1 Implementation of a dictionary with a binary search tree

Variables

tree: binary tree
invariant: tree is a binary search tree; the internal nodes of tree contain the items of the dictionary; the
external nodes of tree are empty

Initialization

tree < tree consisting of a single empty node

Algorithms

size():
output: size of dictionary

return SiZ€ of gree -1

isEmpty():
output: dictionary is empty?
return (size of tree = 1)

findElement(key):

input: key to be searched for

output: element of item with key in dictionary; NO-SUCH-KEY if no such item exists
return findElement(key, root of tree)

findElement(key, node)
input: key to be searched for; root of subtree to be searched
output: element of item with key in subtree rooted at node; NO-SUCH-KEY if no such item exists
if node is leaf then
return NO-SUCH-KEY
else if key of node = key then
return element of node
else if key of node > key then
return findElement(key, left child of node)
else (key of node < key)
return findElement(key, right child of node)

insertltem(key, element)

input: item to be inserted
postcondition: item (key, element) has been inserted into dictionary
insertltem(key, element, root of tree)

insertltem(key, element, node)
input: item to be inserted; root of subtree to be inserted in
postcondition: item (key, element) has been inserted into subtree rooted at node
if node is leaf then
replace node with node containing (key, element) with two empty children
else if key of node > key then
insertltem(key, element, left child of node)
else (key of node < key)
insertltem(key, element, right child of node)

remove(key):
input: key to be searched for
output: element of item with key in dictionary; NO-SUCH-KEY if no such item exists



postcondition: item has been removed from dictionary, if such an item exists
return remove(key, root of tree)

remove(key, node):
input: key to be searched for; root of subtree to be searched
output: element of item with key in subtree rooted at node; NO-SUCH-KEY if no such item exists
postcondition: item has been removed from subtree rooted at node, if such an item exists
if node is leaf then
return NO-SUCH-KEY
else if key of node > key then
return remove(key, left child of node)
else if key of node < key then
return remove(key, right child of node)
else (key of node = key)
element < element of node
if node has no nonempty children then
replace node with empty leaf
else if node has only one nonempty child then
replace node with its nonempty child
else
item < removeMin(right child of node)
store item in node
return element

removeMin(node):
input: root of subtree
output: item with minimal key in subtree rooted at node
precondition: node is nonempty
postcondition: node of item with minimal key has been removed from subtree rooted at node
if node has an empty left child then
item + item of node
replace node with its right child
return item
else
return removeMin(left child of node)



