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In a recent column, Panangaden discusses probabilistic bisimilarity. Here, we show how probabilistic bisim-
ilarity can be quantitatively generalized leading to probabilistic bisimilarity distances.

1. INTRODUCTION
Many different models have been proposed for systems in which probabilities play
a role. Here, we consider one of the simplest such models, namely labelled Markov
chains. These are ordinary Markov chains in which each state has a label. The labels
are used to abstractly capture known facts about the states. For example, if the model
represents code, then a label may capture whether a particular variable in the code
has value zero in a state. In this paper, we consider the labelled Markov chain depicted
below as our running example. It uses a fair coin, is small and allows us to illustrate
all key notions. In the example we use coloured shapes to represent the labels.
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A behavioural equivalence is an equivalence relation on the states of a model that
captures which states behave the same. Numerous behavioural equivalences have
been proposed in the literature. Here, we focus on the behavioural equivalence, known
as probabilistic bisimilarity, introduced by Larsen and Skou in [Larsen and Skou
1989]. Panangaden discusses this behavioural equivalence in detail in a recent col-
umn [Panangaden 2015]. Note that Panangaden considers a slightly different model.
Whereas we focus on a model in which the states are labelled, Panangaden considers
a model where the transitions are labelled. However, each model can be expressed in
terms of the other (see, for example, [Reniers et al. 2014]).

In general, for two states of a model to be considered behaviourally equivalent, the
same facts should hold for both states. Furthermore, their transitions should preserve
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the equivalence. As we will sketch in Section 4, the states 2, 3, 4 and 6 of the labelled
Markov chain (1) are probabilistic bisimilar. For all four states the same facts hold,
that is, all four are green triangles. Furthermore, with probability one each transitions
to itself, that is, to a state that behaves the same. The states 2-3 and 6-6 are both
brown circles. Although state 6-6 has only one transition whereas state 2-3 has two
transitions, the probabilities of the latter two can be added as they reach states that
are behaviourally indistinguishable. Hence, both state 6-6 and state 2-3 transition to
the equivalence class containing states 2, 3, 4 and 6 with probability one.
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Therefore, as we will sketch in Section 4, the states 6-6 and 2-3 are probabilistic
bisimilar as well.

Instead of using a fair coin, let us employ a biased one in all states but state 1-3. As-
sume we flip our biased coin one million times and we see 485, 421 times heads.1 Based
on this experiment, we model the biased system by the following labelled Markov
chain.

1 2 3 4 5 6

1-2 2-3

1-3

1-6

4-6

4-5 6-6

1 1 1 1 1 1

48
100

52
100

1
2

1
2

48
100

52
100

48
100

52
100

48
100

52
100

48
100

52
100

1

(2)

The fair and biased systems (1) and (2) together can be viewed as one larger system.
The states 2 and 3 in the fair component are probabilistic bisimilar to the states 2 and 3

in the biased component, since all four states are green triangles and each transitions
with probability one to itself. In both components, state 2-3 is a brown circle. Note

1From this experiment we can conclude that the odds of heads lies in the interval [0.484, 0487] with proba-
bility 0.99.
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that their individual transition probabilities do not match exactly ( 12 versus 48
100 and

1
2 versus 52

100 ), but we can add these probabilities since the states 2 and 3 are consid-
ered behaviourally equivalent. Hence, in both components state 2-3 transitions to the
equivalence class containing the states 2 and 3 with probability one.
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Therefore, state 2-3 in the fair component is probabilistic bisimilar to state 2-3 in the
biased component. Let us finally compare the behaviour of state 1-2 in the two compo-
nents. Both states are brown circles. Again, their individual transition probabilities do
not match exactly. However, in this case we cannot add them since the transitions
reach states with different coloured shapes, which are therefore not behaviourally
equivalent. Hence, state 1-2 in the fair component is not probabilistic bisimilar to
state 1-2 in the biased component.

The last example shows that the notion of probabilistic bisimilarity is sensitive to
the exact values of the transition probabilities. Note though that these probabilities
were obtained experimentally. Assume we flip the coin 100 million times and obtain
48, 542, 167 times heads.2 As a result, we can replace the probabilities 48

100 and 52
100 with

485
1000 and 515

1000 , respectively. In the resulting system, state 1-2 is neither probabilistic
bisimilar to state 1-2 in the original system (1) nor to state 1-2 in the biased system (2).

Hence, we can conclude that the notion of probabilistic bisimilarity is not robust as
minuscule changes in the probabilities of the transitions may impact which states are
probabilistic bisimilar. This lack of robustness was first observed by Giacalone, Jou
and Smolka in [Giacalone et al. 1990].

In their paper [Giacalone et al. 1990], Giacalone et al. also propose to generalize
the qualitative notion of behavioural equivalence — in which two states are either
behavioural equivalent or they are inequivalent — to a quantitative notion. An equiv-
alence relation can be viewed as a function that maps each state pair to a boolean. This
boolean captures whether the two states are equivalent. Giacalone et al. suggest to use
the real numbers in the unit interval [0, 1] instead of the booleans. Hence, we arrive at
a function mapping pairs of states to real numbers. As we will see in Section 2, such
a function assigns a distance to each pair of states. This distance should be used to
capture the behavioural similarity of two states. The smaller their distance, the more
alike the states should behave. In particular, distance zero should exactly capture that
states are behaviourally equivalent.

Not only do these distances provide a robust alternative to behavioural equivalences.
These distances can also be used to reduce the size of the model of a system. For
example, in [Murthy et al. 2012], Murthy et al. use a quantitative generalization of a
behavioural equivalence to reduce the size of a model of a biological system. Similarly,
Sen, Deshpande and Getoor [Sen et al. 2009] exploit a quantitative generalization
of a behavioural equivalence for high-level reasoning in the setting of probabilistic
relational databases. Bacci, Bacci, Larsen and Mardare [Bacci et al. 2017] show how
these distances can be used to reduce the state space of a labelled Markov chain.

2In this case we can deduce that with probability 0.99 the odds of heads lies in the interval [0.4853, 0.4857].
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As Panangaden discusses in [Panangaden 2015], probabilistic bisimilarity can be
characterized by a logic. Adjusted to our slightly different model, this logic contains a
formula that expresses whether a state of the model has a particular label. For the la-
belled Markov chain (1), one can express in the logic whether a state is a purple square.
This formula holds in state 1 but not in state 2. Furthermore, one can also express that
from a given state the probability of transitioning to a state satisfying a particular for-
mula of the logic is greater than some threshold. For example, transitioning to a green
triangle with probability greater than 1

2 holds in state 6-6 but not in state 1-2. Finally,
formulae can be combined by means of conjunction. For example, one can express that
a state is a brown circle and that the state can transition to a green triangle with prob-
ability greater than 1

2 . This formula holds in state 2-3 but not in state 1-2. This logic
characterizes probabilistic bisimilarity in the following way. States are probabilistic
bisimilar if and only if those states satisfy the same formulae of the logic. As a conse-
quence, if two states are not bisimilar then there exists a formula that distinguishes
them, that is, it holds in one state but not in the other.

In [Desharnais et al. 1999], Desharnais, Gupta, Jagadeesan and Panangaden
present a quantitative generalization of probabilistic bisimilarity for labelled Markov
chains. Their generalization is based on a small variation on the logic described above.
In this modified logic one can express that a given state transitions to states that
satisfy a particular formula of the logic (without a threshold). For example, one can
express that a state transitions to a green triangle. The usual interpretation of a logic
can be viewed as a function that maps a pair consisting of a formula of the logic and
a state of the model to a boolean. The pair is mapped to true if the formula holds in
the state and it is mapped to false otherwise. Desharnais et al. provide a real valued
interpretation of the logic, that is, they map formula-state pairs to real numbers in
the unit interval [0, 1]. Given a formula and a state, the corresponding real number
measures the validity of the formula in the state. Roughly, the larger this number, the
higher the probability that the formula holds in the state. For example, the formula
that expresses that a state is a green triangle has value zero in state 1 and value one
in state 2. The formula that captures transitioning to a green triangle has value one in
state 6-6 and value 1

2 in state 1-2.
Desharnais et al. assign a distance to each pair of states in terms of the real valued

interpretation of the logic. In particular, the distance of two states is defined by means
of a formula that distinguishes the states the most. That is, this distance is defined as
the absolute difference of the values of such a formula in the two states. For example,
the formula that expresses that a state is a green triangle distinguishes the states 1

and 2 the most. Since the values of this formula in those states are zero and one,
respectively, we can conclude that the distance of the states 1 and 2 is |0� 1| = 1. The
formula that captures transitioning to a green triangle distinguishes the states 1-2
and 6-6 the most. The values of this formula in the states 1-2 and 6-6 are 1

2 and one,
respectively. Hence, the distance of the states 1-2 and 6-6 is | 12 � 1| = 1

2 .
In the biased system (2), the probabilities are slightly different. Let us compare

the behaviour of the states in the fair component with their biased counterparts. The
states 1, 2, 3, 4, 5, 6, 2-3 and 6-6 in the fair component are probabilistic bisimilar to
their biased counterpart and, hence, have distance zero. The fair and biased versions
of state 1-2 are distinguished most by the formula that captures transitioning to a
green triangle. The values of this formula in the fair and biased versions of state 1-2
are 1

2 and 52
100 , respectively. Therefore, their distance is | 12 �

52
100 | =

2
100 . Note that small

differences in probabilities result in small distances. Hence, these distances give rise
to a robust generalization of probabilistic bisimilarity.
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In this paper, we define a quantitative generalization of probabilistic bisimilarity for
labelled Markov chains in a different way. Although the definition is different from the
one described above, it gives rise to the same distances as shown in joint work with
Hermida, Makkai and Worrell [van Breugel et al. 2005, Theorem 6 and 7]. Our def-
inition is based on ideas first presented in joint work with Worrell [van Breugel and
Worrell 2001] and work by Desharnais, Gupta, Jagadeesan and Panangaden [Deshar-
nais et al. 2002] and Deng, Chothia, Palamidessi and Pang [Deng et al. 2005]. We will
provide the details in Section 5. For some historical background, we refer the reader
to joint work with Worrell [van Breugel and Worrell 2014, Section 1].

2. FROM EQUIVALENCES TO DISTANCES
In [Giacalone et al. 1990], Giacalone et al. propose a quantitative generalization of the
notion of behavioural equivalence. Before presenting their generalization, let us recall
the definition of an equivalence relation.

Definition 2.1. A relation R ✓ S ⇥ S is an equivalence relation if

— for all s 2 S, (s, s) 2 R,
— for all s, t 2 S, if (s, t) 2 R then (t, s) 2 R, and
— for all s, t, u 2 S, if (s, t) 2 R and (t, u) 2 R then (s, u) 2 R.

An equivalence relation can be viewed as a function mapping a pair to zero if the
elements are equivalent and to one if the elements are not equivalent. That is, an
equivalence relation R can be viewed as a function r : S ⇥ S ! {0, 1} defined by

r(s, t) =

⇢
0 if (s, t) 2 R
1 otherwise

The above three conditions can be captured as

— for all s 2 S, r(s, s) = 0,
— for all s, t 2 S, r(s, t) = r(t, s), and
— for all s, t, u 2 S, if r(s, u)  r(s, t) + r(t, u).

Rather than using the booleans or {0, 1}, Giacalone et al. propose to employ the real
numbers in the unit interval [0, 1]. That is, instead of a function r : S ⇥ S ! {0, 1}
they suggest to use a function d : S ⇥ S ! [0, 1] satisfying the above conditions. Such a
function is known as a pseudometric in topology.

Definition 2.2. A function d : S ⇥ S ! [0, 1] is a pseudometric if

— for all s 2 S, d(s, s) = 0,
— for all s, t 2 S, d(s, t) = d(t, s), and
— for all s, t, u 2 S, if d(s, u)  d(s, t) + d(t, u).

A behavioural pseudometric generalizes the notion of a behavioural equivalence. It
maps each pair of states of a model to their distance. Such a pseudometric should be de-
fined so that the distance d(s, t) measures the similarity of the behaviour of the states s
and t. The more alike the states behave, the smaller this distance should be. In par-
ticular, distance zero should capture exactly those state pairs that are behaviourally
equivalent.

As we mentioned before, behavioural equivalences such as probabilistic bisimilarity
are not robust. Small changes to the probabilities may cause behaviourally equiva-
lent states to become inequivalent or vice versa. Behavioural pseudometrics provide
a robust generalization as small changes to the probabilities should only cause small
changes in the distances.
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3. LABELLED MARKOV CHAINS
To formally define the model of interest, labelled Markov chain, we first recall the
notions of a probability distribution and its support, and we provide a few examples.
Given a finite set S, a function µ : S ! [0, 1] is a probability distribution on S ifP

s2S µ(s) = 1. The set of all probability distributions on S is denoted by Distr(S). For
s 2 S, the Dirac distribution concentrated at s is the function �s : S ! [0, 1] defined by

�s(t) =

⇢
1 if s = t
0 otherwise

Dirac distributions and their convex combinations, such as 1
2�s +

1
2�t, are all examples

of probability distributions. The support of a probability distribution µ on S is defined
by

support(µ) = { s 2 S | µ(s)> 0 }.
For example, we have that support(

1
2�s +

1
2�t) = {s, t}. Next, we define the model of

interest.
Definition 3.1. A labelled Markov chain is a tuple hS,L, ⌧, `i consisting of

— a finite set S of states,
— a finite set L of labels,
— a transition function ⌧ : S ! Distr(S), and
— a labelling function ` : S ! L.

Consider the labelled Markov chain (1) presented in the introduction. It has 13
states such as 1, 1-2 and 1-3. It has three labels which are represented by brown circles,
green triangles and purple squares. Its transition function ⌧ maps state 1 to the Dirac
distribution �1 and state 4-5 to the convex combination of Dirac distributions 1

2�4+
1
2�5.

Its labelling function ` maps state 1-2 to a brown circle, state 2 to a green triangle, and
state 5 to a purple square.

4. PROBABILISTIC BISIMILARITY
In [Larsen and Skou 1989], Larsen and Skou introduce the notion of probabilitic bisim-
ilarity. This behavioural equivalence captures which states of a labelled Markov chain
are considered to behave the same. Equivalent states should have the same label and
the transition function should preserve the equivalence. This is captured by the fol-
lowing definition.

Definition 4.1. An equivalence relation R ✓ S ⇥ S is a probabilistic bisimulation if
for all s, t 2 S, if (s, t) 2 R then `(s) = `(t) and (⌧(s), ⌧(t)) 2 R".

The relation R" is defined below. A probabilistic bisimulation is an equivalence rela-
tion on the states of a labelled Markov chain. The transition function takes a state to
a probability distribution on states. Since this transition function should preserve the
equivalence relation, we have to lift an equivalence relation on the states to a relation
on the probability distributions over those states. Larsen and Skou define this lifting
as follows.

Definition 4.2. The lifting of an equivalence relation R ✓ S ⇥ S is the relation
R" ✓ Distr(S) ⇥ Distr(S) defined by (µ, ⌫) 2 R" if µ(C) = ⌫(C) for all R-equivalence
classes C.

Note that we write µ(C) for
P

s2C µ(s). Consider the labelled Markov chain (1) of the
introduction. To argue that the states 2 and 3 behave the same, let R be the smallest
equivalence relation containing the pair (2, 3). Note that the states 2 and 3 are green
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triangles and, hence, have the same label. To deduce that the transitions of the states 2

and 3 preserve the equivalence relation R, we need to show that (�2, �3) 2 R". Let C be
an R-equivalence class. Since (2, 3) 2 R, either C contains both 2 and 3 or it contains
neither of them. Hence, either �2(C) = 1 = �3(C) or �2(C) = 0 = �3(C).

2

3

2

3

1

1

Therefore, it follows that (�2, �3) 2 R".
To show that the states 2-3 and 6-6 are behaviourally equivalent, let R be the small-

est equivalence relation containing the pairs (2-3, 6-6), (2, 3) and (3, 6). Note that re-
lated states have the same label, since the states 2-3 and 6-6 are both brown circles
and the states 2, 3 and 6 are all green triangles. To conclude that the transitions
of the states 2-3 and 6-6 preserve the equivalence relation R, we have to prove that
(

1
2�2 +

1
2�3, �6) 2 R". Let C be an R-equivalence class. Then either C contains 2, 3 and

6, or it contains none of them. In both cases, ( 12�2 +
1
2�3)(C) = �6(C).
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Hence, we have that ( 12�2 +
1
2�3, �6) 2 R".

To show that a pair of states behave the same, in general, several different proba-
bilistic bisimulations containing the pair can be constructed. For example, the smallest
equivalence relation containing (2, 3) and also the smallest equivalence relation con-
taining (2, 3) and (3, 6) are probabilistic bisimulations, and both show that the states 2

and 3 behave the same. As is often mentioned in the literature, there exists a largest
probabilistic bisimulation. However, a proof of this result cannot easily be found in the
literature. Therefore, we present one.

PROPOSITION 4.3. There exists a largest probabilistic bisimulation.

PROOF. In this proof we assume that the reader is familiar with some concepts
of order theory which can, for example, be found in [Davey and Priestley 2002]. We
denote the set of equivalence relations on S by Equiv(S). This set equipped with the
partial order ✓ forms a complete lattice [Davey and Priestley 2002, Example 2.34].
The function � : Equiv(S) ! 2

S⇥S is defined by

�(R) = { (s, t) 2 S ⇥ S | `(s) = `(t) ^ (⌧(s), ⌧(t)) 2 R" }.

Let R be an equivalence relation. As a consequence, R" is also an equivalence rela-
tion. Hence, �(R) is an equivalence relation as well. Therefore, � is a function on the
complete lattice Equiv(S).

Let R and S be equivalence relations with R ✓ S. Then, the partition into equiva-
lence classes induced by R is a refinement of the partition induced by S. As a conse-
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quence, each S-equivalence class is a disjoint union of R-equivalence classes. Hence,
R" ✓ S". Therefore, �(R) ✓ �(S), that is, the function � is order-preserving.

From the definitions of � and probabilistic bisimulation we can conclude that an
equivalence relation R is a probabilistic bisimulation if and only if R ✓ �(R), that is,
R is a post-fixed point of � (see [Davey and Priestley 2002, Definition 8.14]). Since �

is an order-preserving function on a complete lattice, we can conclude from the dual of
[Davey and Priestley 2002, Theorem 8.20] that � has a greatest post-fixed point, which
is the largest probabilistic bisimulation.

Definition 4.4. Probabilistic bisimilarity is the largest probabilistic bisimulation.

This equivalence relation captures exactly which states of a labelled Markov chain
behave the same. In the labelled Markov chain of the introduction, the states 2, 3, 4
and 6 are probabilistic bisimilar. Also the states 1 and 5 are probabilistic bisimilar.
Furthermore, the states 1-2, 2-3 and 1-3, are probabilistic bisimilar to the states 4-5,
6-6 and 4-6, respectively.

Towards a quantitative generalization of probabilistic bisimilarity, we first charac-
terize the lifting of an equivalence relation by means of a coupling. This notion from
probability theory was introduced by Doeblin in 1936 and first published in [Doeblin
1938].

Definition 4.5. Let µ, ⌫ 2 Distr(S). The set ⌦(µ, ⌫) of couplings of µ and ⌫ is defined
by

⌦(µ, ⌫) = {! 2 Distr(S ⇥ S) | 8s, t 2 S : !(s, S) = µ(s) ^ !(S, t) = ⌫(t) }.
Note that we write !(s, S) for

P
t2S !(s, t). Next, we provide a visual representation

of these couplings in case the probability distributions are the transitions of a labelled
Markov chain. Consider, for example, the transitions of the states 1-2 and 4-5 of the
labelled Markov chain (1) presented in the introduction. These transitions can be rep-
resented as follows.

1

2

5

4

1-2 4-5

1
2

1
2

1
2

1
2

A coupling of the probability distributions ⌧(1-2) and ⌧(4-5) has to satisfy the follow-
ing equations.

!(1, 4) + !(1, 5) =

1
2 (3)

!(2, 4) + !(2, 5) =

1
2

!(1, 4) + !(2, 4) =

1
2 (4)

!(1, 5) + !(2, 5) =

1
2

Such a coupling can be viewed as a transportation plan of moving one unit from
state 1-2 to state 4-5. For example, !(1, 4) is the amount transported from state 1 to
state 4. Equation (3) tells us that the amount entering state 1, which is 1

2 , also leaves
it and is transported to states 4 and 5. Equation (4) captures that the amount leaving
state 4, which is 1

2 , also enters it and is transported from states 1 and 2.
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For example,

!(1, 4) = 1
3 ,!(1, 5) =

1
6 ,!(2, 4) =

1
6 and !(2, 5) = 1

3 (5)

satisfies the above equations and can be depicted as

1

2

5

4

1-2 4-5

1
2

1
2

1
2

1
2

1
6

1
3

1
3

1
6

(6)

In [Jonsson and Larsen 1991, Theorem 4.6], Jonsson and Larsen characterize the
lifting as presented in Definition 4.2 by means of couplings.

THEOREM 4.6. Let R ✓ S ⇥ S be an equivalence relation and let µ, ⌫ 2 Distr(S).
Then (µ, ⌫) 2 R" if and only if there exists ! 2 ⌦(µ, ⌫) such that support(!) ✓ R.

Assume that R is the smallest equivalence relation containing the pairs (1, 5) and
(2, 4). This relation can be depicted as follows.

1

2

5

4

(7)

To conclude that the probability measures ⌧(1-2) and ⌧(4-5) are in the lifting of R, we
have to show that there exists a coupling of ⌧(1-2) and ⌧(4-5), that is, a transportation
plan, that only transports between sources and targets related by R. The coupling
defined in (5) and depicted in (6) transports between source 1 and target 4 which are
not related by R. Hence, from this coupling we cannot conclude that ⌧(1-2) and ⌧(4-5)
are in the lifting of R. However,

⇡(1, 5) = 1
2 and ⇡(2, 4) = 1

2

is also a coupling of ⌧(1-2) and ⌧(4-5). The corresponding transportation plan, which
is depicted below, only transports between related sources and targets. As a result, we
can conclude that ⌧(1-2) and ⌧(4-5) are in the lifting of R.

1

2

5

4

1-2 4-5

1
2

1
2

1
2

1
2

1
2

1
2

(8)

Note the similarity of the above diagram and the following one, which captures that
⌧(1-2) and ⌧(4-5) are in the lifting of R according to Definition 4.2. The transportation
plan is replaced with equivalence classes.
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From the above discussion we can conclude that for probabilistic bisimilar states there
exists a transportation plan that transports one unit from the one state to the other
while only transporting between related states.

5. PROBABILISTIC BISIMILARITY DISTANCES
Probabilistic bisimilarity lacks robustness because it requires related states to tran-
sition with the exact same probability to states that behave exactly the same. In our
quantitative generalization we not only want to relax these two exactness conditions,
we also want to measure how much these conditions need to be relaxed.

We use pseudometrics instead of equivalence relations in our quantitative general-
ization of probabilistic bisimilarity. As we already discussed in Section 2, a behavioural
pseudometric maps each pair of states to a real number in the interval [0, 1]. These dis-
tances of states capture the similarity of their behaviour.

Consider, for example, the fair and biased version of state 1-2. Both transition to the
fair and biased versions of state 1 and 2. The fair and biased versions of the states 1

and 2 behave exactly the same. Hence, in this example only the probabilities of the
transitions differ slightly, but the reachable states behave exactly the same.

fair biased

1

2

1

2

1-2 1-2

1
2

1
2

48
100

52
100

Since the fair and biased versions of the states 1 and 2 are probabilistic bisimilar,
their distance should be zero. Let us compare the behaviour of the fair version of state 1

and the biased version of state 2. Since even the basic facts known about these states
differ, since their labels are different, their behaviour should be considered very differ-
ent. This is reflected by the fact that their distance is maximal, that is, it is one. These
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distances are depicted in the diagram below.

fair biased

1

2

1

2

0

1

1

0

(9)

With probability 48
100 +

1
2 the fair and biased version of state 1-2 transition to

states that behave exactly the same. With the remaining probability, that is, 2
100 ,

they transition to states that behave very differently. Hence, the similarity in be-
haviour of the fair and biased versions of state 1-2 is measured as the weighted sum
48
100 ⇥ 0 +

1
2 ⇥ 0 +

2
100 ⇥ 1 =

2
100 . This captures that their behaviour is very similar, yet

they are not probabilistic bisimilar.
Recall from Section 4 that probabilistic bisimilarity can be captured in terms of

transportation plans. As we will discuss next, our distances can also be defined in
terms of transportation plans. Consider again the above example. We can transport
48
100 from the fair state 1 to the biased state 1 and 1

2 from the fair state 2 to the biased
state 2. The remaining 2

100 from the fair state 1 can only be transported to the biased
state 2. This transportation plan can be depicted as follows.

fair biased

1

2

1

2

1-2 1-2

1
2

1
2

48
100

52
100

48
100

2
100

1
2

Since the fair states 1 and 2 are probabilistic bisimilar to the biased states 1 and
2, their distances are zero. As a result, transporting between these pairs contributes
zero to the distance of the fair state 1-2 and the biased state 1-2. Because the fair
state 1 behaves very differently from biased state 2, their distance is one. Consequently,
transporting between this pair of states contributes 2

100 ⇥ 1 to the distance of the fair
state 1-2 and the biased state 1-2. Hence, the distance of the fair state 1-2 and the bi-
ased state 1-2 can be viewed as the cost of transporting one unit from the fair state 1-2
to the biased state 1-2, where the costs are given by the distances in (9). As the reader
can easily verify, the above transportation plan gives rise to the minimal cost of trans-
porting one unit from the fair state 1-2 to the biased state 1-2.

Recall from Section 4 that for probabilistic bisimilar states there exists a transporta-
tion plan that transports one unit from the one state to the other while only transport-
ing between related states. In our quantitative generalization, we replace the relation
with distances (compare (7) with (9)). In the quantitative setting, these distances play
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the role of costs and we are interested in the minimal cost of transporting one unit
from the one state to the other.

Next, let us consider the fair and biased versions of state 1-3. In this example, the
probabilities of the transitions match exactly, but the reachable states do not behave
exactly the same.

fair biased

1-2

2-3

1-2

2-3

1-3 1-3

1
2

1
2

1
2

1
2

The fair and biased state 2-3 are probabilistic bisimilar and, therefore, have distance
zero. As we already discussed earlier, the fair and biased state 1-2 have distance 2

100 .
The other distances can be found in the following diagram.

fair biased

1-2

2-3

1-2

2-3

2
100

1
2

48
100

0

From the above two diagrams we can conclude the following. With probability 1
2

the fair (biased) state 1-3 transitions to the fair (biased) state 1-2. Although the fair
and biased states 1-2 are not probabilistic bisimilar, their behaviour is very similar,
reflected by their small distance. With the remaining probability 1

2 the fair (biased)
state 1-3 transitions to the fair (biased) state 2-3. The latter two states are probabilistic
bisimilar and, hence, have distance zero. Therefore, the similarity of the behaviour of
the fair and biased states 1-3 is captured by the weighted sum 1

2 ⇥ 2
100 +

1
2 ⇥ 0 =

1
100 .

Given the above distances, a transportation plan that minimizes the cost of trans-
porting one unit between the fair and biased states 1-3 is captured by the following
diagram.
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fair biased

1-2

2-3

1-2

2-3

1-3 1-3

1
2

1
2

1
2

1
2

1
2

1
2

The cost of the above transportation plan is 1
2 ⇥ 2

100 +

1
2 ⇥ 0 =

1
100 . Hence, also in

this example the distance between the fair and biased states 1-3 can be viewed as the
minimal cost of transporting one unit from the fair state 1-3 to its biased counterpart.

As a third and final example, let us consider the fair and biased versions of state 4-6.
In this case, neither do the probabilities of the transitions match, nor do the reachable
states behave exactly the same.

fair biased

4-5

6-6

4-5

6-6

4-6 4-6

1
2

1
2

48
100

52
100

The distances between the relevant states are given in the following diagram.

fair biased

4-5

6-6

4-5

6-6

2
100

1
2

52
100

0

From the above two diagrams we can conclude the following. With probability 1
2 the

fair and biased state 4-6 transition to states that behave exactly the same, namely
the fair and biased states 6-6. With probability 48

100 the states transition to the fair
and biased states 4-5 which behave almost the same, reflected by the fact that their
distance is 2

100 . With the remaining probability, namely probability 2
100 , the states

transition to the fair state 4-5 and the biased state 6-6. Therefore, the weighted sum
1
2 ⇥ 0 +

48
100 ⇥ 2

100 +

2
100 ⇥ 1

2 =

196
10000 captures the expected similarity in behaviour of the

fair and biased states 4-6.
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Also in this example the distance can be viewed as the minimum cost of transporting
one unit from the fair state 4-6 to its biased counterpart. An optimal transportation
plan is depicted below.

fair biased

4-5

6-6

4-5

6-6

4-6 4-6

1
2

1
2

48
100

52
100

48
100

2
100

1
2

The cost of the above transportation plan is 196
10000 .

In the remainder of this section, we will present the technical details of our quantita-
tive generalization of probabilistic bisimilarity. Using pseudometrics, we will general-
ize the notion of lifting in terms of couplings (Theorem 4.6), the notion of probabilistic
bisimulation (Definition 4.1), and the notion probabilistic bisimilarity (Definition 4.4).

A key ingredient of the definition of probabilistic bisimulation is the lifting of an
equivalence relation on states to a relation on distributions over those states. In our
quantitative setting we lift a pseudometric on states to a distance function on proba-
bility distributions over those states. This quantitative notion of lifting is defined as
follows.

Definition 5.1. The lifting of a pseudometric d : S ⇥ S ! [0, 1] is the function
d" : Distr(S)⇥Distr(S) ! [0, 1] defined by

d"(µ, ⌫) = min

!2⌦(µ,⌫)

X

u,v2S

!(u, v) d(u, v).

The above definition is the dual representation of the distance function introduced
by Kantorovich in [Kantorovich 1942] (see the proof of Proposition 5.3 for the original
definition). Let s, t 2 S. Recall from Section 4 that a coupling ! 2 ⌦(⌧(s), ⌧(t)) can
be viewed as a transportation plan. Provided that the pseudometric d captures the
transportation costs, d"(⌧(s), ⌧(t)) is the minimum cost of transporting one unit from
state s to state t. The distance function due to Kantorovich is also known as the earth
mover’s distance (see, for example, [Deng and Du 2009]). This distance function was
first used to define a behavioural pseudometric in joint work with Worrell [van Breugel
and Worrell 2001].

Earlier in this section we considered three examples. For each case, we constructed
a transportation plan with minimal cost. These are all examples of liftings.

Next, we generalize the notion probabilistic bisimulation relation to our quantitative
setting. The following definition is a special case of [Deng et al. 2005, Definition 2.5],
which considers systems that generalize labelled Markov chains.

Definition 5.2. A pseudometric d : S⇥S ! [0, 1] is a probabilistic bisimulation if for
all s, t 2 S and ✏ 2 [0, 1), if d(s, t)  ✏ then `(s) = `(t) and d"(⌧(s), ⌧(t))  ✏.

Consider the labelled Markov chain (1) in the introduction. Let the pseudometric d1
is defined by

d1(s, t) =

⇢
0 if s = t
1 otherwise
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This distance function is known as the discrete pseudometric. We leave it to the reader
to verify that it is a probabilistic bisimulation. Note that this pseudometric only cap-
tures that each state behaves the same as itself.

Now consider the pseudometric d2 is defined by

d2(s, t) =

⇢
0 if s and t are probabilistic bisimilar
1 otherwise

The pseudometric d2 captures that probabilistic bisimilar states behave the same and,
hence, provides more information than d1. To conclude that the pseudometric d2 is a
probabilistic bisimulation, it suffices to show that if the states s and t are probabilistic
bisimilar then `(s) = `(t) and d2"(⌧(s), ⌧(t)) = 0. Assume that the states s and t are
probabilistic bisimilar. From the definition of probabilistic bisimulation relation and
Theorem 4.6 we can conclude that `(s) = `(t) and there exists ! 2 ⌦(⌧(s), ⌧(t)) such
that for all u, v 2 support(!), states u and v are probabilistic bisimilar and, therefore,
d2(u, v) = 0. Hence,

P
u,v2S !(u, v) d2(u, v) = 0 and as a consequence d2"(⌧(s), ⌧(t)) = 0.

Let us slightly modify the above pseudometric d2 by redefining
d3(1-2, 2-3) = d3(2-3, 1-2) = d3(1-2, 6-6) = d3(6-6, 1-2) = 1

2 .

To deduce that this modified pseudometric d3 is a probabilistic bisimulation it remains
to show that d3"(⌧(1-2), ⌧(2-3))  1

2 and d3"(⌧(1-2), ⌧(6-6))  1
2 . Consider the coupling

defined by
!(1, 2) = 1

2 and !(2, 3) = 1
2 .

Since
P

u,v2S !(u, v) d3(u, v) =
1
2 ⇥1+

1
2 ⇥0 =

1
2 , we can conclude d3"(⌧(1-2), ⌧(2-3))  1

2 .
The fact that d3"(⌧(1-2), ⌧(6-6))  1

2 can be proved similarly. Since four of the distances
of the pseudometric d3 are smaller than the corresponding ones of the pseudomet-
ric d2, d3 provides more information about the behavioural similarity of the state pairs
than d2.

Finally, consider the pseudometric d4 defined by the following table.
1 2 3 4 5 6 1-2 2-3 4-5 6-6 1-3 4-6 1-6

1 0 1 1 1 0 1 1 1 1 1 1 1 1

2 1 0 0 0 1 0 1 1 1 1 1 1 1

3 1 0 0 0 1 0 1 1 1 1 1 1 1

4 1 0 0 0 1 0 1 1 1 1 1 1 1

5 0 1 1 1 0 1 1 1 1 1 1 1 1

6 1 0 0 0 1 0 1 1 1 1 1 1 1

1-2 1 1 1 1 1 1 0

1
2 0

1
2 1 1 1

2-3 1 1 1 1 1 1

1
2 0

1
2 0 1 1 1

4-5 1 1 1 1 1 1 0

1
2 0

1
2 1 1 1

6-6 1 1 1 1 1 1

1
2 0

1
2 0 1 1 1

1-3 1 1 1 1 1 1 1 1 1 1 0 0 1

4-6 1 1 1 1 1 1 1 1 1 1 0 0 1

1-6 1 1 1 1 1 1 1 1 1 1 1 1 0

We leave it to the reader to verify that this pseudometric is a probabilistic bismulation
as well.

As we have seen in Section 4, the larger a probabilistic bisimulation relation, the
more state pairs it contains that behave the same. Dually, the smaller a probabilistic
bisimulation pseudometric, the more information about the behavioural similarity of
the states it gives us. Let d and e be pseudometrics on S. Then d is smaller than e,
denoted d v e, if d(s, t)  e(s, t) for all s, t 2 S. The four pseudometrics introduced
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above are related as follows: d4 v d3 v d2 v d1. As a consequence, of the four d1
provides the least amount of information and d4 gives us the most.

As we have shown in Proposition 4.3, there exists a largest probabilistic bisimulation
relation. Dually, there exists a smallest probabilistic bisimulation pseudometric as we
will prove next. A similar result, without proof, can be found in [Deng et al. 2005].

PROPOSITION 5.3. There exists a smallest probabilistic bisimulation pseudometric.
PROOF. We denote the set of pseudometrics on S by Pseudo(S). This set equipped

with the partial order v forms a complete lattice (see, for example, [Desharnais et al.
2002, Lemma 3.2]). The function � : Pseudo(S) ! [0, 1]S⇥S is defined by

�(d)(s, t) =

⇢
1 if `(s) 6= `(t)
d"(⌧(s), ⌧(t)) otherwise

Let d be a pseudometric. According to the Kantorovich-Rubinstein duality theorem
[Kantorovich and Rubinstein 1958], we have that

d"(µ, ⌫) = max

f2(S,d)---<[0,1]

�����
X

s2S

f(s) (µ(s)� ⌫(s))

�����

where f 2 (S, d) ------< [0, 1] if |f(s)�f(t)|  d(s, t) for all s, t 2 S. From this dual represen-
tation, which is Kantorovich’s original definition, we can immediately conclude that d"
is a pseudometric. Hence, �(d) is a pseudometric as well. Therefore, � is a function on
the complete lattice Pseudo(S).

Let d and e be pseudometrics with d v e. Then d" v e" and, therefore, �(d) v �(e).
That is, the function � is order-preserving.

Next, we prove that a pseudometric d is a probabilistic bisimulation if and only if
�(d) v d, that is, d is a pre-fixed point of � (see [Davey and Priestley 2002, Defini-
tion 8.14]). We prove two implications. Assume that d is a probabilistic bisimulation.
Let s, t 2 S. We distinguish two cases.

— If `(s) 6= `(t) then we can conclude that d(s, t) = 1 from the definition of probabilistic
bisimulation. Hence,

�(d)(s, t)  1 = d(s, t).

— If `(s) = `(t) then
�(d)(s, t) = d"(⌧(s), ⌧(t))  d(s, t)

by the definition of probabilistic bisimulation.
To prove the other implication, assume that �(d) v d. Let s, t 2 S and ✏ 2 [0, 1).

Suppose that d(s, t)  ✏. Since
�(d)(s, t)  d(s, t)  ✏< 1

we can conclude that `(s) = `(t) and d"(⌧(s), ⌧(t)) = �(d)(s, t)  ✏ from the definition
of �. Hence, d is a probabilistic bisimulation.

Since � is an order-preserving function on a complete lattice, we can conclude from
[Davey and Priestley 2002, Theorem 8.20] that � has a least pre-fixed point, which is
the smallest probabilistic bisimulation pseudometric.

Desharnais et al. [Desharnais et al. 2002] were the first to define a behavioural
pseudometric as a least fixed point.

Definition 5.4. The probabilistic bisimilarity pseudometric is the smallest proba-
bilistic bisimulation pseudometric.
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This pseudometric captures the behavioural similarity of the states of a labelled
Markov chain. The pseudometric d4 presented above is the probabilistic bisimilarity
pseudometric for the labelled Markov chain (1) in the introduction. Desharnais et al.
[Desharnais et al. 1999, Theorem 1] proved the following fundamental result.

THEOREM 5.5. The probabilistic bisimilarity distance of states s and t is zero if and
only if s and t are probabilistic bisimilar.
Hence, the probabilistic bisimilarity pseudometric provides a quantitative generaliza-
tion of probabilistic bisimilarity.

6. CONCLUSION
As we already mentioned several times, probabilistic bisimilarity is not robust. This,
however, does not imply that the behavioural equivalence is useless. On the contrary,
probabilistic bisimilarity still plays a central role even in the presence of robust al-
ternatives such as probabilistic bisimilarity distances. First of all, it provides a nat-
ural notion of behavioural equivalence for labelled Markov chains (see, for example,
[Panangaden 2015]). As a consequence, it provides a soundness check for behavioural
pseudometrics as we want distance zero to exactly capture behavioural equivalence.
Secondly, probabilistic bisimilarity also plays a role in the policy iteration algorithm to
compute the probabilistic bisimilarity distances by Bacci et al. [Bacci et al. 2013]. In
particular, probabilistic bisimilarity needs to be decided before we can use policy itera-
tion to compute the distances, as shown in joint work with Tang [Tang and van Breugel
2016]. Thirdly, probabilistic bisimilarity also impacts the polynomial time algorithm
to compute the probabilistic bisimilarity distances, presented in joint work with Chen
and Worrell [Chen et al. 2012]. In this algorithm the distances are computed by means
of Khachiyan’s ellipsoid method [Khachiyan 1979]. As shown in joint work with Tang
[Tang and van Breugel 2017], if we first decide probabilistic bisimilarity then we can
use a simpler version of the ellipsoid method to compute the distances.

In Section 5 we argued that the probabilistic bisimilarity distances provide a natural
quantitative generalization of probabilistic bisimilarity. As mentioned in the introduc-
tion, the probabilistic bisimilarity distances can be characterized by means of a real
valued interpretation of a logic, a result due to Desharnais et al. [Desharnais et al.
1999]. As shown in joint work with Shalit and Worrell [van Breugel et al. 2002], these
distances can also be characterized in terms of tests. In joint work with Worrell [van
Breugel and Worrell 2014], we show that the distances can be captured as the values
of a game. Furthermore, the distances can be captured by a coalgebra as first shown
in joint work with Worrell [van Breugel and Worrell 2001].

Hopefully, we have convinced the reader that the probabilistic bisimilarity distances
defined in Section 5 are a natural generalization of probabilistic bisimilarity. We find
it compelling that these distances are defined in terms of the Kantorovich metric, a
natural distance function on probability distributions, and that they can be elegantly
characterized in terms of a logic, tests, a game and a coalgebra.
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