
PHIL/COGS 3750

Yves Lespérance

Lecture Notes
Reasoning about Action and the Frame Problem

Readings:
See course web site.

Reasoning about Action

A key component of intelligence is the ability to make plans of action
to achieve one’s goals.

This involves reasoning about actions and their effects and precondi-
tions (i.e. when an action can be executed).

2



Situation Calculus

A popular language for reasoning about action and change in AI is the
Situation Calculus. It is a dialect of first-order logic.

The constant S0 is used to represent the initial situation.

The term do(α, s) represents the situation that results from action α

being performed in situation s; e.g. the situation that results from mov-
ing block B1 onto block B2 in the initial situation is represented by
do(move(B1, B2), S0).

Predicates that are affected by action/change take a situation argu-
ment; these are called fluents.

E.g. can have¬On(B1, B2, S0) andOn(B1, B2, do(move(B1, B2), S0)).

Special fluent Poss(α, s) represents the fact that action α is possi-
ble/executable in situation s.

3

Specifying Action Preconditions

To specify when actions are possible/executable in an application do-
main, one writes action precondition axioms. E.g.

Poss(move(x, y), s) ≡ Clear(x, s) ∧ Clear(y, s) ∧ x #= y.

i.e. the robot can move block x onto block y in situation s if and only if
they are both clear in s and x and y are distinct.

4



Specifying Action Effects

We can also specify the effects of actions in a domain by writing effect
axioms. E.g.

On(x, y, do(move(x, y), s))

i.e. after moving x onto y, x is on y;

On(y, x, s) ∧ x #= z ⊃ Clear(x, do(move(y, z), s))

i.e. if y is on x and y is moved onto z which is distinct from x, then x

becomes clear.

5

Specifying the Initial Situation

We can also write axioms to specify what is known about the initial
situation. E.g.

OnTable(B1, S0), OnTable(B2, S0),
OnTable(B3, S0), OnTable(B4, S0),
Clear(B1, S0), Clear(B2, S0), Clear(B3, S0), Clear(B4, S0).

In general, the KB can contain disjunctions and other forms of incom-
plete knowledge.

6



Planning

A plan/sequence of actions a1, a2, . . . , an achieves a goal G in a sit-
uation s if the goal G must be true in the situation that results from
performing a1, a2, . . . , an in situation s and the plan is executable in s,
i.e.

Axioms |= G(do(an, . . . , do(a1, s) . . .))
and
Axioms |= Executable([a1, . . . , an], s)
where
Executable([a1, . . . , an], s))

.
=

Poss(a1, s) ∧ Poss(a2, do(a1, s) ∧ . . .
∧ Poss(an, do(an−1, . . . , do(a1, S0) . . .)).

7

Planning E.g.

Suppose that our goal is to have a 3 blocks tower, i.e.

G(s)
.
= ∃x∃y∃z On(x, y, s) ∧On(y, z, s) ∧OnTable(z, s).

We can show that the plan move(B2, B3), move(B1, B2) achieves
this goal G in the initial situation if we can show that

Axioms |= Goal(do(move(B1, B2), do(move(B2, B3), S0)))
and
Axioms |= Poss(move(B2, B3), S0)
and
Axioms |= Poss(move(B1, B2), do(move(B2, B3), S0))).

8



The Frame Problem

Even if we have in our KB all the necessary precondition and effect
axioms and initial state axioms, this is not enough to show that the
plan achieves the goal.

We can show that:
Axioms |= On(B2, B3, do(move(B2, B3), S0))
and
Axioms |= Poss(move(B2, B3), S0)

But we can’t show that
Axioms |= OnTable(B1, do(move(B2, B3), S0))
and
Axioms |= On(B2, B3, do(move(B1, B2), do(move(B2, B3), S0))
etc.

The reason is that we have not specified what does not change when
an action is performed!

9

The Frame Problem (cont.)

One approach is to also provide frame axioms. E.g.

OnTable(x, s) ∧ y #= x ⊃ OnTable(x, do(move(y, z), s)

i.e. if x is on the table and y is moved onto z and y #= x, then x must
still be on the table afterwards.

But there are too many of those. Actions generally affect very few
fluents and all others are unaffected.

10



The Frame Problem (cont.)

The representational frame problem is the problem of representing
compactly which facts persist when actions are performed.

The inferential frame problem is the problem of computing efficiently
which facts persist after an action.

11

STRIPS

There is a simple approach to avoid the frame problem when one has
complete information about the state. This is called the STRIPS ap-
proach.

In STRIPS, one represents a state as the set of all fluents that are
true in the state. Actions are specified by providing a list of facts that
they add (i.e., positive effects) and a list of facts that they delete (i.e.,
positive effects). (Preconditions can also be specified.)

One can obtain the state that follows an action by performing the addi-
tion and deletions in the current state.

See Section 9.2 of the Levesque textbook for a similar approach.

However, the STRIPS approach breaks down when one does not have
complete information; it is not a general solution to the frame problem.

12



The Ramification Problem

It is straightforward to specify direct effects of action using effect ax-
ioms. But actions often have indirect effects/ramifications.

E.g. if a block B1 is glued or tied to B2 and we move B1, then B2 will
move as well; we could specify this as a state constraint stating that
two glued blocks are always next to each other.

The ramification problem is how to compactly represent and reason
efficiently about the effects of action when there are such state con-
straints and indirect effects.

13

The Qualification Problem

Earlier, we assumed that we could specify necessary and sufficient
conditions for an action to be possible/executable.

But this is usually not possible. We know of some necessary condi-
tions, e.g.

Poss(start(car), s) ⊃ HasGas(car, s) ∧BatteryCharged(car, s)

But these are not sufficient. There is a huge number of exceptional
conditions that could make the action impossible, e.g.

EngineStolen(car, s) ⊃ ¬Poss(start(car), s)

PotatoInTailpipe(car, s) ⊃ ¬Poss(start(car), s)

State constraints can also lead to such qualifications.

14



The Qualification Problem (cont.)

Unless we can identify necessary and sufficient conditions and have
enough information in the KB to entail them, it is not entailed that an
action is in fact executable.

Humans assume that none of these exceptional conditions hold unless
they know otherwise. If they know some fact that is relevant to the
executability of a plan, they (usually) take it into account and draw the
right conclusions.

How can we get a machine to do this?

The qualification problem is how to reason effectively about when an
action is executable.

15

Solutions to the Frame Problem

The representational frame problem is considered solved for domains
where actions are deterministic (flipping a coin is non-deterministic). A
popular solution is Reiter’s, which involves taking all the effect axioms
involving a given fluent, e.g.

∀x∀sOnTable(x, do(moveToTable(x), s))
∀x∀s¬OnTable(x, do(move(x, y), s))

and manipulating them to obtain a successor state axiom, e.g.

∀x∀s[OnTable(x, do(a, s)) ≡ a = moveToTable(x)
∨OnTable(x, s) ∧ ¬∃y.a = move(x, y)].

The STRIPS approach also works when there is complete information.
16



Current Research Status

The inferential frame problem has been solved in some restricted cases.
There is ongoing research in the area. The general case is most likely
unsolvable.

There is ongoing research on the ramification problem and qualification
problems.

17

Non-Monotonic Reasoning

These problems, especially the qualification problem, are instances of
non-monotonic reasoning.

Classical logical entaiment is monotonic. IfKB |= φ andKB ⊆ KB′,
then KB′ |= φ.

But many forms of commonsense reasoning are non-monotonic.

E.g. From Birds typically fly.
Tweety is a bird. infer Tweety flies.

From

Birds typically fly.
Penguins are birds.
Penguins typically don’t fly.
Tweety is a bird.
Tweety is a penguin.

infer Tweety does not fly.

Several approaches to non-monotonic reasoning have been developed.
18


