Java By Abstraction

Chapter 6

Strings

6.1

6.2

Language Support
6.1.1 The String Class
6.1.2 The Masquerade and the + Operator

String Handling

6.2.1 Overview of String Methods
Accessors

Transformers

Comparators

Numeric Strings

plications

1 Character Frequency
.2 Character Substitution
.3 Fixed-Size Codes

.4 Variable-Size Codes
ql
1
.2
.3

O wwwwd NN NT

3

nced String Handling
The StringBuffer Class
Pattern Matching & Regular Expressions
Command-Line Arguments

6.
6.
6.
6.
A
6.
6.
6.
6.
A
6.
6.
6.

-h-b-h

6.1 Language Support

Write a fragment that creates a Stock

that encapsulates the symbol ™%, ab"

Copyright © 2006 Pearson Education Canada Inc.

Chapter 6

Java By Abstraction Chapter 6

Are Strings Special?

Write a fragment that creates a Stock
that encapsulates the symbol %, ab"

Stock stk = new Stock(".ab");

Are Strings Special?

Write a fragment that creates a Fraction
that encapsulates 3 / 5

Are Strings Special?

Write a fragment that creates a Fraction
that encapsulates 3 / 5

Fraction £ = new Fraction(3, 5);

Copyright © 2006 Pearson Education Canada Inc.

Java By Abstraction Chapter 6

Are Strings Special?

Write a fragment that creates an Equation
that encapsulates 3x2 -2x + 7.= 0

Are Strings Special?

Write a fragment that creates an Equation
that encapsulates 3x2 -2x + 7.= 0

Equation e = new Equation(3, -2, 7);

Are Strings Special?

Write a fragment that creates a String
that encapsulates “York"

Copyright © 2006 Pearson Education Canada Inc.

Java By Abstraction Chapter 6

Are Strings Special?

Write a fragment that creates a String
that encapsulates “York"

String s = new String("York");

Creating strings is not different
from creating any other objecty

The Masquerade

Can create a String without using new:

String s = "York";

The compiler replaces the above with:

String s = new String("York");

The + Operator

Can concatenate two strings using a
“fake" operator:

String s = "York" + "Lane";

The compiler replaces the abovewiths

String s = new String("YorkLane") ;

These (convenience) shortcuts make strings
“look like" mutable primitive types.

Copyright © 2006 Pearson Education Canada Inc.

Java By Abstraction Chapter 6

More on the + Operator

How does the compiler handle x + y ?

+ If x and y are both numeric, this is the
addition operator.

+ If either x or y is a string, this is the
concatenation operator. In this case, the
other operand is coerced to a string.

- Otherwise, there is a syntax error in this
expression.

6.2 String Handling

Given a String, invoke:

+Accessors

-Transformers

*Comparators

*Numeric/String Converters

Note the absence of mutators

String Methods

:length()

-charAt(int)
*substring(int,int) (int)
-indexOf(String) (String,int)
toString() and equals()

-compareTo()
toUpperCase() and tolLowerCase()

Copyright © 2006 Pearson Education Canada Inc. 5

Java By Abstraction Chapter 6

Notes on String Methods

+ The "#of character" language versus the
position language. They differ by 1.

Notes on String Methods

+ The #of character language versus the
position language. They differ by 1.

+ Can you live w/o substring(int) given the
overloaded (int,int)?

Notes on String Methods

+ The #of character language versus the
position language. They differ by 1.

+ Can you live w/o substring(int) given the
overloaded (int,int)?

+ How would use use indexOf to detect all
occurrences of a substring?

Copyright © 2006 Pearson Education Canada Inc. 6

Java By Abstraction Chapter 6

Notes on String Methods

* The #of character language versus the
position language. They differ by 1.

+ Can you live w/o substring(int) given the
overloaded (int,int)?

- How would use use indexOf to detect all
occurrences of a substring?

+ Do not underestimate what equals does!
Given two very long strings, when does equals deem
them equal?

Notes on String Methods

+ The #of character language versus the
position language. They differ by 1.

+ Can you live w/o substring(int) given the
overloaded (int,int)?

+ How would use use indexOf to detect all
occurrences of a substring?

+ Do not underestimate what equals does

+ The power of compareTo
The notion of lexicographic ordering

Notes on String Methods

+ The #of character language versus the
position language. They differ by 1.

+ Can you live w/o substring(int) given the
overloaded (int,int)?

+ How would use use indexOf to detect all
occurrences of a substring?

- Do not underestimate what equals does

+ The power of compareTo.

- Substring and toUpper/LowerCase() must
return a brand new string

ada Inc.

Copyright © 2006 Pearson Education Canada Inc. 7

Java By Abstraction Chapter 6

Numeric Strings

The Wrapper Classes

String s = "1020";
int number = Integer.parselnt(s);

The other way (from number to string) is best
handled thru the + operator (see next)

6.3 Applications

Read the four applications in sections
6.3.1-4 and note, in particular, how
indexOf and substring can be used to
perform pattern lookup/substitution.

Here, we will discuss three different
applications but they employ the same
techniques:

Applications:

- SpaceCounter
Prompt for, and read, a string from the
user. Output the number of spaces in it.

FileSpaceCounte

Similar to the previous one but it gets its
input from the file. The user is prompted
to enter the filename.

DigitSpeller

Read a string from the user and spell out
the names of the digits in it, e.g. input
"this6is ab test4" leads to output: "SIX",
FIVE", and "FOUR".

Copyright © 2006 Pearson Education Canada Inc. 8

Java By Abstraction

6.4 Advanced String Handling

- Efficiency calls for immutability

- A separate class, StringBuffer,jwas added

to handle mutation.

+ The new class has three mutators:

StringBuffer append (anything)
StringBuffer insert(int, anything)
StringBuffer delete(int, int)

The + Operator & StringBuffer

Given two strings x and y, the compiler

replaces:

String s = x + y;

with:

String s = new

StringBuffer () .append (x) .append (y) . toString() ;

Regular Expressions

Chapter 6

CHARACTER SPECIFICATIONS

[a-m]

Range. A characters between a and m, inclusive

[a-m[A-M]]

Union. a through m or A through M

[abc]

Set. The character a, b, or ¢

[~abe]

Negation. Any character except a, b, or ¢

[a-m&&[~ck]]

Intersection. a though m but neither ¢ nor k

PREDEFINED SPECIFICATIONS

Any character

\d

A digit, [0-9]

\s

A whitespace character, [\t\n\x0B\f\r]

\w

A word character, [a-zA-Z_0-9]

\p{Punct}

A punctuation,
[1"#88& " () %+, = /2 ;<=>2@[\]"_"{|}~]

QUANTIFIERS

x, once or not at all

x, zero or more times

X, one or more times

X, at least n but no more than m times

Copyright © 2006 Pearson Education Canada Inc.

Java By Abstraction Chapter 6

Command-Line Arguments
Run this app with AABCBA B as arguments:

PrintStream output = System.out;

String s = args[0];

char c = args[1l].charAt(0);

int count = 0;

for (int index = 0; index < s.length(); index++)
{

String token = s.substring(index, index+l);
if (token.equals("" + c))
{

count++;

}
}
output.println(count) ;

The output is 2.

‘Copyright ® 2006 Pearson Education Canada Inc.

Copyright © 2006 Pearson Education Canada Inc. 10

