Implementation of a priority queue with a heap

Variables

heap: array of items
size: integer
invariant: heap represents a heap, heap[l], ..., heap[size] are the items of the priority queue.

Initialization

size < 0

Algorithms

size():
output: size of priority queue
return size

isEmpty():
output: priority queue is empty?
return size = 0

bubbleUp(index):
input: level number of item to be bubbled up
postcondition: item with level number index has been bubbled up
if index # 1 then
parent < | index [2 |
if key of heap[indez] < key of heap[parent] then
swap items of heap[index] and heap[parent]
bubbleUp(parent)

bubbleDown(indez):
input: level number of item to be bubbled down
postcondition: item with level number indez has been bubbled down
if heap[index] is not a leaf then
child + level number of child of heap[indez] with smallest key
if key of heap[indez] > key of heap|[child] then
swap items of heap[indez] and heap|child]
bubbleDown(child)

insertltem(key, element):

precondition: priority queue is not full

postcondition: item (key, element) has been inserted in the priority queue
input: item to be inserted

size < size + 1

heap[size] + (key, element)

bubbleUp(size)

minElement():

precondition: priority queue is nonempty

output: element with smallest key in priority queue
return element of heap[1]

minKey():

precondition: priority queue is nonempty
output: smallest key in priority queue
return key of heap[1]

removeMinElement():

precondition: priority queue is nonempty

postcondition: item of returned element has been removed from the priority queue
output: element with smallest key in priority queue

element < element of heap[1]

swap items of heap[size] and heap[1]

size size — 1

bubbleDown(1)

return element

