
Implementation of a simple undirected graph with an adjacency matrix

Variables

numVertices: integer
numEdges: integer
vertex: array of vertices
edge: two dimensional array of edges
For each vertex, we keep track of the element associated with the vertex and the degree, the in-degree and
the out-degree of the vertex, and its index, that is, a 5-tuple [element, degree, in-degree, out-degree, index].
For each edge, we keep track of the element associated with the edge, whether the edge is directed and the
end vertices of the edge, that is, a 4-tuple [element, directed?, vertex1, vertex2] where vertex1 is the origin of
the edge and vertex2 is the destination if the edge is directed.
invariant: for i = 0,..., numVertices − 1, vertex[i] contains the vertex with index i; for i = 0,..., numVertices

− 1, j = 0,..., numVertices − 1 edge[i, j] contains edge edge iff edge is an edge between the vertices with
indices i and j

Initialization

numVertices ← 0
numEdges ← 0

Algorithms

elements():
output: collection of elements stored in positions of graph

col ← empty collection
for i = 0,..., numVertices − 1 do

add element of vertex vertex[i] to col

for i = 0,..., numVertices − 1 do

for j = 0,..., i− 1 do

if edge[i, j] contains an edge then

add element of edge edge[i, j] to col return col

positions():
output: collection of positions of graph

col ← empty collection
for i = 0,..., numVertices − 1 do

add vertex vertex[i] to col

for i = 0,..., numVertices − 1 do

for j = 0,..., i− 1 do

if edge[i, j] contains an edge then

add edge edge[i, j] to col return col

numVertices():
output: number of vertices of the graph

return numVertices

numEdges():
output: number of edges of the graph

return numEdges

vertices():
output: collection of the vertices of the graph

col ← empty collection

1



for i = 0, . . . , numVertices − 1 do

add vertex[i] to col

return col

edges():
output: collection of the edges of the graph

col ← empty collection
for i = 0,..., numVertices − 1 do

for j = 0,..., i− 1 do

if edge[i, j] contains an edge then

add edge edge[i, j] to col

return col

aVertex():
precondition: the graph is nonempty
output: a vertex of the graph

return vertex[0]

adjacentVertices(vertex):
input: vertex the adjacent vertices of which are returned
output: collection of vertices adjacent to vertex col ← empty collection

i ← index of vertex

for j = 0,..., numVertices − 1 do

if edge[i, j] contains an edge then

add vertex[j] to col

return col

incidentEdges(vertex):
input: vertex whose incident edges are returned
output: collection of edges incident on vertex

i ← index of vertex
col ← empty collection
for j = 0,..., numVertices − 1 do

if edge[i, j] contains an edge then

add edge[i, j] to col

return col

areAdjacent(first, second):
input: vertices
output: first and second are adjacent?

i ← index of first

j ← index of second

return edge[i, j] contains an edge

removeVertex(vertex):
input: vertex to be removed
postcondition: vertex and edges incident on vertex have been removed from graph

i ← index of vertex

for j = 0,..., numVertices − 1 do

if edges[i, j] contains an edge then

degree of vertex[j] ← degree of vertex[j] − 1
edges[i, j] ← edges[numVertices − 1, j]

for j = 0,..., numVertices − 1 do

edges[j, i] ← edges[j, numVertices − 1]
vertex[i] ← vertex[numVertices − 1]

2



set index of vertex[i] to i

numVertices ← numVertices − 1
numEdges ← numEdges − degree of vertex

3


