
Java By Abstraction

Chapter 4

1 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-1

Chapter 4

Using Objects

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-2

4.1 What is an Object?
 4.1.1 An Abstraction View
 4.1.2 An API View

4.2 The Life of an Object
 4.2.1 The Birth of an Object
 4.2.2 Objects at Work
 4.2.3 The Object and its Reference
 4.2.4 Objects' Equality
 4.2.5 Obligatory Methods
 4.2.6 The Death of an Object

4.3 The Object's State
 4.3.1 Accessors and Mutators
 4.3.2 Attribute Privacy
 4.3.3 Objects with static Features
 4.3.4 Objects with final Features

Outline

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-3

Abstract Instantiate

4.1.1 An Abstraction View
• An object has: attributes, methods, an identity, and a
state

• A class has: attributes and methods

• Objects with the same attributes and methods can be
replaced with a class that abstracts them:

Java By Abstraction

Chapter 4

2 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-4

§  The API of an instantiable class has three sections:
•  A Constructor Section

•  A Field Section

•  A Method Section

4.1.2 An API View

§  Constructors allow us to instantiate the class
and get an object; i.e. add identity and state

•  There is no return column (not even void)

•  Constructor name = Class name

§  A constructor section looks like a method but:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-5

4.2.1 The Birth of an Object

1. Locate the Class
import type.lib.Fraction;

2. Declare a Reference
Fraction f;

3. Instantiate the Class
new Fraction(3, 5)

4. Assign the Reference
f = new Fraction(3, 5);

A four-step process:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-6

.
64 Birth App

.

.

.

.

.

.

.

.

.

Step #1
Locate the Class

import type.lib.*;

Java By Abstraction

Chapter 4

3 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-7

.
64 Birth App

 ??

.

.

.
100 Fraction class

 .
.
.
.
.

import type.lib.*;

Fraction f;

f

Step #2
Declare a Reference

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-8

.
64 Birth App

 ??

.

.

.
100 Fraction class

 .
.

600 Fraction object
3/5 .

.

import type.lib.*;

Fraction f;

new Fraction(3,5)

f

Step #3
Instantiate the Class

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-9

.
64 Birth App

 600

.

.

.
100 Fraction class

 .
.

600 Fraction object
3/5 .

.

import type.lib.*;

Fraction f;

f = new Fraction(3,5);

f

Step #4
Assign the Reference

Java By Abstraction

Chapter 4

4 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-10

.
64 Birth App

 600

.

.

.
100 Fraction class

 .
.

600 Fraction object
3/5 .

.

import type.lib.*;

Fraction f;

f = new Fraction(3,5);

f

Step #4
Assign the Reference

A reference is a pointer

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-11

•  Accessing Field
reference.field

•  Invoking Methods
reference.method(…)

4.2.2 Objects at Work

Unlike static/utility classes, we access and
invoke on the reference, not on the class.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-12

•  Create 8/6 and invoke methods

•  Note the role of separator
and isQuoted

•  Compute:

Examples

4
3

45
31
6
7

3
5

+
×

Java By Abstraction

Chapter 4

5 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-13

4.2.3 The Object Reference

Variables of primitive types hold values:

int x = 5;
int y = x;
x = 10;
// at this stage y remains 5

Variables of non-primitive types (references)
hold addresses of objects, not the objects
themselves.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-14

Many variables can point at the same object:

Fraction f1;
f1 = new Fraction(3, 5);
Fraction f2;
f2 = f1;

If the object is changed through
f1, the change will be seen by f2.

Aliases

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-15

Fraction f1;
f1 = new Fraction(3, 5);
Fraction f2;
f2 = f1;
f1.separator = "|";
System.out.println(f2.toString());

Example

Java By Abstraction

Chapter 4

6 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-16

.
64 Birth class

 600
 600

.

.

.
100 Fraction class

 .
.

600 Fraction object
3/5 .

.

f1
f2

f1

f2

Memory Map

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-17

Fraction f1;
f1 = new Fraction(3, 5);
Fraction f2;
f2 = f1;
f1 = null;
System.out.println(f1.toString());
System.out.println(f2.toString());
f2 = null;

Null References and Orphans

Note that null is a literal (just like true and
false) whose type is compatible with any non-
primitive type.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-18

4.2.4 Object Equality

Fraction f1 = new Fraction(3, 5);
Fraction f2 = f1;
Fraction f3 = new Fraction(2, 7);
Fraction f4 = new Fraction(6, 10);
Fraction f5 = f4;
System.out.println(f1 == f2);
System.out.println(f4 == f5);
System.out.println(f4 == f1);

The == operator determines whether two object
references are pointing at the same memory block:

Java By Abstraction

Chapter 4

7 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-19

Object
3/5

f1

f2

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-20

Object
2/7

f1

f2

f3

Object
3/5

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-21

Object
2/7

Object
6/10

f1

f2

f4

f5

f3

Object
3/5

Java By Abstraction

Chapter 4

8 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-22

== versus equals

Fraction f1 = new Fraction(3, 5);
Fraction f2 = f1;
Fraction f3 = new Fraction(2, 7);
Fraction f4 = new Fraction(6, 10);
Fraction f5 = f4;
System.out.println(f1 == f2);
System.out.println(f4 == f5);
System.out.println(f4 == f1);

System.out.println(f4.equals(f1));

The equals method determines whether two objects
are equal in the eyes of their class.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-23

FractionNS x = new FractionNS(4, 5);
FractionNS y = new FractionNS(4, 5);

boolean equalRef = (x == y);
boolean equalObj = x.equals(y);

Java provides a default equals method for classes
that do not have one of their own. This "default"
equals method behaves the same as ==:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-24

4.2.5 Obligatory Methods

toString
 -Default behaviour: same as ==
 -Auto-invoked by output methods

equals
 -Default behaviour: class name and the
 object's memory address in hex.

Certain methods are available in all classes, either
directly (provided by the class itself) or indirectly
(provided by Java). Two such methods are:

Java By Abstraction

Chapter 4

9 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-25

4.2.6 The Death of an Object
Destroy the object-reference connection by:

Fraction x = new Fraction(3, 5);
Fraction y = x;
Fraction z = x;
{
 Fraction t = x;
}
y = null;
z = new Fraction(4, 7);

•  Exiting the scope of the reference

•  Setting the reference to null

•  Pointing the reference elsewhere

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-26

We can destroy the object itself (indirectly)
by orphaning it:

Fraction x = new Fraction(3, 5);
Fraction y = x;
Fraction y = new Fraction(4, 7);
x = null;

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-27

4.3.1 Accessors and Mutators

•  A class has attributes and methods

•  The object's state is held in the attributes

•  Implementers make all non-final attributes
private and provide accessors and mutators
to enable clients to access the state.

•  Accessors provide read-only access

•  Mutators allow clients to mutate the state

See the type.lib.Item class

Key points to remember:

Java By Abstraction

Chapter 4

10 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-28

4.3.2 Objects with static features

•  stay in the class
•  Are shared by all instances

•  Should be invoked on the class, not on the
object reference (even though the compiler
tolerates the latter).

See isQuoted in type.lib.Fraction.

Some features (attributes and/or methods) in a
class can be static. Such features:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-29

Fraction f = new Fraction(3, 2);

System.out.println(f.toProperString());

f.isQuoted = false;

System.out.println(f.toProperString());

The output:

"1 1/2"
1 1/2

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-30

Fraction f = new Fraction(3, 2);
f.isQuoted = true;

Fraction g = new Fraction(5, 2);
g.isQuoted = false;

System.out.println(f.toProperString());
System.out.println(g.toProperString());

The output:

1 1/2
2 1/2

Java By Abstraction

Chapter 4

11 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 4-31

4.3.3 Objects with final features

•  Final fields are constants
(the client cannot modify their values)

•  Final methods cannot be overridden
(more on this in Chapter 9)

Some features (attributes and/or methods) in a
class can be final. Such features cannot be
changed by a client of the class. Specifically:

Question: Why are final fields typically static?

(The answer is in Section 4.3.3 of the textbook)

