tracking/monitoring in such cases, we need to consider all the
possible mappings or impose additional restrictions to ensure that
there is a unique mapping. We leave this problem for future work.

These include precondition-elimination abstraction, first in-
troduced in the context of ABSTRIPS (Sacerdoti 1974); Hi-
erarchical Task Networks (HTNs) (e.g. (Erol, Hendler, and
Nau 1996)), which abstract over a set of (non-primitive)
tasks; and macro operators (e.g. (Korf 1987)), which rep-
resent meta-actions built from a sequence of action steps.
(Aguas, Celorrio, and Jonsson 2016) proposed hierarchical
finite state controllers for planning. Encodings of HTNs
in ConGolog with enhanced features like exogenous ac-
tions and online executions (Gabaldon 2002) and preferred
plans (Sohrabi and McIlraith 2008) have also been stud-
ied. (McIlraith and Fadel 2002) and (Baier and McIlraith
2006) instead, investigate planning with complex actions
(a form of macro actions) specified as Golog (Levesque et
al. 1997) programs. While these approaches focus on im-
proving the efficiency of planning, our work provides a
generic framework which can have applications in many
areas. Moreover, (Gabaldon 2002; Sohrabi and McIlraith
2008) use a single BAT, and (McIlraith and Fadel 2002;
Baier and McIlraith 2006) compile the abstracted actions
into a new BAT that contains both the original and abstracted
actions. Also, they only deal with deterministic complex ac-
tions and do not provide abstraction for fluents. Moreover,
our approach provides a refinement mapping (similar to that
of Global-As-View in data integration (Lenzerini 2002)) be-
tween an abstract BAT and a concrete BAT.

In this paper, we proposed a general framework for agent
abstraction based on the situation calculus and ConGolog.
For simplicity, we focused on a single layer of abstraction,
but the framework supports extending the hierarchy to more
levels. Our approach can also support the use of ConGolog
programs to specify the possible behaviors of the agent at
both the high and low level, as we can follow (De Giacomo
et al. 2016) and “compile” the program into the BAT D to
get a new BAT D′ whose executable situations are exactly
those that can be reached by executing the program. We also
identified a set of BAT constraints that ensure that for any
low-level action sequence, there is a unique high-level action
sequence that it refines. This is useful for providing high-
level explanations of behavior (Doyle 1986) and monitoring
(De Giacomo, Reiter, and Soutchanski 1998).

In future work, we will explore how using different types
of mappings and BATs from various sources that yield
sound/complete abstractions can support system evolvabil-
ity. Moreover, we will investigate methodologies for design-
ing abstract agents/theories and refinement mappings wrt
given objectives, as well as automated synthesis techniques
to support this. We will also explore how agent abstraction
can be used in verification, where there is some related work
(Mo, Li, and Liu 2016; Belardinelli, Lomuscio, and Michal-
iszyn 2016). Extending our agent abstraction framework to
accommodate sensing and online executions is another di-
rection for future research.

Acknowledgments
We acknowledge the support of Sapienza 2015 project “Im-
mersive Cognitive Environments” and the National Science
and Engineering Research Council of Canada.

References
Aguas, J. S.; Celorrio, S. J.; and Jonsson, A. 2016. Hier-
archical finite state controllers for generalized planning. In
Proc. of the 25th International Joint Conference on Artificial
Intelligence, 3235–3241.
Baier, J. A., and McIlraith, S. A. 2006. On planning with
programs that sense. In Proc. of the 10th International
Conference on Principles of Knowledge Representation and
Reasoning, 492–502.
Belardinelli, F.; Lomuscio, A.; and Michaliszyn, J. 2016.
Agent-based refinement for predicate abstraction of multi-
agent systems. In Proc. of the 22nd European Conference
on Artificial Intelligence, 286–294.
Clarke, E. M.; Grumberg, O.; and Long, D. E. 1994. Model
checking and abstraction. ACM Transactions on Program-
ming Languages and Systems 16(5):1512–1542.
De Giacomo, G.; Lespérance, Y.; Patrizi, F.; and Sardiña, S.
2016. Verifying ConGolog programs on bounded situation
calculus theories. In Proc. of the 13th AAAI Conference on
Artificial Intelligence, 950–9568.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1–2):109–
169.
De Giacomo, G.; Lespérance, Y.; and Muise, C. J. 2012.
On supervising agents in situation-determined ConGolog. In
Proc. of the 11th International Conference on Autonomous
Agents and Multiagent Systems, 1031–1038.
De Giacomo, G.; Lespérance, Y.; and Pearce, A. R. 2010.
Situation calculus based programs for representing and rea-
soning about game structures. In Principles of Knowledge
Representation and Reasoning: Proceedings of the 12th In-
ternational Conference.
De Giacomo, G.; Reiter, R.; and Soutchanski, M. 1998. Ex-
ecution monitoring of high-level robot programs. In Proc.
of the 6th International Conference on Principles of Knowl-
edge Representation and Reasoning, 453–465.
Doyle, R. J. 1986. Constructing and refining causal expla-
nations from an inconsistent domain theory. In Proc. of the
5th National Conference on Artificial Intelligence, 538–544.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity results for HTN planning. Annals of Mathematics and
Artificial Intelligence 18(1):69–93.
Gabaldon, A. 2002. Programming hierarchical task net-
works in the situation calculus. In AIPS02 Workshop on On-
line Planning and Scheduling.
Giunchiglia, F., and Walsh, T. 1992. A theory of abstraction.
Artificial Intelligence 5(2):323–389.
Korf, R. E. 1987. Planning as search: A quantitative ap-
proach. Artificial Intelligence 33(1):65–88.
Lenzerini, M. 2002. Data integration: A theoretical perspec-
tive. In Proc. of the 21st ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, 233–246.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. B. 1997. Golog: A logic programming language

for dynamic domains. The Journal of Logic Programing
31(1-3):59–83.
McCarthy, J., and Hayes, P. J. 1969. Some Philosophi-
cal Problems From the Standpoint of Artificial Intelligence.
Machine Intelligence 4:463–502.
McIlraith, S. A., and Fadel, R. 2002. Planning with complex
actions. In Proc. of the 9th International Workshop on Non-
Monotonic Reasoning, 356–364.
Milner, R. 1971. An algebraic definition of simulation be-
tween programs. In Proc. of the 2nd International Joint Con-
ference on Artificial Intelligence, 481–489.
Milner, R. 1989. Communication and concurrency. PHI
Series in computer science. Prentice Hall.
Mo, P.; Li, N.; and Liu, Y. 2016. Automatic verification
of Golog programs via predicate abstraction. In Proc. of the
22nd European Conference on Artificial Intelligence, 760–
768.
Nau, D.; Ghallab, M.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Nayak, P. P., and Levy, A. Y. 1995. A semantic theory of
abstractions. In Proc. of the 14th International Joint Con-
ference on Artificial Intelligence, 196–203.
Reiter, R. 2001. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems. The
MIT Press.
Sacerdoti, E. 1974. Planning in a hierarchy of abstraction
spaces. Artificial Intelligence 5(2):115–135.
Saitta, L., and Zucker, J.-D. 2013. Abstraction in Arti-
ficial Intelligence and Complex Systems. Springer-Verlag
New York.
Sohrabi, S., and McIlraith, S. A. 2008. On planning with
preferences in HTN. In Proc. of the 12th International Work-
shop on Non-Monotonic Reasoning, 241–248.

A Proofs
A.1 m-Bisimulation
Lemma 1 If sh ∼Mh,Ml

m sl, then for any high-level
situation-suppressed formula φ, we have that:

Mh, v[s/sh] |= φ[s] if and only if Ml, v[s/sl] |= m(φ)[s]

Proof: By induction of the structure of φ.

Theorem 2 If Mh ∼m Ml, then for any sequence of ground
high-level actions ~α and any high-level situation-suppressed
formula φ, we have that Ml |= ∃s′Do(m(~α), S0, s

′) ∧
m(φ)[s′] if and only if Mh |= Executable(do(~α, S0)) ∧
φ[do(~α, S0)].

Proof: By induction of the length of ~α, using Lemma 1.

A.2 Sound Abstraction
Theorem 4 Suppose that Dh is a sound abstraction of Dl

relative to mapping m. Then for any ground high level ac-
tion sequence ~α and for any high level situation suppressed
formula φ, ifDh |= Executable(do(~α, S0))∧φ[do(~α, S0)],
then Dl ∪ C |= ∃s.Do(m(~α), S0, s) ∧m(φ)[s].

Proof: Assume that Dh is a sound abstraction of Dl wrt
m and that Dh |= Executable(do(~α, S0)) ∧ φ[do(~α, S0)].
Take an arbitrary model Ml of Dl ∪ C. Since Dh is
a sound abstraction of Dl wrt m, there exists a model
Mh of Dh such that Mh ∼m Ml. Since Dh |=
Executable(do(~α, S0))∧φ[do(~α, S0)], we have thatMh |=
Executable(do(~α, S0)) ∧ φ[do(~α, S0)]. Since Mh ∼m

Ml, there exist an m-bisimulation relation B between Mh

and Ml such that 〈SMh
0 , SMl

0 〉 ∈ B. It is easy to show
by induction on the length of ~α that there exists a sit-
uation S such that Ml, v[s/S] |= Do(m(~α), S0, s) and
that 〈do(~α, S0)Mh , S〉 ∈ B. From the latter and the
fact that Mh |= φ[do(~α, S0)], it follows by Lemma 1
that Ml, v[s/S] |= m(φ)[s]. Ml was an arbitrarily cho-
sen model of Dl ∪ C and thus it follows that Dl ∪ C |=
∃s.Do(m(~α), S0, s) ∧m(φ)[s].

Corollary 5 If Dh is a sound abstraction of Dl relative to
mapping m, then for any sequence of ground high-level ac-
tions ~α and for any high-level situation-suppressed formula
φ, we have that

Dl ∪ C |= Do(m(~α), S0, s) ∧Do(m(~α), S0, s
′) ⊃

(m(φ)[s] ≡ m(φ)[s′])

Proof: By contradiction. Suppose that there exist Ml

and v such that Ml, v |= Dl ∪ C ∪ {Do(m(~α), S0, s) ∧
Do(m(~α), S0, s

′) ∧ m(φ)[s] ∧ ¬m(φ)[s′]}. Since Dh is a
sound abstraction of Dl relative to mapping m, by Corol-
lary 3 Dh ∪ {Executable(do(~α, S0)) ∧ φ[do(~α, S0)] ∧
¬φ[do(~α, S0)]} is satisfiable, a contradiction.

Theorem 7 If Dh is a sound abstraction of Dl relative to
mapping m, then for any sequence of ground high-level ac-
tions ~α and for any ground high-level action β, we have that

Dl ∪ C |= ∃s.Do(m(~αβ), S0, s) ⊃
(∀s.Do(m(~α), S0, s) ⊃ ∃s′.Do(m(β), s, s′))

Proof: Take an arbitrary model Ml of Dl ∪ C and val-
uation v and assume that Ml, v |= ∃s.Do(m(~αβ), S0, s).
It follows that there exists sl such that Ml, v[s/sl] |=
Do(m(~α), S0, s) ∧ ∃s′.Do(m(β), s, s′). Since Dh is a
sound abstraction of Dl wrt m, there exists a model Mh

of Dh such that Mh ∼m Ml. Thus there exists an m-
bisimulation relation B between Mh and Ml such that
〈SMh

0 , SMl
0 〉 ∈ B. Then, it is easy to show by in-

duction on the length of ~α that since Ml, v[s/sl] |=
Do(m(~α), S0, s) ∧ ∃s′.Do(m(β), s, s′), we must have that
Mh |= Executable(do(~α, S0))∧Poss(β, do(~α, S0)). Take
an arbitrary situation s′l and suppose that Ml, v[s/s′l] |=
Do(m(~α), S0, s). Then it follows by induction on the length
of ~α that 〈sh, s′l〉 ∈ B. Since Mh |= Poss(β, do(~α, S0)),
we must also have that Ml, v[s/s′l] |= ∃s′.Do(m(β), s, s′).
Since s′l was chosen arbitrarily, it follows that Ml, v |=
∀s.Do(m(~α), S0, s) ⊃ ∃s′.Do(m(β), s, s′).

To prove Theorem 9 (and Theorem 13), we start by show-
ing some lemmas.

Lemma 17 If Mh |= Dh for some high level theoryDh and
Ml |= Dl ∪ C for some low level theory Dl and Mh ∼m Ml
for some mapping m, then
(a) Ml |= ∀s.Do(ANYSEQHL,S0 , s) ⊃∧

Ai∈Ah ∀~x.(m(φPoss
Ai

(~x))[s] ≡ ∃s′Do(m(Ai(~x)), s, s
′)),

(b) Ml |= ∀s.Do(ANYSEQHL, S0, s) ⊃∧
Ai∈Ah ∀~x, s′.(Do(m(Ai(~x)), s, s

′) ⊃∧
Fi∈Fh ∀~y(m(φssa

Fi,Ai
(~y, ~x))[s] ≡ m(Fi(~y))[s

′])),

where φPoss
Ai

(~x) is the right hand side of the precondition
axiom for action Ai(~x), and φssaFi,Ai

(~y, ~x) is the right hand
side of the successor state axiom for Fi instantiated with
actionAi(~x) where action terms have been eliminated using
Dh

ca.
Proof By contradiction. Assume that Mh is a model of
a high level theory Dh and Ml is a model of a low level
theory Dl ∪ C and Mh ∼m Ml. Suppose that condi-
tion (a) does not hold. Then there exists a ground high
level action sequence ~α, a ground low level situation term
S, and a ground high level action Ai(~x) such that Ml |=
Do(m(~α), S0, S) and either (*) Ml |= m(φPoss

Ai
(~x))[S]

and Ml 6|= ∃s′.Do(m(Ai(~x)), S, s′) or (**) Ml 6|=
m(φPoss

Ai
(~x))[S] and Ml |= ∃s′.Do(m(Ai(~x)), S, s′). In

case (*), by Theorem 2, since Mh ∼m Ml, it follows
that Mh |= Executable(do(~α, S0)) ∧ φPoss

Ai
(~x)[do(~α, S0)].

Since Mh |= Dh
Poss, we must also have that

Mh |= Poss(Ai(~x), do(~α, S0)), and thus that Mh |=
Executable(do([~α,Ai(~x)], S0)). Thus by Theorem 2,
Ml |= Do(m(~α), S0, S) ∧ ∃s′Do(m(Ai(~x)), S, s′), which
contradicts (*). Case (**) can be shown to to lead to a con-
tradiction by a similar argument.

Now suppose that condition (b) does not hold. Then
there exists a ground high level action sequence ~α,
a ground high level action Ai(~x), and ground low-
level situation terms S and S′ such that Ml |=
Do(m(~α), S0, S) ∧ Do(m(Ai(~x)), S, S′) and either (*)
Ml |= m(φssaFi,Ai

(~y, ~x))[S] and Ml 6|= m(Fi(~y))[S′] or (**)
Ml 6|= m(φssaFi,Ai

(~y, ~x))[S] and Ml |= m(Fi(~y))[S′]. In

case (*), by Theorem 2, since Mh ∼m Ml, it follows that
Mh |= Executable(do(~α, S0))∧ φssaFi,Ai

(~y, ~x)[do(~α, S0)]∧
Poss(Ai(~x), do(~α, S0)). Since Mh |= Dh

ssa, we must also
have that Mh |= Fi(~y)[do([~α,Ai(~x)], S0)]. Thus by Theo-
rem 2, Ml |= Do(m(~α), S0, S) ∧ Do(m(Ai(~x)), S, S′) ∧
m(Fi(~y))[S′], which contradicts (*). Case (**) can be
shown to to lead to a contradiction by a similar argument.

The above lemma implies that if Dh is a sound abstraction
of Dl wrt m, then Dl must entail the mapped high level suc-
cessor state axioms and entail that the mapped conditions for
a high level action to be executable (from the precondition
axioms ofDh) correctly capture the executability conditions
of their refinements.

We also prove another lemma:

Lemma 18 Suppose that Mh |= Dh for some high level
theory Dh and Ml |= Dl ∪ C for some low level theory Dl

and m is a mapping between the two theories. Then if
(a) SMh

0 ∼Mh,Ml
m SMl

0 ,
(b) Ml |= ∀s.Do(ANYSEQHL,S0 , s) ⊃∧

Ai∈Ah ∀~x.(m(φPoss
Ai

(~x))[s] ≡ ∃s′Do(m(Ai(~x)), s, s′))

and (c) Ml |= ∀s.Do(ANYSEQHL, S0, s) ⊃∧
Ai∈Ah ∀~x, s′.(Do(m(Ai(~x)), s, s′) ⊃∧

Fi∈Fh ∀~y(m(φssaFi,Ai
(~y, ~x))[s] ≡ m(Fi(~y))[s′])),

then Mh ∼m Ml,
where φPoss

Ai
(~x) is the right hand side of the precondition

axiom for action Ai(~x), and φssaFi,Ai
(~y, ~x) is the right hand

side of the successor state axiom for Fi instantiated with
actionAi(~x) where action terms have been eliminated using
Dh

ca.

Proof: Assume that the antecedent. Let us show that
Mh ∼m Ml. Let B be the relation over ∆Mh

S ×∆Ml

S such
that
〈sh, sl〉 ∈ B

if and only if
there exists a ground high level action sequence ~α
such that Ml, v[s/sl] |= Do(m(~α), S0, s)
and sh = do(~α, S0)Mh .

Let us show that B is an m-bisimulation relation between
Mh and Ml. We need to show that if 〈sh, sl〉 ∈ B,
then it satisfies the three conditions in the definition of m-
bisimulation. We prove this by induction n, the number of
actions in sh.
Base case n = 0: We have already shown that SMh

0 ∼Mh,Ml
m

SMl
0 , so condition 1 holds. By Lemma 1, it fol-

lows that Mh, v[s/sh] |= φPoss
A (~x)[s] if and only if

Ml, v[s/sl] |= m(φPoss
A (~x))[s] for any high-level primi-

tive action type A ∈ Ah . Thus by the action precon-
dition axiom for A, Mh, v[s/sh] |= Poss(A(~x), s) if
and only if Ml, v[s/sl] |= m(φPoss

A (~x))[s]. By condi-
tion (b), we have that Ml, v[s/sl] |= m(φPoss

A (~x))[s] if
and only if Ml, v[s/sl] |= ∃s′.Do(m(A(~x)), s, s′). Thus
Mh, v[s/sh] |= Poss(A(~x), s) if and only if there exists
s′l such that Ml, v[s/sl, s

′/s′l] |= Do(m(A(~x)), s, s′). By
the way B is defined, 〈do([~α,A(~x)], S0)Mh,v, s′l〉 ∈ B if

and only if Ml, v[s/sl, s
′/s′l] |= Do(m(A(~x)), sl, s

′
l). Thus

conditions (2) and (3) hold for 〈sh, sl〉.
Induction step: Assume that if 〈sh, sl〉 ∈ B and the number
of actions in sh is no greater than n, then 〈sh, sl〉 satisfies
the three conditions in the definition of m-bisimulation. We
have to show that this must also hold for any 〈sh, sl〉 ∈ B
where sh contains n+1 actions. First we show that condition
1 in the definition of m-bisimulation holds. If 〈sh, sl〉 ∈ B
and sh contains n + 1 actions, then due to the way B is de-
fined, there exists a ground high level action sequence ~α of
length n and a ground high level action A(~c) such that sh =
do(A(~c), do(~α, S0))Mh , s′h = do(~α, S0)Mh , Ml, v[s/s′l] |=
Do(m(~α), S0, s), and 〈s′h, s′l〉 ∈ B. s′h contains n actions
so by the induction hypothesis, 〈s′h, s′l〉 satisfies the three
conditions in the definition of m-bisimulation, in particular
s′h ∼Mh,Ml

m s′l. By Lemma 1, it follows that Mh, v[s/s′h] |=
φssaF,A(~y,~c)[s] if and only if Ml, v[s/s′l] |= m(φssaF,A(~y,~c))[s]
for any high-level fluent F ∈ Fh . Thus by the succes-
sor state axiom for F , Mh, v[s/s′h] |= F (~y, do(A(~c), s))
if and only if Ml, v[s/s′l] |= m(φssaF,A(~y,~c))[s]. By condi-
tion (c), we have that Ml, v[s/s′l] |= m(φssaF,A(~y,~c))[s] if and
only if Ml, v[s/sl] |= m(F (~y))[s]. Thus Mh, v[s/s′h] |=
F (~y, do(A(~c), s)) if and only if Ml, v[s/sl] |= m(F (~y))[s].
Therefore, sh ∼Mh,Ml

m sl, i.e., condition 1 in the definition
of m-bisimulation holds.
We can show that 〈sh, sl〉, where sh contains n + 1 ac-
tions, satisfies conditions 2 and 3 in the definition of m-
bisimulation, by exactly the same argument as in the base
case.

With these lemmas in hand, we can prove our main result:
Theorem 9 Dh is a sound abstraction of Dl relative to

mapping m if and only if

(a) Dl
S0
∪ Dl

ca ∪ Dl
coa |= m(φ), for all φ ∈ Dh

S0
,

(b) Dl ∪ C |= ∀s.Do(ANYSEQHL,S0 , s) ⊃∧
Ai∈Ah ∀~x.(m(φPoss

Ai
(~x))[s] ≡ ∃s′Do(m(Ai(~x)), s, s

′)),

(c) Dl ∪ C |= ∀s.Do(ANYSEQHL, S0, s) ⊃∧
Ai∈Ah ∀~x, s′.(Do(m(Ai(~x)), s, s

′) ⊃∧
Fi∈Fh ∀~y(m(φssa

Fi,Ai
(~y, ~x))[s] ≡ m(Fi(~y))[s

′])),

where φPoss
Ai

(~x) is the right hand side (RHS) of the precon-
dition axiom for action Ai(~x), and φssaFi,Ai

(~y, ~x) is the RHS
of the successor state axiom for Fi instantiated with action
Ai(~x) where action terms have been eliminated using Dh

ca.
Proof (⇒) By contradiction. Assume that Dh is a sound
abstraction ofDl wrtm. Suppose that condition (a) does not
hold, i.e., there exists φ ∈ Dh

S0
such thatDl

S0
∪Dl

ca∪Dl
coa 6|=

m(φ). Thus there exists a model M ′l of Dl
S0
∪ Dl

ca ∪ Dl
coa

such that M ′l 6|= m(φ), and this model can be extended to
a model Ml of Dl ∪ C such that Ml 6|= m(φ). Since Dh is
a sound abstraction of Dl wrt m, there exists a model Mh

of Dh such that Mh ∼m Ml. By Theorem 2, it follows that
Mh 6|= φ. Thus Dh 6|= Dh

S0
, contradiction.

Now suppose that condition (b) does not hold. Then there
exists a model Ml of Dl ∪ C such that Ml falsifies condition
(b). Since Dh is a sound abstraction of Dl wrt m, there
exists a model Mh of Dh such that Mh ∼m Ml. But then

by Lemma 17, Ml must satisfy condition (b), contradiction.

We can prove that condition (c) must hold using Lemma 17
by the same argument as for condition (b).

(⇐) Assume that conditions (a), (b), and (c) hold. Take a
model Ml of Dl ∪ C. Let Mh be a model of the high level
language such that

(i) Mh has the same object domain as Ml and interprets all
object terms like Ml,

(ii) Mh |= Dh
ca,

(iii) Mh |= Σ,

(iv) Mh, v |= F (~x, do(~α, S0)) if and only if Ml, v |=
∃s.Do(m(~α), S0, s)∧m(F (~x))[s] for all fluents F ∈ Fh

and all ground high-level action sequences ~α.

(v) Mh |= Poss(A(~x), do(~α, S0)) if and only if Ml |=
∃s.Do(m(~α), S0, s) ∧ ∃s′Do(m(A(~x)), s, s′)

It follows immediately that Mh |= Σ ∪ Dh
ca ∪ Dh

coa. By
condition (iv) above, we have that SMh

0 ∼Mh,Ml
m SMl

0 . Thus
by condition (a) and Lemma 1, we have that Mh |= Dh

S0
.

By condition (b) of the Theorem and conditions (iv) and (v)
above, Mh |= Dh

Poss. By condition (c) of the Theorem and
condition (iv) above, Mh |= Dh

ssa. Thus Mh |= Dh.
Now Mh and Ml satisfy all the conditions for applying
Lemma 18, by which it follows that Mh ∼m Ml.

Theorem Deg
h is a sound abstraction of Deg

l wrt meg .
Proof: We prove this using Theorem 9.

(a) It is easy to see that Dl
S0
∪ Dl

ca ∪ Dl
coa |= m(φ), for

all φ ∈ Dh
S0

assuming that Dl
S0

entails all the facts about
CnRoute that Dh

S0
contains.

(b) For the deliver high level action, we need to show that:

Dl ∪ C |= Do(ANYSEQHL, S0, s) ⊃
∀sID .(m(∃l.Dest(sID , l, s) ∧AtHL(sID , l, s))

≡ ∃s′Do(m(deliver(sID)), s, s′)),

i.e.,

Dl ∪ C |= Do(ANYSEQHL, S0, s) ⊃ ∀sID .
(∃l.Dest(sID , l, s) ∧AtLL(sID , l, s)
≡ ∃s′Do([unload(sID); getSignature(sID)], s, s′)).

It is easy to check that the latter holds as
∃l.Dest(sID , l, s) ∧ AtLL(sID , l, s) is the precondi-
tion of unload(sID) and unload(sID) ensures that the
precondition of getSignature(sID).

For the takeRoute action, we need to show that:

Dl ∪ C |= Do(ANYSEQHL, S0, s) ⊃ ∀sID , r, o, d.
(m(o 6= d ∧AtHL(sID , o, s) ∧ CnRoute(r, o, d, s) ∧

(r = RtB ⊃ ¬Priority(sID , s)))
≡ ∃s′Do(m(takeRoute(sID , r, o, d)), s, s′),

i.e.,

Dl ∪ C |= Do(ANYSEQHL, S0, s) ⊃ ∀sID , r, o, d.
o 6= d ∧AtLL(sID , o, s) ∧ CnRoute(r, o, d, s) ∧

(r = RtB ⊃ ¬(BadWeather(s) ∨ Express(sID , s)))
≡ ∃s′Do(m(takeRoute(sID , r, o, d)), s, s′).

It is easy to show that the latter holds as the left hand side of
the≡ is equivalent tom(takeRoute(sID , r, o, d)) being ex-
ecutable in s. First, we can see that the left hand side of the
≡ is equivalent to the preconditions of first takeRoad ac-
tion in m(takeRoute(sID , r, o, d)), noting that in the case
where r = RtB , takeRoute(sID , r, o, d) is mapped into
takeRoad to destinationL3. Moreover, the preconditions of
the second takeRoad action inm(takeRoute(sID , r, o, d))
must hold given that the first takeRoad has occured and that
there is some road that is not closed to go to d. The latter can
be shown by induction on situations.
(c) For the high level action deliver we must show that:

Dl ∪ C |= Do(ANYSEQHL, S0, s) ⊃
∀sID , s′.(Do(m(deliver(sID)), s, s′) ⊃∧

Fi∈Fh ∀~y(m(φssaFi,deliver
(~y, sID))[s] ≡ m(Fi(~y))[s′])).

For the high level fluent Delivered, we must show that

Dl ∪ C |= Do(ANYSEQHL, S0, s) ⊃
∀sID , s′.(Do(m(deliver(sID)), s, s′) ⊃
∀sID ′(sID ′ = sID ≡ Unloaded(sID , s′) ∧ Signed(sID , s′)).

This is easily shown given that meg(deliver(sID)) =
unload(sID); getSignature(sID), using that successor
state axioms for Unloaded and Signed. For the other high
level fluents, the result follows easily asmeg(deliver(sID))
does not affect their refinements.
For the action takeRoute we must show that:

Dl ∪ C |= Do(ANYSEQHL, S0, s) ⊃
∀sID , r, o, d, s′.(Do(m(takeRoute(sID , r, o, d)), s, s′) ⊃∧

Fi∈Fh ∀~y(m(φssaFi,takeRoute(~y, sID , r, o, d))[s]
≡ m(Fi(~y))[s′])).

For the high level fluent AtHL, we must show that

Dl ∪ C |= Do(ANYSEQHL, S0, s) ⊃
∀sID , r, o, d, s′.(Do(m(takeRoute(sID , r, o, d)), s, s′) ⊃
∀sID ′, l.(AtLL(sID ′, l, s′)) ≡

(sID ′ = sID ∧ l = d) ∨
AtLL(sID , l, s) ∧ ¬(sID ′ = sID ∧ o = l)).

This is easily shown given how takeRoute is refined by
meg , using that successor state axioms for AtLL. For
the other high level fluents, the result follows easily as
meg(takeRoute(sID , r, o, d)) does not affect their refine-
ments.

A.3 Complete Abstraction
Theorem 11 Suppose that Dh is a complete abstraction of
Dl relative to mapping m. Then for any ground high level
action sequence ~α and any high level situation suppressed
formula φ, ifDl∪C |= ∃s.Do(m(~α), S0, s)∧m(φ)[s], then
Dh |= Executable(do(~α, S0)) ∧ φ[do(~α, S0)].

Proof: Assume that Dh is a complete abstraction of
Dl wrt m and that Dl ∪ C |= ∃s.Do(m(~α), S0, s) ∧
m(φ)[s]. Take an arbitrary model Mh of Dh. Since
Dh is a complete abstraction of Dl wrt m, there exists
a model Ml of Dl ∪ C such that Mh ∼m Ml. Since
Dl ∪ C |= ∃s.Do(m(~α), S0, s) ∧ m(φ)[s], we have that

for any v, there exists a situation S such that Ml, v[s/S] |=
Do(m(~α), S0, s) ∧ m(φ)[s]. Since Mh ∼m Ml, there ex-
ist an m-bisimulation relation B between Mh and Ml such
that 〈SMh

0 , SMl
0 〉 ∈ B. It is easy to show by induction

on the length of ~α that Mh |= Executable(do(~α, S0))
and that 〈do(~α, S0)Mh , S〉 ∈ B. From the latter and the
fact that Ml, v[s/S] |= m(φ)[s], it follows by Lemma 1
that Mh, v |= φ[do(~α, S0)]. Mh was an arbitrarily chosen
model of Dh and v was arbitrary, and thus it follows that
Dh |= Executable(do(~α, S0)) ∧ φ[do(~α, S0)].

Theorem 12 If Dh is a sound abstraction of Dl wrt map-
ping m, then Dh is also a complete abstraction of Dl wrt
mapping m iff for every model Mh of Dh

S0
∪ Dh

ca ∪ Dh
coa,

there exists a model Ml of Dl
S0
∪ Dl

ca ∪ Dl
coa such that

SMh
0 ∼Mh,Ml

m SMl
0 .

Proof: Assume that Dh is a sound abstraction of Dl wrt
mapping m.
(⇒) Suppose that Dh is a complete abstraction of Dl wrt
mapping m. Take an arbitrary model of Mh of Dh

S0
∪Dh

ca ∪
Dh

coa. Clearly,Mh can be extended to satisfy all ofDh (justi-
fied by Reiter’s relative satisfiability theorem for basic action
theories (Reiter 2001)). Since Dh is a complete abstraction
of Dl wrt m, by definition, there exists a model Ml of Dl

such that Ml ∼m Mh. It follows by the definition of m-
bisimulation that SMh

0 ∼Mh,Ml
m SMl

0 .
(⇐) Suppose that for every modelMh ofDh

S0
∪Dh

ca∪Dh
coa,

there exists a model Ml of Dl
S0
∪ Dl

ca ∪ Dl
coa such that

SMh
0 ∼Mh,Ml

m SMl
0 . Take an arbitrary model Mh of Dh.

Since Mh is also a model of Dh
S0
∪ Dh

ca ∪ Dh
coa, then

there exists a model Ml of Dl
S0
∪ Dl

ca ∪ Dl
coa such that

SMh
0 ∼Mh,Ml

m SMl
0 . Clearly, Ml can be extended to sat-

isfy all of Dl (justified by Reiter’s relative satisfiability the-
orem for basic action theories (Reiter 2001)). Moreover, Ml

can be extended to satisfy C (by the results in (De Giacomo,
Lespérance, and Levesque 2000)). Since Dh is also a sound
abstraction of Dl wrt m, by Theorem 9 it follows that
Ml |= Do(ANYSEQHL,S0 , s) ⊃∧

Ai∈Ah ∀~x.(m(φPoss
Ai

(~x))[s] ≡ ∃s′Do(m(Ai(~x)), s, s′))

and Ml |= Do(ANYSEQHL,S0 , s) ⊃∧
Ai∈Ah ∀~x, s′.(Do(m(Ai(~x)), s, s′) ⊃∧

Fi∈Fh ∀~y(m(φssaFi,Ai
(~y, ~x))[s] ≡ m(Fi(~y))[s′])),

where φPoss
Ai

(~x) is the right hand side of the precondition
axiom for action Ai(~x), and φssaFi,Ai

(~y, ~x) is the right hand
side of the successor state axiom for Fi instantiated with ac-
tion Ai(~x) where action terms have been eliminated using
Dh

ca. Thus by Lemma 18, it follows that Mh ∼m Ml. Thus
Dh is a complete abstraction of Dl wrt m, by definition of
complete abstraction.

Theorem 13
Dh is a complete abstraction of Dl relative to mapping m

iff for every model Mh of Dh, there exists a model Ml of
Dl ∪ C such that SMh

0 ∼Mh,Ml
m SMl

0 and
Ml |= ∀s.Do(ANYSEQHL,S0 , s) ⊃∧

Ai∈Ah ∀~x.(m(φPoss
Ai

(~x))[s] ≡ ∃s′Do(m(Ai(~x)), s, s
′))

and Ml |= ∀s.Do(ANYSEQHL, S0, s) ⊃

∧
Ai∈Ah ∀~x, s′.(Do(m(Ai(~x)), s, s

′) ⊃∧
Fi∈Fh ∀~y(m(φssa

Fi,Ai
(~y, ~x))[s] ≡ m(Fi(~y))[s

′])),
where φPoss

Ai
(~x) and φssaFi,Ai

(~y, ~x) are as in Theorem 9.
Proof: (⇒) Suppose that Dh is a complete abstraction

of Dl wrt mapping m. Take an arbitrary model of Mh

of Dh. Since Dh is a complete abstraction of Dl wrt
m, by definition, there exists a model Ml of Dl such that
Ml ∼m Mh. It follows by the definition of m-bisimulation
that SMh

0 ∼Mh,Ml
m SMl

0 . Furthermore, by Lemma 17, it fol-
lows that
Ml |= ∀sDo(ANYSEQHL,S0 , s) ⊃∧

Ai∈Ah ∀~x.(m(φPoss
Ai

(~x))[s] ≡ ∃s′Do(m(Ai(~x)), s, s′))

and Ml |= ∀sDo(ANYSEQHL, S0, s) ⊃∧
Ai∈Ah ∀~x, s′.(Do(m(Ai(~x)), s, s′) ⊃∧

Fi∈Fh ∀~y(m(φssaFi,Ai
(~y, ~x))[s] ≡ m(Fi(~y))[s′])),

where φPoss
Ai

(~x) is the right hand side of the precondition ax-
iom for action Ai(~x), and φssaFi,Ai

(~y, ~x) is the right hand side
of the successor state axiom for Fi instantiated with action
Ai(~x) where action terms have been eliminated using Dh

ca.
(⇐) The thesis follows immediately from Lemma 18 and the
definition of complete abstraction.

A.4 Monitoring and Explanation
Theorem 14 For any refinement mapping m fromDh toDl,
we have that:

1. Dl ∪ C |= ∀s.∃s′.lpm(s, s′),
2. Dl ∪ C |= ∀s∀s1∀s2.lpm(s, s1) ∧ lpm(s, s2) ⊃ s1 = s2.

Proof: (1) We have that Dl ∪ C |=
Do(ANYSEQHL, S0, S0) since ANYSEQHL is a nondeter-
ministic iteration that can execute 0 times. So even if there
is no s′′ such that S0 < s′′ ≤ s ∧Do(ANYSEQHL, S0, s

′′),
the result holds.
(2) Take an arbitrary model Ml of Dl ∪ C and assume
that Ml, v |= lpm(s, s1) ∧ lpm(s, s2). We have that
Dl ∪ C |= lpm(s, s′) ⊃ s′ ≤ s. Moreover, we have
a total ordering on situations s′ such that s′ ≤ s. If
Ml, v |= s1 < s2, then s1 can’t be the largest prefix of s
that can be produced by executing a sequence of high-level
actions, and we can’t have Ml, v |= lpm(s, s1). Similarly
if Ml, v |= s2 < s1, we can’t have Ml, v |= lpm(s, s2). It
follows that Ml, v |= s1 = s2.

Theorem 15 Suppose that we have a refinement mapping
m from Dh to Dl and that Assumption 1 holds. Let Ml be
a model of Dl ∪ C. Then for any ground situation terms
Ss and Se such that Ml |= Do(ANYSEQHL, Ss, Se), there
exists a unique ground high-level action sequence ~α such
that Ml |= Do(m(~α), Ss, Se).

Proof: Since, Ml |= Do(ANYSEQHL, Ss, Se), there ex-
ists a n ∈ N such that Ml |= Do(ANY1HLn, S0, S).
Since we have standard names for objects, it follows that
there exists a ground high-level action sequence ~α such that
Ml |= Do(m(~α), Ss, Se). Now let’s show by induction
on the length of ~α that there is no ground high-level ac-
tion sequence ~α′ 6= ~α such that Ml |= Do(m(~α′), Ss, Se).
Base case ~α = ε: Then Ml |= Do(m(~α), Ss, Se) im-
plies Ml |= Ss = Se and there is no ~α′ 6= ε such

that Ml |= Do(m(~α′), Ss, Se), since by Assumption 1(c)
Dl ∪ C |= Do(m(β), s, s′) ⊃ s < s′ for any ground high-
level action term β. Induction step: Assume that the claim
holds for any ~α of length k. Let’s show that it must hold for
any ~α of length k+1. Let ~α = β~γ. There exists Si such that
Do(m(β), Ss, Si) ∧ Si ≤ Se. By Assumption 1(a), there
is no β′ 6= β and S′i such that Do(m(β′), Ss, S

′
i) ∧ S′i ≤

Se. By Assumption 1(b), there is no S ′i 6= Si such that
Do(m(β), S0, S

′
i)∧S′i ≤ S. Then by the induction hypoth-

esis, there is no ground high-level action sequence ~γ′ 6= ~γ
such that Ml |= Do(m(~γ′), Si, Se).

Theorem 16 If m is a refinement mapping from Dh to Dl

and Assumption 2 holds, then we have that:

Dl ∪ C |= ∀s, s′.Executable(s) ∧ lpm(s, s′) ⊃
∃δ.T rans∗(ANY1HL, s′, δ, s)

Proof: Take an arbitrary model Ml of Dl ∪ C and
assume that Ml, v |= Executable(s) ∧ lpm(s, s′).
Since Ml, v |= lpm(s, s′), we have that Ml, v |=
Do(ANYSEQHL, S0, s

′) and thus that Ml, v |=
Trans∗(ANYSEQHL, S0, ANYSEQHL, s′). Since
Ml, v |= Executable(s), by Assumption 2 we have
that Ml, v |= ∃δ.T rans∗(ANYSEQHL, S0, δ, s). Thus, it
follows that Ml, v |= ∃δ.T rans∗(ANY1HL, s′, δ, s).

