PROPOSITION 9.11. Let G = (V, E) be a simple undirected nonempty graph with n vertices and m edges.

- 1. If G is connected then $m \ge n 1$.
- 2. If G has no cycles then m < n 1.
- 3. If G is connected and has no cycles then m = n 1.

Proof

1. We prove this property by induction on n. The base case (n = 1, and hence m = 0) is vacuously true. Next we consider the induction step. Let n > 1. Pick a vertex $v \in V$. Let the degree of v be d. Let G' be the subgraph of G obtained by removing vertex v and all edges incident on v from G. Graph G' consists of at most d connected components. To each connected component we can apply the induction hypothesis. Hence, the number of edges of $G' \geq \text{number of nodes of } G' - d$. Consequently,

```
m = number of edges of G

= number of edges of G' + d

\geq number of nodes of G'

= number of nodes of G - 1

= n - 1.
```

- 2. Left as an exercise.
- 3. Immediate consequence of 1. and 2.