
Data Structures and
Algorithms in Java™

Sixth Edition

Michael T. Goodrich
Department of Computer Science
University of California, Irvine

Roberto Tamassia
Department of Computer Science

Brown University

Michael H. Goldwasser
Department of Mathematics and Computer Science

Saint Louis University



Appendix

A Useful Mathematical Facts

In this appendix we give several useful mathematical facts. We begin with some

combinatorial definitions and facts.

Logarithms and Exponents

The logarithm function is defined as

logb a = c if a = bc.

The following identities hold for logarithms and exponents:

1. logb ac = logb a+ logb c

2. logb a/c = logb a− logb c

3. logb ac = c logb a

4. logb a = (logc a)/ logc b

5. blogc a = alogc b

6. (ba)c = bac

7. babc = ba+c

8. ba/bc = ba−c

In addition, we have the following:

Proposition A.1: If a > 0, b > 0, and c > a+b, then

loga+ logb < 2logc−2.

Justification: It is enough to show that ab < c2/4. We can write

ab =
a2 +2ab+b2 − a2 +2ab−b2

4

=
(a+b)2 − (a−b)2

4
≤ (a+b)2

4
<

c2

4
.

The natural logarithm function lnx= loge x, where e= 2.71828 . . ., is the value

of the following progression:

e = 1+
1

1!
+

1

2!
+

1

3!
+ · · · .
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In addition,

ex = 1+
x

1!
+

x2

2!
+

x3

3!
+ · · ·

ln(1+ x) = x− x2

2!
+

x3

3!
− x4

4!
+ · · · .

There are a number of useful inequalities relating to these functions (which

derive from these definitions).

Proposition A.2: If x >−1,

x

1+ x
≤ ln(1+ x)≤ x.

Proposition A.3: For 0 ≤ x < 1,

1+ x ≤ ex ≤ 1

1− x
.

Proposition A.4: For any two positive real numbers x and n,

(

1+
x

n

)n

≤ ex ≤
(

1+
x

n

)n+x/2

.

Integer Functions and Relations

The “floor” and “ceiling” functions are defined respectively as follows:

1. ⌊x⌋= the largest integer less than or equal to x.

2. ⌈x⌉= the smallest integer greater than or equal to x.

The modulo operator is defined for integers a ≥ 0 and b > 0 as

a mod b = a−
⌊a

b

⌋

b.

The factorial function is defined as

n! = 1 ·2 ·3 · · · · · (n−1)n.

The binomial coefficient is
(

n

k

)

=
n!

k!(n− k)!
,

which is equal to the number of different combinations one can define by choosing

k different items from a collection of n items (where the order does not matter).

The name “binomial coefficient” derives from the binomial expansion:

(a+b)n =
n

∑
k=0

(

n

k

)

akbn−k.

We also have the following relationships.
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Proposition A.5: If 0 ≤ k ≤ n, then

(n

k

)k

≤
(

n

k

)

≤ nk

k!
.

Proposition A.6 (Stirling’s Approximation):

n! =
√

2πn
(n

e

)n
(

1+
1

12n
+ ε(n)

)

,

where ε(n) is O(1/n2).

The Fibonacci progression is a numeric progression such that F0 = 0, F1 = 1,

and Fn = Fn−1 +Fn−2 for n ≥ 2.

Proposition A.7: If Fn is defined by the Fibonacci progression, then Fn is Θ(gn),
where g = (1+

√
5)/2 is the so-called golden ratio.

Summations

There are a number of useful facts about summations.

Proposition A.8: Factoring summations:

n

∑
i=1

a f (i) = a
n

∑
i=1

f (i),

provided a does not depend upon i.

Proposition A.9: Reversing the order:

n

∑
i=1

m

∑
j=1

f (i, j) =
m

∑
j=1

n

∑
i=1

f (i, j).

One special form of is a telescoping sum:

n

∑
i=1

( f (i)− f (i−1)) = f (n)− f (0),

which arises often in the amortized analysis of a data structure or algorithm.

The following are some other facts about summations that arise often in the

analysis of data structures and algorithms.

Proposition A.10: ∑
n
i=1 i = n(n+1)/2.

Proposition A.11: ∑
n
i=1 i2 = n(n+1)(2n+1)/6.
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Proposition A.12: If k ≥ 1 is an integer constant, then

n

∑
i=1

ik is Θ(nk+1).

Another common summation is the geometric sum, ∑
n
i=0 ai, for any fixed real

number 0 < a 6= 1.

Proposition A.13:
n

∑
i=0

ai =
an+1 −1

a−1
,

for any real number 0 < a 6= 1.

Proposition A.14:
∞

∑
i=0

ai =
1

1−a

for any real number 0 < a < 1.

There is also a combination of the two common forms, called the linear expo-

nential summation, which has the following expansion:

Proposition A.15: For 0 < a 6= 1, and n ≥ 2,

n

∑
i=1

iai =
a− (n+1)a(n+1)+na(n+2)

(1−a)2
.

The n th Harmonic number Hn is defined as

Hn =
n

∑
i=1

1

i
.

Proposition A.16: If Hn is the n th harmonic number, then Hn is lnn+Θ(1).

Basic Probability

We review some basic facts from probability theory. The most basic is that any

statement about a probability is defined upon a sample space S, which is defined

as the set of all possible outcomes from some experiment. We leave the terms

“outcomes” and “experiment” undefined in any formal sense.

Example A.17: Consider an experiment that consists of the outcome from flip-

ping a coin five times. This sample space has 25 different outcomes, one for each

different ordering of possible flips that can occur.

Sample spaces can also be infinite, as the following example illustrates.
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Example A.18: Consider an experiment that consists of flipping a coin until it

comes up heads. This sample space is infinite, with each outcome being a sequence

of i tails followed by a single flip that comes up heads, for i = 1,2,3, . . ..

A probability space is a sample space S together with a probability function

Pr that maps subsets of S to real numbers in the interval [0,1]. It captures math-

ematically the notion of the probability of certain “events” occurring. Formally,

each subset A of S is called an event, and the probability function Pr is assumed to

possess the following basic properties with respect to events defined from S:

1. Pr(∅) = 0.

2. Pr(S) = 1.

3. 0 ≤ Pr(A)≤ 1, for any A ⊆ S.

4. If A,B ⊆ S and A∩B = ∅, then Pr(A∪B) = Pr(A)+Pr(B).

Two events A and B are independent if

Pr(A∩B) = Pr(A) ·Pr(B).

A collection of events {A1,A2, . . . ,An} is mutually independent if

Pr(Ai1 ∩Ai2 ∩· · ·∩Aik) = Pr(Ai1)Pr(Ai2) · · ·Pr(Aik).

for any subset {Ai1 ,Ai2 , . . . ,Aik}.

The conditional probability that an event A occurs, given an event B, is denoted

as Pr(A|B), and is defined as the ratio

Pr(A∩B)

Pr(B)
,

assuming that Pr(B)> 0.

An elegant way for dealing with events is in terms of random variables. Intu-

itively, random variables are variables whose values depend upon the outcome of

some experiment. Formally, a random variable is a function X that maps outcomes

from some sample space S to real numbers. An indicator random variable is a

random variable that maps outcomes to the set {0,1}. Often in data structure and

algorithm analysis we use a random variable X to characterize the running time of

a randomized algorithm. In this case, the sample space S is defined by all possible

outcomes of the random sources used in the algorithm.

We are most interested in the typical, average, or “expected” value of such a

random variable. The expected value of a random variable X is defined as

E(X) = ∑
x

xPr(X = x),

where the summation is defined over the range of X (which in this case is assumed

to be discrete).



Appendix: Useful Mathematical Facts 7

Proposition A.19 (The Linearity of Expectation): Let X and Y be two ran-

dom variables and let c be a number. Then

E(X +Y ) = E(X)+E(Y ) and E(cX) = cE(X).

Example A.20: Let X be a random variable that assigns the outcome of the roll

of two fair dice to the sum of the number of dots showing. Then E(X) = 7.

Justification: To justify this claim, let X1 and X2 be random variables corre-

sponding to the number of dots on each die. Thus, X1 = X2 (i.e., they are two

instances of the same function) and E(X) = E(X1 +X2) = E(X1)+E(X2). Each

outcome of the roll of a fair die occurs with probability 1/6. Thus,

E(Xi) =
1

6
+

2

6
+

3

6
+

4

6
+

5

6
+

6

6
=

7

2
,

for i = 1,2. Therefore, E(X) = 7.

Two random variables X and Y are independent if

Pr(X = x|Y = y) = Pr(X = x),

for all real numbers x and y.

Proposition A.21: If two random variables X and Y are independent, then

E(XY ) = E(X)E(Y ).

Example A.22: Let X be a random variable that assigns the outcome of a roll of

two fair dice to the product of the number of dots showing. Then E(X) = 49/4.

Justification: Let X1 and X2 be random variables denoting the number of dots

on each die. The variables X1 and X2 are clearly independent; hence

E(X) = E(X1X2) = E(X1)E(X2) = (7/2)2 = 49/4.

The following bound and corollaries that follow from it are known as Chernoff

bounds.

Proposition A.23: Let X be the sum of a finite number of independent 0/1 ran-

dom variables and let µ > 0 be the expected value of X . Then, for δ > 0,

Pr(X > (1+δ)µ)<

[

eδ

(1+δ)(1+δ)

]µ

.
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Useful Mathematical Techniques

To compare the growth rates of different functions, it is sometimes helpful to apply

the following rule.

Proposition A.24 (L’Hôpital’s Rule): If we have limn→∞ f (n) = +∞ and we

have limn→∞ g(n) = +∞, then limn→∞ f (n)/g(n) = limn→∞ f ′(n)/g′(n), where

f ′(n) and g′(n) respectively denote the derivatives of f (n) and g(n).

In deriving an upper or lower bound for a summation, it is often useful to split

a summation as follows:

n

∑
i=1

f (i) =
j

∑
i=1

f (i) +
n

∑
i= j+1

f (i).

Another useful technique is to bound a sum by an integral. If f is a nonde-

creasing function, then, assuming the following terms are defined,

∫ b

a−1
f (x)dx ≤

b

∑
i=a

f (i)≤
∫ b+1

a
f (x)dx.

There is a general form of recurrence relation that arises in the analysis of

divide-and-conquer algorithms:

T (n) = aT (n/b)+ f (n),

for constants a ≥ 1 and b > 1.

Proposition A.25: Let T (n) be defined as above. Then

1. If f (n) is O(nlogb a−ε), for some constant ε > 0, then T (n) is Θ(nlogb a).
2. If f (n) is Θ(nlogb a logk n), for a fixed nonnegative integer k ≥ 0, then T (n) is

Θ(nlogb a logk+1 n).
3. If f (n) is Ω(nlogb a+ε), for some constant ε > 0, and if a f (n/b)≤ c f (n), then

T (n) is Θ( f (n)).

This proposition is known as the master method for characterizing divide-and-

conquer recurrence relations asymptotically.


