
Java By Abstraction

Chapter 6

1 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-1

Chapter 6

Strings

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-2

6.1 Language Support
 6.1.1 The String Class
 6.1.2 The Masquerade and the + Operator

6.2 String Handling
 6.2.1 Overview of String Methods
 6.2.2 Accessors
 6.2.3 Transformers
 6.2.4 Comparators
 6.2.5 Numeric Strings

6.3 Applications
 6.3.1 Character Frequency
 6.3.2 Character Substitution
 6.3.3 Fixed-Size Codes
 6.3.4 Variable-Size Codes

6.4 Advanced String Handling
 6.4.1 The StringBuffer Class
 6.4.2 Pattern Matching & Regular Expressions
 6.4.3 Command-Line Arguments

O
utline

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-3

Write a fragment that creates a Stock
that encapsulates the symbol “.ab”

6.1 Language Support

Java By Abstraction

Chapter 6

2 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-4

Write a fragment that creates a Stock
that encapsulates the symbol “.ab”

Are Strings Special?

Stock stk = new Stock(".ab");

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-5

Write a fragment that creates a Fraction
that encapsulates 3 / 5

Are Strings Special?

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-6

Write a fragment that creates a Fraction
that encapsulates 3 / 5

Are Strings Special?

Fraction f = new Fraction(3, 5);

Java By Abstraction

Chapter 6

3 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-7

Write a fragment that creates an Equation
that encapsulates 3x2 -2x + 7 = 0

Are Strings Special?

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-8

Write a fragment that creates an Equation
that encapsulates 3x2 -2x + 7 = 0

Are Strings Special?

Equation e = new Equation(3, -2, 7);

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-9

Write a fragment that creates a String
that encapsulates “York”

Are Strings Special?

Java By Abstraction

Chapter 6

4 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-10

Write a fragment that creates a String
that encapsulates “York”

Are Strings Special?

String s = new String("York");

Creating strings is not different
from creating any other object.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-11

Can create a String without using new:

The Masquerade

String s = "York";

String s = new String("York");

The compiler replaces the above with:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-12

Can concatenate two strings using a
"fake" operator:
String s = "York" + "Lane";

String s = new String("YorkLane");

These (convenience) shortcuts make strings
"look like" mutable primitive types.

The + Operator

The compiler replaces the above with:

Java By Abstraction

Chapter 6

5 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-13

•  If x and y are both numeric, this is the
addition operator.

•  If either x or y is a string, this is the
concatenation operator. In this case, the
other operand is coerced to a string.

• Otherwise, there is a syntax error in this
expression.

More on the + Operator
How does the compiler handle x + y ?

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-14

6.2 String Handling

• Accessors

• Transformers

• Comparators

• Numeric/String Converters

Given a String, invoke:

Note the absence of mutators

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-15

• length()
• charAt(int)

• substring(int,int) (int)

• indexOf(String) (String,int)

• toString() and equals()

• compareTo()

• toUpperCase() and toLowerCase()

String Methods

Java By Abstraction

Chapter 6

6 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-16

•  The "#of character" language versus the
position language. They differ by 1.

Notes on String Methods

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-17

•  The #of character language versus the
position language. They differ by 1.

•  Can you live w/o substring(int) given the
overloaded (int,int)?

Notes on String Methods

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-18

•  The #of character language versus the
position language. They differ by 1.

•  Can you live w/o substring(int) given the
overloaded (int,int)?

•  How would use use indexOf to detect all
occurrences of a substring?

Notes on String Methods

Java By Abstraction

Chapter 6

7 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-19

•  The #of character language versus the
position language. They differ by 1.

•  Can you live w/o substring(int) given the
overloaded (int,int)?

•  How would use use indexOf to detect all
occurrences of a substring?

•  Do not underestimate what equals does!
Given two very long strings, when does equals deem
them equal?

Notes on String Methods

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-20

•  The #of character language versus the
position language. They differ by 1.

•  Can you live w/o substring(int) given the
overloaded (int,int)?

•  How would use use indexOf to detect all
occurrences of a substring?

•  Do not underestimate what equals does

•  The power of compareTo
The notion of lexicographic ordering

Notes on String Methods

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-21

•  The #of character language versus the
position language. They differ by 1.

•  Can you live w/o substring(int) given the
overloaded (int,int)?

•  How would use use indexOf to detect all
occurrences of a substring?

•  Do not underestimate what equals does

•  The power of compareTo.

•  Substring and toUpper/LowerCase() must
return a brand new string

Notes on String Methods

Java By Abstraction

Chapter 6

8 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-22

The Wrapper Classes

Numeric Strings

String s = "1020";
int number = Integer.parseInt(s);

The other way (from number to string) is best
handled thru the + operator (see next)

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-23

6.3 Applications
Read the four applications in sections
6.3.1-4 and note, in particular, how
indexOf and substring can be used to
perform pattern lookup/substitution.

Here, we will discuss three different
applications but they employ the same
techniques:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-24

Applications:
-  SpaceCounter

Prompt for, and read, a string from the
user. Output the number of spaces in it.

-  FileSpaceCounte
Similar to the previous one but it gets its
input from the file. The user is prompted
to enter the filename.

-  DigitSpeller
Read a string from the user and spell out
the names of the digits in it, e.g. input
"this6is a5 test4" leads to output: "SIX",
"FIVE", and "FOUR".

Java By Abstraction

Chapter 6

9 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-25

•  Efficiency calls for immutability

•  A separate class, StringBuffer, was added
to handle mutation.

•  The new class has three mutators:

 StringBuffer append(anything)
 StringBuffer insert(int, anything)
 StringBuffer delete(int, int)

6.4 Advanced String Handling

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-26

Given two strings x and y, the compiler
replaces:

The + Operator & StringBuffer

String s = x + y;

with:

String s = new
StringBuffer().append(x).append(y).toString();

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-27

CHARACTER SPECIFICATIONS
[a-m] Range. A characters between a and m, inclusive
[a-m[A-M]] Union. a through m or A through M
[abc] Set. The character a, b, or c
[^abc] Negation. Any character except a, b, or c
[a-m&&[^ck]] Intersection. a though m but neither c nor k

PREDEFINED SPECIFICATIONS
. Any character
\d A digit, [0-9]
\s A whitespace character, [\t\n\x0B\f\r]
\w A word character, [a-zA-Z_0-9]

\p{Punct} A punctuation,
[!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~]

QUANTIFIERS
x? x, once or not at all
x* x, zero or more times
x+ x, one or more times
x{n,m} x, at least n but no more than m times

Regular Expressions

Java By Abstraction

Chapter 6

10 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 6-28

Run this app with AABCBA B as arguments:

Command-Line Arguments

 PrintStream output = System.out;
 String s = args[0];
 char c = args[1].charAt(0);
 int count = 0;
 for (int index = 0; index < s.length(); index++)
 {
 String token = s.substring(index, index+1);
 if (token.equals("" + c))
 {
 count++;
 }
 }
 output.println(count);

The output is 2.

