We only consider nonempty trees. Furthermore, we restrict ourselves to binary trees the nodes of which have either two or no children.

PROPOSITION 6.11 In a binary tree T, the number of external nodes is 1 more than the number of internal nodes.

PROOF We prove this proposition by structural induction on T. The base case, where T consists of a single node, is trivial. Next we consider the induction step. The binary tree T is of the form

where the left subtree T_l and the right subtree T_r are both smaller than T. By the induction hypothesis, the number of external nodes of T_l and T_r (denoted by e_l and e_r) are both 1 more than the number of internal nodes of T_l and T_r (denoted by i_l and i_r):

$$e_l = i_l + 1$$

$$e_r = i_r + 1.$$

The number of external nodes of T is $e_l + e_r$ and the number of internal nodes of T is $i_l + i_r + 1$. We have that

$$e_l + e_r = i_l + 1 + i_r + 1$$

= $(i_l + i_r + 1) + 1$.

PROPOSITION 6.10.1 Let T be a binary tree with e external nodes and height h. Then $h+1 \le e \le 2^h$.

PROOF We prove this claim by structural induction on T. The base case, where T consists of a single node, is trivial (h = 0 and e = 1). Next we consider the induction step. The binary tree T is of the form

Since the subtrees T_l and T_r are smaller than T, by the induction hypothesis the claim holds for these subtrees. Assume that the subtree T_l (T_r) has e_l (e_r) external nodes and height h_l (h_r) . Then

$$\begin{array}{lll} h+1 & \leq & h_l+1+h_r+1 & [h=\max\{h_l,h_r\}+1] \\ & \leq & e_l+e_r & [\text{induction hypothesis}] \\ & = & e \\ & = & e_l+e_r \\ & \leq & 2^{h_l}+2^{h_r} & [\text{induction hypothesis}] \\ & \leq & 2 \cdot 2^{\max\{h_l,h_r\}} \\ & = & 2^h & [h=\max\{h_l,h_r\}+1] \end{array}$$

PROPOSITION 6.10.2 Let T be a binary tree with i internal nodes and height h. Then $h \leq i \leq 2^h - 1$.

PROOF Let e be the number of external nodes of T. According to Proposition 6.11, i=e-1. According to Proposition 6.10.1, $h+1 \le e \le 2^h$. Combining these two results, we immediately obtain $h \le i \le 2^h - 1$.

Proposition 6.10.3 Let T be a binary tree with n nodes and height h. Then $2h+1 \le n \le 2^{h+1}-1$.

PROOF Let e and i be the number of internal and external nodes of T. Clearly, n = e + i. Adding Proposition 6.10.1 and 6.10.2, we arrive at $2h + 1 \le n \le 2^{h+1} - 1$.

PROPOSITION 6.10.4 Let T be a binary tree with n nodes and height h. Then $\log(n+1)-1 \le h \le \frac{n-1}{2}$.

PROOF According to Proposition 6.10.3,

$$n \le 2^{h+1} - 1$$

$$\Leftrightarrow n+1 \le 2^{h+1}$$

$$\Leftrightarrow \log(n+1) \le h+1$$

$$\Leftrightarrow \log(n+1) - 1 \le h$$

and

$$2h + 1 \le n$$

$$\Leftrightarrow 2h \le n - 1$$

$$\Leftrightarrow h \le \frac{n-1}{2}.$$