Implementation of a simple graph with an adjacency list

Variables

vertices: set of vertices

edges: set of edges

For each vertex, we keep track of the element associated with the vertex and the degree, the in-degree and
the out-degree of the vertex and the sets of incoming edges I;,,, outgoing edges I,y and incident undirected
edges I, that is, a 7-tuple [element, degree, in-degree, out-degree, Iy, Iout, Iun]- For each edge, we keep
track of the element associated with the edge, whether the edge is directed, the end vertices of the edge and
pointers to the edge in the sets Iin, Iout and Iy, the edge is part of, that is, a 5-tuple [element, directed?,
vertex;, vertexs, pointers| where verter; is the origin of the edge and wvertez; is the destination if the edge is
directed.

invariant: vertices is the set of vertices of the graph and edges is the set of edges of the graph

Initialization

vertices < ()
edges — 0

Algorithms

adjacentVertices(vertex):
input: vertex the adjacent vertices of which are returned
output: collection of vertices adjacent to vertex
col + empty collection
for each edge in Ij, U Iy U Iy, of vertex do
add other end vertex of edge to col
return col

incidentEdges(vertex):
input: vertex whose incident edges are returned
output: collection of edges incident on vertez
col < empty collection
for each edge in Ijp U Iy U Iy, of vertex do
add edge to col
return col

areAdjacent(first, second):
input: vertices
output: first and second are adjacent?
found + false
if degree of first < degree of second then
for each edge in Iin U Iyt U Iyn of first while not found do
found < found or (second is the other end vertex of edge)
else
for each edge in Ij, U Iyt U Iy of second while not found do
found < found or (first is the other end vertex of edge)
return found

inIncidentEdges(vertex):

mput: vertex

output: collection of incoming edges of vertex
col + empty collection
for each edge edge in I, of vertez do



add edge to col
return col

outlncidentEdges(vertez):
mput: vertex
output: collection of outgoing edges of vertex
col + empty collection
for each edge edge in Iy of vertex do
add edge to col
return col

inAdjacentVertices(vertez):
input: vertex
output: collection of vertices adjacent to vertex along incoming edges
col + empty collection
for each edge edge in I;, of vertex do
add origin of edge to col
return col

outAdjacentVertices(vertez):
input: vertex
output: collection of vertices adjacent to vertex along outgoing edges
col + empty collection
for each edge edge in Iy of vertex do
add destination of edge to col
return col

insertEdge(first, second, element):
input: vertices and element
output: undirected edge with end vertices first and second and element element
precondition: there is no edge between first and second, first and second are different
postcondition: undirected edge with end vertices first and second and element element has been added to

the graph

edge < undirected edge with end vertices first and second and element element

add edge to edges

add edge to I, of first and second

add to edge pointers to I, of first and second

degree of first < degree of first + 1

degree of second + degree of second + 1

return edge

insertDirectedEdge(first, second, element):
input: vertices and element
output: directed edge from first to second with element element
precondition: there is no undirected edge between first and second, there is no directed edge from first to
second, first and second are different
postcondition: directed edge from first to second with element element has been added to the graph
edge + directed edge from first to second with element element
add edge to edges
add edge to I,y of first and I, of second
add to edge pointers to Iy, of first and I, of second
degree of first < degree of first + 1
degree of second < degree of second + 1
outdegree of first + outdegree of first + 1
indegree of second + indegree of second + 1
return edge



insertVertex(element):
input: element
output: vertex with element element
postcondition: vertex with element element has been added to graph
vertex < vertex with element element and degree, indegree and outdegree all 0, and I, Iy and Iy, all
empty
add vertez to vertices
return vertex

removeVertex(vertez):
input: vertex to be removed
postcondition: verter and edges incident on wverter have been removed from graph
for each edge edge in I, of vertex do
removeEdge(edge)
for each edge edge in I, of vertexr do
removeEdge(edge)
for each edge edge in I, of vertex do
removeEdge(edge)
remove verter from vertices

removeEdge(edge):
input: edge to be removed
postcondition: edge has been removed from graph
(origin, destination) < end vertices of edge
degree of origin < degree of origin — 1
degree of destination + degree of destination — 1
if edge is directed then
outdegree of origin < outdegree of origin — 1
indegree of destination < indegree of destination — 1
for each edge in an incident set I edge points to do
remove edge from I
remove edge from edges

makeUndirected(edge):
input: edge
postcondition: edge is undirected
set edge to be undirected
(origin, destination) < end vertices of edge
left as an exercise

reverseDirection(edge):

input: edge

precondition: edge is directed

postcondition: direction of edge has been reversed
left as an exercise

setDirectionFrom(edge, verter):
input: edge and vertex
precondition: vertex is an end vertex of edge and edge is directed
postcondition: edge has been directed away from vertez

left as an exercise

setDirectionTo(edge, vertex):
input: edge and vertex
precondition: vertex is an end vertex of edge and edge is directed
postcondition: edge has been directed to vertex

left as an exercise



All other algorithms are the same as in the implementation by means of an edge list.



