
Reductions and NP-Completeness

A giraffe with its long neck is a very different beast than a mouse, which is different from a
snake. However, Darwin and gang observed that the first two have some key similarities, both
being social, nursing their young, and having hair. The third is completely different in these ways.
Studying similarities and differences between things can reveal subtle and deep understandings
of their underlining nature that would not have been noticed by studying them one at a time.
Sometimes things that at first appear to be completely different, when viewed in another way, turn
out to be the same except for superficial cosmetic differences. This section will teach how to use
reductions to discover these similarities between different optimization problems.

Reduction P1 ≤poly P2: We say that we can reduce problem P1 to problem P2 if we can write a
polynomial (nΘ(1)) time algorithm for P1 using a supposed algorithm for P2 as a subroutine.
(Note we may or may not actually have an algorithm for P2.) The standard notation for this
is P1 ≤poly P2.

Why Reduce? A reduction lets us compare the time complexities and underlying structures of
these two problems. They are useful in providing algorithms for new problems (upper bounds),
for giving evidence that there are no fast algorithms for certain problems (lower bounds), and
for classifying problems according to their difficulty.

Upper Bounds: From the reduction P1 ≤poly P2 alone, we cannot conclude that there is a poly-
nomial time algorithm for P1. But it does tell us that if there is a polynomial time algorithm
for P2, then there is one for P1. This is useful in two ways. First, it allows us to construct
algorithms for new problems from known algorithms for other problems. Moreover, it tells us
that P1 is “at least as easy as” P2.

Hotdogs ≤poly Linear Programming: Section ?? describes how to solve the problem of
making a cheap hotdog using an algorithm for solving linear programming.

Bipartite Matching ≤poly Network Flows: We will give an algorithm for Bipartite
Matching in Section 0.4 that uses the network flows algorithm.

Lower Bounds: The contrapositive of the last statement is that if there is not a polynomial time
algorithm for P1, then there cannot be one for P2 (otherwise there would be one for P1.) This
tells us that P2 is “at least as hard as” P1.

(Any Optimization Problem) ≤poly CIR-SAT: This small looking statement proved by
Steve Cook in 1971 has become one of the foundations of theoretical computer science.
There are many interesting optimization problems. Some people worked hard on discov-
ering fast algorithms for this one and others did the same for that one. Cooks theorem

1

shows that it is sufficient to focus on the optimization problem CIR-SAT, because if you
can solve it quickly then you can solve them all quickly. However, after many years of
working hard, people have given up and highly suspect that at least one optimization
problem that is hard. This gives strong evidence that CIR-SAT is hard. Cook’s theorem
is proved (and the problems defined) in Section 0.1.

CIR-SAT ≤poly 3-COL: See Section 0.3. This states that the optimization problem 3-
COL is as hard as the already known to be hard problem CIR-SAT. This gives evidence
that 3-COL is also hard. More over, reductions are transitive meaning that P1 ≤poly P2

and P2 ≤poly P3 automatically gives that P1 ≤poly P3. Hence, together these last two
statements give that (Any Optimization Problem) ≤poly 3-COL.

3-COL ≤poly Course Scheduling,

3-COL ≤poly Independent Set,

3-COL ≤poly 3-SAT:
These give evidence that Course Scheduling, Independent Set, and 3-SAT are hard. See
Sections 0.2 and 0.3.

Halting Problem ≤poly (What Does This TM Do): It can be proved that the Halting
Problem (given a Turing Machine M and an input I, does the M halt on I) is undecidable
(no algorithm can always answer correctly in finite time). Given this, reductions can be
used to prove that most any problem asking what the computation of a given Turing
Machine does is also undecidable.

Reverse Reductions: Knowing P1 ≤poly P2 and knowing that there is not a polynomial time
algorithm for P2 does not tell us anything about the whether there is a polynomial time
algorithm for P1. Though it does tell us that the algorithm for P1 given in the reduction
does not work, there well may be another completely different algorithm for P1. Similarly,
knowing that there is a polynomial time algorithm for P1 does not tell us anything about
the whether there one for P2. To make these two conclusions, you must prove the reverse
reduction P2 ≤poly P1.

Classifying Problems: Reductions are used to classify problems.

The Same Problem except for Superficial Differences: More than just being able to
compare their time complexities, knowing proving P1 ≤poly P2 and P2 ≤poly P1 reveals
that the two problems are some how fundamentally at their core the same problem,
asking the same types of questions. Sometimes this similarity is quite superficial. They
simply use different vocabulary. However, at other times this connection between the
problems is quite surprising, revealing a deeper understanding about each of the prob-
lems. One way in which we can make a reduction even more striking is by restricting the
algorithm for the one to call the algorithm for the other only once. Then the mapping
between them is even more direct.

NP-Complete: Above we showed that the optimization problems CIR-SAT, 3-COL, Course
Scheduling, Independent Set, and 3-SAT, are all reducible to each other and in this way
are all fundamentally the same problem. In fact there are thousands of very different
problems that are equivalent to these. These problems are said to be NP-Complete. We
discuss this more in section Section 0.2.

2

Halting Problem-Complete: Many classes of problems are defined in this way. Another
important class consists of all problems that are equivalent in this way to the Halting
Problem.

0.1 Satisfiability Is At Least As Hard

As Any Optimization Problem

In Section ?? we saw that optimization problems involve searching through the exponential set of
solutions for an instance to find one with optimal cost. Though there are quick algorithms (i.e.
polynomial) for some of these problems, for most of them the best known algorithms require 2Θ(n)

time on the worst case input instances and it is strongly believed that there are not polynomial time
algorithms for them. The main reason for this belief is that many smart people have devoted many
years of research looking for fast algorithms and have not found them. This section uses reductions
to prove that some of these optimization problems are universally hard or complete amongst the
class of optimization problems because if you could design an algorithm to solve such a problem
quickly, then you could translate this algorithm into one that solves any optimization problem
quickly. Conversely, (and more likely) if there is even one optimization problem that cannot be
solved quickly, then none of these complete problems can be either. Proving in this way that a
problem which your boss wants you to solve is hard is useful because you will know not to spend
too much time trying to design an all purpose algorithm for it.

(Any Optimization Problem) ≤poly CIR-SAT: This reduction will prove the satisfiability
problem is complete for the class of optimization problems, meaning that it is universally
hard for this class.

The Circuit Satisfiability Problem: The famous computational problem, circuit satisfiability
(CIR-SAT), is required to find a satisfying assignment for a given circuit. Section ?? gives
a recursive backtracking algorithm for the satisfiability problem, but in the worst case its
running time is 2Θ(n).

Circuit: A circuit is a both a useful notation for describing an algorithm in detail and a
practical thing built in silicon in your computer.

Construction: It is built with AND, OR, and NOT gates.
At the top are n wires labeled with the binary variables
x1, x2, . . . , xn. To specify the circuit’s input, each of these
will take on either 1 or 0, true or false, 5 volts or 0 volts.
Each AND gate has two wires coming into it, either from
an input xi or from the output of another gate. An AND
gate outputs true if both of its inputs are true. Similarly,
each OR gate outputs true if at least one of its inputs is
true and each NOT gate outputs true if its single input is
false. We will only consider circuits that have no cycles, so
these true/false values percolate down to the output wires.
There will be a single output wire if the circuit computes a
true/false function of its input x1, x2, . . . , xn and will have
m output wires if it outputs an m bit string which can be
used to encode some required information.

OR

ANDAND

NOT

y

NOT

x

x y

A circuit for x ⊕ y

3

Compute Any Function: Given any function f : {0, 1}n → {0, 1}m, a circuit can
compute it with a most Θ(nm · 2n) gates as follows. For any fixed input instance
〈x1, x2, . . . , xn〉 = 〈1, 0, . . . , 1〉, a circuit can say “the input is this fixed instance” sim-
ply by computing [(x1 = 1) AND NOT (x2 = 1) AND . . . AND (xn = 1)]. Then
the circuit computes the ith bit of the function’s output by outputting 1 if [“the
input is this fixed instance” OR “this instance” OR . . . OR “this instance”], where
each instance is listed for which the ith bit of the function’s output is 1.

Poly Size for Poly Time: More importantly, given any algorithm whose Turing Ma-
chine’s running time is T (n) and given any fixed integer n, there is an easily con-
structed circuit with at most Θ(T (n)2) gates that computes the output of the al-
gorithm given any n bit input instance. Change the definition of a Turing machine
slightly so that each cell is big enough so that the cell currently being pointed to by
the head can store not only its current cell’s contents but also the current state of
the machine. This cell’s contents can be encoded with Θ(1) bits. Because the Turing
machine uses only T (n) time, it can use at most the first T (n) cells of memory. For
each of the T (n) steps of the algorithm, the circuit will have a row of Θ(1) · T (n)
wires whose values encode the contents of memory of these T (n) cells during this
time step. The gates of the circuit between these rows of wires compute the next
contents of memory from the current contents. Because the contents of cell i at time
t depends only on the contents of cells i − 1, i, and i + 1 at time t − 1 and each of
these is only a Θ(1) number of bits, this dependency can computed using a circuit
with Θ(1) gates. This is repeated in a matrix of T (n) time steps and T (n) cells for
a total of Θ(T (n)2) gates. At the bottom, the circuit computes the output of the
function from the contents of memory of the Turing machine at time T (n).

Circuit Satisfiability Specification: The CIR-SAT problem take as input a circuit with
a single true/false output and return an assignment to the variables x1, x2, . . . , xn for
which the circuit gives true, if such an assignment exists.

Optimization Problems: This reduction will select a generic optimization problem and show
that CIR-SAT is at least as hard as it is. To do this, we need to have a clear definition of
what a generic optimization problem looks like.

Definition: Each such problem has a set instances that might be given as input, each instance
has a set of potential solutions some of which are valid, and each solution has a cost.
The goal, given an instance, is to find one of its valid solutions with optimal cost.
An important feature of an optimization problem is that there are polynomial time
algorithms for the following.

V alid(I, S): Given an instance I and a potential solution S, there is an algorithm
V alid(I, S) running in time |I|O(1) that determines if I is a valid instance for the
optimization problem and that S is a valid solution for I.

Cost(S): Given a valid solution S, there is an algorithm Cost(S) running in time |I|O(1)

that computes the cost of the solution S.

Example: Course Scheduling Given the set of courses requested by each student and the
set of time slots available, find a schedule which minimizes the number of conflicts.

I: The set of courses requested by each student and the set of time slots available

S: A schedule

4

V alid(I, S): An algorithm which returns whether the schedule S is valid for the courses
and student requests given in I.

Cost(S): An algorithm which returns the number of conflicts in the schedule S.

Algalg for the Optimization Problem: Given a fast algorithm Algoracle for CIR-SAT and the
descriptions V alid(I, S) and Cost(S) of an optimization problem, we will now design a fast
algorithm Algalg for the optimization problem and use it to prove that the problem CIR-SAT
is “at least as hard as” the optimization problem

Binary Search for Cost: Given some instance Ialg to the optimization problem, Algalg’s
first task is to determine the cost copt of the optimal solution for I. Algalg starts by
determining whether or not there is a valid solution for I that has cost at least c = 1.
If it does, Algalg repeats this with c = 2, 4, 8, 16, If it does not, Algalg tries c =
1
2 , 1

4 , 1
8 , 1

16 , . . ., until it finds c1 and c2 between which it knows the cost of an optimal
solution lies. Then it does binary search to find copt. The last step is to find a solution
for I that has this optimal cost.

Finding a Solution with given Cost: Algalg determines whether I has a solution S with
cost at least c or finds a solution with cost copt as follows. Algalg constructs a circuit C

and calls the algorithm Algoracle, which provides a satisfying assignment to C. Algalg

wants the satisfying assignment that Algoracle provides to be the solution S that it needs.
Hence, Algalg designs C to be satisfied by the assignment S only if S is a solution S for
I with a cost as required, i.e., C(S) ≡ [V alid(I, S) and Cost(S) ≥ c]. Because there are
polynomial time algorithms for V alid(I, S), for Cost(S), and for ≥, Algalg can easily
construct such a circuit C(S). If a such solution S satisfying C exists, then Algoracle

kindly provides one.

This completes the reduction of any Optimization problem to CIR-SAT.

Exercise 0.1.1 For each of the following problems, define I, S, V alid(I, S) and Cost(S).

1. Graph Colouring: Given a graph, colour the nodes of the graph so that two nodes do not
have the same colour if they have an edge between them. Use as few colours as possible.

2. Independent Set: Given a graph, find a largest subset of the nodes for which there are no
edges between any pair in the set.

3. Airplane: Given the requirements of a plane, design it optimizing its performance.

4. Business: Given a description of the business, make a business plan to maximize its profits.

5. Factoring: Given an integer, factor it, eg. 6 = 2 × 3.

6. Cryptography: Given an encrypted message, decode it.

0.2 Steps to Prove NP-Completeness

In this section we define the class NP and give steps for proving that a computational problem is
NP-complete.

5

Complete for Non-Deterministic Polynomial Time Decision Problems: The set of com-
putational problems that are complete (universally hard) for optimization problems is ex-
tremely rich and varied. Studying them has become a fascinating field of research.

NP Decision Problems: Theoretical computer scientists generally only consider a subclass
of the optimization problems referred to as the class of Non-Deterministic Polynomial
Time Problems (NP).

One Level of Cost: Instead of worrying about whether one solution has a better cost
than another, we will completely drop the notion of the cost of a solution. S will
only be considered to be a “valid solution” for the instance I if it is a solution with
a sufficiently good cost. This is not a big restriction, because if you want to consider
solutions with different costs, you can always do binary search as done above for the
cost of the optimal solution.

Witness: A solution for an instance is often referred to as a witness, because though
it may take exponential time to find it, if it were provided by a (non-deterministic)
fairy god mother, then it can be used in polynomial time to witness the fact that the
answer for this instance is yes. In this way, NP problems are asymmetrical because
there does not seem to be a witness that quickly proves that an instances does not
have solution.

Formal Definition: We say that such a computational problem P is in the class of
Non-Deterministic Polynomial Time Problems (NP) if there is a polynomial time
algorithm V alid(I, S) that specifies Yes when S is a (sufficiently good) solution for
the instance I and No, if not. More formally, P can be defined as follows.

P (I) ≡ [∃S, V alid(I, S)]

Examples:

Circuit Satisfiability (CIR-SAT): Circuit Satisfiability was initially defined as
a decision problem. Given a circuit, determine whether there is an assignment
that satisfies it.

Graph 3-Colouring (3-COL): Given a graph, determine whether its nodes can
be coloured with three colours so that two nodes do not have the same colour if
they have an edge between them.

Course Scheduling: Given the set of courses requested by each student, the set
of time slots available, and an integer K, determine whether there is schedule
with at most K conflicts.

Cook vs Karp Reductions: Stephen Cook first proved that CIR-SAT is complete for the
class of NP-problems. His definition of a reduction Palg ≤poly Poracle is that one can write
an algorithm Algalg for the problem Palg using an algorithm Algoracle for the problem
Poracle as a subroutine. In general, this algorithm Algalg could call Algoracle as many
times as it likes and do anything it wants with the answers that it receives. Richard
Karp later observed that when the problems Palg and Poracle are more similar in nature
then the algorithm Algalg used in the reduction need only call Algoracle once and answers
Yes if and only if Algoracle answers Yes. These two definitions of reductions are referred
to as Cook and Karp reductions. Though we defined Cook reductions above because
they are more natural, we will consider only Karp reductions from here on.

6

NP-Complete: We say that a computational problem Poracle is NP-complete if

1. it is in NP and

2. every language in NP can be polynomially reduced to it using a Karp reduction.
More formally,

∀ Optimization Problems Palg, Palg ≤poly Poracle.

To prove this, it is sufficient to prove that that our computational problem is at
least as hard as some problem already known to be NP-complete. For example,
because we now know that CIR-SAT is NP-complete, it is sufficient to prove that
CIR-SAT ≤poly Poracle.

The Steps to Prove NP-Complete: Proving problems to be NP-complete is a bit of an art, but
once you get the hang of it, they can be quite fun problems to solve. We will now carefully
lay out the steps needed.

Running Example: Course Scheduling is NP-Complete: We will use the steps to prove
that Algoracle = Course Scheduling problem is NP-complete.

0) Poracle ∈ NP: The first step is to prove that problem Poracle is in NP by providing the poly-
nomial time algorithm V alid(Ioracle, Soracle) that specifies whether Soracle is a valid solution
for instance Ioracle.

Course Scheduling: It is not hard to determine in polynomial time whether the instance
Ioracle and the solution Soracle are properly defined and to check that within this schedule
Soracle, the number of times that a student wants to take two courses that are offered at
the same time is at most K.

1) What To Reduce To It: An important and challenging step in proving that a problem is
NP-complete is deciding which NP-complete problem to reduce to it.

3-COL ≤poly Course Scheduling: We will reduce 3-COL to Course Scheduling, that is,
we will prove the reduction 3-COL ≤poly Course Scheduling. We will save the proof that
3-COL is NP-complete for our next example because it is much harder.

Hint: You want to choose a problem that is “similar” in nature to yours. In order to have
more to choose from, it helps to know a large collection of problems that are NP-
complete. There are entire books devoted to this. When in doubt 3-SAT and 3-Col are
good problems to use.

2) What is What: It is important to remember what everything is.

3-COL ≤poly Course Scheduling:

Palg = 3COL is the Graph 3-Colouring problem.

Ialg = Igraph, an instance to it, is an undirected graph.

Salg = Scolouring, a potential solution, is a colouring of each of its nodes with either
red, blue or green. It is a valid solution if no edge has two nodes with the same
colour.

7

Algalg is an algorithm that takes graph Igraph as input and determines whether it has
a valid colouring.

Poracle = Course Scheduling

Ioracle = Icourses, an instance to it, is the set of courses requested by each student,
the set of time slots available, and the integer K.

Soracle = Sschedule, a potential solution, is a schedule assigning courses to time slots.
It is a valid solution if it has at most K conflicts.

Algoracle is an algorithm that takes Icourses as input and determines whether it has a
valid schedule.

Such instances which may or may not be satisfiable and such potential solutions may or
may not be valid until they are proved.

Warning: Be especially careful about what is an instance and what is a solution for each of
the two problems.

3) Direction of Reduction and Code: Another common source of mistakes is doing the reduc-
tion in the wrong direction. I recommend not memorizing this direction, but working it out
each time. Our goal is to prove that the problem Poracle is at least as hard as Palg, namely
Palg ≤poly Poracle. We prove that Palg is relatively easy by designing a fast algorithm Algalg

for it using a supposed fast algorithm Algoracle for Poracle. (But there is likely not a fast
algorithm for Palg and hence there is not likely one for Poracle.) The code for our algorithm
for Palg will be as follows.

algorithm Algalg(Ialg)

〈pre−cond〉: Ialg is an instance of Palg.

〈post−cond〉: Determine whether Ialg has a solution Salg and if so returns it.

begin
Ioracle = InstanceMap(Ialg)
〈ansoracle, Soracle〉 = Algoracle(Ioracle)
if(ansoracle = Y es) then

ansalg = Y es

Salg = SolutionMap(Soracle)
else

ansalg = No

Salg = nil

end if
return(〈ansalg, Salg〉)

end algorithm

4) Look For Similarities: Though the problems Palg and Poracle may appear to be very different,
the goal in this step is to look for underlying similarities. Compare how their solutions, Salg

and Soracle, are formed out of their instances, Ialg and Ioracle. Generally, the instances can
be thought of as sets of elements with a set of constraints between them. Can you view their
solutions as subsets of these elements or as a labeling of them? What allows a solution to
form and what constrains how it is formed. Can you talk about the two problems using the

8

same language? For example, a subset of elements can be viewed as a labeling of the elements
with zero and one. Similarly, a labeling of each element e with ℓe ∈ [1..L] can be viewed as a
subset of the pairs 〈e, ℓe〉.

3-COL ≤poly Course Scheduling: A solution Scolouring is a
colouring that assigns a colour to each node. A solution
Sschedule is a schedule that assigns a time slot to each course.
This similarity makes it clear that there is a similarity be-
tween the roles of the nodes of Igraph and of the courses of
Icourses and between the colours of Scolouring and the time
slots of Sschedule. Each colouring conflict arises from an edge
between nodes and each scheduling conflict arises from a stu-
dent wanting two courses. This similarity makes it clear that
there is a similarity between the roles of the edges of Igraph

and of the course requests of Icourses.

easierI Iharder

MathEnglish

Science

easierS Sharder

Mon 2pm

Mon 2pmblue

blue

green Tue 3pm

5) InstanceMap: You must define a polynomial time algorithm InstanceMap(Ialg) that, given
an instance Ialg of Palg, constructs an instance Ioracle of Poracle that has “similar” sorts of
solutions. The main issue is that the constructed instance Ioracle has a solution if and only if
the given instance Ialg has a solution, that is Yes instances get mapped to Yes instances and
No to No.

3-COL ≤poly Course Scheduling: Given a graph Igraph to be coloured, we design an in-
stance Icourses = InstanceMap(Igraph) to be scheduled. Using the similarities observed
in step 4, our mapping we will have one course for each node of the graph and one time
slot for each of the three colours green, red, and blue. For each edge between nodes u

and v in the graph, we will have a student who requests both course u and course v.
The colouring problem does not allow any conflicts. Hence, we set K = 0.

Not Onto or 1-1: It is important that each instance Ialg is mapped to some instance Ioracle,
but it is not important whether an instance Poracle is mapped to more than one or none
at all. In our example, we never mention instances to be scheduled that have more than
three time slots or that allow K > 0 conflicts.

Warning: Be sure to do this mapping in the correct direction. The first step in designing
an algorithm Algalg is to suppose that you have been given an input Ialg for it. Before
your algorithm can call the algorithm Algoracle as a subroutine, your must construct an
instance Ioracle to give to it.

Warning: Do not define the mapping only for the Yes instances or use a solution Salg for
Ialg for determining the instance Ioracle mapped to. The algorithm Algalg that you are
designing is given an instance Ialg, but it does not know whether or not the instance
has a solution. The whole point is to give an argument that finding a solution may take
exponential time. It is safer when defining the mapping InstanceMap(Ialg) not to even
mention whether the instance Ialg has a solution or what that solution might be.

6) SolutionMap: You must also define a polynomial time algorithm SolutionMap(Soracle) map-
ping each valid solution Soracle for the instance Ioracle = InstanceMap(Ialg) you just con-
structed to a valid solution Salg for instance Ialg that was given as input. Valid solutions
can be subtle and the instance Ioracle may have some solutions that you had not intended

9

when you constructed it. One way to help avoid missing some is to throw a much wider net
by considering all “potential solutions.” In this step, for each potential solution Soracle for
Ioracle, you must either give a reason why it is not a valid solution or map it to a solution
Salg = SolutionMap(Soracle) for Ialg. It is fine if some of the solutions that you map happen
not to be valid.

3-COL ≤poly Course Scheduling: Given a schedule Sschedule assigning course u to time
slots c, we define Scolouring = SolutionMap(Sschedule) to be the colouring that colours
node u with colour c.

Warning: When the instance Ioracle you constructed has solutions that you did not expect,
there are two problems. First, the unknown algorithm Algoracle may give you one of
these unexpected solutions. Second, there is a danger that Ioracle has solutions but your
given instance Ialg does not. For example, if in step 5, our Ioracle allowed more than three
time slots or more than K = 0 conflicts, then the instance may have many unexpected
solutions. In such cases, you may have to redo step 5 adding extra constraints to the
instance Ioracle so that it no longer has these solutions.

7) Valid to Valid: In order to prove that the algorithm Algalg(Ialg) works, you must prove that if
Soracle is a valid solution for Ioracle = InstanceMap(Ialg), then Salg = SolutionMap(Soracle)
is a valid solution for Ialg.

3-COL ≤poly Course Scheduling: Supposing that the schedule is valid, we prove that
the colouring is valid as follows. The instance to be scheduled is constructed so that,
for each edge of the given graph, there is a student who requests the courses u and v

associated with the nodes of this edge. Because the schedule is valid, there are K = 0
course conflicts, and hence these courses are all scheduled at different time slots. The
constructed colouring, therefore allocates different colours to these nodes.

8) ReverseSolutionMap: Though we do not need it for the code, for the proof you must define an
algorithm ReverseSolutionMap(S′

alg) mapping in the reverse direction from each “potential”
solution S′

alg for instance Ialg to a potential solution S′
oracle for instance Ioracle.

3-COL ≤poly Course Scheduling: Given a colouring S′
colouring colouring node u with

colour c, we define S′
schedule = ReverseSolutionMap(S′

colouring) to be the schedule as-
signing course u to time slots c.

Warning: ReverseSolutionMap(S′
alg) does not need to be the inverse map of

SolutionMap(Soracle). You must define the mapping ReverseSolutionMap(Salg) for
every possible solution S′

alg, not just those mapped to by SolutionMap(Soracle). Other-
wise, there is the danger is that Ialg has solutions but your constructed instance Ioracle

does not.

9) Reverse Valid to Valid: You must also prove the reverse direction that if S′
alg is a valid

solution for Ialg, then S′
oracle = ReverseSolutionMap(S′

alg) is a valid solution for Ioracle =
InstanceMap(Ialg).

3-COL ≤poly Course Scheduling: Supposing that the colouring is valid, we prove that
the schedule is valid as follows. The instance to be scheduled is constructed so that
each student requests the courses u and v associated with nodes of some edge. Because

10

the colouring is valid, these nodes have been allocated different colours and hence the
courses are all scheduled different time slots. Hence, there will be K = 0 course conflicts.

10) Working Algorithm: Given the above steps, it is now possible to prove that if the supposed
algorithm Algoracle correctly solves Poracle, then our algorithm Algalg correctly solves Palg.

Yes to Yes: We start by proving that Algalg answers Yes when given an instance for which
the answer is Yes. If Ialg is a Yes instance, then by the definition of the problem Palg,
it must have a valid solution. Let us denote by S′

alg one such valid solution. Then
by step 9, it follows that S′

oracle = ReverseSolutionMap(S′
alg) is a valid solution for

Ioracle = InstanceMap(Ialg). This witnesses the fact that Ioracle has a valid solution
and hence Ioracle is an instance for which the answer is Yes. If Algoracle works correctly
as supposed, then it returns Yes and a valid solution Soracle. Our code for Algalg will
then return the correct answer Yes and Salg = SolutionMap(Soracle), which by step 7 is
a valid solution for Ialg.

No to No: We must now prove the reverse, that if the instance Ialg given to Algalg is a
No instance, then Algalg answers No. The problem with No instances is that they
have no witness to prove that they are No instances. Luckily, to prove something, it is
sufficient to prove the contrapositive. Instead of proving A ⇒ B, where A = “Ialg is a
No instance” and B = “Algalg answers No”, we will prove that ¬B ⇒ ¬A, where ¬B =
“Algalg answers Yes” and ¬A = “Ialg is a Yes instance.” Convince yourself that this is
equivalent.

If Algalg is given the instance Ialg and answers Yes, our code is such that Algoracle

must have returned Yes. If Algoracle works correctly as supposed, the instance Ioracle =
InstanceMap(Ialg) that it was given must be a Yes instance. Hence, Ioracle must have
a valid solution. Let us denote by Soracle one such valid solution. Then by step 7,
Salg = SolutionMap(Soracle) is a valid solution for Ialg, witnessing Ialg being a Yes
instance. This is the required conclusion ¬A.

This completes the proof that if the supposed algorithm Algoracle correctly solves Poracle, then
our algorithm Algalg correctly solves Palg.

11) Running Time: The remaining step is to prove that the constructed algorithm Algalg runs
in polynomial (|Ialg|

Θ(1)) time. Steps 5 and 6 require that both InstanceMap(Ialg) and
SolutionMap(Soracle) work in polynomial time. Hence, if Poracle can be solved “quickly”,
then Algalg runs in polynomial time. Typically for reductions people assume that Algoracle

is an oracle meaning that it solves its problem in one time step. Exercise 0.2.5 explores the
issue of running time further.

This concludes the proof that Poracle = Course Scheduling is NP-complete, (assuming of course
that that Palg = 3-COL has already been proven to be NP-complete.)

Exercise 0.2.1 We began this section by proving (Any Optimization Problem) ≤poly CIR-SAT. To
make this proof more concrete redo it completing each of the above steps specifically for 3-COL ≤poly

CIR-SAT. Hint: The circuit Ioracle = InstanceMap(Ialg) should have a variable x〈u,c〉 for each pair
〈u, c〉.

11

Exercise 0.2.2 3-SAT is a subset of the CIR-SAT problem in which the input circuit must be a
big AND of clauses, each clause must be the OR of at most three literals, and each literal is either
a variable or its negation. Prove that 3-SAT is NP-compete by proving that 3-COL ≤poly 3-SAT.
Hint: The answer is almost identical to that for Exercise 0.2.1.

Exercise 0.2.3 Let CIR-SAT be the complement of the CIR-SAT problem, namely the answer is
Yes if and only if the input circuit is not satisfiable. Can you prove CIR-SAT ≤poly CIR-SAT using
Cook reductions. Can you prove it using Karp reductions?

Exercise 0.2.4 Suppose problem P1 is a restricted version of P2, in that they are the same except
P1 is define on a subset I1 ⊆ I2 of the instances that P2 is defined on. For example, 3-SAT is
a restricted version of CIR-SAT because both determine whether a given circuit has a satisfying
assignment, however, 3-SAT only considers special types of circuits with clauses of three literals.
How hard is it to prove P1 ≤poly P2? How hard is it to prove P2 ≤poly P1?

Exercise 0.2.5 Suppose that when proving Palg ≤poly Poracle, the routines InstanceMap(Ialg)
and SolutionMap(Soracle) each run in O(|Ialg|

3) time and that the mapping InstanceMap(Ialg)
constructs from the instance Ialg an instance Ioracle that is much bigger, namely, |Ioracle| = |Ialg|

2.
Given the following two running times of the algorithm Algoracle, determine the running time of
the algorithm Algalg. (Careful.)

1. T ime(Algoracle) = Θ(2n
1

3)

2. T ime(Algoracle) = Θ(nc) for some constant c.

0.3 Example: 3-Colouring is NP-Complete

We will now use the steps again to prove that 3-Colouring is NP-complete.

0) In NP: The problem 3-COL is in NP because given an instance graph Igraph and a solution
colouring Scolouring, it is easy to have an algorithm V alid(Igraph, Scolouring) check that each
node is coloured with one of three colours and that the nodes of each edge have different
colours.

1) What To Reduce To It: We will reduce CIR-SAT to 3-COL by proving CIR-SAT ≤poly

3-COL. In Section 0.1 we proved (Any Optimization Problem) ≤poly CIR-SAT and that
3-COL ≤poly Course Scheduling. By transitivity, this gives us that CIR-SAT, 3-COL, and
Course Scheduling are each NP-Complete problems.

2) What is What:

Palg is the Circuit Satisfiability problem (CIR-SAT).

Icircuit, an instance to it, is a circuit.

Sassignment, a potential solution, is an assignment to the circuit variables x1, x2, . . . , xn.

Poracle is the Graph 3-Colouring problem (3-COL).

Igraph, an instance to it, is a graph.

Scolouring, a potential solution, is an colouring of the nodes of the graph with 3 colours.

12

3) Direction of Reduction and Code: To prove 3-COL is “at least as hard”, we must prove
that CIR-SAT is “at least as easy”, namely CIR-SAT ≤poly 3-COL. To do this, we must
design an algorithm for CIR-SAT given an algorithm for 3-COL. The code will be identical
to that in Section 0.2.

4) Look For Similarities: An assignment allocates True/False values to each variable, which in
turn induces True/False values to the output of each gate. A colouring allocates one of three
colours to each node. This similarity hints at mapping the variables and outputs of each gate
to nodes in the graph and mapping True to one colour and False to another. With these
ideas in mind, Steven Rudich had a computer search for the smallest graph that behaves like
an or gate when coloured with three colours. The graph found is shown in Figure 1. He calls
it an OR Gadget.

vF

vout

xv

OR Gadget

v

NOT Gadget

Tv
R

g
b

g

Coloring

rr

(x or y)v

vout

(not z)v

rout

x y z

Circuit

TF

FFF

CircuitTGraph

g r

g

b
r

g

b
rg

or

or not

vz
b

g

bg
r

b
r
g
r

vF
Rv

Tv

notor

or

xv yv

v
vy

4v
outv

FvvR
vT

(F or T) = T

5

3vv2
1v

vx

v6

g
r g

b

g

g r
b

(F or F) = F

r
g
r

b

r
g b

g
r

rg
r

b

Figure 1: On the top, the first figure is the OR gadget. The next two are colourings of this gadget
demonstrating (False or True) = True and (False or False) = False. The top right figure is
the NOT gadget. On the bottom, the first figure is the circuit given as an instance to SAT. The
next is the graph that it is translated into. The next is a 3-colouring of this graph. The last is the
assignment for the circuit obtained from the colouring.

Translating between Colours and True/False: The three nodes vT , vF , and vR in the
OR gadget are referred to as the pallet. Because of the edges between them, when the
gadget is properly coloured, these nodes need to be assigned different colours. Whatever
colour is assigned to the node vT , we will say that it is the colour indicating true, that
colouring vF the colour indicating false, and that colouring vR the remaining colour. For
example, in all the colourings in Figure 1, green indicates true, red indicates false, and
blue is the remaining colour.

Input and Output Values: Nodes vx and vy in the OR gadget act as the gadget’s inputs
and the node vout as its output. Because each of these nodes has an edge to node vR,
they cannot be coloured with the remaining colour. The node will be said to “have the
value true”, if it is assigned the same colour as vT and false if the same as vF . The
colouring in the second figure in Figure 1 sets x = false, y = true, and the output
= true. The colouring in the third figure sets x = false, y = false, and the output
= false.

Theorem 19.3.1: Rudish’s OR gadget acts like an or gate, in that it always can be and
always must be coloured so that the value of its output node vout is the or of the values
of its two input nodes vx and vy. Similarly for the NOT gate.

13

Proof: There are four input instances to the gate to consider.

(F alse or True) = True: If node vx is coloured false and vy is coloured true, then
because v5 has an edge to each, it must be coloured the remaining colour. v6, with
edges to vF and v5 must be coloured true. v4, with edges to vR and v6 must be
coloured false. vout, with edges to vR and v4 must be coloured true. The colouring
in the second figure in Figure 1 proves that such a colouring is possible.

(F alse or F alse) = F alse: If node vx and vy are both coloured false, then neither
nodes v1 nor v3 can be coloured false. Because of the edge between them, one of
them must be true and the other the remaining colour. Because v2 has an edge
to each of them, it must be coloured false. v4, with edges to vR and v2 must be
coloured true. vout, with edges to vR and v4 must be coloured false. The colouring
in the third figure in Figure 1 proves that such a colouring is possible.

(True or True) = True and (True or F alse) = True: See Exercise 0.3.1 for
these cases and for the NOT gate.

5) InstanceMap, Translating the Circuit into a Graph: Our algorithm for the CIR-SAT
takes as input a circuit Icircuit to be satisfied and in order to receive help from the 3-COL
algorithm constructs from it a graph Igraph = InstanceMap(Icircuit) to be coloured. See
the first two figure on the bottom of Figure 1. The graph will have one pallet of nodes vT ,
vF , and vR with which to define the true and the false colour. For each variable xi of the
circuit, it will have one node labeled xi. It will also have one node labeled xout. For each
or gate and not gate in the circuit, the graph will have one copy of the OR gadget or the
NOT gadget. The and gates could be translated into a similar AND gadget or translated to
[x and y] = [not(not(x) or not(y))]. All of these gadgets share the same three pallet nodes.
If in the circuit the output of one gate is the input of another then the corresponding nodes
in the graph are the same. Finally, one extra edge is added to the graph from the vF node to
the vout node.

6) SolutionMap, Translating a Colouring into an Assignment: When the supposed algo-
rithm finds a colouring Scolouring for the graph Igraph = InstanceMap(Icircuit), our algorithm
must translate this colouring into an assignment Sassignment = SolutionMap(Scolouring) of
the variables x1, x2, . . . , xn for circuit. See the last two figures on the bottom of Figure 1.
The translation is accomplished by setting xi to true if node vxi

is coloured the same colour
as node vT and false if the same as vF . If node vxi

has the same colour node vR, then this
is not a valid colouring because there is an edge in the graph from node vxi

to node vR and
hence need not be considered.

Warning: Suppose that the graph constructed had a separate node for each time that the
circuit used the variable xi. The statement “set xi to true when the node vxi

has some
colour” would then be ambiguous, because the different nodes representing xi may be
given different colours.

7) Valid to Valid: Here we must prove that if the supposed algorithm gives us a valid
colouring Scolouring for the graph Igraph = InstanceMap(Icircuit), then Sassignment =
SolutionMap(Scolouring) is an assignment that satisfies the circuit. By the gadget theorem,
each gadget in the graph must be coloured in a way that acts like the corresponding gate.
Hence, when we apply the assignment to the circuit, the output of each gate will have the

14

value corresponding to the colour of corresponding node. It is as if the colouring of the graph
is performing the computation of the circuit. It follows that the output of the circuit will
have the value corresponding to the colour of node vout. Because node vout has an edge to vR

and an extra edge to vF , vout must be coloured true. Hence, the assignment is one for which
the output of the circuit is true.

8) ReverseSolutionMap: For the proof we must also define the reverse mapping from each as-
signment Sassignment to a colouring Scolouring = ReverseSolutionMap(Sassignment). Start by
colouring the pallet nodes true, false, and the remaining colour. Colour each node vxi

true
or false according to the assignment. Then Theorem 19.3.1 states that no matter how the
inputs nodes to a gadget is coloured, the entire gadget can be coloured with the output node
having the colour as indicated by the output of the corresponding gate.

9) Reverse Valid to Valid: Now we prove that if the assignment Sassignment satisfies the circuit,
then the colouring Scolouring = ReverseSolutionMap(Sassignment) is valid. Theorem 19.3.1
ensured that each edge in each gadget has two different colours. The only edge remaining
to consider is the extra edge. As the colours percolate down the graph node vout must have
colour corresponding to the output of the circuit, which must be the true colour because the
assignment is satisfies the circuit. This ensures that even the extra edge from node vF to vout

is coloured with two different colours.

10 & 11: These steps are always the same. InstanceMap(Icircuit) maps Yes circuit instances to
Yes 3-COL instances and No to No. Hence, if the supposed algorithm 3-COL works correctly
in polynomial time, then our designed algorithm correctly solves CIR-SAT in polynomial
time. It follows that CIR-SAT ≤poly 3-COL. In conclusion, 3-Colouring is NP-complete.

Exercise 0.3.1 (a) Complete the proof of Theorem 19.3.1 by proving the cases (True or True) =
True and (True or False) = True. (b) Prove a similar theorem for the NOT gadget. See the top
right figure in Figure 1.

Exercise 0.3.2 Verify that each edge in the graph Igraph = InstanceMap(Icircuit) is needed by
showing that if it was not there then it would be possible for the graph to have a valid colouring
even when the circuit is not satisfied.

Exercise 0.3.3 (See solution in Section ??) Prove that Independent Set is NP-compete by proving
that T ime(3-COL) ≤ T ime(Independent Set)+nΘ(1). Hint: A 3-coloring for the graph GCOL can be
thought of as a subset of the pairs 〈u, c〉 where u is a node of GCOL and c is a color. An independent
set of the graph GInd selects a subset of its nodes. Hence, a way to construct the graph Gind in
the instance 〈GInd, NInd〉 = InstanceMap(GCOL) would be to having a node for each pair 〈u, c〉.
The input to the i Be careful when defining the edges for the graph GInd = InstanceMap(GCOL)
so that each valid independent set of size n in the constructed graph corresponds to a valid three
coloring of the original graph. If the constructed graph has unexpected independent sets, you may
need to add more edges to the graph.

0.4 An Algorithm for Bipartite Matching using the Network Flow

Algorithm

Up to now we have been justifying our belief that certain computational problems are difficult by
reducing them to other problems believed to be difficult. Here, we will give an example of the

15

reverse, by proving that the problem Bipartite Matching can be solved easily by reducing it to
the Network Flows problem, which we already know is easy because we gave an polynomial time
algorithm for it in Section ??.

Bipartite Matching: Bipartite matching is a classic optimization problem. As always, we define
the problem by given a set of instances, a set of solutions for each instance, and a cost for
each solution.

Instances: An input instance to the problem is a bipartite graph. A bipartite graph is a
graph whose nodes are partitioned into two sets U and V and all edges in the graph go
between U and V . See the first figure in Figure 2.

Solutions for Instance: Given an instance, a solution is a matching. A matching is a subset
M of the edges so that no node appears more than once in M . See the last figure in
Figure 2.

Cost of a Solution: The cost (or success) of a matching is the number of pairs matched.
It is said to be a perfect matching if every node is matched.

Goal: Given a bipartite graph, the goal of the problem is to find a matching that matches
as many pairs as possible.

Graph
Bipartite

Network Flow

s t

Matching

s t

cap = 1
flow = 1
flow = 0

Figure 2: The first figure is the bipartite graph given as an instance to Bipartite matching. The
next is the network that it is translated into. The next is a flow through this network. The last is
the matching obtained from the flow.

Network Flows: Network Flow is another example of an optimization problem that involves
searching for a best solution from some large set of solutions.

Instances: An instance 〈G, s, t〉 consists of a directed graph G and specific nodes s and t.
Each edge 〈u, v〉 is associated with a positive capacity c〈u,v〉.

Solutions for Instance: A solution for the instance is a flow F which specifies a flow
F〈u,v〉 ≤ c〈u,v〉 through each edges of the network with no leaking or additional flow
at any node.

Measure Of Success: The cost (or success) of a flow is the the amount of flow out of node
s.

Goal: Given an instance 〈G, s, t〉, the goal is to find an optimal solution, that is, a maximum
flow.

16

Bipartite Matching ≤poly Network Flows: We go through the same steps as before.

3) Direction of Reduction and Code: We will now design an algorithm for Bipartite
Matching given an algorithm for Network Flows.

4) Look For Similarities: A matching decides which edges to keep and a flow decides which
edges to put flow though. This similarity suggests keeping the edges that have flow
through them.

5) InstanceMap, Translating the Bipartite Graphs into a Network: Our algorithm
for Bipartite Matching takes as input a bipartite graph Gbipartite. The first step is to
translate this into a network Gnetwork = InstanceMap(Gbipartite). See the first two
figures in Figure 2. The network will have the nodes U and V from the bipartite graph
and for each edge 〈u, v〉 in the bipartite graph, the network has a directed edge 〈u, v〉.
In addition, the network will have a source node s with a directed edge from s to each
node u ∈ U . It will also have a sink node t with a directed edge from each node v ∈ V

to t. Every edge out of s and every into t will have capacity one. The edges 〈u, v〉 across
the bipartite graph could be given capacity one as well, but they could just as well be
given capacity ∞.

6) SolutionMap, Translating a Flow into an Matching: When the Network Flows al-
gorithm finds a flow Sflow through the network, our algorithm must translate this flow
into a matching Smatching = SolutionMap(Sflow). See the last two figures in Figure 2.

SolutionMap: The translation puts the edge 〈u, v〉 in the matching if there is a flow
of one through the corresponding edge in the network and not if there is no flow in
the edge.

Warning: Be careful to map every possible flow to a matching. The above mapping is
ill defined when there is a flow of 1

2 through an edge. This needs to be fixed and
could be quite problematic.

Integer Flow: Luckily, Exercise ?? proves that if all the capacities in the given network
are integers, then the algorithm always returns a solution in which the flow through
each edge is an integer. Given that our capacities are all one, each edge will either
have a flow of zero or of one. Hence, in our translation, it is well-defined whether to
include the edge 〈u, v〉 in the matching or not.

7) Valid to Valid: Here we must prove that if the flow Sflow is valid than the matching
Smatching is also valid.

Each u Matched At Most Once: Consider a node u ∈ U . The flow into u can be
as most one because there is only one edge into it and it has capacity one. For the
flow to be valid, the flow out of this node must equal that in. Hence, it too can be
at most one. Because each edge out of u either has flow zero or one, if follows that
at most one edge out of u has flow. We can conclude that u is matched to at most
one node v ∈ V .

Each v Matched At Most Once: See Exercise 0.4.1

Cost to Cost: To be sure that the matching we obtain contains the maximum
number of edges, it is important that the cost of the matching Smatching =
SolutionMap(Sflow) equals the cost of the flow. The cost of the flow is the amount
of flow out of node s, which equals the flow across the cut 〈U, V 〉, which equals the
number of edges 〈u, v〉 with flow of one, which equals the number of edges in the
matching, which equals the cost of the matching.

17

8) ReverseSolutionMap: The reverse mapping from each matching Smatching to a valid
flow Sflow = ReverseSolutionMap(Smatching) is straight forward. If edge 〈u, v〉 is in
the matching, then put a flow of one from the source s, along the edge 〈s, u〉 to node u,
across the corresponding edge 〈u, v〉, and then on through the edge 〈v, t〉 to t.

9) Reverse Valid to Valid: We must also prove that if the matching Smatching is valid then
the flow Sflow = ReverseSolutionMap(Smatching) is also valid.

Flow in Equals Flow Out: Because the flow is the sum of paths, we can be assured
that the flow in equals the flow out of every node except for the source and the
sink. Because the matching is valid, each u and each v is matched either zero or
once. Hence the flows through the edges 〈s, u〉, 〈u, v〉, and 〈v, t〉 will be at most their
capacity one.

Cost to Cost: Again, we need to prove that the cost of the flow Sflow =
ReverseSolutionMap(Smatching) is the same as the cost of the matching. See Ex-
ercise 0.4.2.

10 & 11: These steps are always the same. InstanceMap(Gbipartite) maps bipartite graph
instances to network flow instances Gflow with the same cost. Hence, because algorithm
Algflow correctly solves network flows quickly, our designed algorithm correctly solves
bipartite matching quickly.

In conclusion, bipartite matching can be solved in the same time that network flows is solved.

Exercise 0.4.1 Give a proof for the case where each v is matched at most once.

Exercise 0.4.2 Give a proof that the cost of the flow Sflow = ReverseSolutionMap(Smatching) is
the same as the cost of the matching

Exercise 0.4.3 Section ?? constructs three dynamic programming algorithms using reductions.
For each of these, carry out the formal steps required for a reduction.

Exercise 0.4.4 There is a collection of software packages S1, . . . , Sn which you are considering
acquiring. For each i, you will gain an overall benefit of bi if you acquire package Si. Possibly bi

is negative, for example, if the cost of Si is greater than the money that will be saved by having it.
Some of these packages rely on each other; if Si relies on Sj, then you will incur an additional cost
of Ci,j ≥ 0 if you acquire Si but not Sj . Unfortunately, S1 is not available. Provide a polytime
algorithm to decide which of S2, . . . , Sn you should acquire. Hint: Use max flow / min cut.

18

