
Tutorial on ETF: the Eiffel Testing Framework

Building a Bank System

Jackie Wang

Fall 2020

Abstract

Customers need not know details of your design of classes and features. Instead, there is an agreed
interface for customers to specify the way by which they interact with the software system. The Eiffel
Testing Framework (ETF) addresses exactly this issue, by facilitating software engineers to write
and execute high-level, input-output-based acceptance tests.

Customers only need to be familiar with the signature declarations of list of abstract events. A first
version of ETF that is tailored for the SUD can already be generated, using the ETF generator, using
these event declarations (documented documented in a plain text file). This version of ETF, where
the actual business model is not yet connected, is already executable on use cases under both batch
and interactive modes, where event traces are simply echoed as outputs. User inputs are specified as
traces of events (or sequences). Outputs (from executing each event in the input trace) are by default
logged onto the terminal, and their formats may be customized. The boundary of the system under
development (SUD) is defined by declaring the list of input events (and their parameters) that might
occur.

Once the business model is built, there is only a small number of steps to follow for the developers
to connect it to the generated ETF. Once connected, developers may re-run all use cases and observe
if the expected state effects take place. The design principle of information hiding is obeyed here:
you as the implementor or designer is free to modify/revise/renew the interior design, and reconnect
the new design to the same interface of commands, without affecting the way customers/users interact
with the system.

In the generated ETF, many of the Eiffel classes are deferred and provides default behaviours that
are inherited by the corresponding descendant, effective classes. The ETF user may safely modify
these descendant classes, and at some point decide to renew the current ETF to re-generate all the
deferred classes, as well as the file handling and paring utility classes. That is, any manual changes
applied to these descendant classes will persist in all subsequent renewals.

Issues about this tutorial document, or bugs and feature request of the ETF generator should be
forwarded to jackie@eecs.yorku.ca.

1

Contents

1 Prerequisites 3

2 Generating a new ETF 3

3 Case Studies: Design Patterns in ETF 4

4 Running the Default Generated ETF 5
4.1 Building the Executable . 5
4.2 Retrieving the Executable . 5
4.3 Launching the Default GUI Mode . 6
4.4 Changing to the Command-Line Mode . 7
4.5 Writing Use Cases . 7
4.6 Running in the Batch Mode . 8
4.7 Running in the Interactive Mode . 9

5 Developing Your Own Business Model 10

6 Connecting Model to the Generated ETF 11

7 Renewing the Generated ETF (Optional) 12

8 Final Remarks 13

9 Appendix 14
9.1 Grammars . 14
9.2 Tokens . 14

9.2.1 Grammar for Declaring Abstract System Events 15
9.2.2 Grammar for Defining Use Cases (Event Traces) 16

9.3 Supported Types . 17
9.4 Supported Value Expressions . 18
9.5 Overview of the Generated ETF Structure . 19
9.6 A Use Case of Running ETF in the Interactive Mode . 21
9.7 Eiffel Code Listings of the Bank . 24

9.7.1 Class Implementing the Singleton Pattern for Bank Access 24
9.7.2 Bank as a Collection of Accounts . 25
9.7.3 Account . 27

9.8 Eiffel Code Listings of the User Commands . 28

2

1 Prerequisites

The command etf (an ETF generator) is available on the Prism Linux workstations and also on the SEL
Virtual Box image. Confirm this by typing the following on the terminal:

% etf -version
Eiffel Testing Framework (ETF) Version: 1.14 (2019-10-12)

% etf -help
The Eiffel Testing Framework (ETF) generator

may be invoked using one of the following 3 options:

etf -new defns.txt tar_dir

etf -renew defns.txt tar_dir

etf -help

...

This tutorial makes the following assumptions:

– Signatures of events that might occur in your system under development (SUD) is documented in
a text file bank_events.txt.

– An acceptance test, i.e., a use case or example run of your system, specified in terms of a sequence
of event occurrences, is documented in a text file input.txt.

2 Generating a new ETF

To generate a new copy of ETF that is tailored to your system (e.g., a bank system), run:

etf -new bank_events.txt bank_proj

where

1. Option -new specifies that a fresh copy of ETF is to be generated.

2. Text file bank_events.txt declares

– Name of the target system (i.e., bank)

– Signatures1 of events.

A formal grammar for a system event declaration file such as bank events.txt is included in
Section 9.2.1 (p15).

1For each event, its signature consists of the event name and a list of parameters (i.e., name-type pairs)

3

As an example, for a simple bank system, we have file bank_events.txt specified as:

-- declaration of system name

system bank

-- declaration of event signatures

new(id: STRING)

-- create a new bank account for "id"

deposit(id: STRING; amount: REAL)

-- deposit "amount" into the account of "id"

withdraw(id: STRING; amount: REAL)

-- withdraw "amount" from the account of "id"

transfer(id1: STRING; id2: STRING; amount: REAL)

-- transfer "amount" from the account of "id1" to that of "id2"

where each line of a user comment is written following -- (i.e., the Eiffel style). Refer to Section 9.3
for the list of supported types for event parameters.

Note. Event names should be unique. Similarly, parameter names of an event should be unique.

3. Target directory bank_proj must be existing and empty.

4. Avoid Eiffel keywords for event and parameter names (e.g., from).

To see the cluster structure of the generated ETF, refer to Appendix 9.5.

3 Case Studies: Design Patterns in ETF

Each generated ETF project (see Section 9.5) adopts a number of object-oriented design patterns:

– Command Pattern

All system updates are abstracted as commands, each of which being modelled as a class. Com-
mands classes (e.g., ETF_DEPOSIT, ETF_WITHDRAW) constitute a public, external interface, via which
customers/users interact with the system. The private, internal design of yours (classes and fea-
tures) are “connected” to these commands.

Remark. The design principle of information hiding is obeyed here: you as the implementor
is free to modify the design, and reconnect the new design to the same interface of commands,
without affecting the way customers/users interact with the system.

– Singleton Pattern

See the generated classes ETF_MODEL (shared data) and ETF_MODEL_ACCESS (exclusive access to the
shared data).

– Observer Pattern

When system updates are performed via the commands, the changes should be notified to the
abstract user interface in order to log the latest output. See the ETF EVENT class and all COMMAND
classes.

4

4 Running the Default Generated ETF

From Section 2, we generated a fresh copy of ETF, within the specified target directory bank_proj, that
is tailored for events declared in the text file bank_events.txt. The generated ETF (e.g., one for the
simple bank system) is meant to be ready for running (before even implementing your business logic!).
As we will see, the default ETF simply echoes the events you input (either from a text file in the batch
mode, or from command-line prompts in the interactive mode).

4.1 Building the Executable

To run the default ETF for our simple bank system, we need to first build an executable for it:

cd bank_proj

ec19.05 -c_compile -finalize -config bank.ecf

Note. Two .ecf files are generated for each target system (e.g., bank.ecf and bank-fresh.ecf):

– When a fresh copy of ETF is generated (via etf -new ...), both .ecf files are identical.

– When an existing, previously-generated ETF is renewed (via etf -renew ...), only bank-fresh.ecf
will be overwritten, while any user modifications on bank.ecf will be kept intact.

This means that, when changes are needed, apply them only to the one (i.e., bank.ecf) that will
not be overwritten in the subsequent renewals.

4.2 Retrieving the Executable

You may find it convenient to copy the executable built to where the input script input.txt is located,
e.g., assuming that the current directory is bank_proj:

cp ./EIFGENs/bank/F_code/bank ./bank.exe

5

4.3 Launching the Default GUI Mode

You may now launch the system:

./bank.exe &

The default execution mode of a generated ETF project is the GUI mode, as shown in Figure 1.

Figure 1: Graphical User Interface for the Generated Bank ETF Project

The Status panel displays commands that correspond to events declared in the source file bank
events.txt. From the GUI, you may enter a command (e.g., deposit("Steve", 200)), execute it,
reset the system back to its initial state, or load a number of commands at once from a text file.

6

4.4 Changing to the Command-Line Mode

You may often find it inconvenient for your project development in the GUI mode. It is easy switch it:

– Go to the file bank proj/root/root.e.

– Look for the feature switch and change its value to:

switch: INTEGER

-- Running mode of ETF application

do

-- Result := etf_gui_show_history -- GUI mode

Result := etf_cl_show_history

-- Result := unit_test -- Unit Testing mode

end

– Recompile the project and copy the new version of the executable bank from the EIFGENs directory
(see Section 4.1 and Section 4.2).

– Now launching the system again and you will see the difference:

% ./bank.exe -help
The executable ./bank.exe may be invoked as:

./bank.exe -help

./bank.exe -version

./bank.exe -i

./bank.exe -b input.txt [output.txt]

./bank.exe -w m n input.txt [output.txt]

./bank.exe -l input.txt [output.txt]

4.5 Writing Use Cases

We write a use case of running the bank system as a sequence of event occurrences (i.e., an event trace)
with argument values conforming to their declared types (in the text file, e.g., bank_events.txt that
was used to generate the current ETF).

As an example, here is a valid use case for the bank system:

new("Bill")

new("Steve")

deposit("Bill", 55.0)

deposit("Steve", 33.5)

withdraw("Bill", 6.0)

Typically we store each use case like the above one into a text file such as input.txt. A formal
grammar for a system trace file such as input.txt is included in Section 9.2.2 (p16). Each line must
conform to the following syntax:

evt name (val1 , val2 , . . . , valn)

That is, each line starts with a string identifier, followed by a left parenthesis, followed by a non-empty
comma-separated list of argument values, and ended with a right parenthesis. For writing argument
values, refer to Section 9.4.

7

You may run the above use case in either the batch mode (Section 4.6) or in the interactive mode
(Section 4.7). The former has the advantage that the use case is stored in a file and line comments may
be used for documentations.

4.6 Running in the Batch Mode

If you have documented a use case of the bank system in a text file input.txt, then you may run it in
the batch mode:

./bank.exe -b input.txt

where

1. Option -b specifies that the generated bank system is to be run in the batch mode.

2. Text file input.txt documents a use case of the bank system, e.g., the one in Section 4.5, with line
comments:

-- a use case of the bank system

new("Bill")

-- create a new account named "Bill"

new("Steve")

-- create a new account named "Steve"

deposit("Bill", 55.0)

-- deposit $55.0 into Bill’s account

deposit("Steve", 33.5)

-- deposit $33.5 into Steve’s account

withdraw("Bill", 6.0)

-- withdraw $6.0 from Bill’s account

Consequently, we get the following output from the command line:

System State: default model state (0)

->new("Bill")

System State: default model state (1)

->new("Steve")

System State: default model state (2)

->deposit("Bill",55)

System State: default model state (3)

->deposit("Steve",33.5)

System State: default model state (4)

->withdraw("Bill",6)

System State: default model state (5)

The line System State: default model state (0) is the initial system state. Each symbol ->
is followed by an echo of the input event, and then by the resulting state. For example, the starting
state of new("Steve") is System State: default model state (1), whereas the resulting state of it
is System State: default model state (2).

8

As no actual business model has been connected to the newly-generated ETF, simply the con-
stant string System state: default model state is output for each event. That is, all events, e.g.,
new("Bill") and deposit("Bill", 55), do not have any effect on the bank state.

In Section 6, we will see how to connect your business model implementation (Section 5) to the ETF,
so that the expected state changes can be observed.

4.7 Running in the Interactive Mode

You may also run a use case of the bank system “on the fly” by initiating the interactive mode:

./bank.exe -i

Then you will be prompted to type inputs, which can be either of the following:

– man for displaying a manual list of event declarations, as defined in the text file, e.g., bank_events.txt,
that was used to generate the current ETF;

– an event (e.g., new("Bill"), deposit("Bill", 55.0), etc.) that occurs in the current state; and

– quit for terminating the interactive mode.

Here is an example run in the interactive mode:

indigo 183 % ./bank.exe -i

Enter an event, ’man’ for the list of declared events, or ’quit’ to terminate...

man
new(id: STRING)

deposit(id: STRING ; amount: REAL)

withdraw(id: STRING ; amount: REAL)

transfer(id1: STRING ; id2: STRING ; amount: REAL)

Enter an event, ’man’ for the list of declared events, or ’quit’ to terminate...

new("Steve")
init

->new("Steve")

System state: default model state

Enter an event, ’man’ for the list of declared events, or ’quit’ to terminate...

deposit(23, 33.5)
Type Error: specification of command executions is not type-correct

deposit(23, 33.5) does not conform to declaration deposit(id: STRING ; amount: REAL)

Enter an event, ’man’ for the list of declared events, or ’quit’ to terminate...

deposit("Steve", 33.5)
->deposit("Steve",33.5)

System state: default model state

Enter an event, ’man’ for the list of declared events, or ’quit’ to terminate...

quit

Notes.

1. The generated ETF is able to report errors when:

– The line does not have the right syntax. For writing argument values, refer to Section 9.4.

– The event name does not exist

9

– An argument value does not conform its declared type (e.g., value 33.5 for a STRING parameter)

2. Similar to the case of running in the batch mode (Section 4.6), since no business model implemen-
tation has been connected to the ETF (Section 6), any valid event is only echoed and has no effect
on the bank state.

To understand how components of the ETF work internally in the above interactive mode, refer to
Section 9.6.

5 Developing Your Own Business Model

In Section 4, we demonstrate how to run use cases on the generated ETF, tailored for the bank system
whose events are declared in the text file bank_events.txt, both in the batch mode and in the interactive
mode. However, all events (and their list of arguments) in an event trace were simply echoed, as there is
a lack of an implementation for the bank system.

Appendix 9.7 provides a complete reference implementation for the bank system. All three imple-
mentation classes are supposed to be placed under the model cluster, where the two generated classes
ETF_MODEL and ETF_MODEL_ACCESS are located. You are expected to study the three Eiffel classes in
Appendix 9.7 on your own. Here are some hints:

– A BANK has a collection of ACCOUNTs (via a client-supplier relationship). Accounts in a bank are
indexed by named of owners, using a HASH_TABLE.

– The singleton design pattern is implemented in the BANK_ACCESS class to ensure, using the Eiffel
once routine, that only one instance of the Bank class is created.

– Observe the similarity between classes ETF_MODEL and BANK, and that between classes ETF_MODEL_ACCESS
and BANK_ACCESS. The two classes ETF_MODEL and ETF_MODEL_ACCESS serve as a template for you
to implement the singleton pattern for your business model (e.g., the bank).

Exercise. Complete the implementation for command transfer that is missing from the Bank class in
Appendix 9.7.

Upon completing the implementation of our business model, in the next section we illustrate how to
connect it to the generated ETF, so that we will be able to observe the expected state effects of events
new, deposit, withdraw, and transfer by re-building and re-running the executable ./bank.exe in
both the batch and interactive modes.

10

6 Connecting Model to the Generated ETF

In principle, you only need to modify classes under the cluster whose name matches that of the SUD
(e.g., bank as declared in the text file bank_events.txt). In the case of our bank example, you need to
modify the following files:

1. class ETF COMMAND in bank/abstract ui/user commands/

You should declare an attribute of the type of your business model (e.g., BANK), so that it is accessible
to all the descendant classes (e.g., NEW, DEPOSIT, etc), and initialize its access in the constructor
routine make. For example:

deferred class

ETF_COMMAND

inherit

COMMAND_INTERFACE

redefine

make

end

feature {NONE}

make(a_name: STRING; a_args: TUPLE; a_container: ABSTRACT_UI_INTERFACE)

local

l_bank_access: BANK_ACCESS

do

Precursor(a_name, a_args, a_container)

bank := l_bank_access.bank

end

feature -- attributes

bank: BANK

end

2. All user-command classes in bank/abstract ui/user command/

Now that class COMMAND already declares and initializes an access to the business model, each user-
command class must use this access to modify the model state, using the corresponding command
(i.e., in the BANK class). Moreover, after an update is performed, the abstract user interface container
should be notified in order to output the new system state, using the attached output handler. For
example:

class

ETF_DEPOSIT

inherit

ETF_DEPOSIT_INTERFACE

redefine deposit end

create

make

feature

deposit(a_name:STRING; a_value:INTEGER)

do

11

bank.deposit (a_name, a_value)

container.on_change.notify ([Current])

end

end

Apply similar changes to classes ETF_NEW, ETF_WITHDRAW, and ETF_TRANSFER.

Refer to Appendix 9.8 for the Eiffel code listing for NEW and WITHDRAW. The implementation for
TRANSFER is left to you as an exercise.

Remark: Each user-command class (e.g., ETF NEW, ETF WITHDRAW) is an abstraction of how the
system may be modified from the external clients’ point of view. But internally, you as the designer
has the complete freedom of implementing these abstract commands, via your own classes and
features.

3. class ETF CMD LINE OUTPUT HANDLER in bank/output/

See how instances of ETF_MODEL and ETF_MODEL_ACCESS are used in class OUTPUT_HANDLER by
default. Replace them with, e.g., BANK and BANK_ACCESS, respectively.

7 Renewing the Generated ETF (Optional)

As you develop the generated ETF, you may decide to generate all _INTERFACE classes with the default
behaviours.

etf -renew bank_events.txt bank_proj

As explained in Appendix 9.5, each class in the bank cluster has a parent (deferred) class, in the
generated code cluster, that defines the default behaviour. After renewing the current ETF, only those
deferred, parent classes will be overwritten. This means that all your changes to the effective, descendant
classes will persist. Also, any new classes (outside the ETF) that you created will also persist.

More precisely, for each file in your ETF directory (e.g., bank_proj), exactly one of the following four
cases must be satisfied (to see what classes are included in the generated ETF, refer to Appendix 9.5):

– Case 1: the file is part of the ETF and not meant to be modified.

Inspecting the output on the terminal, here is the list of files (mostly located in the generated code
and utilities clusters) that are reported as being overwritten (i.e., any manual changes you made
have been wiped out).

– Case 2: the file is part of the ETF and expected to be modified.

All other files (mostly in the bank cluster) in the ETF will be left untouched (i.e., any manual
changes you made will persist).

– Case 3: the file is not part of the ETF.

In this case, the file is left untouched. However, caution must be taken to make sure this file does
not make the re-generated ETF uncompilable.

– Case 4: a file as part of the ETF is missing.

In this case, a new copy of the file is created.

12

8 Final Remarks

– If you intend to customize the way output is formatted, modify the ETF CMD LINE OUTPUT HANDLER
class in the bank/output cluster.

– Choose action-oriented names for events (e.g., deposit, withdraw, etc.).

– If you intend to modify the parsers, locate and edit the token and grammar specification files:

bank_proj/utilities/parse/evt_scanner_def.l -- scanner specification

bank_proj/utilities/parse/evt_decl_parser_def.y -- declaration parser specification

bank_proj/utilities/parse/evt_trace_parser_def.y -- trace parser specification

To re-generated the scanner and parser Eiffel classes, locate and run the Windows batch script:

bank_proj/utilities/parse/make.bat

13

9 Appendix

9.1 Grammars

We adopt the following notations for presenting the context-free grammars:

– Underscore-separated, all-lower-case compound words (e.g., type decl list) denote non-terminals.

– Double-quoted words (e.g., "system", ":", ",") or all-capital words (e.g., IDENT) denote terminals.

– Each non-terminal rule starts with the name of rule (e.g., type decl list), followed by a colon
(:), followed by a number of patterns.

– Each pattern (e.g., "system" IDENT type decl list evt decl list) has a mix of terminals and
non-terminals, describing legal strings of the language under specification. Patterns are separated
by a vertical bar (|), meaning that they are alternatives for substituting the non-terminal they
belong to.

– Given a pattern p, we adopt the following shorthands:

(p)? denotes zero or one occurrence/repetition of p.

(p)+ denotes one or more occurrences/repetitions of p.

(p)* denotes zero or more occurrences/repetitions of p.

– Comments are preceded by --.

9.2 Tokens

Token Name Meaning

IDENT identifier
STR LIT string literals (within double-quotes)
CHAR LIT character literals (within single-quotes)
NUMBER unsigned integer literal
REAL unsigned floating-point literal

14

9.2.1 Grammar for Declaring Abstract System Events

declarations ::

-- declarations of system name and events

"system" IDENT type decl list evt decl list
type decl list ::

-- zero or more type declarations

("type" IDENT "=" evt param type)*
evt decl list ::

-- zero or more event declarations

(IDENT ("(" evt param list ")")?)*
evt param list ::

(":" evt param decl)+
evt param decl ::

IDENT ":" evt param type
evt param type ::

primitive param type

| composite param type

| IDENT
primitive param type ::

primitive simple param type

| "TUPLE"
| "TUPLE" "[" prim simple param list "]"

primitive simple param type ::

"INT"
| "INTEGER"
| ("-")? NUMBER ".." ("-")? NUMBER
| "REAL"
| "VALUE"
| "BOOL"
| "BOOLEAN"
| "CHAR"
| "CHARACTER"
| "STRING"
| "{" enum item list "}"
| IDENT

composite param type ::

"ARRAY" "[" primitive param type "]"
prim simple param list ::

prim simple param decl (";" prim simple param decl)*
prim simple param decl ::

IDENT ":" primitive simple param type
enum item list ::

IDENT
| enum item list "," IDENT

15

9.2.2 Grammar for Defining Use Cases (Event Traces)

use_case ::

-- each use case is specified as a list of event occurrences

evt trace

evt trace ::

(IDENT ("(" evt arg list ")")?)*
evt arg list ::

evt arg ("," evt arg)*
evt arg ::

primitive arg

| composite arg

primitive arg ::

primitive simple arg

| "[" (primitive simple arg list)? "]"
primitive simple arg ::

"TRUE"
| "FALSE"
| CHAR LIT
| STR LIT
| NUMBER
| "-" NUMBER
| REAL
| "-" REAL
| IDENT

primitive simple arg list ::

-- one or more arguments

primitive simple arg ("," primitive simple arg)*
composite arg ::

"<<" (primitive arg list)? ">>"
primitive arg list ::

-- one or more arguments

primitive arg ("," primitive arg)*

16

9.3 Supported Types

To generate a new ETF (or to renew an existing one), the current generator supports the following types
for declaring event signatures in file bank_events.txt:

Primitive Types

– BOOLEAN

– CHARACTER

– INTEGER

– REAL

– STRING

Tuple Types

– TUPLE[id1 :T1 ; id2 :T2 ; . . . ; idn :Tn]

where

– each idi (i ∈ n, n ≥ 1) is an identifier (following the Eiffel convention)

– each Ti is a primitive type

e.g., TUPLE[acc_id: STRING; amount: REAL]

Array Types

– ARRAY[T]

where T is either a primitive type or a tuple type

e.g., ARRAY[BOOLEAN], ARRAY[TUPLE[acc_id: STRING; amount: REAL]]

Note. Each item of a tuple must be specified with a name (i.e., type TUPLE[STRING; REAL] will
result in a syntax error).

17

9.4 Supported Value Expressions

To run the generated ETF (in either the interactive mode or the batch mode), you may write expressions
(as event arguments) for the list of types specified in Section 9.3:

Primitive Values

– true, false, TRUE, FALSE

– ’ ’, ’2’, ’a’, ’@’, ’.’

– 0, -1, 1

– 0.0, -1.2, 3.4, 3.

Note. The fractional part of a real number may be unspecified. Integer values are not coerced
automatically into real values.

– "", " ", "ETF", "ETF@york#"

Tuple Values

– ["bill", 33.34], ["Steve", -54.789]

Array Values

– <<["bill", 33.34], ["Steve", -54.789]>>

18

9.5 Overview of the Generated ETF Structure

We briefly describe the generated ETF by following its cluster structure (Figure 2):

Figure 2: Clusters in ETF

1. Cluster bank

This cluster contains classes that should be modified in order to connect the user business logic to
the ETF.

Most of the classes in this cluster (e.g., ETF_COMMAND, ETF_DEPOSIT, etc.), when generated, have
their default behaviour inherited from the corresponding interface classes (i.e., ETF_COMMAND_INTERFACE,
ETF_DEPOSIT_INTERFACE, etc.) in the generate code cluster.

1.1 Cluster abstract ui

Classes in this cluster implement an abstract user interface for the bank system.

1.1.1 Cluster user commands

Each user-command class corresponds to an event declared in the text file bank_events.txt
that you used to generate the current ETF (this is an instance of the command design
pattern). As detailed in Section 6, you as an ETF user are expected to make changes to
classes in the user commands cluster in order to:

– declare access to the model (in the ETF_COMMAND class)

– update the system state and notify the abstract user interface for logging the output
(in the user-command classes, e.g., ETF_DEPOST, ETF_TRANSFER, etc.)

19

1.2 Cluster model

There are two sample classes ETF_MODEL and ETF_MODEL_ACCESS that implement a singleton
pattern for accessing the model state.

1.3 Cluster output

There is a class ETF_OUTPUT_HANDLER (a descendant class of ETF_OUTPUT_HANDLER_INTERFACE
in the generate code cluster) which allows the ETF users to customize how the state-changing
commands and (initial and current) states of the model are logged.

2. Cluster generate code

In principle, you do not need to modify classes in this cluster. However, as most classes in the bank
cluster inherit from the classes here, you are expected to study the behaviour of each of them.

2.1 Cluster abstract ui

Class ETF_SOFTWARE_OPERATION inherits from SOFTARE_OPERATION_INTERFACE. The main fea-
ture in ETF_SOFTWARE_OPERATION_INTERFACE is execute which runs, through the abstract
user interface, the list of input commands (passed as a string in both the interactive and batch
modes).

2.1.1 Cluster user commands

2.2 Cluster input

This cluster contains two classes INPUT_HANDLER and INPUT_HANDLER_INTERFACE; the former
is a descendant class of the latter. In INPUT_HANDLER_INTERFACE, there are utility routines
that parse and validate the input commands (given as a string), and that convert validated
input string into instances of the COMMAND class.

In principle, you do not need to override the inherited behaviour from INPUT_HANDLER_INTERFACE.
As a result, we do not place class INPUT_HANDLER in the bank cluster.

2.3 Cluster output

3. Cluster root

There is only the ROOT class in this cluster. The switch feature allows you to run your ETF project
in different modes. When the mode is set to unit test, you may add tests inside the feature
add tests.

4. Cluster utilities

This cluster contains all utility classes.

4.1 Cluster event

There are classes for reading the contents of a text file (i.e., class ETF_FILE_UTILITY), and for
implementing an observer pattern (i.e., class ETF_EVENT).

4.2 Cluster parse

There are classes for parsing traces (or sequences) of events: classes ETF_EVT_TOKENS and
ETF_EVT_SCANNER implementing a lexical scanner for the input string, and class ETF_EVT_TRACE_PARSER
defining a context-free parser for the tokens (created by the scanner).

4.2.1 Cluster event arg

There are classes defining the data type of the input event trace (or sequence).

20

9.6 A Use Case of Running ETF in the Interactive Mode

To understand how components of the ETF work together, we use the UML sequence diagram (Figure 3,
p.23) to illustrate an execution of ETF in its interactive mode (Section 4.7). You are also expected to
reproduce this scenario in the debugging mode of Eiffel Studio.

Executing ETF in its interactive mode involves (via option -i) the following steps2:

1. Context: ROOT.handle_interactive_mode

A new interaction of the main loop starts by prompting the user to enter an input (i.e., an event with
proper argument values, such as deposit("Bill", 33.3), man for the list of previously-declared
events, or quit to exit from the loop).

2. Context: Terminal/Console

The user enters a previously-declared event (e.g., deposit) with valid argument values (e.g., "Bill"
and 33.3) and hits return from the terminal. In later steps, we refer to this input string of events
as input_str.

3. Context: ROOT.handle_interactive_mode

An auxiliary procedure ROOT.exec is called, where an instance sys of class ETF_SOFTWARE_OPERATION
is created. The procedure execute is called upon sys, passed with input_str.

4. Context: ETF_SOFTWARE_OPERATION.execute

This is the main control for the state-changing effects of input event(s) to take place.

There are five sub-steps of this main control, the first four of which are:

4.1 Two instances ui (of type ETF_ABSTRACT_UI) and output (of type ETF_CMD_LINE_OUTPUT_HANDLER)
are created, and the output logging facility (i.e., output.log_command) is attached to ui.

4.2 An instance input of class ETF_INPUT_HANDLER is created. Then input is passed with ui
and input_str. The input string will later be converted into a sequence of instances of class
ETF COMMAND and added into ui.

4.3 The error reporting facility (i.e., output.log_error) is attached to input.

4.4 The procedure parse_and_validate_input_string is called upon input to see if there are
any input errors to report (in which case the flag input.error is set to true).

5. Context: ETF_INPUT_HANDLER.parse_and_validate_input_string

An instance trace_parser of class ETF_EVT_TRACE_PARSER is created to parse input_str. Since the
value of input_str (i.e., "deposit("Bill", 33.3)") has no syntax error, the attribute evt_trace
(of type ARRAY[TUPLE[name: STRING; args: ARRAY[EVT_ARG]]]3) is properly set to represent the
input string. More precisely, trace_parser.evt_trace is set to

<<["deposit", <<"Bill", 33.3>>]>>

Then procedure find_invalid_evt_trace is called upon input to find type errors (e.g., un-
known event names, a string argument value for an integer parameter, etc.). Since deposit is
the name of a declared event, and "Bill" and 33.3 are valid with respect to its declaration (i.e.,
deposit(id: STRING; amount: REAL)), no type errors are reported.

Provided that evt_parser.evt_trace contains valid events and argument values, the query evt_to_cmd
is called upon input to produce instance(s) of class ETF_COMMAND and inserted into ui.

Then the thread of control returns back to where we left off in ETF_SOFTWARE_OPERATION.execute.

2these steps form the body of an infinite loop, unless the user enters quit to exit.
3Class ETF EVT ARG is located in the utilities cluster.

21

6. Context: ETF_SOFTWARE_OPERATION.execute

This is the last, fifth sub-step of the main control.

The procedure run_input_commands is called upon ui, which has been properly inserted with the
list of commands that are converted from input_str in the previous step.

7. Context: ETF_ABSTRACT_UI.run_input_commands

For each COMMAND instance that is inserted into ui, we retrieve its attribute routine (declared of type
ROUTINE[ANY, TUPLE]) and apply its state effect. Due to dynamic binding, the right ETF_COMMAND
instance will be called upon for its state-changing command (i.e., ETF_DEPOSIT.deposit). After
the state effect is applied to the model (i.e., the bank system), the corresponding ETF_COMMAND
instance notifies ui about this change so that the command and the updated state are logged.

Then the current iteration completes, and the thread of control returns back to the terminal.

8. Context: Terminal/Console

The user enters quit to exit from the interactive mode.

22

F
ig

u
re

3
:

R
u

n
n

in
g

E
T

F
in

th
e

In
te

ra
ct

iv
e

M
o
d

e

23

9.7 Eiffel Code Listings of the Bank

9.7.1 Class Implementing the Singleton Pattern for Bank Access

1 note
2 description: ”Summary description for {BANK ACCESS}.”
3 author: ””
4 date: ”$Date$”
5 revision: ”$Revision$”
6
7 expanded class
8 BANK ACCESS
9

10 feature
11 bank: BANK
12 once
13 create Result.make
14 end
15
16 invariant
17 bank = bank
18
19 end

24

9.7.2 Bank as a Collection of Accounts

1 note
2 description: ”Summary description for {BANK}.”
3 author: ””
4 date: ”$Date$”
5 revision: ”$Revision$”
6
7 class
8 BANK
9 inherit

10 ANY
11 redefine out end
12 create {BANK ACCESS}
13 make
14
15 feature {NONE} −− Initialization
16 make
17 −− Initialization for ‘Current’.
18 do
19 create accounts.make (10)
20 accounts.compare objects
21 end
22
23 feature −− attributes
24
25 accounts: HASH TABLE[ACCOUNT, STRING]
26
27 total: INTEGER
28
29 feature −− commands
30
31 new(a name: STRING)
32 require
33 not accounts.has (a name)
34 local
35 l account: ACCOUNT
36 do
37 create l account.make (a name)
38 accounts.extend (l account, a name)
39 end
40
41 deposit(a name:STRING; a value:INTEGER)
42 require
43 accounts.has (a name)
44 accounts[a name] /= Void
45 local
46 l account: ACCOUNT
47 do
48 check attached accounts[a name] as a then
49 l account := a
50 end
51 l account.deposit (a value)
52 total := total + a value
53 end
54
55 withdraw(a name:STRING; a value:INTEGER)
56 require
57 accounts.has (a name)
58 and then item(a name).balance − a value >= 0
59 local
60 l account: ACCOUNT
61 do
62 check attached accounts[a name] as a then
63 l account := a
64 end

25

65 l account.withdraw (a value)
66 total := total − a value
67 end
68
69
70 item(a name: STRING): ACCOUNT
71 −− return attached account
72 require
73 accounts.has (a name)
74 do
75 check attached accounts[a name] as a then
76 Result := a
77 end
78 ensure
79 Result = accounts[a name]
80 end
81
82 out: STRING
83 local
84 do
85 Result := ” total: ” + total.out + ”%N”
86 across accounts as a
87 loop
88 Result := Result + a.item.out + ”%N”
89 end
90 end
91
92 feature −− wipe clean
93 reset
94 do
95 accounts.wipe out
96 total := 0
97 end
98 end

26

9.7.3 Account

1 note
2 description: ”Summary description for {ACCOUNT}.”
3 author: ””
4 date: ”$Date$”
5 revision: ”$Revision$”
6
7 class
8 ACCOUNT
9 inherit

10 ANY
11 redefine out end
12 create
13 make
14 feature
15 make(a name: STRING)
16 do
17 name := a name
18 end
19 feature
20 balance: INTEGER
21 name: STRING
22
23 deposit(a value:INTEGER)
24 require
25 a value >= 0
26 do
27 balance := balance + a value
28 end
29
30 withdraw(a value:INTEGER)
31 require
32 balance − a value >= 0
33 do
34 balance := balance − a value
35 end
36
37 out: STRING
38 do
39 Result := ” ” + name + ”.” + ”balance: ” + balance.out
40 end
41 invariant
42 balance >= 0
43
44 end

27

9.8 Eiffel Code Listings of the User Commands

1 note
2 description: ””
3 author: ””
4 date: ”$Date$”
5 revision: ”$Revision$”
6
7 class
8 ETF NEW
9 inherit

10 ETF NEW INTERFACE
11 create
12 make
13 feature −− command
14 new(n: STRING)
15 do
16 −− perform some update on the model state
17 model.default update
18 etf cmd container.on change.notify ([Current])
19 end
20
21 end

1 note
2 description: ””
3 author: ””
4 date: ”$Date$”
5 revision: ”$Revision$”
6
7 class
8 ETF WITHDRAW
9 inherit

10 ETF WITHDRAW INTERFACE
11 create
12 make
13 feature −− command
14 withdraw(n: STRING ; i: INTEGER)
15 do
16 −− perform some update on the model state
17 model.default update
18 etf cmd container.on change.notify ([Current])
19 end
20
21 end

28

	Prerequisites
	Generating a new ETF
	Case Studies: Design Patterns in ETF
	Running the Default Generated ETF
	Building the Executable
	Retrieving the Executable
	Launching the Default GUI Mode
	Changing to the Command-Line Mode
	Writing Use Cases
	Running in the Batch Mode
	Running in the Interactive Mode

	Developing Your Own Business Model
	Connecting Model to the Generated ETF
	Renewing the Generated ETF (Optional)
	Final Remarks
	Appendix
	Grammars
	Tokens
	Grammar for Declaring Abstract System Events
	Grammar for Defining Use Cases (Event Traces)

	Supported Types
	Supported Value Expressions
	Overview of the Generated ETF Structure
	A Use Case of Running ETF in the Interactive Mode
	Eiffel Code Listings of the Bank
	Class Implementing the Singleton Pattern for Bank Access
	Bank as a Collection of Accounts
	Account

	Eiffel Code Listings of the User Commands

