
Implementation of a simple graph with an edge list

Variables

vertices: set of vertices
edges: set of edges
For each vertex, we keep track of the element associated with the vertex and the degree, the in-degree and
the out-degree of the vertex, that is, a 4-tuple [element, degree, in-degree, out-degree]. For each edge, we keep
track of the element associated with the edge, whether the edge is directed and the end vertices of the edge,
that is, a 4-tuple [element, directed?, vertex1, vertex2] where vertex1 is the origin of the edge and vertex2 is
the destination if the edge is directed.
invariant: vertices is the set of vertices of the graph and edges is the set of edges of the graph

Initialization

vertices ← ∅

edges ← ∅

Algorithms

size():
output: size of the graph

return numVertices() + numEdges()

isEmpty():
output: graph is empty?

return size() = 0

elements():
output: collection of elements stored in positions of graph

col ← empty collection
for each vertex vertex in vertices do

add element stored in vertex to col

for each edge edge in edges do

add element stored in edge to col

return col

positions():
output: collection of positions of graph

col ← empty collection
for each vertex vertex in vertices do

add vertex to col

for each edge edge in edges do

add edge to col

return col

swapElements(first, second):
postcondition: elements of first and second have been swapped
input: positions elements of which are to be swapped

swap elements of first and second

replaceElement(position, element):
postcondition: element at position in graph has been replaced with element

input: position element of which is to be replaced with element

output: replaced element

1



temp ← element of position

element of position ← element

return temp

numVertices():
output: number of vertices of the graph

return (size of vertices)

numEdges():
output: number of edges of the graph

return (size of edges)

vertices():
output: collection of the vertices of the graph

col ← empty collection
for each vertex vertex in vertices do

add vertex to col

return col

edges():
output: collection of the edges of the graph

col ← empty collection
for each edge edge in edges do

add edge to col

return col

aVertex():
precondition: the graph is nonempty
output: a vertex of the graph

vertex ← a vertex in vertices

return vertex

degree(vertex):
input: vertex of which the degree is to be returned
output: degree of vertex

return degree of vertex

adjacentVertices(vertex):
input: vertex the adjacent vertices of which are returned
output: collection of vertices adjacent to vertex

col ← empty collection
for each edge in edges do

if vertex is an end vertex of edge then

add other end vertex of edge to col

return col

incidentEdges(vertex):
input: vertex whose incident edges are returned
output: collection of edges incident on vertex

col ← empty collection
for each edge in edges do

if vertex is an end vertex of edge then

add edge to col

return col

endVertices(edge):
input: edge of which the end vertices are returned

2



output: end vertices of edge

return end vertices of edge

opposite(vertex, edge):
input: vertex and edge
output: the end vertex of edge different from vertex

precondition: vertex is an end vertex of edge

(first, second) ← end vertices of edge

if vertex = first then

return second

else

return first

areAdjacent(first, second):
input: vertices
output: first and second are adjacent?

found ← false
for each edge in edges do

found ← found or (first and second are the end vertices of edge)
return found

directedEdges():
output: collection of directed edges of the graph

col ← empty collection
for each edge edge in edges do

if edge is directed then

add edge to col

return col

undirectedEdges():
output: collection of undirected edges of the graph

col ← empty collection
for each edge edge in edges do

if edge is not directed then

add edge to col

return col

destination(edge):
input: edge
output: destination of edge

precondition: edge is directed
return destination of edge

origin(edge):
input: edge
output: origin of edge

precondition: edge is directed
return origin of edge

isDirected(edge):
input: edge
output: edge is directed?

return edge is directed?

3



inDegree(vertex):
input: vertex of which the indegree is to be returned
output: indegree of vertex

return indegree of vertex

outDegree(vertex):
input: vertex of which the outdegree is to be returned
output: outdegree of vertex

return outdegree of vertex

inIncidentEdges(vertex):
input: vertex
output: collection of incoming edges of vertex

col ← empty collection
for each edge edge in edges do

if edge is directed then

if vertex is destination of edge then

add edge to col

return col

outIncidentEdges(vertex):
input: vertex
output: collection of outgoing edges of vertex

col ← empty collection
for each edge edge in edges do

if edge is directed then

if vertex is origin of edge then

add edge to col

return col

inAdjacentVertices(vertex):
input: vertex
output: collection of vertices adjacent to vertex along incoming edges

col ← empty collection
for each edge edge in edges do

if edge is directed then

if vertex is destination of edge then

add origin of edge to col

return col

outAdjacentVertices(vertex):
input: vertex
output: collection of vertices adjacent to vertex along outgoing edges

col ← empty collection
for each edge edge in edges do

if edge is directed then

if vertex is origin of edge then

add destination of edge to col

return col

insertEdge(first, second, element):
input: vertices and element
output: undirected edge with end vertices first and second and element element

precondition: there is no edge between first and second, first and second are different
postcondition: undirected edge with end vertices first and second and element element has been added to

4



the graph
edge ← undirected edge with end vertices first and second and element element

add to edge to edges

degree of first ← degree of first + 1
degree of second ← degree of second + 1
return edge

insertDirectedEdge(first, second, element):
input: vertices and element
output: directed edge from first to second with element element

precondition: there is no undirected edge between first and second, there is no directed edge from first to
second, first and second are different

postcondition: directed edge from first to second with element element has been added to the graph
edge ← directed edge from first to second with element element

add to edge to edges

degree of first ← degree of first + 1
degree of second ← degree of second + 1
outdegree of first ← outdegree of first + 1
indegree of second ← indegree of second + 1
return edge

insertVertex(element):
input: element
output: vertex with element element

postcondition: vertex with element element has been added to graph
vertex ← vertex with element element and degree, indegree and outdegree all 0
add vertex to vertices

return vertex

removeVertex(vertex):
input: vertex to be removed
postcondition: vertex and edges incident on vertex have been removed from graph

removeEdge(edge):
input: edge to be removed
postcondition: edge has been removed from graph

makeUndirected(edge):
input: edge
postcondition: edge is undirected

if edge edge is directed then

first, second ← end vertices of edge

out-degree of first ← out-degree of first − 1
in-degree of second ← in-degree of second − 1
set edge to be undirected

reverseDirection(edge):
input: edge
precondition: edge is directed
postcondition: direction of edge has been reversed

first, second ← end vertices of edge

out-degree of first ← out-degree of first − 1
in-degree of first ← in-degree of first + 1
in-degree of second ← in-degree of second − 1
out-degree of second ← out-degree of second + 1

5



swap origin and destination of edge

setDirectionFrom(edge, vertex):
input: edge and vertex
precondition: vertex is an end vertex of edge

postcondition: edge has been directed away from vertex

left as an exercise

setDirectionTo(edge, vertex):
input: edge and vertex
precondition: vertex is an end vertex of edge

postcondition: edge has been directed to vertex

left as an exercise

6


