
Java By Abstraction

Chapter 3

1 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-1

Chapter 3

Using APIs

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-2

3.1 Anatomy of an API
 3.1.1 Overall Layout
 3.1.2 Fields
 3.1.3 Methods

 3.2 A Development Walkthrough
 3.2.1 The Development Process
 3.2.2 The Mortgage Application
 3.2.3 Output Formatting
 3.2.4 Relational Operators
 3.2.5 Input Validation
 3.2.6 Assertions

3.3 General Characteristics of Utility Classes
 3.3.1 Memory Diagram
 3.3.2 Advantages of Utility Classes
 3.3.3 Case Study: Dialog I/O

Outline

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-3

3.1.1 Overall Layout

Classes

Packages Details

 The Class section

 The Field section

 The Constructor section

 The Method section

Java By Abstraction

Chapter 3

2 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-4

3.1.2 Fields

Field Summary
static double PI

The double value that is closer than any other to pi, the
ratio of the circumference of a circle to its diameter.

Field Detail
PI
public static final double PI

The double value that is closer than any other to pi, the ratio of
the circumference of a circle to its diameter.

See Also: Constant Field Values

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-5

3.1.3 Methods
Method Summary
static double abs(double a)

Returns the absolute value of a double value.
static int abs(int a)

Returns the absolute value of an int value.
static double pow(double a, double b)

Returns the value of the first argument raised to the
power of the second argument.

Method Summary
double nextDouble()

Scans the next token of the input as an double.
int nextInt()

Scans the next token of the input as an int.
String nextLine()

Advances this scanner past the current line and
returns the input that was skipped.

long nextLong()
Scans the next token of the input as an long.

The Math
class of
java.lang

The Scanner
class of
java.util

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-6

Method Detail

abs

public static double abs(double a)

Returns the absolute value of a double value. If the argument is not negative, the argument is
returned. If the argument is negative, the negation of the argument is returned. Special cases:

 - If the argument is positive zero or negative zero, the result is positive zero.
 - If the argument is infinite, the result is positive infinity.
 - If the argument is NaN, the result is NaN.

Parameters:
 a - the argument whose absolute value is to be determined
Returns:
 the absolute value of the argument.

Java By Abstraction

Chapter 3

3 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-7

Key points to remember about methods

•  Parameters are Passed by Value
Values stored in your variables cannot be inadvertently
changed by passing the variables to a method

•  Methods can be Overloaded
A class cannot have two methods with the same signature
(even if the return is different). Hence, can have two
methods with the same name (but different parameters)

•  Binding with Most Specific
To bind C.m(…) the compiler locates C (or else issues No
Class Definition Found) and then locates m(…) in C (or else
issues Cannot Resolve Symbol). If more than one such m
is found, it binds with the "most specific" one.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-8

3.2 A Development

 Walkthrough

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-9

•  Analysis

•  Design

•  Implementation

•  Testing

•  Deployment

The Requirement:
Input & its validation
Output & its formatting

3.2.1 The Development Process

Java By Abstraction

Chapter 3

4 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-10

•  Analysis

•  Design

•  Implementation

•  Testing

•  Deployment

An algorithm (function)
that determines the
output given the input.

The Development Process

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-11

•  Analysis

•  Design

•  Implementation

•  Testing

•  Deployment

Turn the algorithm into a
program

The Development Process

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-12

•  Analysis

•  Design

•  Implementation

•  Testing

•  Deployment

Does the program meet
the requirement?

The Development Process

Java By Abstraction

Chapter 3

5 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-13

•  Analysis

•  Design

•  Implementation

•  Testing

•  Deployment Installation, porting,
training, support…

The Development Process

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-14

Analysis
Compute the monthly payment of a mortgage

3.2.2 The Mortgage Application

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-15

Analysis
Compute the monthly payment of a mortgage

Input:
The mortgage amount and the annual interest
percent. Both real.

Validation:
amount > 0 and interest in (0,100)

The Mortgage Application

Java By Abstraction

Chapter 3

6 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-16

Analysis

Output:
The monthly payment.

Formatting:
rounded to the nearest cent and displayed with
a thousands separator

The Mortgage Application

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-17

Enter the amount ... 285000

The annual interest percent ... 3.75

The monthly payment is: $1,465.27

Analysis

Sample run of the proposed system:

The Mortgage Application

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-18

nr

rAP

)1(
11
+

−
=

Design

P is the monthly payment, r is the monthly
interest rate, A is the mortgage amount,
and n is the number of months.

Java By Abstraction

Chapter 3

7 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-19

Implementation

•  A class to take care of prompts and inputs

•  Ignore validation for now

•  We’ll do the computation ourselves with
the help of a class that computes powers

•  A class for output

•  Ignore formatting for now

We delegate as follows:

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-20

Implementation Notes
•  The importance of prompting

•  Using print versus println

•  The next methods

•  Converting from an annual percent to a
monthly rate

•  Why hard-coded constants like 12 are a
source of confusion; using final.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-21

3.2.3 Output Formatting

•  The first parameter holds format specifiers
•  Each specifier has the form: %[flags][width]

[.precision]conversion

•  The conversion letter can be d,f,s, or n

•  The flag can be , or 0

•  The width specifies the field width and the
precision specifies the number of decimals

The printf method

Example: output.printf("%,6.2f", x)

Java By Abstraction

Chapter 3

8 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-22

< <= > >=

== !=

Numeric
operands

Operand
s of any

type

All relational operands are “odd” in that they
violate closure: no matter what the operand
type is, the result type is always boolean.

3.2.4 Relational Operators

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-23

Operator Precedence

Precedence Operator Operands Syntax true if

< numeric x < y x is less than y

<= numeric x <= y x is less than or equal to y

> numeric x > y x is greater than y

>= numeric x >= y x is greater than or equal to y
-7 è

instanceof x instanceof C is true if object reference x points at an
instance of class C or a subclass of C.

== any type x == y x is equal to y
-8 è

!= any type x != y x is not equal to y

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-24

Invalid inputs are the cause of most errors
in programs. Therefore, upon encountering
one, a program must either:

3.2.5 Input Validation

• Print a message and end

• Print a message then allow the user to
retry several times or decide to abort.

• Trigger a runtime error; i.e. crash.

For now, let us use the 3rd via a method in Toolbox:

 static void crash(boolean, String)

Java By Abstraction

Chapter 3

9 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-25

A simple yet powerful tool to guard against
errors that arise from misunderstandings.

Whenever you believe that some non-trivial
condition is true, assert it, e.g.

3.2.6 Assertions

You cannot assert a validation because user input is
not under your control. Hence, do not confuse assert
(a Java statement) with crash (a method).

assert payment >=0;

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-26

3.3 General Characteristics

 of Utility Classes

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-27

3.3.1 Memory Diagrams

import java.util.Scanner;
import java.io.PrintStream;

public class Circle
{
 public static void main(String[] args)
 {
 Scanner input = new Scanner(System.in);
 PrintStream output = System.out;
 output.print("Enter radius: ");
 int radius = input.nextInt();
 output.println(Math.PI * Math.pow(radius, 2));
 }
}

Let us compile and load the program, Circle, which uses a
field and a method in the Math utility class.

Java By Abstraction

Chapter 3

10 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-28

Memory Diagrams
 0

1
.
64 Circle
.
80
.
.
.
.

800 Math
.

824
.

880
.
.

radius

PI

pow

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-29

Simplicity
•  To access a static field f in a class C, write: C.f

•  To invoke a static method m in a class C, write C.m(…)

•  There is only one copy of a static class in memory

Suitability

•  A utility class is best suited to hold a groups of methods
that do not hold state, e.g. java.lang.Math.

•  Even in non-utility classes, static is best suited for
features that are common to all instances, e.g. the
MAX_VALUE field and the parseInt method of the
(non-utility) class: Integer.

3.3.2 Advantages of Utility Classes

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 3-30

Two static methods in:

 javax.swing.JOptionPane

• To display a message:
void showMessage(null, message)

• To prompt for and read an input:
String showInputDialog(null, prompt)

3.3.3 Case Study: Dialog I/O

Note that showInputDialog returns a String. Hence, if
you use it to read a number, you must invoke one of the
parse methods in the corresponding wrapper class.

