
Java By Abstraction

Chapter 11

1 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-1

Chapter 11

Exception
Handling

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-2

11.1 What are Exceptions?
 11.1.1 Exception Handling
 11.1.2 The Delegation Model

11.2 Java's Exception Constructs
 11.2.1 The Basic try-catch Construct
 11.2.2 Handling Multiple Exceptions
 11.2.3 Other Constructs

11.3 Exception Objects
 11.3.1 The Throwable Hierarchy
 11.3.2 Object-Oriented Exception Handling
 11.3.3 Checked Exceptions

11.4 Building Robust Apps
 11.4.1 Validation versus Exception
 11.4.2 Logic Errors

Outline

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-3

There are three sources that can lead
to exceptions:

The End User
Garbage-in, garbage-out

The Programmer
Misunderstanding requirements and/or contracts

The Environment
The VM, the O/S, the H/W, or the network

11.1 What Are Exceptions?

Java By Abstraction

Chapter 11

2 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-4

11.1.1 Exception Handling

Valid
Operation?

Programmer,
End User, or
Environment

Sources

Incorrect
Operations

Error

Logic
Error

Caught?

Handler

Runtime

Error

yes yes

no
Exception

no

• An error source can lead to an incorrect operation

• An incorrect operations may be valid or invalid

• An invalid operation throws an exception

• An exception becomes a runtime error unless caught

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-5

Example
Given two integers, write a program to
compute and output their quotient.

output.println("Enter the first integer:");
int a = input.nextInt();
output.println("Enter the second:");
int b = input.nextInt();

int c = a / b;
output.println("Their quotient is: " + c);

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-6

Example, cont.
Here is a sample run:
Enter the first integer:
8

Enter the second:
0

Exception in thread "main"
java.lang.ArithmeticException: / by zero

 at Quotient.main(Quotient.java:16)

In this case:
 - The error source is the end user.
 - The incorrect operation is invalid
 - The exception was not caught

Java By Abstraction

Chapter 11

3 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-7

Example, cont.
Anatomy of an error message:
Enter the first integer:
8

Enter the second:
0

Exception in thread "main"
java.lang.ArithmeticException: / by zero

 at Quotient.main(Quotient.java:16)

Message Stack trace Type

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-8

11.1.2 The Delegation Model
• We, the client, delegate to method A

• Method A delegates to method B

• An invalid operation is encountered in B

• If B handled it, no one would know

• Not even the API of B would document this

• If B didn’t, it delegates the exception back to A

• If A handled it, we wouldn’t know

• Otherwise, the exception is delegated to us

• We too can either handle or delegate (to VM)

• If we don’t handle, the VM causes a runtime error

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-9

The Delegation Model Policy:

Handle or Delegate Back

Note:

•  Applies to all (components and client)

•  The API must document any back
delegation

•  It does so under the heading: “Throws”

Java By Abstraction

Chapter 11

4 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-10

Example
Given a string containing two slash-delimited
substrings, write a program that extracts and
outputs the two substrings.

int slash = str.indexOf("/");
String left = str.substring(0, slash);
String right = str.substring(slash + 1);
output.println("Left substring: " + left);
output.println("Right substring: " + right);

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-11

Example, cont.
Here is a sample run with str = “14-9”
int slash = str.indexOf("/");
String left = str.substring(0, slash);
String right = str.substring(slash + 1);
output.println("Left substring: " + left);
output.println("Right substring: " + right);

java.lang.IndexOutOfBoundsException:
String index out of range: -1
at java.lang.String.substring(String.java:1480)
at Substring.main(Substring.java:14)

The trace follows the delegation from line 1480 within
substring to line 14 within the client.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-12

Example, cont.
Here is the API of substring:
String substring(int beginIndex, int endIndex)
Returns a new string that…

Parameters:
beginIndex - the beginning index, inclusive.
endIndex - the ending index, exclusive.

Returns:
the specified substring.

Throws:
IndexOutOfBoundsException - if the beginIndex
is negative, or endIndex is larger than the
length of this String object, or beginIndex is
larger than endIndex.

Java By Abstraction

Chapter 11

5 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-13

11.2.1 The basic try-catch

try
{ ...
 code fragment
 ...
}
catch (SomeType e)
{ ...
 exception handler
 ...
}
program continues

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-14

Example
Redo the last example with exception handling

try
{
 int slash = str.indexOf("/");
 String left = str.substring(0, slash);
 String right = str.substring(slash + 1);
 output.println("Left substring: " + left);
 output.println("Right substring: " + right);
}
catch (IndexOutOfBoundsException e)
{
 output.println("No slash in input!");
}
output.println("Clean Exit."); // closing

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-15

11.2.2 Multiple Exceptions

try
{ ...
}
catch (Type-1 e)
{ ...
}
catch (Type-2 e)
{ ...
}
...
catch (Type-n e)
{ ...
}
program continues

Java By Abstraction

Chapter 11

6 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-16

Example
Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handling to handle all
possible input errors.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-17

Example
Given a string containing two slash-delimited
integers, write a program that outputs their
quotient. Use exception handling to handle all
possible input errors.

Note that when exception handling is used, do
not code defensively; i.e. assume the world is
perfect and then worry about problems. This
separates the program logic from validation.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-18

Example, cont.
try
{
 int slash = str.indexOf("/");
 String left = str.substring(0, slash);
 String right = str.substring(slash + 1);
 int leftInt = Integer.parseInt(left);
 int rightInt = Integer.parseInt(right);
 int answer = leftInt / rightInt;
 output.println("Quotient = " + answer);
}
catch (?)
{

}

Java By Abstraction

Chapter 11

7 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-19

Example, cont.
catch (IndexOutOfBoundsException e)
{
 output.println("No slash in input!");
}
catch (NumberFormatException e)
{
 output.println("Non-integer operands!");
}
catch (ArithmeticException e)
{
 output.println("Cannot divide by zero!");
}

output.println("Clean Exit."); // closing

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-20

11.3.1 The Hierarchy

Th rowable

Object

Exception Error

RuntimeException VirtualMachineError

IOException AssertionError

PrinterException AWTError

... ...

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-21

11.3.2 OO Exception Handling
•  They all inherit the features in Throwable

•  Can create them like any other object:
Exception e = new Exception();

•  And can invoke methods on them, e.g.
getMessage, printStackTrace, etc.

•  They all have a toString

•  Creating one does not simulate an exception. For
that, use the throw keyword:

Exception e = new Exception("test");
throw e;

Java By Abstraction

Chapter 11

8 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-22

Example
Write an app that reads a string containing
two slash-delimited integers the first of
which is positive, and outputs their quotient
using exception handling. Allow the user to
retry indefinitely if an input is found invalid.

As before but:

•  What if the first integer is not positive?

•  How do you allow retrying?

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-23

Example, cont.
for (boolean stay = true; stay;)
{
 try
 {
 // as before
 if (leftInt < 0) throw(??);
 …
 output.println("Quotient = " + answer);
 stay = false;
 }
 // several catch blocks
}

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-24

for (boolean stay = true; stay;)
{
 try
 {
 // as before
 if (leftInt < 0) throw(??);
 …
 output.println("Quotient = " + answer);
 stay = false;
 }
 // several catch blocks
}

Example, cont.

The order may
be important

E.g. Runtime-
Exception with

a message

Java By Abstraction

Chapter 11

9 Copyright © 2006 Pearson Education Canada Inc.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-25

11.3.3 Checked Exceptions
•  App programmers can avoid any RuntimeException

through defensive validation

•  Hence, we cannot force them to handle such
exceptions

•  Other exceptions, however, are "un-validatable",
e.g. diskette not inserted; network not available…

•  These are “checked” exceptions

•  App programmers must acknowledge their existence

•  How do we enforce that?

•  The compiler ensures that the app either handles
checked exceptions or use “throws” in its main.

 Copyright © 2006 Pearson Education Canada Inc. Java By Abstraction 11-26

11.4 Building Robust Applications

•  Thanks to the compiler, checked exceptions are never
"unexpected"; they are trapped or acknowledged

•  Unchecked exceptions (often caused by the end user)
must be avoided and/or trapped

•  Defensive programming relies on validation to detect
invalid inputs

•  Exception-based programming relies on exceptions

•  Both approaches can be employed in the same app

•  Logic errors are minimized through early exposure,
e.g. strong typing, assertion, etc.

Key points to remember:

