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Abstract

Always-on, always-available digital communication has changed the world allowing

us to collaborate and share information in ways unimaginable not long ago. Yet

many of the physical principles used in everyday digital communication break down

as the size of the devices approach micro- or nano-scale dimensions. As a result, tiny

devices, with dimensions of microns or less, need to do something different in order

to communicate. Moreover, at meter scales there are areas where use of radio signals

is not possible or desirable. An emerging biomimetic technique called molecular

communication, which relies on chemical signaling is a promising solution to these

problems. Although biologists have studied molecular communication extensively,

it is very poorly understood from a telecommunication engineering perspective.

Engineering molecular communication systems is important since micro- and

nano-scale systems are the key to unlocking a realm of futuristic possibilities such

as: self-repairing machines, micro- and nano-scale robotics, synthetic biological

devices, nanomedicine, and artificial immune systems that detect and kill cancer
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cells and pathogens. All these transformative applications have one feature in

common: they involve not just single devices working independently, but swarms

of devices working in concert. Besides solving the communication problem at small

scales, use of molecular communication in areas such as robotics, and infrastructure

monitoring can unlock new applications in smart cities and disaster search and

rescue.

In this dissertation, after providing a comprehensive survey of the field, two

areas of study with high potential impact are identified: on-chip molecular commu-

nication, and experimental platforms for molecular communication. First, on-chip

molecular communication is investigated towards the goal of networking compo-

nents within lab-on-chip devices and point-of-care diagnostic devices. This has nu-

merous applications in medicine, environmental monitoring systems, and the food

industry. Then in the second part of the dissertation, a tabletop demonstrator for

molecular communication is designed and built that could be used for research and

experimentation. In particular, no macroscale or microscale molecular communi-

cation platform capable of reliably transporting sequential data had existed in the

past, and this platform is used to send the world’s first text message (“O Canada”)

using chemical signals.
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1 Dissertation Overview

1.1 Introduction

The problem of conveying information over a distance has always been an impor-

tant part of human society. Today, modern telecommunication systems provide an

always-on, always-available access to information through use of electrical or elec-

tromagnetic (EM) signals. Using these technologies, it is now possible collaborate

and share information in ways that were unimaginable just a few decades ago. Yet

despite all these achievements, the techniques that are used for communication,

such as sending a current down a wire, or using an EM wave in free space, break

down in many communication scenarios. For example, there are some macroscale

environments that are hostile to EM wave propagations, such as inside networks of

tunnels, pipelines, or salt water environments. As another example, at extremely

small dimensions, such as among micro- or nano-scaled robots [1, 2], electromag-

netic communication is challenging because of constraints such as the ratio of the

antenna size to the wavelength of the electromagnetic signal [3].
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Engineering micro-scale and nano-scale systems are the key to unlocking a realm

of futuristic possibilities. Researchers around the world have been working to un-

lock new applications that include, but are not limited to: self-repairing machines,

micro-scale robotics, synthetic biological devices, nanomedicine, and artificial im-

mune systems that detect and kill cancer cells and pathogens [1, 4]. It should

be surprising that, in 2015, these applications are still considered “futuristic”, as

many of the fundamental building blocks, such as state of the art micro/nano elec-

tromechanical systems (MEMS/NEMS), have been available for some time [5]. All

these transformative applications of nanotechnology have one feature in common:

they involve not just single devices working independently, but swarms of devices

working in concert [6]. Therefore, solving the communication problem between

nanodevices is an important and vital step towards these futuristic applications.

Inspired by nature, one possible solution to these problems is to use chemical

signals as carriers of information, a technique known as molecular communica-

tion [7]. In molecular communication, a transmitter releases small particles such

as molecules or lipid vesicles into a fluid or gaseous medium, where the particles

propagate until they arrive at a receiver. The receiver then detects and decodes

the information encoded in these particles. Figure 1.1 shows a typical molecular

communication system.

Besides solving the communication problem at small scales, use of molecular
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Figure 1.1: A typical molecular communication system.

communication in areas such as robotics, and infrastructure monitoring can un-

lock new applications in smart cities and disaster search and rescue. For example,

inspired by cooperative ants, tiny robots could use molecular communication to

collaborative find survivors under collapsed buildings. Typically, such an environ-

ment is not friendly to radio propagations and therefore use of radio technology

may not be possible. As another example, in smart cities the city infrastructure,

which consists of networks of metallic pipes and ducts, needs to be monitored by

sensor networks . However, these environments are hostile to radio signals [8] and

therefore, chemical signals could be used as an alternative form of communication

between these sensors.

In nature, chemical signals are used for inter-cellular and intra-cellular commu-

nication at micro- and nano-scales [9], while pheromones are used for long-range

3



communication between members of the same species (such as social insects) [10].

Therefore, chemical signals can be used for communication at both macroscopic

and microscopic scales. Moreover, molecular communication signals are biocompat-

ible, and may require very little energy to generate and propagate [11, 12]. These

properties makes chemical signals ideal for many applications, where the use of

electromagnetic signals are not possible or not desirable.

Some of the disadvantages of molecular communication are the long delays and

low throughputs of this technology. Therefore, molecular communication may not

be suitable for applications where a large amount of data needs to be transferred,

or applications with low-latency requirements. Therefore, radio-based technology

is preferred for applications where high throughput and low latency is required, as

long as there are no constraints for using this technology.

Although molecular communication is present in nature and is used by micro-

organisms such as microbes to communicate and detect other micro-organisms, it

was only recently that engineering a molecular communication system has been

proposed as a solution for networking microscale devices [13]. At macroscales, the

use of chemical signals for communication has been almost nonexistent, where only

very primitive forms of chemical signaling have been developed in robotics [14,15].

In designing molecular communication systems, different techniques can be em-

ployed for encoding messages.
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• Number/concentration of information particles [16, 17]: Different numbers of

information particles indicate different transmission symbols. For example,

in a binary transmission, release of 0 information particles can indicate bit 0,

while release of n > 0 information particles could indicate bit 1. Alternatively,

information could be encoded in the concentration of the information particles

released.

• Structure/type of particles [18,19]: Messages could be encoded in the structure

of information particles. For example, different proteins, deoxyribonucleic

acid (DNA), and ribonucleic acid (RNA) sequences could encode different

transmission messages. Alternatively, release of different types of chemicals

could encode the transmission information. For example, different isomers of

a molecule could be used to encode different transmission symbols.

• Release timing [20–22]: Information can also be encoded in the release timing

of information particles. For example, in the time interval between consecu-

tive releases of information particles.

Regardless of the encoding technique used, the particles released by the transmitter

must propagate the medium until they reach the receiver.

Many different propagation schemes can be employed in molecular communica-

tion [23].
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• Propagation through diffusion [24]: In this scheme, the information particles

propagate via Brownian motion due to collisions with other free molecules

present in the fluid environment. Therefore, they diffuse randomly in the

environment until they arrive at the destination.

• Flow-assisted propagation [25]: Flow can be used along with diffusion to im-

prove the speed of transport by introducing a bias in the random movement

of information particles in the direction of the receiver.

• Propagation through gap junctions [26]: Gap junctions are intercellular con-

nections between neighbouring cells located at the cell membrane. They are

literally gaps that are formed out of two aligned connexon structures which

connect the cytoplasm of two adjacent cells. These gap junctions allow the

free diffusion of selected information particles between two neighbouring cells.

Through interconnecting a series of real or artificial cells connected by gap

junctions, a “wire” can be made connecting the transmitter to the receiver.

• Propagation using molecular motors [27]: Molecular motors are a special type

of molecule (typically proteins) that convert chemical energy into kinetic en-

ergy. They could be used to carry information particles from the transmitter

to the receiver. For example, inside cells kinesin (a special type of molecu-

lar motor) is used to transport various cargoes (typically other proteins or
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vesicles) from one location in the cell to another.

• Propagation using bacteria [28]: Information particles could be embedded

inside bacteria, where chemotaxis is then used to deliver the information

chemicals to the destination.

The common theme between all these propagation schemes is the random nature

of the propagation. This means that from the receiver’s perspective there will be

some noise introduced by the random propagation of the information particles.

Until only recently, the underlying mathematical models for molecular commu-

nication systems had not been studied from a communication-engineering perspec-

tive. Therefore, there are still many open problems to be solved, and there is a

need for a mathematical framework from which these communication systems can

be designed and developed. Moreover, there are no practical or experimental plat-

forms based on molecular communication, which could be used for research and

development, at either the macroscale or the microscale. With this in mind, my

research plan is twofold. First, I study on-chip molecular communication systems

from a communication theoretic perspective. Then, I introduce the first experimen-

tal platform that demonstrates the feasibility of molecular communication. In this

dissertation, I also present a comprehensive survey of previous work on molecular

communication, highlighting important terminology, concepts, and their underlying
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physical processes.

1.2 Dissertation Contributions

In this section, I describe the dissertation’s contributions.

1. A comprehensive survey of molecular communication [29]: Molecular

communication is still in its infancy. This field has been studied as a solution

to engineering communication systems only over the past decade. Therefore,

most of what has been published was scattered across different journals. In

this comprehensive survey, which I plan to submit to a journal for publica-

tion, I summarize the recent advancements in the field in a tutorial fashion.

Chapters 2 and 3 are dedicated to this comprehensive survey.

2. Simulation and modelling on-chip molecular communication [30–32]:

Most of the models developed for molecular communication have assumed

channels with infinite boundaries. However, in practice many real-world ap-

plications, such as on-chip communication, are inside confined channels. Ana-

lytical solutions for confined space diffusion or advection-diffusion are difficult

to obtain. In this part, I present a simulator that can simulate molecular com-

munication under different propagation schemes: diffusion, flow-assisted diffu-

sion, and active transport using motor proteins (i.e., special protein molecules
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that convert chemical energy into kinetic energy). I then compare the perfor-

mance of each propagation scheme in terms of achievable information trans-

mission rates for different channel dimensions. I show that active transport

can be an effective form of propagation for on-chip applications. This contri-

bution is covered in Chapter 4.

3. Mathematical models for active transport molecular communica-

tion [33, 34]: Since I show that active transport could be an effective means

for engineering on-chip molecular communication systems, I derive analytical

models for these systems. Simulating active transport molecular communica-

tion systems can be computationally intensive and therefore time consuming.

Similarly, wet-lab experimentations can be laborious, expensive, and very

time consuming. Therefore, solving complex design and optimization prob-

lems are impossible. To overcome these difficulties, I propose mathematical

models that could be used to reduce the computational complexity of simu-

lations, and would provide insights that could be used to find optimal design

strategies. This contribution is presented in Chapter 5.

4. Channel design and optimization for active transport molecular

communication [16,35–38]: Using the derived mathematical models for ac-

tive transport molecular communication, I find optimal design strategies. In
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particular, finding the optimal placement for the transmitter in the channel,

the optimal size of information particles, and the optimal channel shape are

considered. For all these cases, the optimal design is the one that maximizes

the information transmission rate. I show that the optimal transmission zone

is along the walls of the channel, and that the optimal channel shape is the

circular-shaped channel. I show that it is possible to achieve a consider-

able gain in information transmission rate when the proposed optimal design

strategies are used. Chapter 6 is dedicated to this contribution.

5. Building the first molecular communication platform [39–41]: One

of the most significant issues in molecular communication is the lack of ex-

perimental work. Although there have been demonstrations of engineered

cell-to-cell communication, where simple commands are transferred between

synthetic or genetically modified cells [42], there are no demonstrations for

reliable sequential data communications. Another issue with these works is

the expensive and specialized nature of wet-lab experimentation, which makes

replicating the results more difficult. Perhaps the most important contribu-

tion of this dissertation is presenting the world’s first molecular communi-

cation platform that is capable of transmitting short text messages reliably

over a distance of a few meters. This macroscale system was designed to

be inexpensive, and made from off-the-shelf materials, such that other re-
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searchers could replicate and experiment with it. For example, with my help

my collaborators have shown that molecular communication could be used for

communication inside network of metallic ducts, where radio signals failed to

propagate. Chapter 7 covers this topic.

6. Channel models for my tabletop platform [43–45]: My final contribution

in this dissertation is derivation of new mathematical models for realistic

molecular communication systems, such as my tabletop platform. Many of

the theoretical models used in molecular communication rely on simplifying

assumptions. For example, they assume that the information particles are

perfectly detected at the receiver. However, in practice, many sensors are

imperfect. My contribution in this part of the dissertation is to show that the

end-to-end system response of my tabletop platform is nonlinear and different

from previous theoretical works. I then use experimental results to derive new

theoretical models for my platform, and show that the inherent nonlinearity

may be modeled as additive noise which could be filtered. This is a significant

contribution since most of the theoretical tools that are traditionally applied

to communication systems, assume linearity. Therefore, demonstrating that

the nonlinear system could be filtered into a linear one makes use of these

tools possible. This contribution is discussed in Chapter 8.
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1.3 Dissertation Organization

In this chapter, I provided an overview and a summary of important contributions

made in the dissertation.

The rest of the dissertation is organized as follows.

• Chapter 2 gives an overview of molecular communication and its underlying

physical and biological processes. In particular, I consider molecular commu-

nication at microscale and macroscale, and discuss the physical components of

the transmitter, receiver, and the physical processes associated with different

propagation schemes.

• Chapter 3 provides a survey of molecular communication from a communica-

tion engineering perspective. In particular, I consider different channel mod-

els, modulation schemes, error-correcting codes, simulation tools, and some

practical implementations.

• In Chapter 4, I consider on-chip molecular communication, and create a simu-

lation environment for diffusion-based, flow-based, and active transport based

molecular communication. Using the simulation environment, I calculate the

channel capacity under different propagation schemes and show that active

transport could be beneficial for on-chip communication.

• In Chapter 5, I derive different mathematical models for active transport
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propagation. These models could be used to lessen the computational com-

plexity of simulating active transport, and provide insights that could be used

for design and optimization problems.

• I use the models derived in Chapter 5 to find optimal design strategies for

active transport molecular communication in Chapter 6. I show that there is

an optimal size for the information particles or their encapsulating vesicles,

and I show that the optimal channel shape for this propagation scheme is the

circular-shaped channel.

• Chapter 7 presents an experimental platform for molecular communication,

that is capable of reliably transmitting short text messages over a distance

of a few meters. The system is purposely designed to be inexpensive, and

made from off-the-shelf materials such that other researchers could replicate

the results.

• Chapter 8 provides new mathematical models for my tabletop platform. I

show that the nonlinearity of the system can be modeled as additive noise,

which may be filtered.

• Chapter 9 concludes the dissertation and provides some directions for future

work.
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2 Overview of Molecular Communication

The goal of a communication system is to transfer information across space and

time. To achieve this, a signal needs to be generated by a transmitter in accordance

to the information that is intended to be transferred to a receiver. This signal

then propagates to a receiver, where the intended information is decoded from the

received signal. Therefore, any communication system can be broken down into

three major components: the transmitter, the receiver, and the channel.

Figure 2.1 shows the block diagram representation of these three modules and

their submodules. The transmitter has some information that it wants to transmit

to a receiver. Any discrete message can be represented with a string of binary num-

bers, so the transmitter uses a source encoder to encode the information message

as a binary sequence. The transmitter can also add error-correcting codes using

the channel encoder block, which introduces redundancy by adding extra bits. The

receiver can use the added redundancy to mitigate the errors that may be intro-

duced by the channel. Finally, the transmitter must modulate the channel symbols
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Figure 2.1: Block diagram of a typical communication system.

(i.e., the output of the channel encoder) onto a carrier signal and release the signal

for propagation in the channel.

The channel is the environment in which the transmitted signal propagates from

the sender to the receiver. In traditional communication system, a channel is typi-

cally a wire where electrical signals propagate, or free space where electromagnetic

signals propagate. The transmitted signals are the electrical currents or electro-

magnetic waves. In molecular communication, small particles called information

particles form the carrier signal conveying the information. Information particles

are a few nanometers to a few micrometers in size. Information particles could

be biological compounds, such as proteins, or synthetic compounds, such as gold

nano particles. The channel in molecular communication is an aqueous or a gaseous

environment where the tiny information particles can freely propagate.
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In communication systems, the channel may introduce noise into the system,

where the noise is any distortion that results in degradation of the signal at the

receiver. For example, the noise can result from the signal fading as it propagates,

or interference from other signals. Noise can also be introduced by the transmitter

and the receiver themselves (e.g., thermal noise in the electronic components). In

radio-based communication systems, the source of the noise is typically the fading of

electromagnetic signals, and the interference of different electromagnetic waves, for

example due to multipath. In molecular communication, the source of the noise is

the random nature of the underlying physical processes such as random propagation

due to Brownian motion.

When the transmitted signal arrives at the receiver, the receiver must first

demodulate and detect the channel symbols. The estimated channel symbols are

then decoded using a channel decoder, where some of the errors introduced by

the transmitter, the channel and the receiver may be corrected. The output of

the channel decoder goes through a source decoder, where the receiver estimates

what information the transmitter has sent. If this estimation is correct, then the

communication session has been successful.

Some of the physical components that may be required to implement molecular

communication systems are shown in Figure 2.2. At the transmitter a physical

process is required for generation or storage of information particles. There may
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also be a need for a mechanism that controls the release of information particles.

This mechanism acts as the modulator. Finally, there should be a processing unit

that controls the different processes within the transmitter. The processing unit can

operate chemically (e.g., chemical pathways), electrically (e.g., microcontroller), or

through other means. To function, the transmitter may need a source of energy.

For example, the transmitter can be a synthetic cell that gets its power from the

environment, or from an electrical source.

After the information-carrying particles are released in the channel, a propaga-

tion mechanism is necessary to transport them to the receiver. This mechanism can

be diffusion based, flow based, or an engineered transport system using molecular

motors. At the receiver, there must be a sensor, receptor, or a detector that can

measure some arrival property of the received information particles. This property

can be simply the presence or absence of the information particles, their concen-

tration, time of arrival, or any other measurable parameter. If coding techniques

are used there may also be a need for a central processing unit for decoding and

deciphering the received signal. Finally, an energy source may be required for the

receiver to function.

In nature, molecular communication is employed over short-range (nm scale),

mid-range (µm to cm scale), or long-range (cm to m scale) communication [53,54].

For example, neurotransmitters use passive transport (free diffusion) to commu-
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Figure 2.2: Physical components required for molecular communication.

nicate over short-range; inside cells motor proteins are used to actively transport

cargoes over the mid-range; and hormones are transported over the long-range using

flow (e.g., blood flow from the heart). In this dissertation, the short- and mid-range

are referred to as microscale molecular communication, and the long-range is called

macroscale molecular communication. The physical properties of matter change

from macroscales to microscales, hence microscale and macroscale molecular com-

munication are considered separately in the next two subsections, and different

mechanisms that can be implemented at each scale are discussed.
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2.1 Microscale Molecular Communication

On December 29, 1959, physicist Richard Feynman gave a lecture at American

Physical Society meeting in Caltech titled “There’s Plenty of Room at the Bottom”

[55]. The goal of the talk was to inspire scientists find a solution to “the problem

of manipulating and controlling things on a small scale”. To motivate his vision

for futuristic possibilities of miniaturization he asked: “Why cannot we write the

entire 24 volumes of the Encyclopaedia Brittanica on the head of a pin?”

Over the past couple of decades there have been considerable advancements in

the fields of nanotechnology, biotechnology, and microrobotics, where design and

engineering of micro- or nano-scale devices, performing simple and specific tasks,

is beginning to take shape. In order to achieve complex goals cooperation of these

devices is essential, therefore a micro- or nano-scale networks [4,6] (typically called

nanonetworks) of multiple micro- or nano-devices must be formed. This leads to a

need for miniaturization of current communication systems, and poses a question

similar to the one Feynman asked half a century ago: how much can we shrink a

communication system?

The current technology, which is used everyday by billions of people worldwide

in devices such as cellphones, computers, televisions, radios, etc., relies entirely

on electronic or electromagnetic signals (including the optical range). However,
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shrinking the current technology to very small dimensions is not a simple task

(e.g., shrinking the size of a transceiver antenna to nano-scales). Currently, two

prominent modes of communication are considered at small scales: electronic or

electromagnetic communication with the help of novel materials such as carbon

nanotubes [56], or molecular communication [13].

One advantage of miniaturizing traditional electronic or electromagnetic com-

munication is the availability of theoretical foundations that communication en-

gineers have developed over the past century. However, there remain numerous

obstacles to overcome before a fully functional communication system can be re-

alized using novel materials such as carbon nanotubes or graphene. For molecular

commutation, a comprehensive theoretical framework is not known to communica-

tion engineers. However, fully functional molecular communication systems have

already been selected by evolutionary processes, and used by living organisms over

billions of years.

Molecular communication has two main advantages over the electromagnetic

communication for nanonetworks. First, it is biocompatible, which means that it

would be more suitable for medical applications. Second, it is energy efficient and

has a very low heat dispersion. Therefore, molecular communication becomes a

more suitable solution for nanonetworks.

Over the next subsections the different physical, chemical and biological pro-
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cesses that underlie molecular communication systems are discussed. Since one

of the main differences between molecular communication and radio based com-

munication is the carrier signal, information particles and their propagation are

discussed first.

2.1.1 Information Particles

The structure and size of information particles affect how they propagate in a

given environment. For example, increasing the size of the information particle

changes the diffusion coefficient and hence the diffusion process. To make molecular

communication channel more reliable, information particles need to be chemically

stable and robust against environmental noise and interference from other molecules

and particles. Moreover, information particles may degrade or denature over time

in the environment. For example, molecular deformation and cleavage caused by

enzymatic attacks or changes in pH in the environment may degrade the information

particles [23].

Due to degradation of particles, the transmitter can release a large number of

information particles, or alternatively encapsulate the information-carrying parti-

cles inside liposomes that separate the environment and the information particles.

Liposomes are lipid bilayer structures that can encapsulate different proteins and

particles [57]. Figure 2.3 shows the structure of the liposome. It contains two layers
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Figure 2.3: Liposome’s lipid bilayer structure.

of lipid molecules, where one side of the lipid is hydrophobic (repelled from water)

and the other side is hydrophilic (attracted towards water). It separates the aque-

ous environment inside the liposome from the outside of the liposome. In [58], the

relationship between the number of lipid molecules and the liposome’s wall thick-

ness and radius is derived and tested experimentally. In [59], a chemical assembly

line for generation of lipid vesicles and encapsulation process is presented.

Some examples of information particles used in nature by biological systems

include hormones, pheromones, neurotransmitters, intracellular messengers, and

deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) molecules. Information

particles can also be synthesized for specific purposes as demonstrated in drug

delivery. For example, in [60] nanoparticles are used to target particular tissue
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types.

In molecular communication, information can be encoded in to the structure

(type of) the information particles, in the number of information particles, or in

the release timing. The encoding and modulation schemes will be discussed in more

details in Chapter 3.

Another issue to consider when selecting the information particles is the chem-

ical bandwidth, which is the amount of information that can be encoded in the

structure of the information particle. For example, small chemical molecules such

as hormones or pheromones or carbohydrates can be sent at short or long ranges,

are stable in most channels, and can provide 102-106 unique structural combina-

tions [61]. However, the problem of generating and detecting these different com-

binations can be challenging. Dial-a-Molecule is project that tackles this problem

with the goal of rapidly synthesizing compounds [62].

2.1.2 Channel and Propagation

For microscale molecular communication, many different propagation schemes are

possible for transporting information particles. They are: diffusion based propaga-

tion [63–65], flow assisted propagation [66], active transport using molecular motors

and cytoskeletal filaments [67], bacterial assisted propagation [18, 28, 68], and ki-

nesin molecular motors moving over immobilized microtubule (MT) tracks [69,70].
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Each propagation method is described in detail over the next few subsections.

2.1.2.1 Free Diffusion

Diffusion, also known as Brownian motion, refers to the random motion of a particle

as it collides with other molecules in its vicinity. Through this random motion, the

information-carrying particles can propagate from the transmitter to the receiver

by utilizing the thermal energy that is already present in the channel environment.

Therefore, no source of external energy is required for diffusion-based propagation.

There are many examples of this class of propagation in biology. An example

is the neurotransmitter molecules Acetylcholine (ACh) emitted from nerve cell to

neuromuscular junction for conveying motor actions in muscle cells [71]. When

muscles in a specific part of the body need to contract, the nerve cells in that region

send a signal to the muscle tissue through these junctions to trigger contraction [9].

Another example is DNA binding molecules (e.g., repressors) propagating over a

DNA segment to search for a binding site [72].

Diffusion can be accurately simulated using Monte Carlo simulation [73]. In

particular, the motion of the information particles is considered for a discrete time

period of duration ∆t. Given some initial position (x0, y0, z0) at time t = 0, for any

integer k > 0, the motion of the particles is given by the sequence of coordinates

(xi, yi, zi) for i = 1, 2, . . . , k. Each coordinate (xi, yi, zi) represents the position of
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the particle at the time t = i∆t

(xi, yi, zi) = (xi−1, yi−1, zi−1) + (∆xi,∆yi,∆zi) (2.1)

∆xi ∼ N (0, 2D∆t), (2.2)

∆yi ∼ N (0, 2D∆t), (2.3)

∆zi ∼ N (0, 2D∆t), (2.4)

where ∆xi, ∆yi, ∆zi are independent random displacements over each spatial axis

during ∆t, D is the diffusion coefficient, and N (µ, σ2) is the normal distribution

with mean µ and the variance σ2. The diffusion movement in these equations

is a Martingale process, where subsequent motions are unrelated to previous mo-

tions and positions [74]. Alternatively diffusion can be simulated via the following

method:

(xi, yi, zi) = (xi−1, yi−1, zi−1) + (∆xi,∆yi,∆zi) (2.5)

∆xi = ∆r cos θi sinφi, (2.6)

∆yi = ∆r sin θi sinφi, (2.7)

∆zi = ∆r cosφi, (2.8)

where ∆r is the particle’s total displacement over each time interval of ∆t, and
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both θi and φi define the angle of displacement in 3-dimensional space over the time

interval ∆t. Furthermore, over each time interval of ∆t, the particle’s displacement

∆r is given by

∆r =
√

6D∆t . (2.9)

The angle θi is an independent, identically distributed (iid) random variable for all

i, uniformly distributed on [0, 2π], and the angle φi is also an iid random variable

given by φi = arccos(1− 2U), where U is a uniformly distributed random variable

over [0, 1].

The comparative sizes between the propagating molecule Sm and the molecules

of the fluid Sfluid affect the diffusion coefficient [75]. For a given particle and fluid

environment, D is given by

D =



kBT

6πηRH

if Sm � Sfluid

kBT

4πηRH

if Sm ≈ Sfluid

, (2.10)

where kB = 1.38 ·10−23 J/K is the Boltzman constant, T is the temperature (in K),

η is the dynamic viscosity of the fluid, and RH is the hydrodynamic radius (also

known as Stoke’s radius) of the information particle. For most applications, it can

be assumed that D is stationary throughout the medium, and that collisions with
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Table 2.1: Diffusion coefficients of selected molecules in water at 25◦ C.

Molecule D (µm2/s)
DNA 0.81 to 53
Human serum albumin 61
Insuline 150
Sucrose 520
Glucose 600
Glycerol 930
Nitrate 1700
Water molecule 2100

the boundaries are elastic. Example values of D in µm2/s in water at 25 ◦C are

obtained from [76] and listed in Table 2.1.

2.1.2.2 Diffusion with First Hitting

In nature, most receptors remove the information molecules from the environ-

ment through binding, absorbing, or chemical reactions [77]. For example, acetyl-

cholinesterase breaks down the molecules in neuronal junctions [71]. This process

is modeled by first hitting processes since information particles are assumed to be

removed from the environment by the receptors or the detection mechanisms.

The first generalized model for molecular communication which considered the

first hitting process in 1-D environment was derived in [20] as

f 1D
hit (t) =

d√
4πDt3

e−d
2/4Dt (2.11)
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where d and D correspond to distance and the diffusion coefficient, respectively.

This equation can be interpreted as the impulse response of the diffusion channel

in 1-D environment with an absorbing receiver. To find the probability of hitting

an absorbing receiver until time t, (2.11) is integrated with respect to time

F 1D
hit (t)=

t∫
0

fhit(t
′) dt′ =erfc

(
d√
4Dt

)

=2Φ

(
−d√
2Dt

) (2.12)

where erfc(.) and Φ(.) represent the complementary error function and the standard

Gaussian cdf, respectively.

Similarly, the fraction of hitting molecules to a perfectly absorbing spherical

receiver in a 3-D environment is derived in [78]. The hitting rate of molecules to a

spherical receiver in a 3-D environment is formulated as

f 3D
hit (t) =

rr
d+ rr

d√
4πDt3

e−d
2/4Dt (2.13)

where rr denotes the radius of the spherical receiver [78]. One can obtain the

fraction of hitting molecules until time t by integrating f 3D
hit (t) in (2.13) with respect

to time, which yields similar results with the 1-D case. Note that, there is a positive

probability of not hitting to the absorbing boundary for a diffusing particle in a
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3-D environment when time goes to infinity. The survival probability depends on

the radius of the receiver and the distance. First hitting time formulations in 2-D

environments with infinite boundaries do not exist. However, in [79], an analytical

expression is derived for planar wedge boundaries over specific wedge angles of π/2

and π/k where k is an odd integer.

2.1.2.3 Flow Assisted Propagation

Although diffusion is advantageous because no external energy is required for prop-

agation, it can be very slow at transporting information particles from the trans-

mitter to the receiver over large separation distances. One way to assist the speed

of propagation in pure diffusion is to introduce flow into the environment. The

most effective flow is the one that is in the direction of the the transmitter to the

receiver. An example of this propagation scheme is found in biology. Certain cells

can secrete hormonal substances that propagate using the flow present in the blood

stream to distant target cells.

The flow assisted propagation can be simulated using Monte Carlo simulations

by modifying the equation presented in the previous section. Introducing flow will
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change Equations (2.5)-(2.8) into,

∆xi =vx,i−1(xi−1, yi−1, zi−1)∆t+ ∆r cos θi sinφi, (2.14)

∆yi =vy,i−1(xi−1, yi−1, zi−1)∆t+ ∆r sin θi sinφi, (2.15)

∆zi =vz,i−1(xi−1, yi−1, zi−1)∆t+ ∆r cosφi, (2.16)

where vx,i−1(xi−1, yi−1, zi−1), vy,i−1(xi−1, yi−1, zi−1), and vz,i−1(xi−1, yi−1, zi−1) are

flow velocities in the x, y, and z directions [73]. These velocities are a function of

time and space because in practice flows can change with respect these variables.

2.1.2.4 Kinesin Moving Over Microtubule Tracks

It is also possible to transport the information particles actively from the transmit-

ter to the receiver using motor proteins. One way to achieve this is using micro-

tubules and kinesin motor proteins [67, 70, 80]. Microtubules are hollow tube-like

structures, 24 nm in diameter, whose walls are formed by adjacent protofilaments.

They are made up of dimeric subunits composed of α- and β-tubulin that polymer-

ize into microtubules. In biology, microtubules are a component of the cytoskeleton,

found throughout the cytoplasm. They are involved in maintaining the structure

of the cell, providing platforms for intracellular transport, and a number of other

intracellular processes.
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One of the examples of the molecular motor proteins is Kinesin that walks on

microtubule tracks. Kinesin contains a head domain, a neck domain, a stalk, and

a tail as shown in Figure 2.4. The head domain binds to the microtubule, the neck

domain provides the needed flexibility for the act of walking, the stalk connects the

neck to the tail, and the tail domain attaches to a cargo. Hydrolysis of adenosine

triphosphate (ATP) in the head domain causes the head domain to walk along the

microtubule track in one direction by repeating cycles of conformational changes.

ATP hydrolysis detaches the phosphate from an ATP to produce adenosine diphos-

phate (ADP), which releases energy. This energy is then used by the motor protein

to change its conformation and take a single step. During each step one head is

detached and moves forward, while the other head stays stationary. Through re-

peating this cycle, kinesin moves in one direction. In biology, kinesin can carry

different cargoes over microtubule tracks from one location in the cell to another

location. Therefore, kinesin acts as a locomotive in cells.

Inspired by this, it is possible to engineer a microtubule track between a trans-

mitter and a receiver, where kinesin motor proteins would carry information parti-

cles from the transmitter to the receiver. For example in [70], it was shown that it

is possible to create microtubule tracks in vitro in a self-organizing manner, using

polymerization and depolymerization. It was also shown that a second approach

based on reorganization of microtubules using motor proteins can also be used to
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Figure 2.4: Structure of the microtubule and the kinesin motor.

create tracks that connect a transmitter to a receiver.

2.1.2.5 Microtubule Filament Motility Over Stationary Kinesin

Although in biological cells kinesin moves over microtubule tracks, in [81] it was

shown that stationary kinesin attached to a substrate can mobilize microtubule

filaments. This scheme is very suitable for on-chip molecular communication ap-

plications [80], where the transmitter and receiver are located in a lab-on-a-chip

device. For example, recently it was shown that electrical currents can be used to

control the speed and direction of the microtubules [82,83]. However, unlike kinesin

which can naturally carry cargoes, a technique for carrying information particles
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Figure 2.5: An example of ssDNAs hybridization bonds.

by microtubule filaments is necessary.

In [67, 80], DNA hybridization is proposed for carrying cargoes such as vesi-

cles. A single strand of DNA is made up of many nucleotides. Each nucleotide

is made up of one of the four possible nucleobase compounds: guanine (G), ade-

nine (A), thymine (T), or cytosine (C). A DNA strand is made up of two single

stranded DNAs (ssDNA)s connected together using intermolecular bonds, with ade-

nine bonding only to thymine with two hydrogen bonds, and cytosine bonding only

to guanine with three hydrogen bonds. The bases are said to be complimentary to

one another, resulting in complimentary base pairing (AT and GC), also referred

to as “canonical” or “Watson-Crick” base pairing. The bonding occurs when two

ssDNAs with complementary base pairs come close together. Figure 2.5 shows an

example of two ssDNAs hybridizing.

In [67,80], cargo vesicles, transmission area, receiver area, and microtubules are

covered with ssDNAs. Microtubules moving over a kinesin covered glass substrate
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are covered with 15 base ssDNAs, and the information particles or the vesicles are

also covered with 23 base ssDNAs which are complementary to that of the micro-

tubules’ ssDNAs. When the microtubule glides close to an information particle

or a vesicle, the two ssDNA sequences hybridize and the microtubule carries the

cargo until it gets close to the receiver. The receptor module at the receiver is cov-

ered with 23 base ssDNAs, which are complementary to that of the cargo. When

a loaded microtubule filament glides close to the receptor module, it will unload

the information particle or the vesicle through hybridization bound with the com-

plementary 23 base ssDNA at the receptor module. Since 23 base hybridization

bound is stronger than the 15 base hybridization bonds between the cargo and the

microtubules, the particles or the vesicles are unloaded at the receiver. Figure 2.6

depicts the microtubule motility mechanism on a DNA microarray.

In [84, 85], it was shown that the motion of the microtubule filaments over

stationary kinesin can be simulated using Monte Carlo simulations. The motion of

the microtubules is largely regular, with Brownian motion effects causing random

fluctuations. Moreover, the microtubules move only in the x and y directions, and

do not move in the z direction (along the height of the channel) because they move

right on top of kinesins. In simulations, a two-dimensional motion of a microtubule

can be simulated over discrete time intervals of ∆t seconds. Given some initial

position (x0, y0) at time t = 0, for any integer k > 0, the motion of the microtubule
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Figure 2.6: Cargo transport mechanism for microtubule filaments gliding over
stationary kinesin substrate using DNA hybridization bonds.

is given by the sequence of coordinates (xi, yi) for i = 1, 2, . . . , k. Each coordinate

(xi, yi) represents the position of the microtubule’s head at the end of the time

t = i∆t, where

xi = xi−1 + ∆r cos θi, (2.17)

yi = yi−1 + ∆r sin θi. (2.18)

This is similar to the equations for Brownian motion, because the motion of the

microtubules are effected by the same physical processes.

In this case, the step size ∆r at each step is an iid Gaussian random variable
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with mean and variance

E[∆r] = vavg∆t, (2.19)

Var[∆r] = 2D∆t, (2.20)

where vavg is the average velocity of the microtubule, and D is the microtubule’s

diffusion coefficient. The angle θi is no longer independent from step to step:

instead, for some step-to-step angular change ∆θ, the new θi is given by

θi = ∆θ + θi−1. (2.21)

Now, for each step, ∆θ is an iid Gaussian-distributed random variable with mean

and variance

E[∆θ] = 0, (2.22)

Var[∆θ] =
vavg∆t

Lp
, (2.23)

where Lp is the persistence length of the microtubule’s trajectory. In [84], these

values were given as vavg = 0.85 µm/s, D = 2.0 · 10−3 µm2/s, and Lp = 111 µm.

In case of a collision with a boundary, it is assumed that the microtubule does not

reflect off the boundary, as in an elastic collision, but instead sets θi so as to follow
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the boundary [84].

It may also be possible to use actin filaments and myosin in place of micro-

tubule filaments and kinesin [86]. Myosin is a motor protein that is used for muscle

contraction and actin filaments are rod-like proteins. The motion which results in

muscle contraction is generated using ATP hydrolysis. In [87], it was shown that

silicon nanowires covered with myosin can be used as tracks for actin filaments.

Dynein molecular motors and microtubule filaments are another example of motor

protein-filament motility [88]. It is also possible to use active transport in conjunc-

tion with flow based propagation in microfluidic lab-on-chip devices as was shown

in [89].

2.1.2.6 Bacteria Assisted Propagation

In [18,28], bacteria-based communication was proposed for transferring information

particles from a transmitter to a receiver. In this scheme, the information particles

are placed inside bacteria at the transmitter and the loaded bacteria are released

into the channel. The bacteria then propagate in the channel until they reach the

receiver and deliver the information particles. In order to assist this propagation,

self-propelling flagellated bacteria could be used. Figure 2.7 depicts a flagellated

bacteria and the structure of flagella. A flagellum consists of a filament and a

motor section. The motor section rotates the filament, which in turn propels the
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Figure 2.7: Flagellated bacteria and the structure of flagella.

bacteria in a certain direction. To guide the bacteria towards the receiver, attrac-

tant molecules can be released by the receiver. The bacteria are then attracted

towards the receiver by following the concentration gradient and moving towards

the increasing concentration of attractant molecules. It is possible to simulate the

motion of bacteria as shown in [72,90,91].
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2.1.2.7 Propagation Through Gap Junction

Gap junctions are intercellular connections between neighboring cells located at the

cell membrane. They are gaps that are formed out of two aligned connexon struc-

tures which connect the cytoplasm of two adjacent cells. These gap junctions allow

the free diffusion of selected molecules between two neighboring cells. Their per-

meability can vary from time to time, allowing different molecules to pass between

the cells. Also, they can be closed and reopened by the cell during the lifetime of

the cell.

Intercellular calcium wave (ICW) is one of the main intercellular communica-

tion systems observed among biological cells [9]. In this system, after a cell is

stimulated, it generates a response to this stimulus with an increased cytosolic

Ca2+ concentration through the usage of the secondary messenger molecule inositol

1,4,5-triphosphate (IP3). The Ca2+ concentration wave passes to the neighboring

cells via usage of IP3 or ATP. There are two main pathways: the internal pathway

and the external pathway. In the internal pathway, IP3 molecules diffuse through

gap junctions, while in the latter, ATP molecules are released to the extracellular

space and diffuse freely to trigger nearby cells. According to experimental studies,

it has been shown that these pathways complement each other rather than being

alternative approaches [92]. The frequency and effective range of ICW heavily de-
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pends on which pathway is used. Using internal pathway enables frequent fast

communication between nearby cells, however reaching distant cells requires the

usage of external pathway [92]. ICW can reach to 200−350 µm in one dimension

(assuming that the cells are aligned linearly) at a speed of 15−27 µm/s and oscil-

late in the 10−3 − 1 Hz range [93, 94]. It has been shown experimentally that cells

encode the information on the frequency and amplitude components of ICWs [94].

A molecular communication system based on ICW was proposed in [95]. The

system is composed of two types of devices, the transmitter-receiver pair (i.e., source

and destination devices), and the ICW-capable intermediary cells. The source

device modulates the information onto an ICW wave by generating a stimulus

to the closest intermediary cell in the ICW channel. Then the calcium signal

propagates through the intermediary cells via the internal and external pathways

until the destination device is reached. In [26], authors presented the capabilities,

limitations, and deployment scenarios of calcium signaling system.

2.1.2.8 Neurochemical Propagation

Neurotransmitters are endogenous chemicals that transmit signals across a synapse

from a neuron to a target cell. The target cell can be another neuron or another

junction cell as in the case of neuromuscular junctions (NMJ). Neurotransmitters

are packaged into synaptic vesicles on the presynaptic side of a synapse and then
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Figure 2.8: Representation of neuromuscular junction. Motor neurons release
ACh molecules and they diffuses through the synapse and bind ACh receptors.
To keep the communication between the nerve and muscle cell couple, the ACh
molecules in the environment are cleaned via AChE molecules.

they are released into and diffuse across the synaptic cleft, where they bind to

specific receptors in the membrane on target cell [96].

NMJs are one of the many occurrences in biological systems where two cells

communicate with each other using an intermediary molecule that diffuse in the

extracellular environment. A NMJ is depicted in Figure 2.8 and is a semi-closed

environment between a pair of nerve and muscle cells, with a typical length of 10 to

100 nm [1,97]. When muscles in a specific part of the body need to be contracted,

the nerve cells in that region send a signal via neurotransmitters to the muscle

tissue through these junctions to trigger the contraction [9].

As an action potential reaches the end of a motor neuron, neurotransmitters are
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released into the synaptic cleft. In vertebrates, motor neurons release acetylcholine

(ACh), a small molecular neurotransmitter, which diffuses through the synapse

and binds to ACh receptors (AChRs) on the plasma membrane of the muscle fiber.

This causes the ion channels at the cell membrane to open, which in turn allows

the passage of Na+ and K+ ions. The increased cytosolic concentration of these

ions causes the muscle cell to be contracted. The neurotransmitters stay in the

bounded state for some time after which the bond degrades and the ACh molecules

are again set free to the NMJ. The degradation of this bond is crucial to the

muscle contraction procedure, allowing the muscle to relax and gradually revert

back to its original resting position, awaiting further contraction signals. After the

degradation of the bonds between ACh and AChR, the neurotransmitter molecules

are very likely to re-bond with the receptors. Such an occurrence causes further

unwanted muscle contractions and after a few muscle contraction signals, the NMJ

will be filled with ACh molecules. This causes the ion channels linked to the AChRs

to become inactive, which in turn blocks all further contraction signals. To resolve

this issue, the ACh molecules in the environment should be removed from the NMJ

after the muscle cell is successfully contracted. This is achieved by using a secondary

type of molecule, called acetylcholinesterase (AChE), which resides in the muscle

cell. AChE is a special kind of enzyme that is capable of attracting and hydrolyzing

the ACh molecules into their two building blocks, Acetate and Choline. Since both
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of these substructures are incapable of forming bonds with AChR, it is possible to

say that in practice AChE molecules remove (or destroy) the ACh molecules from

the NMJ.

2.1.3 Transmitter/Receiver Mechanisms and Components

The transmitter and the receiver of microscale molecular communication can be any

machine in the microscale to nanoscale dimensions. For example, the transmitter

and the receiver can be generated by modifying cells genetically [98–100], or by

creating artificial cells [101–103]. Regardless of the method used, the transmitter

requires at least the three components mentioned in the previous section: a unit

for generation or storing information particles, a unit for controlling the release of

information particles, and a central processing unit. Similarly, the receiver needs

at least two components: a detection unit for sensing the information particles,

and a processing unit for decoding and deciphering the intended message from the

detection unit’s measurements.

Physically, the central processing unit of the transmitter and the receiver may

be implemented by synthesizing logic gates and memory into cells as shown in [104,

105]. The information particles can be generated by modifying a metabolic pathway

of a biological cell, which then synthesizes and releases specific signaling molecules

[99, 100]. Transfection, transfer via viral vectors, direct injection to germ line, and
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transfer via embryonic stem cells are some of the methods for gene transfer for

modifying a metabolic pathway [106–108]. Among these methods, viral vectors are

a commonly used tool by molecular biologists to deliver genetic material into cells.

This process is used for manipulating a living cell to engineer regulatory networks

that can be used for communication. For example, in [109] a platform for biological

system designers to express desired system functions via high-level programming

language was introduced. After forming the genetic regulatory network code, living

cells are manipulated via viral vectors. This process can be performed inside a living

organism or in cell culture. Viruses efficiently transport their genomes inside the

cells they infect for desired function. Main types of viral vectors are retroviruses,

lentiviruses, adenoviruses, adeno-associated viruses, and nanoengineered substances

[110].

To control the release timing, a synthetic oscillator can be introduced into a

cell [111,112], which with the help of the central processing unit acts as the release

control module. Therefore, it is possible to have all the components of a transmitter

synthesized into cells. Similarly, it is possible to synthesize receptors for a specific

type of molecules into cells [113, 114]. Therefore, it is possible to have all the

components required for the receiver inside a synthetic cell. More sophisticated

processing units can also be designed as shown in [115], using novel materials and

spin waves (spin waves are propagating disturbances in the ordering of magnetic
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materials). It is also possible to shrink the current electronic technology to nano

scales to create nanoscale processing units [116].

In nature, signals are received via protein structures called receptors. Therefore,

these protein structures can be seen as receiver antennas. Receptors are the special

protein structures that can bind to specific ligand structures. The binding occurs by

intermolecular forces, such as ionic bonds, hydrogen bonds and van der Waals forces.

The docking (association) is usually reversible (dissociation). Ligand binding to a

receptor alters the receptor’s chemical conformation and the tendency of binding

is called affinity. The conformational state of a receptor determines its functional

state [77].

Almost all ligand structures in nature capture and remove the information par-

ticles from the propagation environment during the detection process [77]. In

some cases the information particles are destroyed after dissociation (e.g., acetyl-

cholinesterase breaks down the molecules in neuromuscular junctions) [71, 77].

Most of the works in receptor theory focus on ligand-gated ion channels and

G-protein coupled receptors [117]. Ligand-gated ion channels are a group of trans-

membrane ion channel proteins which open to allow ions such as Na+, K+, or Ca2+

to pass through the membrane in response to the binding of a chemical messenger

(i.e., a ligand). These proteins are typically composed of a transmembrane domain

which includes the ion pore, and an extracellular domain which includes the ligand
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binding location (an allosteric binding site). G-protein coupled receptors constitute

a large protein family of receptors that sense molecules outside the cell and activate

inside signal transduction pathways and, ultimately, cellular responses.

Cells can also be created artificially by using liposome vesicles as the membrane

encapsulating different functional proteins that together carry the task of the central

processing unit, the particle generation and storage unit, receptors, and the particle

release control unit for the transmitter and the receiver. Finally, it is possible to

develop the transmitter and the receivers by synthesizing novel materials [118].

2.1.4 Power Source

In molecular communication, the transmitter, the receiver, and the propagation

process may require energy. There are many different techniques for powering

these components [119]. Sometimes the power is already present in the environ-

ment, or can be harvested from the environment through chemical processes. For

example, diffusion relies on the thermal energy already present in the channel, and

the transmitter and the receiver could be synthetic cells that run on ATP molecules

already present in the environment. It is also possible to use other types of chemical

reactions to create motion for propagation [120].

Different components can be powered using an external energy source (a power

source that is not present or cannot be harvested form the environment). For

51



example, external magnets could be used to power and propel different components

[121,122], while syringe pumps could be used to generate flows that would assist the

transport of information particles. In [11], an energy model is derived for molecular

communication that is based on diffusion. This model can be used to calculate the

power required to generate, encapsulate, and release the information particles at

the transmitter. By the help of the proposed model, energy requirement per bit is

evaluated with different parameters. Results show that the energy budget affects

data rate significantly. It is also shown that selecting appropriate threshold and

symbol duration parameters are crucial to the performance of the system.

2.1.5 Potential Applications

There are many potential applications for molecular communication at microscales,

such as medical applications [1, 123], control and detection of chemical reactions

[124], computational biology [125, 126], better understanding of biology [127], en-

vironmental control and preservation [128], and communication among nanorobots

[129]. The main driving force for engineering molecular communication is the med-

ical field [130] with applications in lab-on-a-chip devices [131], cell-on-chips de-

vices [132], point-of-care diagnostic chips [133], and targeted drug delivery [134].

In many of these applications, communication between different components or

devices is the key to unlocking their true potential.
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Another driving force behind molecular communication is recent advancements

in the field of nanotechnology, which is making nanoscale devices such as nanorobots

a reality [129]. Limited by their size, nanorobots can perform only simple tasks.

Communication and cooperation among nanorobots can result in performing com-

plex tasks [135]. Communicating nanorobots can be used for biomedical engineering

applications, where nanorobots inside the body provide significant improvements

in diagnosis and treatment of diseases [118,136,137]. In [138,139], it is shown that

communicating nanorobots can be much more effective at targeted drug delivery

than uncommunicative nanorobots. In [140], nanorobots are proposed for detec-

tion of brain aneurysm. Nanorobots can also be used for transporting molecular

payloads to cells [141], and altering the cell’s behavior [142].

Ongoing development of nanoscale electronics, sensors and motors has further

advanced the field of nanorobots [143]. For example, programmable bacteria can

create computation capability for nanodevices [144]. Moreover, different techniques

can be employed to power nanorobots [119]. For example, flagellated magnetotactic

bacteria along with magnetic resonance imaging (MRI) can be used as medical

nanorobots. Tracking and controlling of swarms of these bacterias are demonstrated

in [145].
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2.2 Macroscale Molecular Communication

Although use of molecular communication for long range communication between

nanomachines has been proposed in [146], engineering a truly macroscale molecular

communication system has not been considered in the past. In this dissertation,

macroscale molecular communication is referred to a system where the dimensions

of the transmitter/receiver, and the distance between them is a few centimeters

or more. These systems have not been considered in the past partly because of

the availability of wireless radio technology at these scales, which is very fast and

reliable. Nevertheless, there are application for which use of radio technology is not

possible or desirable, and molecular communication may be a suitable solution. For

example, use of the radio based sensor networks for infrastructure monitoring in ur-

ban areas can be inefficient and unreliable [8]. Therefore, in this section the physical

components required for macroscale molecular communication are discussed.

2.2.1 Information Particles

The information particle at macroscales can be any volatile chemical or gas, for

over the air applications, or liquids for aqueous environments. For most practical

applications, these chemicals must have low toxicity and be safe for humans and

the environment. At macroscales, detecting individual molecules would be very
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difficult. Therefore, in practice concentration of chemicals and chemical mixtures

would be used as carriers of information.

2.2.2 Channel and Propagation

There are two main forms of propagation at macroscales: diffusion and flow based

propagation. In the previous section, it was shown that the diffusion and flow based

propagation of a single information particle can be simulated using Monte Carlo

techniques. At macroscales, instead of a single or few information particles, large

number of particles are used to transfer information. Therefore, a more general

formulation, namely the diffusion equations, could be effectively used to model the

propagation of chemicals. The diffusion equation allows us to talk about the statis-

tical movements of randomly moving particles. It is important to know that, unlike

Monte Carlo simulation equations presented in the previous section, the movement

of each individual particle does not follow the diffusion equation. However, many

identical particles each obeying the same boundary and initial conditions share

some statistical properties and the diffusion equation deals with the average spatial

and temporal evolution of these particles.

The diffusion equation is given by partial differential equation [147] as:

∂c

∂t
= D∇2c, (2.24)
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where D is the diffusion coefficient, and c is the concentration at a particular

spatiotemporal location. Therefore, c is a function of x, y, z, and t, where the first

three variables represent a Cartesian coordinate and t represents time.

This partial differential equation can be solved using different initial conditions.

One of the most useful initial conditions corresponds to a point source release of

molecules at the transmitter. Assuming M0 molecules are released by the point

source suddenly at time t = 0, the initial conditions for 1-D, 2-D, and 3-D diffusion

can be mathematically represented as

c(x, t = 0) = M0δ(x), (2.25)

c(x, y, t = 0) = M0δ(x)δ(y), (2.26)

c(x, y, z, t = 0) = M0δ(x)δ(y)δ(z), (2.27)

where δ(.) is the Dirac delta function defined by: δ(x) = 0 for x 6= 0 and

∫ ∞
−∞

δ(x) dx = 1. (2.28)

Solving the diffusion equation with these initial conditions, the solution for 1-D,
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2-D, and 3-D diffusion are obtained as:

c(x, t) = M0(4πDt)−1/2 exp

[
− x2

4Dt

]
, (2.29)

c(x, y, t) = M0(4πDt)−1 exp

[
−x

2 + y2

4Dt

]
, (2.30)

c(x, y, z, t) = M0(4πDt)−3/2 exp

[
−x

2 + y2 + z2

4Dt

]
. (2.31)

The diffusion equation can also be solved for other initial conditions [72]. The

channel response can be derived by adjusting the boundary conditions when there

is an absorbing receiver [148]. The capture function can be obtained by integrating

the channel response obtained from the differential equation system with these

boundary conditions [78]. One can find the peak concentration and the peak time,

by differentiating the impulse response with respect to time [78,149]. Moreover, it

is possible to find channel inversion in complex s-domain [150].

At macroscales, molecular diffusion itself can be a very slow propagation mecha-

nism. For example, the diffusion coefficient of water vapor in air is about 0.3 cm2/s.

Therefore, assuming pure diffusion, on average, in 1 second a water molecule prop-

agates about 0.5 cm, in 1 minute 4 cm, and in 1 hour 30 cm. However, it is possible

to speed up the propagation by introducing flow.

Other forms of mass transport assist the propagation of particles at macroscales.

These include:
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• Advection – Advection refers to transport with the bulk fluid flow [151]. For

example, information particles released inside a duct with air flows, are moved

by bulk air flows.

• Mechanical dispersion – Mechanical dispersion, is the result of (a) variations

in the flow pathways taken by different fluid parcels that originate in the

nearby locations near one another, or (b) variations in the speed at which

fluid travels in different regions [152]. For example, information particles

moving through liquid flows in porous materials such as soil follow mechan-

ical dispersion because of different paths they could travel. Similarly, in a

pipe where there is a liquid flow, at the boundaries the flow speed could be

slower than at the center of the pipe. This effect will disperse the information

particles in the pipe.

• Convection – In thermodynamics convection is the fluid flows generated be-

cause of difference in temperature [153]. For example, in a room cold air,

which is dense, moves downward while warm air moves upward. It must be

noted that convection is also used to specify the combined advection-diffusion

process in fluid mechanics. However in this dissertation, convection is fluid

flows created due to temperature differences.

• Turbulent flows – Turbulent flows are random movements within a fluidic
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flow [154]. Because this random movement is similar to molecular diffusion,

the motion of particles inside turbulent flows are sometimes called turbulent

diffusion. This is fundamentally different from the processes which determine

molecular diffusion: in turbulent diffusion, it is the random motion of the fluid

that does the transport, while in molecular diffusion it is the random motion of

the information particles themselves. To indicate this difference in causation,

the diffusion coefficient for turbulent diffusion is often referred to as the eddy

diffusion coefficient. The value of the eddy diffusion coefficient depends on the

properties of the fluid flow, rather than on the properties of the information

particles. Most important is the flow velocity. Turbulence is only present at

flow velocities above a critical level, and the degree of turbulence is correlated

with velocity. More precisely, the presence or absence of turbulence depends

on the Reynolds number, a unitless number which depends on velocity, width

of the pipe, and the viscosity of the fluid. In addition, the degree of turbulence

depends on the material over which the flow is occurring, so that flow over

bumpy surfaces will be more turbulent than flow over a smooth surface.

When flow is present, the diffusion equation in (2.24) becomes the advection-

diffusion equation (also known as convection-diffusion equation or diffusion equation

with drift)

∂c

∂t
+∇.(vc) = D∇2c, (2.32)
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where v is the velocity vector and it is a function of spatial location and time.

The D in (2.32) can be the diffusion coefficient for pure molecular diffusion or a

combined molecular diffusion and turbulent diffusion coefficients [155]. In (2.24)

and (2.32), it was assumed that the diffusion coefficient is the same in all spatial

dimensions. However, it is also possible to derive analytical solutions when the

diffusion coefficient is spatially variable [156]. For example, in oceans, the horizontal

diffusivity along the water can be 107 times larger than the vertical diffusivity [157].

The solution for this partial differential equation in (2.32) can be obtained using

different initial conditions. For example, assume that the space is 1D, and the flow

is constant in the direction of positive x axis only. Moreover, assume that the

boundaries are infinite, and M0 information particles are spontaneously released at

the origin at time zero. Then the solution of advection-diffusion equation becomes

c(x, t) = M0(4πDt)−1/2 exp

[
−(x− vt)2

4Dt

]
, (2.33)

where v is the speed in the positive x direction. The advection-diffusion equation

can be solved for some other initial conditions as well.
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2.2.3 Transmitter/Receiver Mechanisms and Components

At macroscales, the transmitter and the receiver require the same set of components

depicted in Figure 2.2 at the beginning of the chapter. For the transmitter, a storage

container is required for holding the information particles. It is also possible to

generate the information particles using different processes. A mechanism must

be set in place for controlled release of chemicals. For example, sprays could be

used for controlling the release of information particles. In [158, 159], a technique

for releasing complex blends of compounds in specific ratios, which mimics insect

pheromones, is developed.

For detection at the receiver, chemical sensors could be used to detect the in-

formation particles. For example, metal-oxide gas sensors [160] are typically inex-

pensive sensors, that are capable of detecting the concentration of various types of

volatile chemicals and gases. It is also possible to create more sophisticated sensors

for detecting mixtures of chemicals as shown in [161].

The processing unit at macroscales can be a computer or a microcontroller,

depending on the application. The power source could be electrical, solar, or any

other source. At macroscales, different power sources and processing unit have

already been well studied and developed.
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2.2.4 Potential Applications

There are some potential applications for macroscale molecular communication.

However, because radio communication is a well developed and established technol-

ogy, most applications must be in areas where radio communication is not possible

or not desirable. For example in [8], it is shown that current sensor network tech-

nology based on radio signals is not very reliable for some infrastructure monitoring

applications. Moreover, there are still numerous problems that must be overcome

for radio based communication in underground environments such as mines [162].

Finally, molecular communication system can be used for sending information in

pipes and ducting systems, which could be beneficial in different industries such as

oil and gas.

Macroscale molecular communication can also be used as a tool for studying

animals and animal behavior. In nature, animals rely on pheromones, which are

essentially chemical signals, for simple communication [10]. For example, ants use

chemical trails for navigation and tracking [163]. Inspired by nature, a number of

works have used molecular communication to mimic pheromonal communication in

insects [158, 159, 161, 164]. Not only could this be a valuable tool to better under-

stand animal behavior, it could also potentially be used to control these behaviors.

Another potential application for macroscale molecular communication is in
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robotics, which was initially inspired from pheromonal communication and olfaction

from nature [14, 165, 166]. Generally, previous works in this area can be divided

into two main streams: pheromone based communication inspired by nature [15,

166–168], and plume or chemical tracking robots [165, 169–176]. Besides these

applications, molecular communication can also be used for robotics search and

rescue operations, and robot communication in harsh environments such as sewer

systems.
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3 Communication Engineering Aspect of

Molecular Communication

Although molecular communication has been present in nature for billions of years,

it was only recently that engineering molecular communication systems has been

proposed [13]. Therefore, compared to modern radio based telecommunication

systems, molecular communication is still in its infancy. In this section, some of

the recent work on molecular communication through a communication-engineering

lens are reviewed.

In this regard, the molecular communication literature can be categorized based

on five partially overlapping topics:

• Modulation techniques : how information is encoded on the information car-

rying particles and chemical signals.

• Channel models : Because molecular communication channel can be very dif-

ferent from radio based communication channels, new channel models are
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required for molecular communication.

• Coding techniques : Since the channel is different, there may be a need for

new error-correcting codes for molecular communication systems.

• Network architectures and protocols : The network architecture and protocols

used in molecular communication.

• Simulation tools : Because laboratory experimentation can be time consum-

ing, laborious, and expensive, many different simulation environments have

been developed for studying molecular communication.

Over the next sections each category is surveyed and the main concepts from

each category are presented.

3.1 Modulation Techniques

Modulation is the process of varying one or more properties of the carrier signal

according to the transmission symbol. In essence, transmission symbols are encoded

in changes of the properties of the carrier signal. In traditional radio based wireless

communication systems, the carrier of information is electromagnetic waves. Radio

waves are sinusoidal signals that can be presented mathematically as

s(t) = A sin(2πft+ φ), (3.1)
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where A is the amplitude of the sinusoidal, f is the frequency, and φ is the phase.

The amplitude affects the peak to peak height of the sinusoidal, the frequency

affects the number of cycles per seconds, and the phase affects the amount of shift

from the origin. Information can be modulated on the amplitude, the phase, the

frequency, or any combination of these parameters. Figure 3.1(a) demonstrates the

modulation of binary data (0 and 1) using amplitude, frequency, and phase.

In molecular communication, the carriers of information are very tiny informa-

tion particles (e.g., molecules). In this scheme, information can be modulated on

the following properties of the information particles.

• Number of Particles: Information can be encoded in the number of infor-

mation particles released. If the number of information particles that are

released is very large (e.g., at macroscales), concentration (i.e., the number of

particles per unit volume) could be used instead of the number of particles.

• Type/Structure of Particles: It is possible to encode information in the type

(or structure) of information particles released. For example, two different

types of molecules could be used to encode one bit of information, or the

structure of the DNA could be used to encode a large amount of data.

• Time of Release: Information can be encoded in the time of release of in-

formation particles. Another timing based approach is the pulse position
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Figure 3.1: Modulation techniques in (a) the traditional radio communication
(b) molecular communication.

modulation (PPM), which is similar to PPM in optical communication. To

generate a pulse, large number of information particles are released almost

instantaneously by the transmitter at a specific time.
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Figure 3.1(b) demonstrates the modulation of binary data (0 and 1) using the

number of molecules (concentration), the type of molecules, and their release timing.

Just like radio based communication, it is also possible to use any combination of

these modulation schemes.

In the rest of this section some of the recent work on modulation techniques for

molecular communication are surveyed. Generally, these works can be broken down

into three main categories: modulation schemes, inter-symbol-interference (ISI)

mitigation schemes, and optimal detection at the receiver. Table 3.1 summarizes

the different modulation schemes proposed in the literature.

One of the first works that considered modulation in molecular communication

was [17]. In this work the authors considered two different modulation schemes for

the diffusion-based propagation channels. In the first modulation scheme, a binary

bit-0 was represented by concentration zero and the bit-1 by concentration Q. This

modulation scheme is similar to on-off-keying from traditional telecommunication.

In the second scheme, the concentration of information particles was varied accord-

ing to a sinusoidal signal with a given frequency, and it is assumed information can

be encoded in the amplitude and the frequency of this sinusoidal.

In [177] and [178], two new modulation schemes were proposed for diffusion

based propagation channels. One was based on the number of molecules, where

transmission symbols were encoded in the number of information particles re-
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leased by the transmitter. This modulation scheme was termed concentration shift-

keying (CSK). The second modulation scheme was molecular type-based modula-

tion, where the transmission symbols were encoded in the type of the information

particles released. The authors named this modulation scheme molecular shift key-

ing (MoSK), and they proposed hydrofluorocarbon based information particles as

an example for this type of modulation. The effects of co-channel inference in a

two-sender, two-receiver system was also considered in the work.

The choice of information particles for in-body molecular communication is

very important. In [19], the authors proposed aldohexose isomers as an effective

information particle for this use. As they pointed out the information-carrying

isomers must be selected carefully such that they would not be harmful to the

body as the isomers of hydrofluorocarbon proposed in [178]. The authors considered

isomer based CSK, and isomer based MoSK. They also presented a new modulation

scheme, which they called isomer-based ratio shift keying (IRSK). In this scheme,

the information was encoded in the ratio of two isomers (i.e., the ratio of the

concentration of two information particles).

It is also possible to encode information on the system response pulses of contin-

uous diffusion models. Two different pulse based approaches were presented in [179]:

pulse amplitude modulation (PAM), and pulse position modulation (PPM). In

PAM, a transmission of bit-1 was represented by a pulse (a short burst of in-
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formation particles) at the beginning of the bit interval, and transmission of bit-0

was represented with no pulse. In PPM, a bit interval was divided into two equal

halves, and transmission of bits-1 and 0 were represented by a pulse in the first

or the second half, respectively. Another work that considered modulation on the

system response of continuous diffusion was [184], where information was encoded

in features of the system response. The authors provided expressions for the peak’s

max, peak’s width at half max, and peak’s max delay as well as expressions for

the energy of the impulse response. The information could then be encoded and

detected on these features of the pulses.

Besides using the the number, type and continuous concentration pulse features

for encoding information, the release timing of information particles could also be

used for encoding information [20]. In [180], the authors considered diffusion based

molecular communication, where a hybrid modulation scheme based on type and

time of release of particles was proposed. This type of modulation is asynchronous,

and could achieve higher information rates than the type based or timing based

approaches. To derive their models, the authors presented their modulation scheme

as an event-driven system.

Another release timing based modulation scheme called time-elapse communi-

cation (TEC) was proposed in [22] for very slow networks such as on-chip bacterial

communication. In TEC, information was encoded in the time interval between
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two consecutive pulses (i.e., two consecutive pulses of information particle trans-

mission). The authors showed the feasibility of this technique for communication

through bacterial fluorescence. In this setup information particles were released

from the transmitter in an on-chip device, where they propagated using microflows

until they arrived at the reception chamber. The reception chamber contained bac-

teria that would produce fluorescence light in proportion to the concentration of

information particles. The authors showed that TEC can outperform on-off-keying

when techniques such as differential coding was used.

Molecular communication channels typically have memory since some of the in-

formation particles that are released may remain in the channel and arrive in future

time slots. Therefore, another important problem in molecular communication is

the ISI due to delayed arrivals of molecules. Hence, modulation techniques should

also consider ISI mitigation. One way for minimizing ISI is to combine CSK and

MoSK modulation techniques together, which was proposed and named molecular

transition shift keying (MTSK) in [181]. Binary version of this modulation tech-

nique utilized two types of information particles A and B. The modulator decided

which molecule to send depending on the current bit and previously sent transmis-

sion bit. Using this scheme, the ISI can be reduced. It is also possible to reduce the

ISI using enzymes [185]. In this scheme, enzymes that are present in the channel

environment slowly degrade the information particles as they move through the
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environment. It was shown that this could reduce the ISI and probability of error

at the receiver.

Another ISI-reducing modulation technique based on the order of information

particles released by the transmitter was presented in [182]. In this scheme, which

the authors named Molecular ARray-based COmmunication (MARCO), bit-0 was

encoded by releasing information particle a followed by information particle b, and

bit-1 was encoded by release of b followed by a. This reduced the ISI. In a similar

work [183], two types of molecules are used in an alternating fashion to reduce ISI.

For example, the transmitter uses type-a molecules in odd time slots and type-b

molecules in even time slots. As the molecule types are different in two subsequent

time slots, the ISI is significantly reduced.

The demodulation and detection problem at the receiver are an important part

of molecular communication systems. In [186], a receiver circuit was proposed for

frequency shift-keying-modulation presented in [17]. For frequency detection, an

enzymatic circuit consisting of a number of interconnected chemical reaction cycles

was proposed. The circuit was then modeled using reaction-diffusion equations and

reaction kinetics equations, which were all partial or ordinary differential equations.

The feasibility of the detection scheme was then verified using simulations.

Optimal detection for molecular communication receivers was considered in a

number of works. Optimal receiver design for MoSK modulation scheme was con-
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sidered in [187]. The receiver was optimal in the sense that it minimized the

probability of error according to the maximum a-posteriori (MAP) criterion. The

authors first showed that for diffusion based propagation, the channel is linear and

time-invariant. They then used this assumption to derive the optimal receiver de-

sign. Similarly, in [188,189] optimal receiver detection model was derived for binary

concentration modulation scheme using MAP criterion. In [190], the authors con-

sidered receiver design for on-off-keying modulation scheme based on MAP, and

maximum likelihood criterion. They used the continuous diffusion equation and

considered the random propagation as noise. Using some simplifying assumptions

it was shown that this noise is Gaussian. The sequential detection in the pres-

ence of ISI was then achieved by considering the equivalent problem of estimating

the state of a finite-state machine. Finally, an optimal detector for the molecu-

lar communication channels with enzymes that help reduce the ISI was designed

in [191].

3.2 Channel Models

Information theory is the mathematical foundation of any communication sys-

tem [192]. One of the most basic theoretical models for a communication system

is the channel model. Physically, the channel is the environment over which the

transmission signal propagates. Mathematically, the channel relates the transmis-
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Transmitter Noisy Channel
f (Y | X ) ReceiverX Y

Transmitter Random Propagation
f (Y | X ) ReceiverX Y

Traditional Communication System

Molecular Communication System

Figure 3.2: Block diagram representation of communication channels.

sion information, which would be the channel input, to the received information,

which would be the channel output. There is an uncertainty associated with a

communication channel. The received signal at the receiver can be different from

the transmitted signal because of the noise introduced by the channel. In molec-

ular communication one source of noise is the random propagation of information

particles. Figure 3.2 shows a block diagram representation of the channel.

The mathematical model of the channel can be described as follows. Let X ∈ X

be the symbol (i.e., message) that a transmitter wants to send to the receiver, where

X is the set of all possible symbols (i.e., messages) that the transmitter could

send. In typical radio based communication, the signal sent by the transmitter gets

attenuated and corrupted before it reaches the receiver. For example, the source of

this corruption could be thermal noise from the electronic equipment, interference

with other signals, and signal fading. Therefore, at the receiver the detected symbol
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(i.e., message) could be incorrect. Let Y ∈ Y be the detected symbol at the receiver,

where Y is the set of all possible detection symbols. Because the receiver has no

prior knowledge of the original transmission symbol, the actual transmitted symbol

can be considered a random variable X. Also, because the original transmitted

symbol can be corrupted by noise, the detected symbol can be represented by a

random variable Y . The communication channel can therefore be characterized by

the conditional probability mass function (PMF) P (Y |X).

In molecular communication channels, the main source of noise is the random

motion of the information-carrying particles. All propagation schemes described

in the previous sections are random in nature; although some exhibit more vari-

ance (pure molecular diffusion), while some are more directional and exhibit lower

variance (active transport).

There are two important measures associated with any noisy channel in a com-

munication system: the achievable information rate, and the channel capacity [192].

Achievable information rate is a theoretical measure of how many bits can be

transmitted across the channel in a given period of time. For a discrete memo-

ryless channel, where the current received symbol is independent of all the previous

transmission symbols, achievable information rate can be computed from the PMFs
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P (Y |X) and P (X) as

I(X;Y ) = E

[
log2

P (y|x)∑
x∈X P (y|x)P (x)

]
, (3.2)

where I(X;Y ) is also called the mutual information between X and Y .

Channel capacity is the maximum achievable information rate, which is the

maximum number of transmission bits that can be transferred over the channel in

a given period of time. Mathematically channel capacity is represented as

C = max
P (x)

I(X;Y ), (3.3)

where C is the channel capacity. For a discrete memoryless channel the mutual

information is concave with respect to P (x) [192]. Therefore, if P (Y |X) is known,

Blahut-Arimoto algorithm [193,194] could be used to find the maximizing P (x) and

the channel capacity for the channel.

Unfortunately, most practical molecular communication channels have memory

and suffer from inter-symbol interference (ISI). In this case, channel capacity is

calculated differently [195]. Let xn be a sequence of n consecutive transmission

symbols, and yn be the corresponding sequence of n consecutive received symbols.
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If the channel is information stable then the channel capacity is given by [196]

C = lim inf
n→∞

sup
xn

I(Xn; Yn). (3.4)

The makes calculation of channel capacity much more difficult compared to the

discrete memoryless channels.

Because channel models play a central role in designing communication systems,

one of the first problems that communication engineers tackled was modeling the

molecular communication channel [20,197]. As mentioned in Section 2.1.2 different

propagation schemes are possible for molecular communication channels. Therefore,

for each propagation scheme and modulation technique, a different channel model

can be derived. Table 3.2 shows a comparison of most channel models proposed in

the literature.

3.2.1 Diffusion Channel Models

In the previous chapter, Sections 2.1 and 2.2, the diffusion propagation scheme

for both microscale and macroscale molecular communication were described. The

channel models for diffusion-based molecular communication can be divided into

three broad categories: models based on continuous diffusion equations, discrete

models, and diffusion models with flow. Besides the propagation, depending on the
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modulation scheme the channel formulations would be different.

The most popular molecular communication channel in the literature is the

time slotted binary-CSK channel employing pure diffusion-based propagation. In

this scheme, if the transmission bit is 0, no molecule is transmitted and if the

transmission bit is 1, A molecules are transmitted. In its simplest form A = 1 (i.e.

1 particle is released to represent bit-1 and 0 to represent bit-0).

In [197], with using some simplifying assumptions, it was shown that the time-

slotted binary-CSK channel can be represented as a binary symmetric channel

when ligand-receptors are used for detection at the receiver. The maximizing input

probability distribution for this model was presented in [198]. The model was

then extended to broadcast channels, relay channels and multiple-access channels

in [199,200].

Because in diffusion molecules move randomly, there could be ISI between con-

secutive transmission symbols. In order to reduce the ISI effect, a symbol dependent

symbol duration could be used, where the transmission time for the current symbol

is selected based on the current and the previous symbols. This type of channel

was modeled as a Markov chain in [201], and achievable rates were derived. The

authors then completed their analysis in [202], where they modeled the ligand re-

ceptor channel as a Markov Chain and derived the capacity and achievable rates

for this channel.
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For the binary-CSK channel with A = 1, if there is no interference with the

other molecules from previous transmissions, the channel could be represented as

a z-channel [203] . Moreover, the authors in [203] considered a very simplified

ISI model, where the interference could affect only the next transmission (i.e. the

channel memory length is 1). The achievable information rates were then calcu-

lated using computer simulations and the results were presented. In [204], a more

general ISI model for this channel was considered. It was shown that this commu-

nication scheme can be represented as an additive noise channel, where the noise

has a Poisson-Binomial probability mass function (PMF). Using this channel model

maximizing input probability distributions was estimated.

In practice, information particles may degrade over time while propagating in

the channel. In [205], binary-CSK channels where the molecules degrade over time

according to the exponential probability distribution were considered. Then the

channel capacity was compared for different degradation rates and different binary-

CSK modulation strategies. Another practical problem in molecular communi-

cation is the limited energy and resources available at the transmitter and the

receiver. Energy models for the end-to-end binary-CSK communication channel,

which could be used to calculate the maximum number of information particles that

can be generated and transported in a particular system was presented in [11]. Us-

ing this model, an optimal transmission strategy that considered the limited energy
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and resources of the system, and maximized the channel capacity was presented.

Another channel model for diffusion-based molecular communication is based

on the continuous solution of the diffusion equations presented in Section 2.2. In

this case, the transmission signal is an analog concentration signal x(t), and the

received signal is x(t) convolved with the impulse response of diffusion equation

plus some noise. One of the first works that considered this approach was [64],

where end-to-end gain (attenuation factor) and delay function were derived for

continuous molecular diffusion channels with ligand receptors for detection. To

derive these terms the authors used techniques from circuit theory to calculate the

transfer function for the transmission, diffusion, and reception process. Using these

transfer functions they calculated the end-to-end gains and delays.

In practice, solutions for continuous diffusion channels are just the average be-

haviour across many trials. Moreover, the number of particles that are released

by the transmitter are continuous rather than discrete. Therefore, in [206] a more

realistic model of continuous diffusion based molecular communication channel was

proposed by considering the discrete nature of the number of information particles

and randomness of the diffusion propagation. It was assumed that discreteness

can be modeled as quantization noise and the random propagation as an additive

noise which are added to the solution of continuous diffusion equations. Similarly,

in [207] the authors captured the inherent randomness in ligand-binding reception
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as noise. Simplifying assumptions and Markov chains were used in the derivation

of a closed-form expression of random ligand binding process.

In [65], the authors derived a closed-form expression for the lower bound on

channel capacity of continuous diffusion-based molecular communication channel

in gaseous environments. They showed that this lower bound capacity increases

linearly with the bandwidth of the transmission signal. In this derivation, it was

assumed that the receiver and the transmitter are perfect, and the derivation was

purely based on the diffusion transport process.

Microbial colonies are one of the prominent transmitter and receiver entities

in molecular communication. In this scheme, the transmitter and the receiver

are made from colonies of genetically modified bacteria that would collectively

transmit and receive information particles. The mathematical models for such

a receiver were presented in [208], where the sensing capacity of bacterial nodes

was developed. To derive the capacity, it was assumed that the bacteria react

to the concentration of information particles by emitting light. The higher was

the concentration of the information particles at the receiver node, the higher was

the luminance of the bacterial colony. The optimal input distribution and the

corresponding sensing capacity were obtained based on the received power. Models

for the transmitter and the communication channel between the transmitter and

the receiver was considered in [209], where it was assumed that the transmitter was
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made of colony of bacteria and the transmission of information particles was a two

stage process. It was assumed that signalling molecules (type A molecules) were

used to control the number of information particles (type B molecules) released by

the transmitting colony. The released information particles then diffused until they

arrived at the receiver colony, where they were detected by ligand receptors, which

then initiated a fluorescent light generation response that would be dependent on

the concentration of the received molecules. The end-to-end channel model and

some expressions for the capacity were then presented.

Another work that considered the transmitter and the receiver in diffusion-

based molecular communication is [211], where the transmitter and the receiver

were assumed to be genetically modified cells that are moving themselves. The

information was transported through a three phase process: collision, adhesion,

and neurospike transmission. In this scheme, two cells (the transmitter and the

receiver) moved according to the laws of diffusion, until they collided and stuck to

one another. The information was then transported from one cell to another using

molecular neurospike communication. Through some simplifying assumptions, the

authors derived the channel models for this communication scheme.

In practice, information particles may chemically react with other molecules

present in the channel. In [212], a model based on reaction-diffusion master equa-

tion, which is a well known model in physics and chemistry for jointly modeling
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diffusion and chemical reactions, was proposed. The model which is called reaction-

diffusion master equation with exogenous input (RDMEX), discretizes time and

space and uses a Markov model, where the states of the model are the number

of information particles in discrete locations of space. During each discrete time

step, the state of the Markov model changes according to the laws of diffusion and

chemical reactions. Another work that considers the effects of the channel on the

information particles is [213], where a stochastic model for three different environ-

mental effects are considered: particle absorption (where the particles are absorbed

in the environment), particle generation (where a single information particle be-

comes two information particles through reactions in the medium), and sponta-

neous emission (where information particles are spontaneously generated through

chemical reactions). Through simplifying assumptions, a model was derived using

birth-and-death processes. The model was then applied to diffusion based molecular

communication with and without flow.

As mentioned in the previous section, it is possible to modulate information on

the time of release of information particles. One of the first works that considered

diffusion-based timing channel was [20], which was based on the 1-dimensional first

hitting time distribution. The channel capacity for this model was derived and it

was shown that for this simplified channel, more than one bit of information can be

transmitted per information particle. As mentioned in Section 2.1.2, flow could be
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used to increase the speed of propagation. In [66], it was shown that such a channel,

employing time of release modulation, could be modeled with an additive inverse

Gaussian noise (AIGN) term. Lower and upper bounds for the channel capacity

of AIGN channel was then derived. It was shown that these bounds were tight for

low flow rates, but the bounds became separated as the flow rate increased or as

it approached zero. The derived channel model was then used to design a receiver

based on a maximum likelihood estimator. Tighter bounds for AIGN channel were

presented in [214].

3.2.2 Other Channel Models

Many different channel models are proposed for diffusion-based molecular communi-

cation. However, for other propagation schemes presented in the previous chapter,

there are not many channel models in the literature. In this section, some of the

works on these propagation schemes are surveyed.

One of the most promising propagation schemes besides diffusion is active trans-

port using molecular motors. Kinesin-microtubule motility is the most widely used

form of active transport. As it was discussed in Section 2.1 in the previous chap-

ter, two forms of transport are possible: kinesin moving on stationary microtubule

tracks, or microtubule filaments gliding over kinesin-covered substrate. Generally,

active transport is a suitable propagation scheme for on-chip applications.
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Previous works on molecular communication have only considered models for

kinesin moving over microtubule tracks. One of the early works on modelling this

channel is [69], where simulations were used to compare the arrival probabilities

of diffusion channels, and active transport channels based on a microtubule track

that connects the transmitter to the receiver. In this setup, kinesin motor proteins

carry the information particles on the microtubule tracks. A hybrid approach based

on combination of these propagation schemes was also considered. It was shown

that diffusion had low rate of delivery and lower channel capacity for separation

distances in the order of micrometers compared to the active transport and the

hybrid schemes.

Gap junction channel is another propagation scheme that has been considered

in a number of previous works. In this scheme, it is assumed that the transmitter

and the receiver are cells or artificial lattice structures that are connected together

through a series of similar cells or artificial lattice structures. Each cell or lattice

structure is connected to its neighbors through gap junction channels. Calcium

ions are generated by the transmitter and propagate through the gap junction

channels, traveling from lattice to lattice until they arrive at the receiver. Binary-

CSK modulation scheme in such a molecular communication system was considered

in [216]. The channel was then simulated and achievable information rates were

presented. In [217], the channel capacity of the calcium signaling system based
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on an inter-cellular calcium wave model for astrocytes was investigated. Calcium

waves are formed by the cytosolic oscillations of Ca+2 ion concentration, which

propagates through neighboring cells via secondary messenger molecules. Channel

capacity of the investigated system was analyzed under different noise levels and

symbol durations. In [218], the gap junction communication between cardiac muscle

cells, called cardiomyocytes, was modeled. In particular the propagation of action

potential, which helps to regulate the heart beat was modeled as a communication

channel and then simulated to calculate the channel capacity.

Bacteria are another effective tool for actively transporting information particles

from the transmitter to the receiver. A molecular communication channel in which

information particles such as DNA strands are embedded in flagellated bacteria

that then transport the particles was modeled in [28, 91]. It was assumed that

the receiver uses attractant molecules to attract these bacteria. The motion of the

bacteria from the transmitter to the receiver was then modeled and simulated.

Communication theoretic channel modelling has been used in a number of works

to represent interesting biological processes. In [219], a channel model for blood flow

through arteries was developed using harmonic transfer matrix and some simplifying

assumptions. Two different models were used for small and large arteries, and the

models were then combined to form a complete model of blood flow through the

arteries in the body. A model for drug injection propagation in the arteries was then
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presented based on this model. In [220], simple intercellular signal transduction

channels were considered, where information particles were detected using ligand

receptors. The paper abstracted the concept of propagation and assumed the input

to the channel is the concentration level at the vicinity of the receiver, which was

equipped with ligand receptors. The detection process was then represented as a

discrete-time Markov model. It was shown how the capacity can be obtained for

this channel. It was also shown that the capacity achieving input distribution is

iid, which is unusual for channels with memory. Furthermore, it was demonstrated

that feedback does not increase the capacity of this channel.

Microfluidics is another important area where molecular communication can

have a high impact. Channel models for flow-based molecular communication in

microfluidic channels was presented in [221]. First, the transfer function of the

straight channel, the turning channel, bifurcation channel, and combining channel

was derived. Then it was shown that the overall transfer function of any channel

configuration (i.e. any combination of straight, turning, bifurcation, and combining

channels) can be calculated using the transfer function of these channels. Using this

model, the authors demonstrated that finite impulse response (FIR) filters could

be implemented on a microfluidic device.
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3.3 Error Correction Codes

In traditional communication systems, channel codes are used to mitigate the effects

of noise and fading that is introduced into the system by the channel and electronic

components. In essence, channel coding introduces redundancy which can then be

used to detect and correct errors. For example, in a simple repetition code, a binary

bit-0 is encoded as 000, and a binary bit-1 is encoded as 111. At the receiver the

majority number of bits are used to decode the bit. For example, 011 is decoded as

bit-1, and 010 is decoded as bit-0. It is fairly trivial that such a simple repetition

code can correct one bit errors.

Capacity-approaching codes are codes that allow information transmission rates

that are very close to the maximum theoretical limits of the channel (i.e., channel

capacity). Many different capacity-approaching codes such as low density parity

check (LDPC) codes and turbo codes have been developed for the traditional com-

munication systems [222]. However, the encoder and the decoder for these channel

codes are computationally complex, and as such they may not be practical for

many molecular communication systems, especially at microscales. Furthermore,

because the nature of the noise is different in molecular communication channels,

it is not clear if better error correcting codes exist for these channels. For example,

molecular communication channels typically have memory. Only a limited amount
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of work has been done on channel codes for molecular communication, and there

are still many open problems in this area.

The early works on coding schemes for molecular communication considered

applying the previously devised coding schemes for radio communications. One of

the early works that considered channel codes for molecular communication sys-

tems was [223], where Hamming codes were proposed as simple error correcting

codes for on-off-keying in diffusion based molecular communication. First, it was

shown that these error correcting codes can improve the probability of bit error rate

when a large number of information particles were used for representing each bit.

Uncoded transmission outperformed coded transmission, however, when a smaller

number of molecules were used to represent each bit. This occurs because of the

extra ISI introduced by the extra parity bits. The authors then modeled the extra

energy needed for transmitting the extra parity bits and showed that coding was

not energy-efficient when the separation distance between the transmitter and the

receiver was small. In [224], convolutional coding schemes were applied to the same

channel and it was shown that convolutional codes could improve the bit error rate

of these molecular communication channels.

A few works have developed new coding schemes tailored for molecular com-

munication channels. In [225], a new code family called ISI-free code family was

introduced for diffusion based molecular communication channels with drift. It was
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assumed that the type of the information particles is used to encode information.

In this coding scheme, the crossovers up to level-` between consecutive codewords

and within the current codeword were eliminated. It was shown that these code

families can improve the bit-error rate performance of molecular communication

channels compared to uncoded transmission, under similar throughputs. Another

work that developed a new coding scheme for molecular communication timing

channels was [226]. In this work, zero-error codes were developed which guaranteed

successful recovery of information bits at the receiver, assuming the channel has

finite memory (which is a valid assumption for practical channels).

3.4 Architectures, Protocols, and Optimal Design

Because molecular communication is still in its infancy, most of the research has

been focused on modeling the channel as well as the modulation and coding schemes

necessary for setting up a reliable communication link. However, once the link is

established other important aspects of communication networks are the network

architecture and protocols. The Open Systems Interconnection (OSI) model is

a conceptual model that characterizes and standardizes the internal functions of

a communication system by partitioning it into abstraction layers. For example,

TCP/IP model of the Internet partitions the communication system into 4 layers:

link layer, Internet layer, transport layer, and the application layer.
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When considering molecular communication, one might think that it may be

possible to use the same layered architecture over a molecular communication phys-

ical link. However, one issue is that the goal is not to connect electronic devices.

Instead, the goal is to connect biological entities. Therefore, it is not clear if us-

ing the same layering structure would be appropriate for molecular communication

networks. Moreover, even if the conventional layering architectures are used, it is

not clear how each layer should communicate with the layer above or below. A

detailed survey on how molecular communication networks could be layered was

presented in [227].

To solve some of these issues, IEEE Standards Association has started the IEEE

P1906.1 project to provide recommended practice for nanoscale and molecular com-

munication framework [228]. Two of the goals of this project is as follows: 1) To

provide a common framework for developing molecular communication simulators.

This includes interconnecting systems of multiple types of simulators. 2) To pro-

vide a common abstract model that would enable theoretical progress to proceed

from different disciplines with a common language. This framework serves as a

recommended practice for additional nanoscale networking standards as industry

becomes more involved. In the rest of this section, some of the important works on

network architecture, protocols, and optimal design are highlighted.

One of the early works that looked at network architectures for molecular com-

93



munication was [229]. The authors assumed that the intended transmission infor-

mation can be divided into two categories: sensor data, and command data. They

then assumed that the command data has higher priority and as such would be

encoded with error correction codes, where as sensor data are uncoded. To solve

the computing problem required for carrying out the network protocol, the au-

thors proposed DNA and Enzyme based computations. In particular, DNA based

computations was proposed for application interface stack, which encodes messages

and addresses, network stack which routes messages, and error correction stack

which encodes and decodes error correction codes. Enzyme based computation was

proposed for link switching stack.

Another work that explored the network architecture for molecular communica-

tion was [28], where each nano-node could communication with other nano-nodes

over the short range (nm to µm) using diffusion, the medium range (µm to mm)

using bacteria transport and catalytic nanomotors, and the long range (mm to m)

using pheromones. In the proposed architecture, it was assumed that each nan-

odevice was connected to a gateway over the short range and the gateways are

distributed over the medium to long range. It was assumed that instead of bits,

DNA base pairs are used for addressing and carrying information.

Genetically engineered bacteria can play an important role in molecular com-

munication systems. A number of works explore network architectures based on
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genetically modified bacteria. In [68], the authors proposed a routing mechanism

for bacterial based molecular communication. In this scheme, it was assumed that

each node in the network released a chemoattractant to attract the bacteria from

neighboring nodes. It was also assumed that information particles are DNA se-

quences that are embedded in bacteria. Node A embedded a DNA sequence inside

bacteria that pass through neighboring node (node B) until they arrive at the des-

tination (node C). At the relay node (node B), it was assumed that the bacteria

transfer their information to a new set of bacteria that are sensitive to node B’s

neighboring chemoattractants. The DNA sequences were transferred from bacteria

to bacteria using bacterial conjugation, a process that involves transfer of single

stranded DNA from one cell to another. Since there may be errors during conju-

gation, in [230] use of antibiotics were proposed to kill bacteria with incomplete

DNA sequences. In this scheme, bacteria resistance genes were inserted at the end

in the DNA sequence carrying the information. If bacterial conjugation results in

an incomplete DNA sequence, the bacteria carrying the information particles was

assumed to be killed by the antibiotics.

In a system with multiple sources and multiple receivers, it is important for

the bacteria to deliver the DNA sequence to the correct destination. In [231],

the authors proposed establishing a coordinate system using beacon nodes. This

idea was analogous to the way global positioning system (GPS) works. It was
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assumed that each beacon node releases a specific type of chemical at a specific rate.

Therefore, there is a concentration gradient generated by each beacon. Distances

from a receiver to a beacon was measured using this concentration gradient and the

fading of concentration over a distance. The information particles (DNA sequences)

was then assumed to be carried by genetically engineered bacteria to the correct

destination using chemotaxis.

Another work that considers networks with multiple transmitters and receivers

was [232], where the authors considered optimizing the transmission rate of each

transmitter such that the overall throughput and efficiency was maximized. In

their model, it was assumed that there are N transmitters and M receivers. At

the receiver, it was assumed that the information particles were detected through

Michaelis Menten enzyme kinetics. The throughput was defined as the number of

information particles processes at the receiver per unit time. The efficiency was

defined as the throughput divided by number of information particles transmitted

per unit time. A simplified optimization model where all transmitters are at origin

and all receivers are at distance r was presented, and the solution was provided

with an upper bound on throughput and efficiency. A feedback mechanism was

also presented that would adjust the optimal transmission rate in dynamic envi-

ronments.

Another important area of interest in molecular communication is on-chip ap-
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plication. Generally, works in this field can be divided into two categories: those

based on active transport propagation schemes, and those based on microfluidics.

In [70], an architecture for design of self-organizing microtubule tracks for on-chip

molecular communication was proposed. In this scheme, microtubule tracks act

as railways or wires connecting the transmitter to the receiver. In particular, two

different approaches were considered: one based on polymerization and depolymer-

ization of microtubules, and the other based on molecular motors for reorganizing

the tracks. Preliminary in vitro experiments were conducted then to investigate

the feasibility of the proposed techniques.

Droplet microfluidics is another promising form of communication for on-chip

applications. One of the first works that considered the problem of networking in

droplet microfluidics was [233]. The authors first gave an overview of this field, and

then discussed some of the issues and problems in creating network architecture

for hydrodynamic based droplet microfluidics. It was shown that a ring topology,

where each processing module is connected to a main ring through a microfluidic

network interface (MNI) circuit could be an effective architecture for networking

different components in these systems. In this scheme, the main ring starts and

ends at the central processing unit, and the network interface circuits control the

flow of droplets through and from each processing module. A general introduction

to hydrodynamic microfluidics was also provided in [234].
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The similarity between Ohm’s law and Hagen-Poiseuille’s law was used in [235]

to design a switch circuit for the MNI. In this scheme, the circuit was designed in

such a way that depending on the distance between a header droplet and a payload

droplet, the payload droplet was either delivered to the corresponding processing

unit or it continued flowing in the ring. A medium access control circuit was also

proposed for releasing a payload into the ring such that the released droplet would

not collide with the other droplets flowing in the ring. In [236], channel capacity

expressions for the different droplet encoding schemes were provided.

For many practical molecular communication systems, the number of informa-

tion particles may be limited. In [237], molecular communication in confined en-

vironments was considered, where it was assumed that the number of information

particles within the environment was constant. Therefore, different nodes needed

to harvest the information particles that were within the environment for commu-

nication. The authors then simulate this particular architecture and present some

preliminary results based on different harvesting and communication protocols.

It is possible to exploit the properties of molecular communication channels to

develop clever protocols. In [238], a protocol for measuring the distance between

two nanomachines by exchanging information particles and measuring their concen-

tration was proposed. In this scheme, first node A released Na particles of type-a

into the environment, where they diffused. At node B the change in concentration
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of type-a particles was measured. Then, Nb particles of type-b were released into the

environment according to some property of the measured concentration of type-a

particles. By measuring the concentration of type-b particles back at node A, the

distance was estimated. Different detection processes such as round trip time and

signal attenuation were considered.

Another interesting protocol for blind synchronization between different nodes

in a diffusion-based molecular communication system was proposed in [239]. In

particular, an MoSK channel was assumed, where during each symbol duration

different molecules are used to encode different messages. Then a non-decision

directed maximum likelihood criterion was used to estimate the channel delay,

which would be used for synchronization. The Cramer-Rao lower bound for the

estimation was also derived, and the results were compared with simulations.

3.5 Simulation Tools

Experimental study of molecular communication systems is very difficult because

of the expensive nature of wet-lab experimentation, and the fact that performing

these experiments can be very time-consuming and laborious. Therefore, previous

research activities on molecular communication have heavily relied on simulations to

verify and evaluate the new communication solutions. These simulators are required

to precisely track the behavior of information-carrying particles within a realistic
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environment. In this section, an overview of some of the most recent molecular

communication simulators in the literature are provided. Table 3.3 provides a

comparison matrix for these simulators.

In [240], distributed simulations based on high level architecture (HLA) were

proposed and analyzed for molecular communication. The authors mostly focused

on confined space and parallelism gain, and did not consider the effect of consecutive

symbols in their simulator, dMCS. In [241], NanoNS simulation platform, written in

C++ and Tcl, was introduced based on the well-known NS-2 simulation platform.

The multi-particle lattice automata algorithm was implemented in NanoNS, which

divided the propagation medium into a mesh grid. Thus, the exact particle position

was not considered, and both time and space were discretized.

In [242], amplitude-based modulations were analyzed using a custom simulator,

with non-absorbing receivers (i.e. information particles continued free diffusion

after they reacted the receiver). In [243], a simulation framework called N3Sim was

introduced, where the reception process at the receiver site was similar to the model

in [242] (i.e. non-absorbing receivers). In both of these simulators, it was assumed

that the transmitters are a point source. In reality, the transmitter nodes may have

a volume and they could reflect the emitted molecules. N3Sim is a Java package

that simulates particle diffusion in a 2-D environment, with an ongoing expansion

to 3-D diffusion models (currently 3-D simulations are possible only under specific
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conditions [244]). In these works, the reception process was simulated by counting

the particles located within a given area close to a receiver node during each time

step. N3Sim also considered the laws for handling electrostatic forces, inertial

forces, and particle collisions.

A simulation tool, BINS, for nanoscale biological networks was developed for

simulating information exchange at nanoscale [245]. BINS is adaptable to any type

of information particle. In [245], the authors provided a comprehensive description

of their simulation libraries, and demonstrated the capabilities of their simulator

by modeling a section of a lymph node and the information transfer within it.

Their simulator supports 3-D space, receptor dynamics including affinity, different

carriers, lifetime for molecules, tracking each molecule, collisions, and mobile re-

ceiver nodes. BINS was upgraded to BINS2, which offers new features to simulate

bounded environments. Using the BINS2 simulator, propagation in blood vessels

was analyzed in [246] and in vitro experiments were simulated in [247]. The authors

simulated an experiment that focused on the communication between platelets and

endothelium through the diffusion of nanoparticles [247]. They verified their simu-

lation results with experimental data.

In [248], the MolecUlar CommunicatIoN (MUCIN) simulator for diffusion-based

molecular communication systems was presented. The MUCIN simulator is an

end-to-end simulator that considers first hitting process for the signal reception. It
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supports 1-D to 3-D environments, sending consecutive symbols, imperfect molecule

reception, extendable modulation, and filtering modules. The MUCIN simulator

was developed in MATLAB and it is available in MATLAB file exchange central.

In [249], an open source bacteria network simulator BNSim was introduced. BN-

Sim supported parallel multi-scale stochastic modeling, chemical signaling pathways

inside each bacterium, movement in 3-D environments, and chemotaxis. Similarly,

in [91] the authors proposed medium-range point-to-point molecular communication

that was based on the transport of DNA-encoded information between transmitters

and receivers using bacterium. The authors presented the channel characterization

and a simulator for the communication channel. The proposed communication

scheme was as follows: first, a DNA message was embedded inside the bacterium

cytoplasm. Then, the bacterium was released into the environment that in turn

followed its natural instincts and propelled itself to a particular receiver, which

was continuously releasing attractant particles. Finally, in the last step, the recep-

tion and decoding of the DNA message was preformed through exchanging genetic

material.

3.6 Overview of Research Chapters

In this chapter as well as the previous one, a comprehensive survey of the field of

molecular communication was provided. Although information particles can travel

103



from the transmitter to the receiver using many different propagation schemes, most

previous works have focused only on diffusion-based propagation (see Table 3.2).

This is partly because in practice diffusion is simple to implement: the transmitter

simply releases the information particles and they diffuse away until they reach the

receiver. Moreover, there exists closed-form expressions for certain diffusion-based

propagation channels (e.g. under infinite boundary conditions). However, diffusion

can be slow as the separation distance between the transmitter and the receiver

increases. Moreover, practical channels may be confined, and therefore the infinite

boundary conditions used in previous works may not hold.

To fill in this gap, I propose to simulate and model on-chip applications using

active transport with molecular motors, diffusion, and flow-assisted diffusion. In

particular, I consider a special form of active transport where stationary kinesin

and mobile microtubule filaments are used for information particle transport. This

propagation scheme has not been considered previously by other researchers, and

in [67,80] it is shown that mass transport is possible using this scheme. Moreover,

recently it is shown that electrical currents can be used to control the speed and di-

rection of the microtubules [82,83,250], and in [89] it was shown that this approach

could be used for molecular transport and assembly in microfluidics. Therefore,

kinesin-microtubule motility can be a suitable choice for on-chip molecular commu-

nication.
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My research goals in this direction are as follows.

• Simulate an on-chip molecular communication environment (Chapter 4): since

laboratory experimentations can be very laborious and time consuming, com-

puter simulations must be employed. Therefore, creating a simulation en-

vironment based on kinesin-microtubule transport, diffusion transport, and

flow-assisted diffusion transport can be very beneficial. Most previous works

on diffusion-based propagation have assumed infinite boundary conditions,

which may not hold for small and confined on-chip environments. Therefore,

the benefits of this simulation environment are twofold.

• Compare the achievable information rates of different propagation schemes

(Chapter 4): By comparing the performance of different propagation schemes

in on-chip channels, I can provide a guidepost as to when each transport

mechanism would be suitable. I show that kinesin-microtubule motility can

be very effective for on-chip molecular communication applications.

• Find mathematical models for kinesin-microtubule based molecular communi-

cation (Chapter 5): deriving mathematical models for active transport prop-

agation can help with design and development of these systems.

• Find optimal design choices for kinesin-microtubule based molecular com-

munication (Chapter 6): different channel parameters such as shape of the
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channel, or the shape of transmission area can have an effect on the achiev-

able information rates in on-chip molecular communication. I provide optimal

design choices for kinein-microtubule based molecular communication.

There have been many advancements in theoretical molecular communication

over the past several years. All these advancements, however, have not trans-

lated into practical and experimental systems. Perhaps, one of the culprits is the

multidisciplinary nature of molecular communication that requires a strong col-

laboration between telecommunication engineers, mechanical engineers, chemical

engineers and biological engineers. Another possible hurdle is the cost associated

with running wet labs. These labs are typically very expensive to run, which makes

progress slower. Despite all these issues, there have been a few elementary experi-

ments that have explored the feasibility of molecular communication.

One of the first works on engineering an experimental demonstration of molecu-

lar communication at microscales is [144]. With the prevalence of synthetic biology

and applications such as biological computation, simple intercellular communication

has been used for multicellular computation [251]. In [252], artificial cells are used

as relays (translates) to send a message to Escherichia coli (E. coli) cells. In this

scheme, the intended message is first detected and decoded by the artificial cells,

and then relayed to the E. coli cells. A short survey on cell-to-cell communication

in synthetic biology is presented in [253].

106



Most work in synthetic cell-to-cell communication consider sending a single mes-

sage from a transmitter to a receiver. However, recently in [42] it was demonstrated

that a message sequence encoded in DNA can be transmitted between cells by pack-

aging the DNA massage inside a bacteriophage. I believe that through more col-

laborative work between communication theorist and biomedical engineers working

on synthetic biology, more advanced systems could be developed in the future.

Replicating many of the experiments explained above requires access to wet

labs, which many researchers in the field of molecular communication do not have

access to. Moreover, the experimental systems discussed above cannot be used

to transport digital sequential data. Therefore, in Chapter 7 of the dissertation,

I develop a simple and inexpensive platform that demonstrates the practicality of

molecular communication and can be used for experimentation. This system, which

can be used in a simple lab environment, is capable of transferring sequential digital

data. This platform is different from the on-chip molecular communication channels

considered in Chapters 4-6, and is not intended to be an experimental demonstrator

for those particular channels. In Chapter 8, I use this platform to show that the

models used in many previous works cannot be applied to my platform. Therefore,

I propose corrections to these models, and also explore the inherent nonlinearity of

my experimental setup. I present the conclusion and future research directions in

Chapter 9 of the dissertation.
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4 On-Chip Molecular Communication

In this chapter, on-chip molecular communication systems are considered. As was

discussed in Chapter 2, on-chip molecular communication have many potential ap-

plications in lab-on-chip devices, point-of-care diagnostic devices, and microfluidic

devices. These devices are typically made from different components that may

measure different chemical properties. In some cases, converting these chemical

properties into electrical signals can be very challenging. In this case, these com-

ponents on the device can be networked together using molecular communication.

Since studying these systems in a laboratory setting can be very expensive and

time consuming, a computer simulation environment for on-chip molecular com-

munication is developed for different transport mechanisms. Different propagation

schemes are then compared to determine the most suitable form of transport, that

can achieve the highest information transmission rate.
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4.1 Overview of On-Chip Molecular Communication

In on-chip molecular communication, a transmitter generates information carrying

particles such as molecules or lipid vesicles, and then releases them for transmission

to the receiver, in an aqueous environment. Therefore, the transmitter consists of

a particle generation module where the information particles are generated, and

a release mechanism which oversees the timing, the number, and the type of the

particles released. Together the particle generation and release modules can encode

information into the information carrying particles. For example, the information

can be encoded in the release time, type, number, or the concentration of the

particles released. Using this scheme, the design of the particle generation and

release mechanisms can be treated as separate problems. Similarly, at the receiver

the information particles are captured by a reception module and then decoded

using a decoder module.

In this chapter, the particle transport mechanism is abstracted and is consid-

ered to be completely separated from the transmitter’s release module and the

receiver’s reception module, as shown in Figure 4.1. There are three major prop-

agation schemes: passive transport, active transport using molecular motors, and

flow-assisted transport using an external device such as a syringe pump. When

passive transport is employed, the particles diffuse in the fluidic environment and

109
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Passive Transport

Active Transport

Particle Generator

Emission/Release Control

Propagation
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Information

Particles
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Molecular Motor

Microtubule
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Figure 4.1: Two molecular communication systems depicting the transmitters,
receivers, the confined microfluidic channel (dashed lines), and different propagation
schemes. TOP: Passive transport is employed, where the information carrying
molecules diffuse in the confined microfluidic environment and follow a Brownian
motion path from the transmitter to the receiver. BOTTOM: Active transport
using stationary molecular motors attached to a glass substrate and microtubule
filaments are employed to carry the information particles from the transmitter to
the receiver.
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follow a random Brownian motion until they arrive at the receiver. When active

transport using molecular motors is employed, a molecular motor system consisting

of kinesin and microtubule filaments can be used to transport the particles from the

transmitter to the receiver [80]. In flow-assisted transport, a syringe pump is used

to create a flow that would assist the simple Brownian motion of the information

particles. In the rest of this chapter flow-assisted transport is sometimes referred

to as Brownian motion with flow.

In active transport using a molecular motor, a loading and an unloading mech-

anism for picking up the information particles from the transmitter and dropping

them off at the receiver is necessary. In [67, 80], single stranded deoxyribonucleic

acids (ssDNA) and the corresponding hybridization bonds between complementary

ssDNA pairs is proposed for the loading and the unloading mechanisms. Micro-

tubules moving over a kinesin covered glass substrate are covered with 15 base

ssDNAs, and the information particles are also covered with 23 base ssDNAs which

are complementary to that of the microtubules’ ssDNAs. When the microtubule

glides close to an information particle, the two ssDNA sequences hybridize and the

microtubule carries the information particle until it gets close to the receiver. The

receptor module at the receiver is covered with 23 base ssDNAs, which are comple-

mentary to that of the information particles. When a loaded microtubule filament

glides close to the receptor module, it will unload the information particle through
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hybridization bound with the complementary 23 base ssDNA at the receptor mod-

ule. Since 23 base hybridization bound is stronger than the 15 base hybridization

bound between the particles and the microtubules, the particles are unloaded at

the receiver. Figure 2.6 in Chapter 2 summarizes this process.

Although these propagation schemes are stochastic, it is not clear which per-

forms better and can achieve a higher information transmission rates. Brownian

motion is more “random” than the microtubule’s motion over a kinesin covered glass

substrate. However in Brownian motion, information particles start propagating

as soon as they are released into the fluidic channel by the release control module

at the transmitter, while in molecular motor based active transport they remain

at the release control module until they are picked up by the microtubules. Fur-

thermore, it is unclear how the shape of the transmitter, receiver, and the confined

microfluidic channel effects the information rate. Moreover, if the shape of these

components effects the information rate, it is not clear if there exists an optimal

shape that would maximize the information rate.

In this chapter, the channel capacity (maximum achievable information rate) of

different propagation schemes are considered. Therefore, the transmitter and the

receiver design are ignored. Moreover, isolated pulse transmissions are considered

and the effects of inter-symbol interference (ISI) is ignored. As was demonstrated in

Chapter 3 this could be a valid assumption since there are ISI mitigation techniques
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such as use of enzymes to destroy the information particles that contribute to ISI.

In the rest of this chapter, it is assumed that the transmitter and the receiver

are perfect and can encode, release, receive, and decode the information carrying

particles flawlessly.

4.2 Information Theory and Achievable Information Rate

Previous work has considered molecular communication either as a timing channel

problem (i.e., where information is encoded in the times when molecules are re-

leased) [20, 21]; as an inscribed matter problem (i.e., where information is encoded

by transmitting custom-made particles, such as specific strands of DNA) [18]; or

as a mass transfer problem (i.e., a message is transmitted by moving a number of

particles from the transmitter to the receiver) [17].

In this chapter, information transmission is considered as a mass transfer prob-

lem. In the simplest possible conception of this scheme, the particles themselves

are not information-bearing, and a message is conveyed in the number of particles

released by the transmitter. For example, if a maximum of three particles may

be used, two bits long messages could be formed (i.e., log2 4): “00” for 0 particle,

“01” for 1 particle, “10” for 2 particles, and “11” for 3 particles. However, this

message might not be perfectly conveyed to the receiver: given a time limit τ for

the communication session, it is possible that some of the particles will not arrive
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at the receiver after τ has elapsed. This time limit τ is called time per channel use.

In other words, time per channel use is a predefined amount of time representing

the time duration for a single message transmission session, and it is one of the

parameters of the molecular communication system.

Let X = {0, 1, 2, · · · , xmax} be the set of possible transmission symbols, xmax

be the maximum number of particles the transmitter can release per channel use,

and X ∈ X be the number of information particles released into the medium by

the transmitter. In a traditional communication system, the received symbols at

the receiver are corrupted with noise from the environment, while in the molecular

communication system, the received symbols are corrupted because of the random

propagation of particles. Let Yτ ∈ X represent the number that arrive at the

destination after time per channel use τ . From the channel’s perspective, X ∈ X

is a discrete random variable given by probability mass function (PMF) P (x), and

Yτ ∈ X is also a discrete random variable given by PMF P (yτ ),

The maximum rate at which any communication system can reliably transmit

information over a noisy channel is bounded by a limit called channel capacity [192].

The channel capacity can be calculated as

C = max
P (x)

I(X;Yτ ), (4.1)
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where I(X;Yτ ) is the mutual information between X and Yτ . Mutual information

is defined as

I(X;Yτ ) = E

[
log2

P (yτ |x)∑
x∈X P (yτ |x)P (x)

]
, (4.2)

where P (yτ |x) represents the probability of receiving symbol yτ at the destination,

given that symbol x was transmitted by the source; P (x) represents the probability

of transmitting symbol x; and E[·] represents expectation.

Clearly, there exists some PMF P (yτ |x) of the number of arrived particles given

the number of transmitted particles. If this PMF is known, it is possible to calcu-

late mutual information for any P (x). However, in order to calculate the channel

capacity the PMF P (x) that maximizes mutual information must be found. The

Blahut-Arimoto algorithm [193,194] can be used to find the PMF P (x) such that,

given P (yτ |x), mutual information is maximized. This is because mutual infor-

mation is convex with respect to P (x), and Blahut-Arimoto algorithm is a convex

optimization algorithm. Therefore, if PMF P (yτ |x) is known, the channel capac-

ity of the molecular communication system can be calculated in a straightforward

manner.

Finding the PMF P (yτ |x) is non-trivial, however, because of the shape and

the geometry of the molecular communication channels, which generally rules out

closed-form solutions. For example, mathematically it is well known that Brownian
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Figure 4.2: Depiction of the simulation environment. In this figure, dots represent
information particles. The transmission zone is on the left (dashed strip on the left),
and the receiver is on the right (dashed strip on the right). The width of the channel
is constant at 20µm. The height of the channel, not shown here, is also constant
at 10µm. The distance between the transmission area and the receiver area and
hence the length of the channel is variable.

motion can be described by stochastic differential equations, and properties of the

motion (such as first arrival time distributions) can be derived from solutions of

these equations. However, in confined spaces, solutions are generally not available

in closed-form. To overcome this issue, the PMF can be estimated using Monte

Carlo simulations. In order to do this, first a computer simulation environment was

created where the actual random motion of the particles, for both Brownian motion

and molecular motor based active transport, is modeled. Then, the propagation

from a hypothetical transmitter to a hypothetical receiver is simulated at least

100,000 times to obtain an estimate for the PMF P (yτ |x). Using this estimate, the

channel capacity and therefore, the maximum achievable information rate is then

calculated. In the next section, this simulation environment is described in detail.
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4.3 Simulation Environment and Modelling Propagation

My molecular communication setup shown in Figure 4.2 is a rectangular propaga-

tion environment, representing a channel on a microfluidic chip, with a fixed width

and height of 20µm and 10µm, respectively, consisting of a transmission zone on

the left and a receiver zone on the right. Please note that Figure 4.2 is the top

view of the simulation environment and does not show the height of the channel.

Regardless of the propagation model, message-bearing particles originate at the

transmission zone, and propagate until they arrive at the receiver zone. The sep-

aration between the transmission zone and the receiver zone and hence the length

of the environment is variable with different separation values of 20µm, 40µm and

60µm. In the rest of this section, this particular setup is considered and is used as

the basis for the simulation and comparison of different propagation schemes.

4.3.1 Simulating Brownian Motion

Brownian motion refers to the random motion of a particle as it collides with other

molecules in its vicinity [73]. Through this random motion the information carrying

particles propagate from the transmission zone to the receiver zone. Following the

method described in Section 2.1.2.1, Monte Carlo simulations are performed on

particles in order to obtain the needed properties of the motion. In particular,
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a three-dimensional discrete-time simulation of information carrying particles are

performed, using Equations (2.5)-(2.10), which are shown again in Algorithm 4.1

below. It is assumed that the size of the information particles are larger than the

size of the molecules of water. Therefore, the diffusion coefficient D is given by

D =
kBT

6πηRH

, (4.3)

where kB = 1.38 · 10−23 J/K is the Boltzman constant, T is the temperature (in

K), η is the dynamic viscosity of the fluid, and RH is the hydraulic radius of the

molecule [73]. It is assumed that D is the same throughout the medium, and that

collisions with the boundaries are elastic. Moreover, it is assumed that particles do

not get stuck to the walls.

The function presented in Algorithm 4.1 simulates the Brownian motion of the

information particle during a single time step ∆t. In the algorithm, the func-

tion Rand() return a random number uniformly distributed between 0 and 1.

The function RefelectBack(), returns a point inside the channel according to

the reflected path of the information particle during a collision with the channel

boundaries.

In the simulations, it is assumed that the particles initially start propagating

randomly and uniformly on the (x, y) plane of the transmission zone, but z is

118



Algorithm 4.1 Simulation of the Brownian motion of the information particle
during one time step ∆t.

1: function SimOneStepBM((xi−1, yi−1, zi−1), D, ∆t, ChanBoundaries)
2: φ← arccos(1− 2 Rand())
3: θ ← 2π Rand()
4: ∆r ←

√
6D∆t

5: xi ← xi−1 + ∆r cos θ sinφ
6: yi ← yi−1 + ∆r sin θ sinφ
7: zi ← zi−1 + ∆r cosφ
8: if the point (xi, yi, zi) is outside ChanBoundaries then
9: (xi, yi, zi) ← RefelectBack((xi−1, yi−1, zi−1), (xi, yi, zi),
ChanBoundaries)

10: end if
11: return (xi, yi, zi)
12: end function

set to the maximum vertical height (i.e., the particles are “dropped” onto the

microchannel at the transmission zone). Furthermore, the particles start moving as

soon as they are released into the microchannel by the transmitter. The propagation

halts as soon as the particle arrives at the receiver zone. The receiver zone is on

the bottom right side and it is a box with a small height of 23nm representing the

height of the 23 base ssDNAs that are used to capture the information particles.

Using these equations, to calculate the PMF P (yτ |x), the Brownian motion of a

single particle is simulated from the transmitter to the receiver, as shown in Figure

4.3. By repeating these simulation trials, the probability that a single particle

arrives at the destination in τ seconds can be calculated. Letting pa represent this
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Figure 4.3: A sample Brownian movement of a single particle in three dimensions,
from the transmitter area to the receiver area.

probability, the PMF P (yτ |x) has the binomial distribution, given by

P (yτ |x) =


(
x
yτ

)
pyτa (1− pa)x−yτ , 0 ≤ yτ ≤ x

0, otherwise

. (4.4)

Thus, pa is found by simulating many trials of a single particle’s motion over τ

seconds, and counting the fraction that arrive, as shown in Algorithm 4.2. In the

algorithm, the function RandomStartBM() return a random point uniformly

distributed inside the transmission area, and the function SimOneStepBM() is

given in Algorithm 4.1. Note that different simulations are necessary for different
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Algorithm 4.2 Simulation algorithm to calculate pa for Brownian motion.

1: function CalcPa(D, τ , ∆t, NumbTrials, ChanBoundaries)
2: NumbArrivals← 0
3: for k = 1, 2, . . . , NumbTrials do
4: (xi, yi, zi)←RandomStartBM(ChanBoundaries)
5: for j = 1, 2, . . . , τ

∆t
do

6: (xi, yi, zi)←SimOneStepBM((xi, yi, zi), D, ∆t, ChanBoundaries)
7: if (xi, yi, zi) inside receiver zone then
8: NumbArrivals← NumbArrivals+ 1
9: break

10: end if
11: end for
12: end for
13: pa ← NumbArrivals/NumbTrials
14: return pa
15: end function

values of τ . Furthermore, because the motion of each particle is independent of the

other particles released by the transmitter, P (yτ |x) has a binomial distribution.

4.3.2 Simulating Molecular-Motor-Based Active Transport

When active transport using molecular motors is employed, it is assumed that the

microchannel is lined with static kinesin motors, which cause microtubule filaments

to propagate along their surface, carrying information-bearing particles from the

transmitter to the receiver. It is also assumed that the particles are anchored to the

transmission area until they are picked up by the microtubules for delivery to the

destination. Therefore, instead of simulating the motion of particles, the motion of

the microtubules moving over kinesin covered substrate must be simulated.
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Algorithm 4.3 Simulation of the microtubule motion during one time step ∆t.

1: function SimOneStepMT((xi−1, yi−1), θi−1, vavg, Lp, D, ∆t,
ChanBoundaries)

2: θi ← θi−1+ Randn(0,vavg∆t

Lp
)

3: ∆r ← Randn(vavg∆t, 2D∆t)
4: xi ← xi−1 + ∆r cos θi
5: yi ← yi−1 + ∆r sin θi
6: if the point (xi, yi) is outside ChanBoundaries then
7: (xi, yi), θi ← FollowWall((xi−1, yi−1), (xi, yi), ChanBoundaries)
8: end if
9: return (xi, yi), θi

10: end function

The motion of the microtubule is largely regular, although the effects of Brow-

nian motion cause random fluctuations. Again, Monte Carlo simulations are used

to obtain the needed properties of the motion, using the Equations (2.17)-(2.23),

where the equations are shown again in Algorithm 4.3 below. Please note that the

microtubules move only in the x–y directions, and do not move in the z direction

(along the height of the channel).

In Algorithm 4.3, the motion of a single microtubule filament over a kinesin cov-

ered substrate during a single time step ∆t is simulated. The function Randn() in

the algorithm returns a normally distributed random variable according to the in-

put mean and variance. The first input parameter to the function is the mean, while

the second is the variance. In the simulation, it is assumed that the microtubules

follow a path along the channel wall when they collide with it. This property was
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shown to hold experimentally in [84,85]. Therefore, the function FollowWall()

returns a point inside and along the channel wall when the microtubule collides

with the wall. It also returns an angle for the final path’s direction of motion.

For Monte Carlo simulations, the starting location of the microtubule is as-

sumed to be random and uniformly distributed across the entire propagation area.

Moreover, the initial directional angle θ0 is selected uniformly at random from the

range [0, 2π], and microtubules are assumed to be initially unloaded (without any

cargoes). It is also assumed, as demonstrated in [80], DNA hybridization bond is

used to anchor the information particles to the transmission area. Similarly, ssD-

NAs on the surface of the microtubules hybridize with the ssDNAs on the surface

of the information particles when a microtubule passes in close proximity, thereby

loading the particles onto the microtubule. From experimental observations it is

evident that microtubules can load multiple information particles [80]. Therefore,

the loading of a particle happens only if a microtubule with available cargo spots

passes in close proximity of an information particle.

In order to capture this loading effect in the simulations, the transmission zone is

divided into a square grid, where the length of each square in the grid is the same as

the diameter of the information particle. Then, information particles are distributed

randomly and uniformly among the squares in the grid. If a microtubule enters a

square which is occupied by a particle, and it has an empty cargo slot available,
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Figure 4.4: A sample trajectory of active transport. The microtubule initially
starts to the left of the receiver zone (strip on the right side of the microchannel),
and moves down and then left (Lighter thinner line). It passes through the trans-
mission zone (grid with empty and particle-bearing tiles) loads a particle at which
point the line turns darker and thicker indicating a loaded mictorubule. Then the
microtubule passes through again, loading another particle (maximum load is as-
sumed to be 5). The loaded microtubule then travels toward the receiver zone,
where it delivers the two particles and the trajectory terminates.

the microtubule loads that particle. In general, it is observed that the microtubules

can load multiple particles, and the maximum number of particles a microtubule

can load is given by half of its length divided by the diameter of the particles. This

assumption is based on experimental observations in [67]. For unloading at the

receiver, it is assumed that all the loaded particles are dropped off as soon as a

loaded microtubule enters the receiver zone. This assumption is made to assist the

speed of simulations. Figure 4.4 shows a sample trajectory with the loading and

unloading mechanism.

To calculate the PMF P (yτ |x), for a given number of particles released by the

transmitter (x), the motion of a microtubule is simulated for τ seconds and the num-

ber of particles delivered to the receiver (yτ ) is measured at the end of τ seconds.
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Algorithm 4.4 Monte Carlo simulation algorithm for calculating P (yτ | x).

1: function CalcPyGx(X, τ , vavg, Lp, D, ∆t, MaxLoad, ChanBoundaries,NumbTrials)
2: Y [0 : X]← 0
3: for k = 1, 2, . . . , NumbTrials do
4: NumbDelivered, NumbLoaded← 0
5: (xi, yi)←RandomStartMT(ChanBoundaries)
6: θi ← 2π Rand()
7: Grid← RandPlaceParticles(X, ChanBoundaries)
8: for j = 1, 2, . . . , τ∆t do
9: (xi, yi), θi ←SimOneStepMT((xi, yi), θi, vavg, Lp, D, ∆t, ChanBoundaries)

10: if (xi, yi) is in Grid with a particle and NumbLoaded < MaxLoad then
11: Grid← RemoveParticle(Grid, (xi, yi))
12: NumbLoaded← NumbLoaded+ 1
13: end if
14: if (xi, yi) is in receiver zone then
15: NumbDelivered← NumbDelivered+NumbLoaded
16: NumbLoaded← 0
17: end if
18: end for
19: Y [NumbDelivered]← Y [NumbDelivered] + 1
20: end for
21: PyGx← Y [0 : X]/NumbTrials
22: return PyGx
23: end function

By repeating this process the PMF P (yτ |x) can be estimated for the time duration

τ as shown in Algorithm 4.4. In the algorithm, the function RandomStartMT()

set the starting position of the microtubule randomly inside the channel environ-

ment, and the function RandPlaceParticles() places the information particles

randomly inside the grid transmission zone. The whole simulation process can be

repeated for different values of x. More generally, for each value of x and τ a set of

simulations is necessary.
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4.4 Improving Information Rate

In the previous section, a simple molecular communication system employing either

active transport using molecular motors or passive transport using Brownian motion

was described. Also, simulation schemes for calculating the channel capacity based

on each propagation technique was presented. In this section, number of methods

for further improving the channel capacity is proposed.

4.4.1 Brownian Motion with Flow

In general, one way to improve the channel capacity is to transport information

particles from the transmitter to the receiver more quickly. This is because in-

formation is carried using these particles and naturally if they arrive faster, the

information will be transported over a shorter time duration. In Brownian motion,

one way to achieve this is by introducing flow in the direction from the transmitter

to the receiver. However, Brownian motion with flow requires an external device

such as a syringe pump to produce the flow. In its simplest form, introducing flow

will change Equations (2.6)-(2.8) into Equations (2.14)-(2.16) presented in Chapter

2. In this chapter, the flow velocities are assumed to be constant throughout the

molecular communication channel, and in the positive x direction. This assumption

is realistic for channels with laminar flow, and liquid flow in microfluidics is typi-
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cally laminar. To implement this in the algorithm, line 5 of Algorithm 4.1 changes

to

xi ← xi−1 + v∆t+ ∆r cos θ sinφ, (4.5)

where v is the constant velocity along the positive x direction. Note that the

velocity components along all the other directions are zero and therefore lines 6-7

of the algorithm remain unchanged.

4.4.2 Improving Molecular Motor Based Active Transport

Again, channel capacity can be improved if information particles are transfered

from the transmitter to the receiver quicker on average. Two possible schemes are

proposed: increasing the number of microtubules and optimizing the transmission

zone.

In the first scheme, by increasing the number of microtubules, more information

particles could be picked up and transported to the receiver area during the time

interval τ . From experimental results, it is evident that microtubules generally

move independently of each other, and therefore the same assumption is made in

the simulations of multiple microtubules.

In the second scheme, the fact that the microtubules mostly move along the
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Strip Transmission Zone

Optimal Transmission Zone

Figure 4.5: Depiction of the strip transmission zone and the optimal transmission
zone. The optimal transmission zone is along the walls of the channel. The shortest
distance between the transmission zone and the receiver zone are the same in both
cases. The number of squares in both grid structures are 100.

walls of the molecular communication channel is used, to optimize the transmission

area. This fact has been observed experimentally, and verified using computer

simulations [80, 85]. An information particle is picked up from the transmission

zone, and delivered to the receiver zone, if the corresponding square is visited.

Therefore, it is desirable to find squares with the highest probability of being visited

during one trip. If information particles are placed there, they have the highest

probability of being loaded and therefore of being delivered. Therefore, placing

the transmission zone along the walls of the channel would increase the chances

of the particles being picked up. This is called the optimal transmission zone.
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Figure 4.5 depicts the strip transmission zone and the optimal transmission zone.

In Chapter 6, it will be shown how this optimal transmission zone can be found

using mathematical models presented in Chapter 5 for information particles of

different size.

Unlike the improvement technique proposed for Brownian motion (i.e. flow),

these improvements are internal to the molecular communication system and do

not require any external device.

4.5 Comparison of Simulation Results

In this section, the simulation results for the molecular communication system

proposed in Section 4.3 is presented, with variable separation distance between the

transmitter and the receiver, employing different propagation schemes.

When Brownian motion is used for propagation, the following simulation pa-

rameters are used: simulation time steps of ∆T = 0.1 seconds, and the free diffusion

coefficient D = 1 µm2/s. Therefore, from Equation 2.9, at each simulated time step

the information particles moves ∆r =
√

0.4 µm in a random direction. The same

values are also used when Brownian motion with flow is considered. The flow is

assumed to be always in the direction from the transmitter to the receiver (i.e. the

flow velocities in the y and z direction are zero and positive in the x direction.)

For simulating the motion of the microtubule, when molecular motor based
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active transport is employed, the following parameters are used: simulation time

steps of ∆T = 0.1 seconds, microtubule diffusion coefficient D = 2.0 · 10−3 µm2/s,

average speed of the microtubule vavg = 0.5 µm/s, and persistence length of the

microtubules trajectory Lp = 111 µm. It is also assumed that the size of the

information particles (which is typically a liposome covered with ssDNA stand for

microtubule loading and unloating)is 1µm, the average length of the microtubules

is 10µm, and each microtubule can load up to 5 information particles in one trip

from the transmission zone to the receiver zone. These parameters are all selected

based on experimental observations of ssDNA covered microtubules moving over a

kinesin covered substrate [80, 84].

It is assumed that the set of possible transmission symbols are X = {0, 1, 2, · · · , xmax},

for some value of xmax, where a transmission symbol X ∈ X is represented by re-

lease of X information particles into the medium. In the case of active transport

using molecular motors, all the released particles will be randomly distributed and

will remain stationary at the transmission zone until they are picked up for delivery

by a microtubule. By simulating the motion of the particles or the motion of the

microtubules many times (100,000 plus), the PMF P (yτ |x) can be estimated for

each propagation scheme. Then, Blahut-Arimoto algorithm [193,194] is used to find

the PMF P (x), that would maximize the mutual information, and hence calculate

the channel capacity for each propagation scheme.
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4.5.1 Brownian Motion Versus Molecular Motor Based Active Trans-

port

First, simple diffusion, flow assisted diffusion, and molecular motor based active

transport are compared over constant channel dimensions. For this set of simula-

tions a channel length of 60µm is used, which results in a 40µm separation between

the transmitter and the receiver. For Brownian motion with flow, flow values of

0.2 and 0.3 µm/s are considered, while for active transport using molecular mo-

tors, 1 and 15 microtubules as well as the strip and optimal transmission area are

considered.

Figure 4.6, shows the channel capacity in bits versus the maximum possible

number of transmission particles (xmax), for the time duration of 1000 seconds per

single channel use. The value of 1000 seconds is presented since the plots are easily

distinguishable for this time duration. From the graph it can be seen that as the

transmission symbol set is increased, the channel capacity increases for all propaga-

tion schemes. Also, Brownian motion with flow achieves a much higher information

rate than simple Brownian motion without flow, and the optimal molecular motor

based active transport with 15 microtubules and optimal transmission zone has a

much higher channel capacity compared to the non-optimal one (a single micro-

tubule and strip loading area).
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Figure 4.6: Channel capacity in bits versus the maximum number of possible
transmission particles for Brownian motion (with and without flow) and molecular
motor based active transport. Time per channel use is 1000 s.

From Figure 4.6 it can be concluded that simple Brownian motion has the lowest

channel capacity even slightly lower than molecular motor based active transport us-

ing a single microtubule and strip transmission area. Molecular motor based active

transport with the optimal transmission area and multiple microtubules achieves

the highest channel capacity.

The channel capacity in bits per seconds versus the value of time per single

channel use is presented in Figure 4.7. Different values of time duration per single

channel use are considered, ranging from 50 seconds to 2000 seconds. The transmis-
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Figure 4.7: Channel capacity in bits per seconds versus time per channel use
for Brownian motion (with and without flow) and molecular motor based active
transport. (xmax = 40).

sion symbol set is fixed at X = {0, 1, 2, · · · , 40}. The channel capacity in bits per

seconds is then calculated by dividing the capacity in bits with the corresponding

time duration per single channel use, τ . As can be seen from the graph the channel

capacity initially increases as the τ increases, reaches a peak, and then start to

decrease. This peak value represents the optimal value of time per single channel

use τ .

Again it can be observed that simple Brownian motion has the lowest channel

capacity (i.e peak value), even lower than unoptimized molecular motor based active
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Figure 4.8: Channel capacity in bits versus the maximum number of possible
transmission particles for Brownian motion with flow and molecular motor based
active transport. Time per channel use is 750 seconds and different separations
between the transmitter and receiver are considered.

transport using a single microtubule. However, Brownian motion with 0.3µm/s

flow achieves the highest channel capacity. Similarly, in the case of the molecular

motor based active transport, increasing the number of microtubules, and using

the optimal transmission area, will increase the peak values and shifts the peak

location to lower τ values.
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4.5.2 Effects of Separation Distance

In these simulations, the separation between the transmitter and the receiver is

changed to determine its effects on each propagation scheme. Since it has been

shown that Brownian motion with flow (active transport using an external device)

and molecular motor based active transport using multiple microtubules with op-

timal transmission area achieve better information rates, only these schemes are

considered in the comparison.

In Figure 4.8, the channel capacity versus xmax is considered for separation

distances of 20µm (red plots), 40µm (blue plots) and 60µm (green plots). The time

per channel use is fixed at 750 seconds since the plots are more easily distinguishable

at this duration. It can be seen that regardless of the separation distance molecular

motor based active transport with optimal transmission zone and 15 microtubules

achieves higher channel capacity. Also for a given propagation scheme, as the

separation distance increases channel capacity decreases.

The channel capacity in bits per seconds versus time per single channel use

is presented in Figure 4.9. Different values of time duration per single channel

use are considered, ranging from 50 seconds to 2000 seconds. The transmission

symbol set is fixed at X = {0, 1, 2, · · · , 40}. In general, it can be observed that

regardless of the propagation scheme, as the separation distance increases the in-
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Figure 4.9: Channel capacity in bits per seconds versus time per channel use for
Brownian motion with flow and molecular motor based active transport. (xmax =
40). Different separations between the transmitter and receiver are considered.

formation rate decreases. It can also be seen that for separation distance of 20µm

(red plots), Brownian motion with flow reaches a higher peak than molecular motor

based active transport. However as the separation distance is increased to 60µm

(green plots), the difference between the peaks lessens with active transport using

molecular motors achieves a slightly higher information rate.

It is concluded that Brownian motion with flow is slightly better at smaller sepa-

ration distances, while optimized molecular motor based active transport is slightly

better at larger distances. However, it must be noted that introducing flow would
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require an external device such as a syringe pump and therefore the system would

not be as self-contained and compact as molecular motor based active transport.

Therefore, molecular motor based active transport are a suitable choice for lab-

on-chip applications. As shown in [89], this technique can be used in microfluidic

devices as well, where there is also a flow present in the channel.
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5 Mathematical Models for Active Transport

Molecular Communication

In the previous chapter, a computer simulation environment was developed that

could be used to study on-chip molecular communication systems. It was also shown

that a novel transport mechanism [67,80], where molecular motors and microtubule

filaments are used to actively transport information particles from the transmitter

to the receiver, can be very effective at achieving high information rates.

As was pointed out in Chapter 3, there are no mathematical models for this

type of active transport, and the simulation environment developed in Chapter 4

is not efficient enough to solve design and optimization problems. Therefore, in

this chapter, mathematical models are derived that could be used to speed up the

simulations significantly. Then, these models are used in the next chapter to provide

optimal design guidelines for on-chip active transport molecular communication.

The models that are developed in this chapter can be divided into two categories:

a simple channel model, and a Markov chain channel model. The simple channel
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model, presented first, provides insights into the transport mechanism. However,

this model is very simplistic, and although it improves the speed of the simulation

environment developed in the previous chapter significantly, it is not very accurate.

Moreover, it works only for channels that use a single microtubule filament for

transporting information particles. To improve this model, more accurate Markov

chain channel models for both single microtubule and multi-microtubule channels

are developed in the second half of this chapter.

5.1 A Simple Mathematical Model

To derive a simple mathematical model, it is assumed that there is a single micro-

tubule in the channel transporting information particles from the transmitter to

the receiver.

Assume that the grid transmission zone described in Chapter 4 has n squares

(i.e. the maximum number of particles that can be anchored to the loading zone is

n). Let X ≤ n be the number of particles at the transmission zone in the beginning,

and let Yτ ≤ X be the number of particles delivered to the receiver zone after time

duration τ . Let Xi be a Bernoulli random variable representing the event where a

particle is placed in the ith square for i = 1, 2, · · · , n. Therefore, if the simplifying

assumption is made that Xi are independent of each other, the probability that an
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information particle is placed in the ith square is given by

P (Xi = 1|X = x) =
x

n
, (5.1)

where particles are distributed uniformly among squares. Note that the indepen-

dence assumption here is an approximation because it does not satisfy the constraint

x =
n∑
i=1

Xi, (5.2)

Let Vi be a Bernoulli random variable representing the event that the ith square

is visited by the microtubule in a single trip from the receiver zone, to the trans-

mission zone, and back. Therefore, P (Vi = 1) represents the probability that the

ith square is visited and P (Vi = 0) the probability that it is not visited. This

probability distribution can quickly be calculated using simple simulations for any

molecular communication channel. For example, the top part of the Figure 5.1

shows this probability distribution for squares of size 1µm covering the left side

of the microchannel. From the probability distribution, it can be seen that the

squares close to the walls are visited the most, which is a property of the motion

of the microtubules [84].

Let K be another random variable representing the number of microtubule

trips between the transmission and the receiver zone in time duration τ . The
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Figure 5.1: (Top): Probability distribution of P (Vi = 1) for squares of size
1µm to the left side of the loading area. (Middle): Strip transmission area (yellow
and cyan squares) for n = 100 squares. (Bottom): Projection of the probability
distribution P (Vi = 1) on top. The top 100 values of P (Vi = 1) are shown in as
white squares and they represent the optimal loading area.

probability mass function (PMF) for K can be quickly calculated for any molecular

communication channel using simple simulations. Let V
(k)
i be a Bernoulli random

variable representing the event that the ith square is visited at least once by the

microtubule during k trips. Therefore,

P (V
(k)
i = 1) = 1− (1− P (Vi = 1))k, (5.3)

represents the corresponding PMF.

Let D
(k)
i be a Bernoulli random variable representing the event that a particle
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from the ith square is delivered to the destination after k trips. Then, the PMF of

D
(k)
i is given by

P (D
(k)
i = 1) = P (V

(k)
i = 1)P (Xi = 1), (5.4)

using a simplifying assumption that P (V
(k)
i = 1) and P (Xi = 1) are independent.

This independence assumption is not accurate since P (Xi = 1) changes depending

on the number of particles already delivered in previous trips. In general, this

assumption becomes less accurate as the number of trips k increases or in other

words the time per channel use τ increases. Let Y (k) be the total number of particles

delivered to the receiver zone during k trips. Then, Y (k) is given by

Y (k) = min(
n∑
i=1

D
(k)
i , X), (5.5)

for any given X. Since
∑n

i=1D
(k)
i represents a Poisson-Binomial distribution, its

corresponding probability distribution can be calculated using many different tech-

niques [254]. Finally, PMF P (yτ |x) can be calculated as

P (yτ |x) =
∑
k∈K

P (Y (k) | X)P (k), (5.6)

where P (Y (k) | X) is the PMF of Y (k) given in Equation (5.5), and P (k) is the

PMF of K, the number of trips between the transmitter and receiver during the

142



time duration τ .

The benefits of this model are twofold. First, it can be employed to quickly es-

timate the information rate of any molecular communication system, and although

it relies on simulations for calculating the PMFs of Vi and K, these simulations are

very simple and can be performed on an average computer quickly. Second, be-

cause of the model’s simplicity, it provides insights into the transport mechanism.

Therefore, the model could be used to solve various design problems. For example,

in the next chapter this model is used to generate an optimal transmission zone for

different sized information particles. The only drawback of this model is that the

resulting PMF, P (yτ |x), is not as accurate as the one estimated using Monte Carlo

simulation.

5.1.1 Computational Comparison

In this section, the information rates obtained through simulation are compared

to the information rates obtained using the simple mathematical model developed.

In order to make this comparison, a rectangular propagation environment with

the dimensions 20µm by 60µm is considered, as presented in Figure 4.4. The

transmission area is the strip on the left, while the receiver area is on the strip right

and the separation between the transmission zone and the receiver zone is 40µm.

It is assumed that the diameter of the information particles is 1µm and there are
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Figure 5.2: Channel capacity plot. The solid markers indicate the results ob-
tained from full Monte Carlo simulations and the empty markers present the infor-
mation rate calculated using the simple model. The blue plots present the time per
channel use interval of 1000s and the magenta plots represent a time per channel
use duration of 3000s.

100 squares in the grid loading area (i.e. there could be as much as 100 squares

in the transmission strip). The parameters used for Monte Carlo simulations are

similar to those used in Chapter 4.

Figure 5.2 shows the channel capacity (i.e. maximum achievable information

rate) in bits per channel use. The channel capacity is plotted against the xmax

which represents the maximum number of possible transmission symbols. The

capacity is calculated by using both simulation (solid markers) and the simple
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Table 5.1: Number of simulations required to estimate P (yτ |x)

Method of PMF Estimation Number of Computer Simulations

Monte Carlo Simulation 2× 40 = 80
Mathematical Model 3

mathematical model (empty markers). As can be observed for small time durations,

the mathematical model estimates the channel capacity closely. However, as time

duration increases, the difference between the mutual information obtained through

simulations and the mathematical model increases. This error is a by product of the

independence assumptions made during the derivation of the mathematical model.

Next, the number of computer simulations required to estimate PMF P (yτ |x)

are compared for the case where full Monte Carlo simulations are used and the

case where the proposed mathematical model is employed. It is assumed that the

message set is given by X = {0, 1, 2, · · · , 40}, and the results are calculated for two

time per channel use durations of 1000 s and 3000 s. The results are summarized in

Table 5.1. Since xmax = 40 and there are two time durations(of 1000s and 3000s),

when Monte Carlo simulation is used to estimate the PMF P (yτ |x), there are 80

sets of simulations required to generate the simulation plots in Figure 5.2. However,

using the mathematical model, two sets of simulation are necessary to calculate the

PMF for K, the number of microtubule trips from the transmission zone to the

receiver zone in times 1000s and 3000s. Also, one simulation is needed to calculate
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the PMF for Vi, the probability that the ith grid square is visited in one trip.

When Monte Carlo simulation is employed, as the number of information par-

ticles released by the transmitter increases, the actual simulation times increases

asymptotically linearly. Moreover, simulating one particle released by the source

take much less time than simulating 40 particles released by the source. In this

case, when one particle is assumed to be released, the simulation runs until time

duration τ is simulated or until the single particle is delivered. On the other hand,

the simulation must run until time duration τ is simulated or 40 particle are de-

livered when 40 particles are assumed to be released. However, using the proposed

mathematical model, the simulation times are constant regardless of the number of

particles released by the transmitter. Therefore, using the proposed mathematical

model the channel capacity can be calculated much more quickly than the Monte

Carlo simulations.

For example, Monte Carlo simulations in MATLAB [255] were executed on av-

erage desktop computers equipped with Intel Core Due processors with different

speeds ranging from 2.5GHz to 3.0GHz, to generate the channel capacity plots

shown in Figure 5.2. Specifically, 40 CPU cores were used for one week to esti-

mate the P (yτ |x) using Monte Carlo simulations. However, the plots based on the

mathematical model were generated using three CPU cores in less than a day.

In the next section, more accurate but more complex models using Markov

146



chains are presented.

5.2 Markov Chain Channel Models

Deriving a channel model for molecular communication systems with stationary

kinesin and a single moving microtubule filament is very difficult because of the

complex motion of the microtubule and the shape of the channel. Moreover, for

channels with multiple microtubules the problem becomes even more difficult be-

cause of the dependencies between all the microtubules. In this case, although the

movement of the microtubules themselves can safely be considered to be indepen-

dent [80, 85], the delivery of an information particle depends on whether it has

already been picked up by other microtubules. Therefore, many dependencies will

be introduced into the system, which makes the derivation of mathematical models

extremely difficult. To overcome these issues, the channel models are derived in

two steps. First, the case where a single microtubule is inside the channel is consid-

ered. Although the problem of modeling the channel with a single microtubule is

still quite complex, by focusing on a single microtubule, the dependencies between

different microtubules is eliminated and channel models that resemble closed-form

expressions can be derived. Then the results are extended to channels with multiple

microtubules and a Markov chain model is proposed, where transition probabilities

can be calculated using simpler simulations compared to full simulations of the
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channels.

5.2.1 Single Microtubule Channels

For the rest of this section it is assumed that there is a single microtubule inside the

channel, delivering the information particles. Therefore, an arbitrary information

particle is received at the destination if it is picked up by this microtubule filament

from the transmission zone, and then delivered to the receiver zone. Considering

this fact, a single microtubule trip is defined as the movement of the microtubule

from anywhere in the channel to the transmission zone and then the receiver zone.

For example, a single microtubule trip is shown in Figure 4.2. After the microtubule

completes its first trip, subsequent trips are defined as the movement of the micro-

tubule from the receiver zone to the transmission zone and back. During any trip,

a microtubule can deliver zero or more information particles, up to its maximum

load capacity.

Let Kτ be the total number of microtubule trips during the time per channel

use duration τ , and lmax be the maximum load capacity of the microtubule. Since

the motion of the microtubule filament is random in nature, for a given value of

time duration τ , the number of trips is random and represented by the PMF P (kτ ).
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Therefore, the PMF P (yτ | x) can be written as

P (yτ | x) =
∑
kτ∈K

P (y | x, kτ )P (kτ ), (5.7)

where x is the number of information particles transmitted, and yτ is the number

of information particles received. This follows because the number of particles that

arrive at the destination during the time duration τ , Yτ , depends on the number of

trips the microtubule takes during that time, Kτ .

From Equation (5.7) P (yτ | x) can be calculate if the PMFs P (kτ ) and P (y |

x, kτ ) are known. The first PMF P (kτ ) can be estimated using a simple Monte

Carlo simulation of the motion of the microtubule inside the channel. This Monte

Carlo simulation is very simple compared to the full simulations, because it does

not include simulation of the loading and unloading processes. To estimate the

PMF P (y | x, kτ ), a Markov chain model is derived.

Let Xi be the number of information particles at the transmission zone at the

end of the ith microtubule trip, Y (i) be the total number of information particles

already delivered to the receiver at the end of the ith microtubule trip, and Di be

the number of information particles delivered during the ith microtubule trip, for

i = 1, 2, 3, . . .. Therefore, Di ∈ {0, 1, 2, · · · , lmax} is a random variable representing

the number of particles delivered during the ith trip, where lmax is the maximum
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load the microtubule could have. Each trip is related to the next trip by the

following properties

Xi = Xi−1 −Di,

Y (i) = Y (i−1) +Di, (5.8)

where it is assumed that X0 = X is the number of particles released by the trans-

mitter at the beginning of the communication session, and Y (0) = 0 is the number

of particles initially at the receiver.

It is assumed that the number of information particles at the transmission zone

and the receiver zone at the end of each trip iteration depends only on the previous

iteration. Mathematically, this can be written as

P (Y (i) | X, Y (i−1)) = P (Y (i) | X, Y (i−1), Y (i−2), · · · , Y (0)), (5.9)

which satisfies the Markov property. Therefore, given the number of information

particles released by the transmitter X, Y (i)s form a Markov Chain.

Figure 5.3 shows the graphical representation of this Markov chain. Each state

represents the number of information particles delivered to the receiver with state s

indicating the starting state. The transition probabilities can be calculated from the
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Figure 5.3: The Markov chain representing the number of information particles
received at the destination. State s is the starting state, and each of the other states
represents the number of information particles that are delivered to the destination.
it is assumed that the maximum number of particles a single microtubule can load
is lmax = 2 to generate a simplified and comprehensible figure. It is assumed that x
information particles are released by the transmitter. The transition probabilities
are given by P (Di = d | Xi−1 = xi−1). The transition probabilities are different for
the starting state s, since for the first trip the microtubule can start its trip from
anywhere in the channel, while for subsequent trips the microtubule starts from the
receiver.

PMF P (Di|Xi−1) (the probability of the number of particles delivered during the

ith trip given there were Xi−1 particles at the transmission zone at the beginning

of the trip) as follows

P (Y (i) = y(i) | X = x, Y (i−1) = y(i−1)) =
P (Di=y(i)−y(i−1)|Xi−1 =x− y(i−1)) y(i−1)≤y(i)≤y(i−1)+lmax

0 otherwise

. (5.10)

For the first trip, the microtubule can start from anywhere in the channel uni-
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formly at random. However, for all the subsequent trips, the microtubule starts

from the receiver zone. Therefore, to distinguish between these two cases, the no-

tation Ps(D1|X0) is used for the first trip, and P (Dj|Xj−1), with j = 2, 3, . . ., for

all the subsequent trips. Moreover, it is assumed that

P (D2 = d|X1 = x) =P (D3 = d|X2 = x) = · · ·

= P (Di = d|Xi−1 = x) = · · · . (5.11)

This assumption is valid since the number of information particles delivered at

trip iterations greater than one, are dependent only on the number of information

particles in the transmission zone at the end of the previous iteration. The equality

follows because after the first trip, each subsequent trip starts from the receiver

zone.

The probability transition matrix given x particles are released by the trans-
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mitter is defined as

P(x) =



0 Ps(0|x) Ps(1|x) Ps(2|x) · · · Ps(lmax|x) 0 0 0 · · ·

0 P (0|x) P (1|x) P (2|x) · · · P (lmax|x) 0 0 0 · · ·

0 0 P (0|x− 1) P (1|x− 1) · · · P (lmax|x− 1) 0 0 0 · · ·

0 0 0 P (0|x− 2) · · · P (lmax|x− 2) 0 0 0 · · ·
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

· · · 0 0 0 0 0 0 P (0|2) P (1|2) P (2|2)

· · · 0 0 0 0 0 0 0 P (0|1) P (1|1)

· · · 0 0 0 0 0 0 0 0 1



,

(5.12)

where P(x) is an (x + 2) × (x + 2) matrix. Each element in the matrix is equal

to 0, Ps(D1|X0), or P (Dj|Xj−1). The PMFs Ps(D1|X0) and P (Dj|Xj−1) can be

estimated from Monte Carlo simulations that are much more efficient than the

full simulations. Instead of simulating multiple microtubule trips, only single trip

simulations are needed for estimation of Ps(D1|X0) and P (Dj|Xj−1). Therefore,

instead of simulating the motion of the microtubule for the time per channel use

interval τ , a single microtubule trip must be simulated which is typically much

smaller than τ .

In Equation (5.7), it was shown that when PMFs P (kτ ) and P (y | x, kτ ) are

known, the PMF P (yτ | x) can be calculated. The PMF P (kτ ) can be estimated

using a simple Monte Carlo simulation, while the PMF P (y | x, kτ ) can be calculated

153



using the probability transition matrix P(x) as

P (y | x, kτ ) = s(x)P(x)kτ , (5.13)

where s(x) is the initial state distributions represented as a row vector by

s(x) = (1, 0, 0, . . . , 0︸ ︷︷ ︸
x+1

). (5.14)

This follows because it is always assumed that the Markov chain starts at state s.

Substituting Equation (5.13) into Equation (5.7),

P (yτ | x) =
∑
kτ∈K

P (kτ )s(x)P(x)kτ . (5.15)

Therefore, the PMF P (yτ | x) can be estimated if P (kτ ), Ps(D1|X0) and P (Dj|Xj−1)

are known. All these three PMFs can be estimated using simple Monte Carlo sim-

ulations, where their combined computational time would be less than that of the

full simulations used in previous works.

To further reduce the simulation time required for calculating the PMF P (yτ |

x), an estimated mathematical expression for the transition probabilities is derived.

For simplicity, it is assumed that both PMFs Ps(D1|X0) and P (Dj|Xj−1) are the

same (i.e. there is no difference between the first initial trip or any subsequent
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trips). Therefore, for this case the state s in Figure 5.3 is removed and the transition

probability matrix becomes an (x + 1) × (x + 1) matrix. The initial state is also

changed to state 0 with probability one. To derive this model, it is also assumed

that a grid loading structure is used to capture the loading process with n squares

in the grid, where n ≥ xmax represents the number of places (squares) where an

information particle could be released from, and xmax represents the maximum

number of information particles that could be released by the transmitter.

Let p
Di

be the probability that an information particle from any of the squares

is delivered to the destination during the ith microtubule trip. This probability can

be calculated as

p
Di

= p
V
× xi−1

n
, (5.16)

where xi−1 is the number of information particles in the transmission zone at the

end of the previous trip, and p
V

is the probability that a square in the grid is visited

during a single microtubule trip. For simplicity, it is assumed that this probability

is the same for all the squares in the grid. For example, as will be shown in the

next chapter, the optimal transmission zone tends to be close to the walls of the

channel, and the squares would have similar probability of being visited. The same

Monte Carlo simulation which is used to estimate P (kτ ), can be used to estimate

p
V

through saving an extra parameter. Therefore, the computational complexity
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of calculating P (kτ ) and p
V

together is O( τ
∆t
N), where N is the number of trials

for obtaining the Monte Carlo estimation. Typically, the larger the value of N the

more accurate the estimation.

The PMF P (Di|Xi−1) can be estimated from p
Di

as

P (Di = d | Xi−1 = xi−1) =

(
n
d

)
pd
Di

(1− p
Di

)n−d 0 ≤ d ≤ lmax − 1

∑n
m=lmax

(
n
m

)
pm
Di

(1− p
Di

)n−m d = lmax

0 otherwise

. (5.17)

This follows since the probability that an information particle is delivered from a

specific square in the grid is independent from other squares, and the maximum

load a microtubule can have is lmax.

The PMF P (yτ | x) can be calculated using this technique with a computa-

tional complexity of O( τ
∆t
N). This is significantly smaller than the computational

complexity of full simulations O( τ
∆t
Nxmax).

5.2.1.1 Evaluation of Single Microtubule Channel Model

The accuracy of the proposed Markov chain models is evaluated with respect to

the full computer simulation environment developed in Chapter 4. For evalua-

156



tion, Kullback-Leibler (K-L) distance (also known as Kullback-Leibler divergence

or relative entropy) is used [192]. K-L distance is calculated as

D (Psim ‖ Pmodel) =
∑
yτ∈X

Psim log
Psim

Pmodel

, (5.18)

where Psim and Pmodel represent the PMF P (yτ | x), estimated using full Monte

Carlo simulations or the Markov chain models, respectively. K-L distance signifies

the amount of information lost if Pmodel is used instead of Psim.

To better quantify this value, instead of using it directly the ratio of K-L distance

over the entropy of the PMF Psim(yτ | x) is used, which is obtained through full

Monte Carlo simulations. In this case, the entropy is calculated as

H(Yτ |X = x) =

−
∑
yτ∈X

Psim(yτ | x) logPsim(yτ | x). (5.19)

Using Equations (5.18) and (5.19) the performance measure is given by

R =
D (Psim ‖ Pmodel)

H(Yτ |X = x)
. (5.20)

This ratio gives a direct measure of normalized error for the estimation. In general

the closer the ratio is to zero, the better the models estimate the PMFs. However,
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it is still difficult to decide what would be a good value for this ratio (i.e. for what

ratio the Markov chain calculated PMFs are acceptable compared to full Monte

Carlo simulations).

To further investigate the accuracy of the models, an actual channel parameter,

namely channel capacity, is calculated using both full simulation based PMFs and

Markov chain model based PMFs.

In the rest of this section, the parameters used in all Monte Carlo simulations

are as follows: simulation time steps of ∆T = 0.1 seconds (this is different from

the discretization time step ∆t introduced in the previous section), MT diffusion

coefficient D = 2.0 · 10−3 µm2/s, average speed of the MT vavg = 0.5 µm/s, and

persistence length of the MT trajectory Lp = 111 µm. It is also assumed that the

size of the information particles is 1µm, the average length of the MTs is 10µm, and

each MT can load up to 5 information particles in one trip from the transmission

zone to the receiver zone. These parameters are all selected based on experimental

observations of DNA covered MTs moving over a kinesin covered substrate [80,85].

Three different channels are considered: a square channel of 40 µm × 40 µm,

an 8-sided regular polygon (octagon) channel with radius 23.78 µm, and a 20-sided

regular polygon with radius 25.57 µm. The grid transmission zone structure is

always assumed to be along the channel walls, since it is the optimal placement as

will be shown in the next chapter.
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The transition probabilities P (Di | Xi−1) can be estimated using two different

techniques: Monte Carlo simulations, and Equation (5.17). When Monte Carlo

simulations are used to estimate the transition probabilities, two sets of simulations

are performed to estimate Ps(D1 | X0), the number of particles delivered during

the first trip, and P (Dj|Xj−1), the number of particles delivered during subsequent

trips (j = 2, 3, . . .). When Equation (5.17) is used for calculation of transition

probabilities, an estimate for pv (the probability that a square in the grid loading

structure is visited) is required. This probability can be obtained from the same

simulation that is used to estimate the PMF of the number of microtubule trips

P (kτ ).

Figure 5.4 shows the results for the time per channel use value of τ = 1000

seconds. The ratio of K-L distance between the simulation and model based PMFs

to the entropy of simulation PMFs is plotted against different values of xmax (max-

imum number of information particles that could be released). The term “Sim

Tran” is used in the plot legend to indicate the case where the transition probabili-

ties are calculated using Monte Carlo simulations, and the term “Eq. (5.17) Tran”

to indicate the case where transition probabilities are calculated using Equation

(5.17). In practice large number of information particles can be released by the

transmitter. At the same time, channel capacity increases with the size of the sym-

bol set. Therefore, the value of this ratio at xmax = 34 is considered. It can be seen
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Figure 5.4: The ratio of K-L distance between the simulation and model based
PMFs to the entropy of simulation based PMFs for different values of x (the num-
ber of particles released by the transmitter). Channels contain only a single micro-
tubule.

that, as expected, when simulations are used to estimate the PMFs, lower ratio is

achieved. However, transition probabilities and hence the PMFs can be estimated

more quickly when Equation (5.17) is used.

Another property observed in Figure 5.4 is that for “Eq. (5.17) Tran” plots the

R ratio increases as xmax increases. This follows because of some independence

assumptions made in derivation of Equation (5.17), which simplifies the model. In

particular, it is assumed that the probability that a particle is in a given square

during the ith microtubule trip is xi−1/n. However, this assumption does not take
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Figure 5.5: Channel capacity in bits versus xmax, maximum number of infor-
mation particles that can be released by the transmitter, calculated based on full
simulations (solid lines), and Markov chain models (points). Channels contain only
a single microtubule.

into consideration the fact that the particle may have already been picked up from

this particular square. In other words, for each trip the remaining particles are

redistributed across the squares. This error increases as the symbol size increases

and hence the increasing R ratio.

To further investigate the estimated PMFs, and determine if they are accurate

enough to characterize the channel, they are used for calculating channel capacity,

which is one of the most important parameters of any communication channel. In

particular, the channel capacity is calculated based on the PMF P (yτ | x) obtained
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using three different methods: full Monte Carlo simulations, the Markov chain

model with full simulation-based transition probabilities, and the Markov chain

model with transition probabilities estimated using Equation (5.17).

Figure 5.5 shows the calculated channel capacities versus xmax, the maximum

number of particles the transmitter can transmit. The solid lines represent the

channel capacities calculated using full Monte Carlo simulations, while the point

plots show the channel capacities calculated using the Markov chain models. From

the figure it is seen that when the Markov chain model with simulation estimation

of transition probabilities is used, the estimated channel capacities are very close to

the ones obtained from full simulations. Although, the channel capacities calculated

using the model with transition probabilities based on Equation (5.17) are not as

accurate, they are still relatively close to the ones obtained using full simulations,

and can be calculated much faster. Comparing Figures 5.4 and 5.5, it can be seen

that the estimated channel capacities are sufficiently accurate for design. Therefore,

from a telecommunication perspective, the model’s performance is satisfactory.

Finally, the computer simulation times required for calculating the PMF P (yτ |

x) are compared based on three different cases: full simulation, Markov chain model

based on simulation estimation of P (kτ ), Ps(D1 | X0), and P (Dj|Xj−1), and Markov

chain model based on simulation estimation of P (kτ ) and pv and using Equation

(5.17). All the Monte Carlo simulations use the same propagation engine for the
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Figure 5.6: The simulation times required to calculate the PMFs P (yτ | x) for
τ = 2000 s, x = 1, 2, . . . , 34, and 5000 iteration per each Monte Carlo simulation.
The number on the y-axis are multiplied by 105.

motion of the microtubule inside the channel. Therefore, although each simula-

tion estimates a different PMF, the propagation engine is the same between them.

Therefore, the algorithm used for computing different PMFs are computationally

very similar.

The simulation times are all obtained by running the simulation code on the

same notebook: Mac Book Pro (mid 2010) with 2.66 GHz Intel Core i7, 8GB

1067MHz DDR3 RAM, and Mac OS X version 10.7.4. The simulations were written

in Matlab [255] for Mac OS X. Figure 5.6 shows the resulting simulation times for
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calculating these PMFs, when time per channel use value is τ = 2000 seconds, the

number of information particles that are released by the transmitter ranges from 1

to 34, and the number of iteration used for each of the Monte Carlo simulations is

5000.

When instead of full simulations, the Markov model is used with simulated tran-

sition probabilities the simulation times are reduced by more than half. Moreover,

when Equation (5.17) is used to estimate the transition probabilities, the simu-

lations duration is reduced by more than 25 times compared to full simulations.

For example, for the 40 × 40 square channel the simulation durations are about

77 hours, 26 hours and 2 hours for the full simulation, Markov chain model with

simulation estimation of transition probabilities, and Markov chain model with

transition probabilities calculated using Equation (5.17), respectively. Although in

the latter case the estimated PMF is not as accurate as the other two methods, the

gains in terms of simulation time are significant compared to the loss in accuracy.

From these results, use of Equation (5.17) and the Markov model are proposed for

initial system design and optimization, and use of simulation based calculation of

transition probabilities for final stages of system design.
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5.2.2 Multi-Microtubule Channel Models

In the previous section, a Markov chain model for active transport molecular com-

munication systems employing a single microtubule was derived. To do this, a

single microtubule trip was defined as the motion of the microtubule from the re-

ceiver zone to the transmission zone and back, and used a random variable Kτ to

represent the number of trips during the time per channel use interval τ . When

there is only one microtubule in the channel, the trips are ordered (i.e. each trip

happens after the previous trip) and therefore the Markov property of Equation

(5.9) holds. However, if there are multiple microtubules in the channel, two or

more microtubules might be visiting the transmission zone simultaneously or be in

between trips. Therefore, the number of particles delivered at a given time interval

depends on all the microtubules and the Markov property of Equation (5.9) does

not hold. Because of the interdependence of microtubules and the fact that the

Markov property does not hold, modeling the communication system when multi-

ple microtubules are inside the channel is extremely difficult. To overcome these

issues, time is discretized instead of microtubule trips.

In particular, the time per channel use value τ is discretized into M equal time
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intervals of ∆τ as

τ = M∆τ. (5.21)

Therefore, τ is broken down into M time steps. Let m = 1, 2, . . .M be each of

these time steps. Furthermore, let Xm be the number of information particles at

the transmission zone at the end of the mth time step, Y (m) be the total number of

information particles already delivered to the receiver at the end of the mth time

step, and Dm be the number of information particles delivered during the mth time

step. Therefore, Dm ∈ {0, 1, 2, · · · , Xm−1} is a random variable representing the

number of particles delivered during the mth time step of length ∆t. Each time

step is related to the next time step by the following properties

Xm = Xm−1 −Dm,

Y (m) = Y (m−1) +Dm, (5.22)

where it is assumed that X0 = X is the number of particles released by the trans-

mitter at the beginning of the communication session, and Y (0) = 0 is the number

of particles initially at the receiver.

With this new discretization, a Markov chain model can be obtained similar to
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the one derived in the previous section for single microtubule channels. In this case

the probability transition matrix given x particles are released by the transmitter

is given by

P(x) =



P (0|x) P (1|x) P (2|x) · · · P (x− 2|x) P (x− 1|x) P (x|x)

0 P (0|x− 1) P (1|x− 1) · · · P (x− 3|x− 1) P (x− 2|x− 1) P (x− 1|x− 1)

0 0 P (0|x− 2) · · · P (x− 4|x− 2) P (x− 3|x− 2) P (x− 2|x− 2)

...
...

...
. . .

...
...

...

0 0 0 · · · P (0|2) P (1|2) P (2|2)

0 0 0 · · · 0 P (0|1) P (1|1)

0 0 0 · · · 0 0 1


,

(5.23)

where transition probabilities are in the form P (Dm = d|Xm−1 = x), and the

number of particles delivered during step m is d = 0, 1, 2, · · · , Xm−1. Because

of the dependencies between multiple microtubules discussed earlier, deriving a

closed-form expression for the transition probabilities is not possible. However, the

transition probabilities can be estimated using Monte Carlo simulations by using

∆τ instead of τ , which would result in shorter simulations. Therefore, in general

M -fold improvement in computation time of the simulations is expected compared

to full simulations. Moreover, it would be expected that the estimated PMFs be

more accurate for smaller M (i.e. larger time steps ∆τ) and less accurate for larger

M (i.e. smaller time steps ∆τ). This is because smaller time steps capture the
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motion of the microtubules for a shorter amount of time and therefore calculated

transition probabilities would be less accurate. Similarly, larger time steps capture

a longer duration of motion of the microtubules, which results in more accurate

estimation of transition probabilities.

5.2.2.1 Evaluation of Multi-Microtubule Channel Model

In this section, the evaluation of the Markov chain model for channels with multiple

microtubules is considered. The same three channel shapes used in the evaluation

of the single microtubule model in the previous section is considered with similar

simulation parameters. To get an accurate estimation of the transition probabilities,

the discretization time steps ∆τ must be such that at least a single microtubule trip

is captured in each time step for most of the microtubules in the channel. Let P

be the perimeter of the channel, and vavg be the average speed of the microtubules.

Because microtubules mostly follow the walls of the channel, the desirable values

for ∆τ are given by

∆τ ≥ P

vavg

. (5.24)

In general the larger the value of ∆τ is compared to the ratio on the right hand side

of the equation, the better the transition probabilities are estimated. This follows

because in this case more microtubule trips are captured in each time step, which
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Figure 5.7: The ratio of K-L distance between the simulation and model based
PMFs to the entropy of simulation PMFs for different values of x (the number of
particles released by the transmitter). Channels contain multiple microtubules.

results in a more accurate estimation of the transition probabilities of the Markov

chain model.

Figure 5.7 plots the ratio of K-L distance between the simulation and model

based PMFs to the entropy of simulation PMFs for different values of x. It is

assumed that there are 5 microtubules in the square channel, 4 microtubules in

the octagon channel, and 3 microtubules in the 20-sided polygon channel. Different

numbers haven been chosen to demonstrate that the model works for any number of

microtubules. For the channels considered in this plot, it is assumed that ∆τ = 500
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seconds (this value satisfies Equation (5.24) criterion), and the time per channel

use is 1000 seconds (i.e. the number of steps M = 2).

In practice large number of information particles can be released by the trans-

mitter. At the same time, channel capacity increases with the size of the symbol

set. Therefore, the value of this ratio at xmax = 34 is considered. For each channel

the number of time steps is M = 2, and therefore the discretization intervals are

one half the time per channel use duration. Therefore, the transition probabilities

can be calculated in one half the time it takes for full simulations.

To further investigate the accuracy of the estimated PMFs, they are used to

calculate the channel capacity, which is one of the most important parameters of

any communication channel. Figures 5.8–5.10 compare the channel capacity of each

channel shape obtained through full simulations (line plots), to the ones calculated

using the proposed Markov chain model (point plots). For each channel, the number

microtubules are taken to be 3, 4, and 5. For both polygon channels ∆τ = 400

seconds and τ = 800 seconds, and for the square channel ∆τ = 550 seconds and τ =

1100 seconds. These values have been chosen since the plots for different number

of microtubules are all visible on a single plot at these durations, and to show that

the model works for different values of τ . As can be seen the channel capacities

can be estimated fairly accurately at half the time it takes for full simulations.

Moreover, by increasing the value of M (i.e. decreasing the discretization time
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Figure 5.8: Channel capacity in bits per channel use versus xmax, maximum
number of information particles that can be released by the transmitter, for both
full simulations and Markov chain model for multiple microtubules. The channel
here is a 20-sided regular polygon channel with radius of 25.57 µm.

intervals) channel capacities can be estimated more quickly at the cost of a loss in

accuracy.

The PMFs P (yτ | x) estimated using the Markov chain model are sufficiently

accurate for design, and become more accurate as the time step durations ∆τ

increases compared to the term on the right hand side of Equation (5.24). This

effect can be seen in the figure; the octagon channel has a better estimated channel

capacity, since it has a smaller perimeter compared to the 20-sided polygon channel
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Figure 5.9: Channel capacity in bits per channel use versus xmax, maximum
number of information particles that can be released by the transmitter, for both
full simulations and Markov chain model for multiple microtubules. The channel
here is an octagon channel with radius of 23.78 µm.

for different number of microtubules. Therefore, for ∆τ = 400 more microtubule

trips are captured in estimated tradition probabilities of the Markov chain model,

which results in a slightly more accurate estimation of channel capacity.

Finally, as can be seen channel capacity increases with the number of micro-

tubules for all channels. In Figure 5.11, the channel capacity is plotted for different

number of microtubules in the channel. The channel is a square channel with 40

µm sides, and the size of the message set is 34. As can be seen capacity increases
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Figure 5.10: Channel capacity in bits per channel use versus xmax, maximum
number of information particles that can be released by the transmitter, for both
full simulations and Markov chain model for multiple microtubules. The channel
here is a square channel of length 40 µm.

linearly with number of microtubules for each value of τ . Moreover, the slope

increases as time per channel use increases.
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6 Optimal Design Strategies for On-Chip Active

Transport Molecular Communication

In Chapter 4, a simulation environment for on-chip molecular communication based

on different propagation schemes was developed, and it was shown that active

transport can be a suitable choice for on-chip molecular communication. Then, in

Chapter 5, different mathematical models for on-chip active transport was derived

to reduce the computational complexity of simulating these channels, and to gain

some insight into this propagation scheme.

In this chapter, some of the models developed in Chapter 5 is used to find

optimal design strategies for on-chip active transport. Two important design pa-

rameters are considered. First, the problem of finding the optimal size for the

information particles is discussed, and the optimal shape for the transmission re-

gion in the channel is obtained. Next, the problem of finding the optimized channel

shape that would maximize the rate or transport and information transmission rate

is considered.
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Figure 6.1: (Top): Probability distribution of P (Vi = 1) for squares of size
1µm to the left side of the loading area. (Middle): Strip transmission area (yellow
and cyan squares) for n = 100 squares. (Bottom): Projection of the probability
distribution P (Vi = 1) on top. The top 100 values of P (Vi = 1) are shown in as
white squares and they represent the optimal loading area.

6.1 Optimizing the Transmission Zone

The transport models presented in the previous chapter, and the fact that the mi-

crotubules mostly move along the walls of the molecular communication channel,

are used to optimize the transmission area. For the rest of this section the anal-

ysis will be based on rectangular-shaped channels, but the same technique can be

applied to any channel shape.

Recall from the top part of the Figure 5.1, which is depicted here again as

Figure 6.1, that microtubules mostly move along the walls, and therefore P (Vi = 1)

(probability that a square is visited in one microtubule trip) is higher for squares
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close to the walls of the molecular communication channel. An information particle

is picked up from the transmission zone, and delivered to the receiver zone, if the

corresponding square is visited. Therefore, it is desirable to find squares with

maximum P (Vi = 1), which are squares that have the highest probability of being

visited during one trip. In Figure 6.1, the probability distribution of all the squares

of length 1µm to the left of transmission area are plotted (the bar plot on the

top). The middle plot in Figure 6.1 shows the original strip transmission area with

100 squares. Notice that the squares in the middle of the strip transmission zone

have low probability of being visited in a single microtubule trip. The bottom plot

shows the projection of the probability distribution function of P (Vi = 1). The

first 100 squares with highest probabilities are shown as white squares, and the

rest of the squares are shown in black. Note that in this projection, the minimum

distance between the transmission area and the receiver area is still the same and

the transmitter and the receiver are the same distance apart. Finally, according

to the transport models in Chapter 5, this white area is the optimal transmission

zone that will give us the highest information rate because probability of visiting

and picking up particles is highest.
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6.1.1 Vesicular Encapsulation

As mentioned in the Chapter 2, information-carrying particles could be encapsu-

lated inside lipid vesicles to keep them isolated from the propagation environment,

thereby preventing destructive chemical reactions that could result in unsuccess-

ful detection at the receiver. The process of on-chip vesicular encapsulation was

demonstrated in [59].

In this section, optimal strategies for encapsulating information particles are

presented. For example, is it better to encapsulate all the information molecules

inside one giant vesicle or inside several smaller ones? Is there an optimal vesicle

size for a given molecular communication channel? To answer these questions, a

model for vesicular encapsulation is proposed and is used along with the models

developed in Chapter 5 to provide optimal design strategies.

It is assumed that egg phosphatidylcholine vesicles (a type of liposome) are used

for encapsulation. Furthermore, it is assumed that lipid vesicles are perfect spheres,

and the diameter of all the vesicles are exactly the same. Moreover, assume the

number of information molecules per vesicle is deterministic and known. These

assumptions are made to facilitate the analysis.

Let R be the inner radius of the lipid vesicle. Then the number of lipid molecules
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required to create such a vesicle is given by [58]:

mR =
4

3
πN

(
(R + 3.7× 10−7)3 −R3

)
/(768v̄), (6.1)

where mR is the number of lipid molecules required to create a vesicle with radius

R, N is the Avogadro’s number (6.022× 1023), R is the inner radius of the vesicle

in cm, and v̄ is the vesicle partial specific volume (0.9848 mL/g). For example,

using this equation 3.72× 107 molecules are required to create a single vesicle with

diameter of 2µm.

Let M be the total number of lipid molecules available at the transmitter for

creation of lipid vesicles. Then the total number of lipid vesicles of size R that can

be created by the transmitter is given by

nR =
M

mR

. (6.2)

Let x be the number of information particles to be sent by the transmitter. Then

assuming there are nR vesicles available for encapsulation, there will be (nR −

x mod nR) vesicles with bx/nRc information molecules and (x mod nR) vesicles

with dx/nRe information particles, where (mod) is the modulo operator (i.e. the

remainder of the integer division), b.c the floor function and d.e the ceiling function.

For example, if there are x = 18 information particles and nR = 5 vesicles, after the
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1μm Vesicles 2μm Vesicles500nm Vesicles250nm Vesicles

Figure 6.2: The shape of the optimal transmission area of different vesicle diam-
eters. Each of the four rectangles is the total area that could be dedicated as the
transmission area. The dimension of this area is 20 µm by 10 µm. The squares
inside each transmission area represent the optimal grid for each vesicle size.

encapsulation process, 2 vesicles encapsulate 3 information particles and 3 vesicles

encapsulate 4 information particles.

6.1.2 Vesicular Encapsulation Analysis and Optimization

In this section, the transport model presented in Chapter 5 and the vesicular en-

capsulation models presented in the previous subsection are used to analyze and

optimize the vesicular encapsulation process. To show the optimization scheme,

four different diameter values for vesicles are considered: 250nm, 500nm, 1µm, and

2µm. Assume that the area that could be used by the transmitter is 20 µm by 10

µm. The goal is to find the optimal vesicle size. The optimization scheme presented

in Section 6.1 is used to optimize the shape of the grid transmission area for each

vesicle size. Figure 6.2 shows the shape of the optimal transmission area for each
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Figure 6.3: Rectangular channel used as a sample for optimization. Transmission
area is the region on the left (blue area), and the receiver area is the strip on the
right (red area).

diameter size. Notice that for the 2µm vesicle size, since the square grid occupies

the whole transmission area, it contains squares that have a small probability of

being visited during a microtubule trip.

To make the comparison Monte Carlo simulation of active transport propaga-

tion presented in Chapter 4 is employed with the following parameters: simulation

time steps ∆t = 0.1 seconds, microtubule diffusion coefficient D = 2.0 ·10−3 µm2/s,

average speed of the microtubule vavg = 0.5 µm/s, and persistence length of the

microtubules trajectory Lp = 111 µm. These parameters are all selected based on

experimental observations of ssDNA covered microtubules moving over a kinesin

covered substrate [80]. Furthermore, for all the subsections that follow, a rectan-

gular propagation environment is considered, with the dimensions 20µm by 60µm

presented in Figure 6.3. The transmission area is the strip on the left, while the

receiver area is the strip on the right, and the separation between the transmission
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Table 6.1: Simulation parameters for vesicular encapsulation

Vesicle’s Diameter Number of Squares in Grid Microtubule’s Maximum Load

250 nm 1600 20
500 nm 400 10
1 µm 100 5
2 µm 50 2

zone and the receiver zone is 40µm. In the simulations, the corresponding opti-

mized grid transmission area are used for each vesicle size as shown in Figure 6.2.

Based on experimental results, it is assumed that the length of the microtubules

is 10µm, and that the number of vesicles a microtubule can load is half its length

divided by the diameter of the vesicles [67]. These parameters are summarized in

Table 6.1.

Since there are many different parameters effecting the encapsulation process,

three distinct set of results are presented in the next three subsections. First, the

amount of liquid volume transported by each vesicle size is considered (i.e. the

liquid volume encapsulated inside vesicles). Since the molecular communication

environment is aqueous, if it is assumed that the concentration of the information

particles is constant inside vesicles, the more liquid volume is transported the more

information particles are transported. Second, the size of the vesicles are kept

constant and the effect of different concentrations of information particles on the

number of transported information particles is studied. Third, it is assumed that

a limited amount of lipid molecules are available at the transmitter for generation
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of lipid vesicles, and I study whether it is better to generate small number of large

vesicles or numerous small vesicles.

6.1.2.1 Effects of Vesicle Size

Table 6.2: Number of vesicles to keep the liquid volume constant at 4.19fL

Vesicle’s Diameter Number of Vesicles

250 nm 512
500 nm 64
1 µm 8
2 µm 1

The effects of vesicle size on the amount of encapsulated liquid transported from

the source to the destination is considered. It is assumed that the concentration of

information particles in the liquid encapsulated by vesicles is constant. Since the

number of information particles inside each vesicle is related to its concentration in

the encapsulated liquid and the concentration is constant, the more liquid volume

is transported the more information particle is transported.

Let D be the inner diameter of the lipid vesicle. The volumetric capacity of the

vesicle is therefore given by,

V =
4

3
π

(
D

2

)3

=
1

6
πD3. (6.3)

For example, assuming the diameter of the vesicle is 2µm, the volume of the liquid
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Figure 6.4: Average liquid volume transported for each vesicle size. The total
liquid volume transmitted by the source is 4.19fL. The lines show the standard
deviation of the received volume. (T=250s).

inside a single vesicle is 4.19fL. If the vesicle’s diameter is decreased to 1µm, the liq-

uid volume per single vesicle is 0.52fL. Therefore, liquid volume inside a single 2µm

vesicle is equivalent to liquid volume inside eight 1µm vesicles. In the simulations,

to keep the total liquid volume at the transmitter constant at 4.19fL, different total

number of vesicles is used for each vesicle size as shown in Table 6.2.

Figure 6.4 shows the average transported liquid volume with the standard de-

viation bars for time per channel use of 250 seconds. As the vesicle size increases,

the average liquid volume transported increases. However, the standard deviation
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Table 6.3: Number of vesicles and concentration of information particles (1µm
vesicle)

Concentration (molecules per fL) Info. Particles per Vesicle Number of Vesicles

61.54 32 1
30.77 16 2
15.39 8 4
7.69 4 8
3.85 2 16
1.92 1 32

of the transported volume also increases as the liquid volume per single vesicle is

greater. When the vesicle size is increased from the 250nm to 1µm, the average

liquid volume transported increases consistently. However, the difference between

the 1µm and 2µm vesicles is negligible. Moreover, the standard deviation of the

1µm vesicle is smaller. These results confirm that there exists an optimal vesicle

size that can be found using the simulator and mathematical models developed in

Chapter 4 and 5. In this particular system, the optimal vesicle size is 1µm.

6.1.2.2 Effects of Concentration of Information Particles

The effects of the concentration of information particles inside vesicles are consid-

ered in this section. It is assumed that the vesicle size is constant at 1µm, which

is the optimal vesicle size based on the results in the previous section. It is also

assumed that the total number of information particles transmitted by the source

is constant. In particular, assume the transmitter releases 32 information parti-
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Figure 6.5: Average number of information molecules delivered for each con-
centration (i.e. number of information particles per vesicle). The total number of
information particles transmitted is 32. The lines show the standard deviation of
the number of information particles received. (T=250s).

cles. Let β be the concentration of information particles inside vesicles. Then the

number of information particles inside each vesicle is given by

z = βV, (6.4)

where z is the number of information particles per vesicle and V is the volume of

the vesicle.
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For example, assuming the diameter of the vesicle is 1µm and concentration

of β = 61.54 molecules per fL, the number of information particles per vesicle is

z = 61.54 × 0.52 = 32. Therefore, assuming the number of information molecules

to be transmitted by the source is 32, all the information particles can be en-

capsulated inside a single vesicle. Similarly, if the concentration is changed to

β = 30.77 molecules per fL, the number of information particles per vesicle is

z = 30.77× 0.52 = 16. Therefore, two vesicles are required to transmit 32 informa-

tion particles. Following this approach, Table 6.3 summarizes different values used

in the simulations.

Figure 6.5 shows the average number of information particles delivered with

standard deviation bars based on each concentration for time durations per chan-

nel use of 250 seconds. One surprising outcome is that the average number of

information particles delivered is very similar across different concentration values.

Moreover, as the concentration of information particles per vesicle is increased the

standard deviation of the number of information particles delivered is increased.

6.1.2.3 Effects of Number of Lipid Molecules

This section considers the effects of the number of lipid molecules on the number

of information particles transported. The number of vesicles that can be generated

based on the number of lipid molecules can be calculated using the equations pre-
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Table 6.4: Number of vesicles that can be generated using 3.72×107 lipid molecules

Vesicle Size Information Particles per Vesicle Number of Vesicles

250 nm 1 64
500 nm 4 16
1 µm 16 4
2 µm 64 1

sented in Section 6.1.1. By keeping the number of lipid molecules constant, different

number of vesicles can be generated for different vesicle sizes. For example, if the

number of lipid molecules is about 3.72 × 107, applying Equation (6.1), a single

2µm vesicle can be generated. Similarly, using 3.72× 107 lipid molecules, four 1µm

vesicles can be generated. For the rest of this section it is assumed that the number

of lipid molecules is constant at 3.72× 107 and the number of information particles

to be transmitted is also constant at 64. Table 6.4 shows the number of vesicles

that can be generated as well as the number of information particles per vesicle.

Figure 6.6 shows the average number of information molecules delivered with

standard deviation bars for time per channel use of 250 seconds. From the figure

it can be seen that as the size of the vesicle is increased from 250nm to 1µm, the

average number of information molecules delivered is increased. However, when the

size of the vesicle is increased from 1µm to 2µm, the average number of molecules

delivered does not change significantly. The standard deviation of the number of

information particles delivered increases as the size of the vesicle increases. From

these results it is concluded that there exists an optimal vesicle size for the channel
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Figure 6.6: Average number of information molecules delivered for each vesicle
size. The total number of information particles transmitted is 64 and the total
number of lipid molecules is constant at 3.72 × 107. The lines show the standard
deviation of the number of information particles received. (T=250s).

considered. Note that Figure 6.6 is very similar to Figure 6.4, which confirms that

there is an optimal vesicle size for the channel (in this particular case 1µm).

6.1.2.4 Information Gains From Optimal Designs

This section evaluates the gains in achievable information rates from using the

optimal transmission zone and optimal vesicle size. In the evaluation, it is assumed

that the channel is the one shown in Figure 6.3, and that the simulation parameters
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Figure 6.7: Channel capacity plot in bits per channel use. Strip transmission zone
plots are presented as circles and optimal transmission zone plots are presented as
squares. The blue plots present the communication time per channel use duration
of 1000 s and the magenta plots represent a time per channel use duration of 7000
s. There is a significant gain in information rate by using the optimal design.

are the same as the ones used in previous chapters.

First, the information rate of the optimal transmission zone, generated using

the transport model in Chapter 5, is compared to the strip transmission zone. It is

assumed that the diameter of the information particles is 1µm, and there are 100

squares in the grid loading area (i.e. there could be as much as 100 information

particles in the loading strip). Recall that this optimal transmission zone is repre-

sented by Figure 6.2, and the strip transmission zone is represented in the middle
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part of Figure 6.1.

Figure 6.7 shows the channel capacity (i.e. maximum achievable information

rate) in bits per channel use for two different transmission zones: strip transmission

zone, shown using circles, and the optimal transmission zone, shown using squares.

The channel capacity is plotted against the xmax which represents the maximum

number of possible transmission symbols. As can be seen the optimal transmission

zone achieves a much higher information rate compared to the strip transmission

zone as proposed by the analysis. In particular, there is about 0.5 bit per channel

use improvement when time per channel use is equal to 1000 seconds, and about

1.5 bits per channel use improvement when the time per channel use is equal to

7000.

Next, the effects of size of the vesicle encapsulation on channel capacity is con-

sidered. The same four vesicle sizes used in Section 6.1.2 are used, as well as the

same simulation environment and parameters. Assume only a single particle is en-

capsulated inside the lipid vesicles regardless of the vesicle’s diameter. Through

this assumption, the number fo vesicles transported are compared. Also, assume

the set of possible transmission symbols are X = {0, 1, 2, · · · , xmax}, for some value

of xmax, where a transmission symbol X ∈ X is represented by release of X in-

formation particles into the medium. All the released particles will be randomly

distributed over the transmission zone (i.e. grid transmission zone) and remain
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Figure 6.8: Channel capacity in bits per channel use for a single information
particle encapsulated inside each lipid vesicle (τ = 250s).

stationary until they are picked up by a microtubule for delivery. To make the

comparison Monte Carlo simulations are used.

The results are shown in Figure 6.8 for time per channel use of 250 seconds.

From the graph it can be seen that as the size of the vesicles increase from 250nm

to 1µm the channel capacity of the microchannel increases. However, as the size

increases from 1µm to 2µm the channel capacity does not increase. The effect is

due to the difference in the shape of the transmission zone as shown in Figure 6.2.

Because 2µm squares cover a larger area, they spread across the whole transmission
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Figure 6.9: Channel capacity in bits per second versus time per channel use for
a single information particle encapsulated inside each lipid vesicle.

area including the center parts where the probability of a microtubule visit is every

low as shown in Figure 6.1.

In Figure 6.9, the channel capacity in bits per second is plotted against different

time durations per channel use for xmax = 40. From the figure, again it can be

observed that as the size of the vesicle is increased from 250nm to 1µm the curve’s

peak is increased. However, 1µm vesicles achieve a higher peak than the 2µm

vesicles and hence have a higher channel capacity in bits per second. This is again

because of the shape of the transmission area which in the case of 2µm vesicle is
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not optimized.

Based on the results it is concluded that encapsulation of information vesicles

using lipid vesicles improves the channel capacity. This effect is due to the small

size of the information particles which are typically molecules. For example if no

encapsulation is employed the size of a typical information particle would be 10nm.

Therefore, based on the presented results it can be seen that 10nm squares in

the grid loading area would have a much lower channel capacity compared to the

larger squares of vesicular encapsulation. However, depending on the shape and

the dimensions of the transmission area, there is an optimal vesicle size. This effect

is particularly evident in the simulations as the vesicle size is increased from 1µm

to 2µm. Therefore, it is concluded that the optimal vesicle size for this particular

channel is 1µm, which is in accordance with the results in Section 6.1.2.

6.2 Channel Shape Optimization

In the previous section, a technique for finding the optimal transmission zone and

the optimal vesicle size for transport was developed. In this sections, the optimal

channel shape, among a large class of channel shapes is obtained. The shape of the

channel is optimized with respect to the total number of information particles that

could be transported during a time per channel use interval. Some of the models

derived in Chapter 5 are used to formulate an optimization problem.
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Figure 6.10: Different shape classes and their parameters.

6.2.1 Channel Shape Classes

Assume that channel shape can belong to any of the following three classes of

shapes: rectangular, regular polygon, and regular polygon ring. Regular polygons,

are equiangular (all angles are equal in measure) and equilateral (all sides have

the same length), and they include a large class of geometric shapes, ranging from

equilateral triangles, squares, pentagons, and hexagons, all the way up to a circle

as number of sides approaches infinity. Figure 6.10 shows an example from each of

the three different shape classes.

Depending on the class of the channel shape, different parameters can be used

to further adjust the shape within the shape class. For rectangular channels two

parameters can be used to adjust the dimensions and the shape: width w and length

l. When both the width and the length are equal in value, the channel would be

a square channel. Similarly, for regular polygons two parameters can be used to

further adjust the shape: the number of sides n, and the radius of the circumscribed
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circle r (this radius can also be defined as the distance from the center point of the

regular polygon to one of the vertices of the polygon). For ring-shaped channels

three parameters are used to define the shape: the number of sides n, the radius of

the inner circumscribed circle ri, and the radius of the outer circumscribed circle

ro. Figure 6.10 summarizes all these parameters for different classes of shapes.

Regardless of the shape of the channel, without loss of generality, assume the

transmission zone is always on the left side of the channel and the receiver zone

is along the right side of the channel. In the previous section, it was shown that

optimal transmission zone is along the walls of the channel, since microtubules

mostly glide very close to channel walls. This positioning increases the chance

of a microtubule picking up an information particle during its trips. Therefore,

it is always assumed that the transmission zone is along the walls of the channel

regardless of the channel shape.

6.2.2 Channel Shape Optimization Model

Let the set G be the set of all possible cross-sectional geometric shapes the channel

could have, where the cross-sectional shape is the shape of the channel when viewed

from the top. First, it is assumed that this set contains all the rectangular, regular

polygonal, and regular polygonal ring-shapes and then the result are extended to all

two dimensional shapes. The goal is to find the optimal shape in these sets, given

196



system parameters such as time per channel use, concentration of microtubules,

and average speed of the microtubules. To setup this optimization problem, the

effects of channel shape on the number of microtubule trips is modeled.

As discussed in the previous chapter, the number of microtubule trips during the

time per channel use interval has a direct effect on transportation of information

particles. Let g ∈ G be the channel under consideration. Let Kτ (g) be the number

of trips during the time per channel use interval τ inside the channel shape g,

where a single microtubule trip is defined as the movement of the microtubule from

anywhere in the channel to the transmission zone and then the receiver zone. As

shown in Chapter 5, the number of microtubule trips Kτ (g) is a random variable.

Therefore, to derive the optimization model, the expected value of Kτ (g) is used.

Let the random variable K
(S)
τ (g) be the number of trips for a single microtubule

during the time per channel use interval, τ . Let vavg be the average speed of the

microtubules, P (g) be the perimeter of the channel shape g ∈ G. A good estimate

for the average number of microtubule trips, when a single microtubule is inside

the channel is given by

E[K(S)
τ (g)] ≈ vavgτ

P (g)
. (6.5)

This approximation is based on the observation that on average from each trip,

the microtubule travels a distance approximately equal to the perimeter of the

197



500 1000 1500 2000
1

2

3

4

5

6

7

8

9

A
v
e

ra
g

e
 N

u
m

b
e

r 
o

f 
T

ri
p

s

TPCU (s)

 

 

Poly, r=20, n=8, Sim

Poly, r=20, n=8, Est

Ring, ri=17, ro=22, n=20, Sim

Ring, ri=17, ro=22, n=20, Est

Rec, w=20, l=60, Sim

Rec, w=20, l=60, Est

Figure 6.11: Average number of trips approximation compared with Monte Carlo
simulations.

channel. This assumption is verified using the Monte Carlo simulation environment.

The results of the simulations are shown in Figure 6.11. In this figure, a sample

shape from each of three different shape classes have been considered, and it is

shown that the approximations in Equation (6.5) (solid lines) are a good estimate

of the actual average number of microtubule trips (point plots).

In practice, there are typically more than one microtubule inside the channel.

Furthermore, the number of microtubules is not a constant, but is dependent on

the volume of fluid in the channel: the DNA-covered microtubules are prepared in

chemical solutions, and therefore have a constant concentration inside the solution.
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Let C be the concentration of microtubules as number of microtubules per unit

volume, and h be the height of the channel, and A(g) be the cross sectional area of

the channel with geometric shape g ∈ G. Then the number of microtubules inside

the channel is given by

M(g) = A(g)hC, (6.6)

where M(g) is the number of microtubules inside channel g.

For each microtubule in the channel let the random variables K
(i)
τ (g) be the

number of trips during τ seconds inside the channel with shape g, where i =

1, 2, · · · ,M indexes each microtubule. Then, the total number of microtubule trips

during τ seconds is given by

Kτ (g) =
M∑
i=1

K(i)
τ (g). (6.7)

The average number of microtubule trips during τ seconds is therefore calculated

as

E[Kτ (g)] =
M∑
i=1

E[K(i)
τ (g)]. (6.8)

It is assumed that the number of trips for individual microtubules are independent

and identically distributed, because they are chemically similar and don’t interact

with each other. Generally, this assumption has been found to be valid in laboratory
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experiments [67,85]. Due to the identical distributions, the equation simplifies to

E[Kτ (g)] =
M∑
i=1

E[K(S)
τ (g)] = M(g)E[K(S)

τ (g)]. (6.9)

Using the approximation shown in Equation (6.5), and Equation (6.6), the total

number of trips can be estimated as

E[Kτ (g)] ≈ τvavgCh
A(g)

P (g)
, (6.10)

where A(g) and P (g) are the cross sectional area and perimeter of the channel with

geometric shape g ∈ G, respectively. The channel shape optimization problem can

then be formulated as

max
g∈G

E[Kτ (g)]. (6.11)

Assuming all the other parameters are constant (including the height of the channel)

except the cross sectional shape, the optimization problem becomes

max
g∈G

[
A(g)

P (g)

]
. (6.12)

Equation (6.12) is very interesting because it states that the optimal shape is the

one with the largest area to perimeter ratio. However, there is an important con-
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straint that must be satisfied. The perimeter of the channel must be small enough

such that a single microtubule can complete at least a single trip. Therefore, assume

the perimeter must be such that its length can be travelled by the microtubule, on

average once, during the time per channel use interval τ . This constraint ensures

that the perimeter is small enough such that on average enough information parti-

cles can be delivered during the given time per channel use duration. Finally, the

optimization problem can be written in its complete form as

max
g∈G

[
A(g)

P (g)

]
subject to P (g) ≤ τvavg. (6.13)

6.2.3 Optimal Shape Analysis

Using the optimization formula derived in the previous section, the optimal channel

design for each shape class is considered individually, and then the optimal overall

design is presented.

6.2.3.1 Rectangular Channels

Let GRec be the set of all rectangular shapes. Because any rectangular shape can

be characterized by the two parameters width w and length l, the Equation (6.13)
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becomes

max
(w,l)∈GRec

[
w × l

2w + 2l

]
subject to 2w + 2l ≤ τvavg. (6.14)

Solving this optimization problem, the optimal channel design given both time per

channel use interval τ and average speed of the microtubules vavg, is w = l =

0.25τvavg. Therefore for rectangular channels, the optimal channel shape is always

the square-shaped channel.

6.2.3.2 Regular Polygonal Channels

Let GPoly be the set of all regular polygons. Regular polygons can be characterized

by two parameters: the number of sides n, and the radius of the circumscribed

circle r. Note that the set of all square shapes are also contained within the set

GPoly (i.e. when n = 4). Using these parameters Equation (6.13) becomes

max
(n,r)∈GPoly

[
0.5nr2 sin(2π/n)

2nr sin(π/n)

]
subject to 2nr sin(π/n) ≤ τvavg. (6.15)
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This equation can be simplified as

max
(n,r)∈GPoly

0.5r cos(π/n)

subject to nr sin(π/n) ≤ τvavg

2
, (6.16)

where the fact that sin(2u) = 2 sin(u) cos(u) is used. Based on this equation the

optimal channel is the one with n =∞ and r = τvavg/2π. Therefore, when regular

polygons are considered, the optimal shape is the circular-shaped channels. Because

squares are also in the set of all regular polygons, it is also concluded that circular-

shaped channels are also better than square-shaped channels.

6.2.3.3 Regular Polygonal Ring Channels

Let GRing be the set of all polygonal ring shapes. The elements of this set can be

characterized using three parameters: the number sides n, the radius of the inner

polygon’s circumscribed circle ri, and the radius of the outer polygon’s circum-

scribed circle ro. Note that GRing ⊃ GPoly, which means that the set GRing contains

all the regular polygonal shapes (this is achieved by setting ri = 0). Using these
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parameters the optimization problem becomes

max
(n,ri,ro)∈GRing

[
0.5n(r2

o − r2
i ) sin(2π/n)

2nro sin(π/n)

]
subject to 2nro sin(π/n) ≤ τvavg. (6.17)

This equation can be simplified

max
(n,ri,ro)∈GRing

[
0.5

(
r2
o − r2

i

ro

)
cos(π/n)

]
subject to nro sin(π/n) ≤ τvavg

2
. (6.18)

Solving Equation 6.18, the optimal channel has parameters n =∞, ro = τvavg/2π,

and ri = 0. This means the optimal channel is the circular-shaped channel. This

may seem surprising at first, since one would expect that a ring-shaped circular

channel would be better than a solid circular-shaped channel at transporting infor-

mation particles. However, because typically microtubules follow the walls of the

channel, and that the number of microtubules in a channel is proportional to the

volume of the channel [256], it becomes apparent that the solid circular channel

would be better than a ring-shaped channel.
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6.2.3.4 Overall Optimal Channel Design

From the solution to the optimization formulas for each of the three different shape

classes, it is apparent that the optimal channel shape is the circular-shaped channel.

Moreover, based on Equation (6.13) the optimal channel shape must have the largest

area to perimeter ratio. Therefore, if the perimeter of the channel is fixed such that

the constraint in the optimization is satisfied with an equality, the optimal channel

shape would be a circle for all two dimensional geometric shapes.

6.2.4 Simulation Validation

To verify the optimization formulas and their results, Monte Carlo simulation are

used. For these simulations the same parameters used in Chapter 4 and 5 are used.

Moreover, it is assumed that the height of the channel is always a constant h = 10

µm regardless of the cross sectional shape of the channel. The concentration of the

microtubules is also assumed to be C = 0.001 MT/fL unless specified otherwise.

The number of microtubule in the channel is always assumed to be

MT = bA(g)hCc, (6.19)

unless specified otherwise.

For the performance measure channel capacity [192] is used, which is the max-
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imum rate at which information can be transmitted reliably. Each of three shape

classes discussed in the previous sections are considered, and Equations (6.14),

(6.16), and (6.18) are used to find the optimal channel dimensions for each case.

These results are then compared to the channel capacities obtained from Monte

Carlo simulations.

6.2.4.1 Rectangular Channels

First, rectangular channels are discussed. Two values of time per channel use

are considered: τ = 160 seconds, and τ = 240 seconds. Using the solution to

Equation (6.14), the optimal channels are square channels with dimensions w =

l = 0.25×160×0.5 = 20 µm and w = l = 0.25×240×0.5 = 30 µm for the τ = 160

and τ = 240, respectively. To verify this result, all the rectangular channels with

widths and lengths raging from 20 µm to 50 µm are simulated in 5 µm steps. It

is assumed that xmax (i.e. the maximum number of particles the transmitter can

release) is 40. The channel capacity is then calculated based on the simulations.

Figure 6.12 shows the results for τ = 160 seconds (a), and τ = 240 seconds (b). As

can be seen the channels with the largest channel capacity are the 20 µm × 20 µm,

and 30 µm × 30 µm, respectively. These results are in perfect agreement with the

results obtained from the optimization model.
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Figure 6.12: Channel capacities in bits per channel use of different rectangular
channel shapes. The channel with the highest capacity is shown using the blue dot:
(a) for the time per channel use of 160 s the optimal is 20 µm × 20 µm , (b) and
for the time per channel use value of 240 s the optimal size is 30 µm × 30 µm.
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Figure 6.13: Channel capacity of regular polygonal channels with constant
perimeter of 160 µm versus maximum number of particles that can be released
at the transmitter.

6.2.4.2 Regular Polygonal Channels

In Section 6.2.3, it was shown that for regular polygonal channels the optimal

shape is a circular-shaped channel. To verify this result, consider a constant time

per channel use value of 320 seconds. From Equation (6.13), the maximum channel

perimeter that satisfies the constraint is 160 µm. Therefore, it is assumed that the

channel perimeter is fixed at this value and it is shown that the capacity increases

as the channel shape become more circular by increasing the number of sides n.
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In particular, the following channels are considered: square channel of length 40

µm (equivalent to a polygon with n = 4), and regular polygonal channels with

parameters (n = 8, r = 26.13 µm), (n = 12, r = 25.76 µm), (n = 16, r = 25.63

µm), and (n = 20, r = 25.57 µm). Based on the optimization formula, it is

expected for the 20-sided channel to be the optimal among all these channels since

it is more circular. Figure 6.13 shows the channel capacity for each of these channels

obtained through Monte Carlo simulations versus the maximum number of particles

the transmitter can release xmax. As can be seen, the optimal channel is indeed the

20-sided regular polygon. Moreover, from the obtained pattern it is obvious that

as the number of sides increase the channel capacity increases. This supports the

results obtained from the optimization formula that circular channels are optimal.

To evaluate the performance of Equation (6.16) consider the time per channel

use interval of τ = 250 seconds. The solution of this optimization problem is

a channel with parameters n = ∞ and r ≈ 20 µm. Because in the simulation

environment the number of sides must be a finite number, and therefore the value

of n = 20 is used in place of a perfect circle. Four different regular polygonal

channels are simulated with parameters: (n = 20, r = 17 µm), (n = 20, r = 20

µm), (n = 20, r = 22.75 µm), and (n = 20, r = 25.57 µm). Figure 6.14 shows

the channel capacity of each channel versus the maximum number of particles the

transmitter could release. As can be seen in the figure, the channel with the radius
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Poly n = 20, r = 17, MT = 8

Poly n = 20, r = 20, MT = 12

Poly n = 20, r = 22.75, MT = 16

Poly n = 20,  r = 25.57, MT = 20

Figure 6.14: Channel capacity of four circular-shaped channels versus maximum
number of particles that can be released at the transmitter.

of 20 µm achieves the highest capacity among the four channels. This result is in

perfect agreement with the optimal solution derived from the optimization formula.

6.2.4.3 Regular Polygonal Ring Channels

In this section, the optimization formula is validated through simulations for polyg-

onal ring-shaped channels presented in Equation (6.18). It is assumed that the time

per channel use interval is fixed at 320 seconds. Using the solution to Equation
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Ring n = 20, ro = 25.57, ri = 0, MT = 20

Ring n = 20, ro = 25.57, ri = 10, MT = 17

Ring n = 20, ro = 25.57, ri = 15, MT = 13

Ring n = 20, ro = 25.57, ri = 20, MT = 7

Figure 6.15: Channel capacity of ring-shaped channels versus maximum number
of particles that can be released at the transmitter.

(6.18), the optimal channel dimensions are n = ∞, ri = 0, and ro ≈ 25.57 µm. In

Figure 6.13, it was already shown that the solid circular-shaped channel is optimal

among regular polygons. Therefore, only circular ring-shaped channels are consid-

ered for validation. In particular, the following ring-shaped channels are considered:

(n = 20, ro = 25.57 µm, ri = 0 µm), (n = 20, ro = 25.57 µm, ri = 10 µm), (n = 20,

ro = 25.57 µm, ri = 15 µm), and (n = 20, ro = 25.57 µm, ri = 20 µm). Figure 6.15

shows the channel capacity of these channels versus the maximum number of par-

ticles the transmitter could release. As can be seen from the figure, a solid circular
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channel achieves the highest capacity as predicted by the optimization formula.

Based on all these results, it can be concluded that a solid circular-shaped

channel is the optimal shape that maximizes information rate, when stationary

kinesin with mobile microtubule filaments are used for transportation in molecular

communication systems. Moreover, as the number of sides increase and the channel

becomes closer to circular, the performance gains of adding more sides decreases.

Based on the obtained results, there is negligible performance difference between

channels with the number of sides greater than 20. Therefore, these channels are

sufficient representation of perfectly circular-shaped channels.
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7 Tabletop Experimental Platform for

Molecular Communication

In the previous three chapters, on molecular communication for on-chip applica-

tions were discussed. As was highlighted by the comprehensive survey in Chapters

2 and 3, however, another very important problem in molecular communication is

the wide gap between theory and practice. Most previous works have focused on

theoretical aspects of molecular communication. This is because of the expensive,

laborious, and multidisciplinary nature of the laboratory experimentation. To over-

come this wide gap, in this chapter the world’s first tabletop experimental molecular

communication platform that is capable of transporting sequential data such as text

messages is developed. This system is purposefully designed to be built with inex-

pensive and readily available off-the-shelf parts, such that other researchers could

replicate the platform with ease. Using this testbed, it is demonstrated that reliable

communication is possible using chemical signaling. This platform is different from

the on-chip molecular communication channels considered in the previous chap-
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ters, and is not intended to be an experimental demonstrator for those particular

channels.

7.1 Materials and Methods

In this section, a simple, robust, and cost-effective communication system is de-

signed and implemented that uses chemical signals for carrying information from a

transmitter to a receiver. To test this system, it is used to send a short text mes-

sage: this is a familiar application, as billions of Short Message Service (SMS) text

messages are sent daily by mobile users [257]. To design and develop the system,

the following criteria are considered:

• The end product must be inexpensive to build. This would make the platform

readily available for many different research and development projects with

limited amount of funding.

• The designed system must be simple and robust, much the same as the tele-

graph, the ancestor of modern telecommunication systems. The simple and

robust design would help in the adoption of the platform in different applica-

tions.

• The developed system must be easily modifiable and programmable. Again

this is an important criterion for future expansions and adoption to different
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applications.

As discussed in Chapter 2, any communication system can be broken down

into three major parts: the transmitter, the receiver, and the channel. Over the

next three subsections, the design for the transmitter, the receiver, and channel

propagation are presented.

7.1.1 Transmitter Design

The transmitter takes an input text message from a user. It then converts the

text message into a sequence of binary bits and modulates them on a chemical

signal for propagation in the channel. To control all transmission operations, the

Arduino Uno open-source electronics prototyping platform is used, which is an

ATmega328 based microcontroller board. For text entry, the 16x2 character LCD

Shield Kit from Adafruit is used. The LCD is an add-on module for the Arduino

microcontroller board, which also has six push buttons. A program for the Arduino

microcontroller is developed which employs the LCD and its buttons for text entry

by the user.

To convert the text message to a binary sequence, the International Telegraph

Alphabet No. 2 (ITA2) standard is used [258], where every letter is represented

using five bits. For example, the letter “E” is represented by a five bit sequence

“10000”. Table 7.1 shows how each letter of the alphabet is encoded using a 5-bit

215



Table 7.1: International Telegraph Alphabet No. 2 (ITA2) source encoder.

Letter 5-bit Binary Representation Letter 5-bit Binary Representation
A 11000 O 00011
B 10011 P 01101
C 01110 Q 11101
D 10010 R 01010
E 10000 S 10100
F 10110 T 00001
G 01011 U 11100
H 00101 V 01111
I 01100 W 11001
J 11010 X 10111
K 11110 Y 10101
L 01001 Z 10001
M 00111 ‘ ’ (space) 00100
N 00110 null 00000

sequence. For simplicity, no error-correcting codes are used. Therefore, the five bit

encoded letters are passed to the modulator block of the transmitter for modulation

and transmission to the channel.

To modulate the channel symbols into chemical signals, an electronic spray

called DuroBlast made by Durotech Industries is used. The DuroBlast electronic

spray has a battery operated electrical pump that can spray a wide variety of liquid

chemicals that can be stored inside its container. A custom electrical switch board

is designed that can be used to control the spray from the Arduino microcontroller

board. The circuit diagram for the switch board is shown in Figure 7.1. The

parts used in the circuit include an 2K ohm resistor, an 1N4004 diaod, and an

IRLZ44ZPBF MOSFET. The 5V port is connected to the positive port of the
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Figure 7.1: The circuit diagram for the custom electrical switch board for
the spray. The parts include an 2K ohm resistor, an 1N4004 diaod, and an
IRLZ44ZPBF MOSFET. The 5V port is connected to the positive port of the
battery in the spray, and the GND port is connected to the negative port of the
battery in the spray.

battery in the spray, and the GND port is connected to the negative port of the

battery in the spray. By programming the Arduino microcontroller board, any

type of modulation can be implemented through controlled set of sprays. Figure

7.2 shows the transmitter setup with all of its subcomponents.

7.1.2 Receiver Design

To design the receiver, a sensor is required that is capable of detecting a chemical

signal. The data from the sensor is processed by the demodulation and detection

algorithms, and finally decoded into text. Again, the Arduino Uno open-source
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Custom Electrical 

Switch Board

DuroBlast 

Electrical Spray

Arduino Uno

Microcontroller

Adafruit LCD

Shield Kit

Figure 7.2: The transmitter components.

microcontroller is used for programming and controlling all the receiver operations.

The Arduino Uno board has a 10-bit analog to digital converter that can be used

to read the sensor data. The demodulation and detection block and the source

decoder block can then be programmed into the microcontroller, and the resulting

detected text message can be displayed on a computer screen using serial port.
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Arduino Uno

Microcontroller

MR513 Sensor

MQ-3 Sensor

MQ303 Sensor

Figure 7.3: The receiver components.

To achieve the design criteria, the receiver’s sensor must be sensitive, widely

available, and inexpensive. Moreover, it must be able to detect a volatile, widely

available, and inexpensive signaling chemical that is safe at the low concentrations

that are use. Therefore, isopropyl alcohol (rubbing alcohol) is chosen as the signal-

ing chemical with three different candidate sensors for demodulation and detection

at the receiver: MQ-3, MQ303A, MR513 alcohol sensors, all of which are manufac-

tured by Henan Hanwei Electronics Co. Ltd. of China. All three sensors use a metal

oxide semiconductor detection layer [160] for detecting the alcohol, but each has

a different sensitivity, power and operation circuit diagrams. Detailed information

about each sensor and its respected circuit can be found from the corresponding

sensor data sheet [259–261]. Besides isopropyl alcohol, the sensors can detect other

types of alcohol such as ethanol, which have been validated experimentally. How-
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Figure 7.4: The system orientation.

ever, in this dissertation only used isopropyl is used for experimentation. All three

sensors are implemented on a custom-made PCB board as shown in Figure 7.3.

7.1.3 Propagation Channel

Two different propagation schemes are considered for the channel: diffusion, and

flow assisted propagation. For all experiments performed throughout this chapter,

the transmitter and the receiver are oriented in such a way that the receiver is right

in front of the transmitter. Moreover, the tip of the spray and the sensor have
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the same approximate height. This is demonstrated in Figure 7.4. In the diffusion

based propagation, after the initial spray the alcohol diffuses in the air until it

reaches the receiver. In flow based propagation, a tabletop fan is used to guide the

alcohol towards the receiver. Therefore, the diffusion propagation does not require

external energy (beyond the energy required to release the chemical message), while

the flow assisted propagation requires external power. Two different tabletop fans

are used to generate flow:

• Honeywell 7 inch Personal Tech fan: This fan is an inexpensive bladed fan

(approximately $16 USD) with two different fan speeds (low and high).

• Dyson AM01 10 inch bladeless fan: The Dyson fan is much more expensive

(approximately $250 USD), but can generate more laminar flows and many

different wind speeds by adjusting an analog nub.

When any of the two fans are used, they are placed 30 cm behind the spray.

To measure the flow speeds generated by each fan, the Pyle PMA82 digital

anemometer is employed. The maximum flow speed is measured at distances of 10

cm, 50 cm, 100 cm, 150 cm, and 200 cm from the front of the spray (the fan is

placed 30 cm behind the spray). For the Dyson fan 5 different nub positions are

selected and these positions are labeled as very high, high, medium, low, and very

low. Figure 7.5 shows the wind speed for each fan at each distance. Because there
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Figure 7.5: Wind speeds generated by each fan. The Dyson fan plots are in blue,
and Honeywell plots are in red.

is +/−3% error associated with the digital anemometer, four different measure-

ments are averaged to produce each plot point in Figure 7.5. Moreover, the digital

anemometer is not rated for flow speeds below 1 m/s. Therefore, flow speeds below

this range are not shown. The average flow velocities achieved over this distance is

tabulated in Table 7.2 for each fan setting.

The system response (the output of the sensor for a single short spray between

100-250 ms) is compared under both propagation schemes (diffusion and flow as-

sisted propagations). At short distances (up to 1 meter), the diffusion based prop-

agation scheme performs well because the alcohol ejected from the spray reaches
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Table 7.2: Average flow velocities. The average flow velocities over the distance
of 200 centimeters generated using the Dyson and Honeywell fans.

Flow Generated By Average Flow Speed (m/s)

Dyson on very high 1.99

Dyson on high 1.80

Dyson on medium 1.72

Dyson on low 1.46

Dyson on very low 1.37

Honeywell on high 1.92

Honeywell on low 1.48

the sensors almost instantaneously. However, if the spray is placed further away,

diffusion based propagation would not be practical because of the extremely slow

system response. This effect can be seen in Figure 7.6, where the system response

to a very short spray of 250 ms in duration is plotted for both diffusion based and

flow based propagations. The flow in this figure is generated using the Honeywell

fan on the high setting, and the spray is placed at a distance of 2 meters from the

detection sensor. As can be seen, the system has a quick and distinct response when

flow based propagation is employed. Although the response is plotted for only one

of the sensors (MQ-3 sensor), the same effect was observed for all the other sensors,
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Figure 7.6: Diffusion based propagation versus flow based propagation. The
system response to a 250 ms spray 2 meters away for diffusion based propagation
(blue), and flow based propagation (red).

as well as when the Dyson fan is used in place of the Honeywell fan. Therefore, for

the molecular communication setup flow based propagation is used.

7.1.4 Signal Modulation and Demodulation

Because communication is performed through chemical signals, and only a limited

amount of signaling chemical can be stored in a container at the receiver, the mod-

ulation and demodulation scheme selected should minimize the amount of chemical

used. The source coding scheme for encoding text messages, presented in previous
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sections, uses the least amount of ones in the 5 bit sequence for characters that have

a higher rate of occurrence in the English text. For example, letters “E” and “T”

both have a single one in their 5 bit sequences. Therefore, the bit 1 is modulated

using a single spray and the bit 0 is modulated with no spray. This modulation

scheme, which is called on-off keying, effectively minimizes the amount of chemical

used for communicating English text.

At the receiver the demodulation is performed by measuring the rate of change

in concentration. If during a single bit’s communication session the voltage reading

from one of the sensors is increasing (i.e. the concentration of the chemical signal

is increasing), then the signal is demodulated as the bit 1. Similarly, if the voltage

reading from one of the sensors is decreasing (i.e. the concentration of the chemical

signal is decreasing) the signal is demodulated as the bit 0. More details regarding

the detection and demodulation process is provided later in the chapter.

7.1.5 Communication Protocol Design

In this section, the communication protocol between the transmitter and the re-

ceiver, and its implementation is discussed. In designing the protocol, the following

criteria are used: the protocol must be simple, asynchronous (i.e. no synchroniza-

tion is required between the transmitter and the receiver), and should work inde-

pendent of the separation distance between the transmitter and the receiver (i.e. it
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should not only work for a predefined fixed distance between the transmitter and

the receiver).

At the transmitter, the output of the source encoder (i.e. the bit sequence

representing the text message) is concatenated with a two bit sequence “10” at the

beginning and the null character represented by “00000” at the end. The initial

“10” indicates start of a text message, and the null character indicates the end of

the text message. For example, if the text message that is being transmitted is the

letter “A”, the output of the source encoder is the five bit sequence “11000” (where

the left most bit position is the first bit position), and transmission bit sequence

is “101100000000”. The transmission bit sequence is then modulated using the

scheme discussed in the previous section, where 1 is modulated with a spray and

0 with no spray. Figure 7.7 represents the flowchart of the algorithm that runs at

the transmitter, and summarizes this process.

At the receiver, there are two states: the wait state, and the reception state. In

the wait state, the receiver uses its sensor to continuously monitor the concentration

of alcohol. If there is a sudden increase in the concentration of alcohol (i.e. sudden

increase in the sensor’s voltage output), the receiver switches to the reception state.

This sudden change is caused by the initial “10” bit sequence concatenated to the

beginning of every text message sent by the transmitter. This sudden change can

also be used as the reference time for synchronizing each bit interval for all the bits
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end of the bit sequence

Modulate and transmit all 

transmission bits

Figure 7.7: Flowchart representation of the algorithm that controls the trans-
mitter.

that would follow. Therefore, no synchronization is required between the transmit-

ter and the receiver in advance. Another factor that is taken into account in this

scheme is the propagation delay. Because the receiver is triggered into the recep-

tion state as soon as the leading bit 1 is detected, the time delay caused by signal’s

propagation over the separation distance from the transmitter to the receiver is

incorporated in the reference time. Therefore, the communication protocol is in-

dependent of the distance between the transmitter and the receiver, and it would

work even when the distance is changed between communication sessions.
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Figure 7.8: Flowchart representation of the algorithm that controls the receiver.

After the receiver enters the reception state, it waits for two bit intervals until

the reception of the initial “10” bit sequence is finished. The receiver then de-

modulates and decodes the received signal 5 bits at a time. During each 5 bit

interval, the source decoded character is displayed to the computer screen using

serial port connection. This process continues until the null character represented
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by all zero sequence “00000” is detected. Because the null character indicates the

end of the text message, the receiver will go back to the wait state until another

text message is sent by the transmitter. Figure 7.8 summarizes the algorithm that

is implemented at the receiver.

7.2 Results and Discussions

In this section, first the impulse response of the overall system is presented and

discussed, and then effects of different types of flow on the overall response is

considered. Based on these results, the most suitable sensor is chosen to be used

for the communication system. Different system parameters such as transmission

rate, and the demodulation/detection algorithm are then fine tuned. Finally, some

of the obtained results are presented and discussed.

7.2.1 Overall System Response

The overall system’s impulse response is measured by using a very short spray

(typically between 50-250 ms in duration) that resembles the delta function from

signal processing. The terms system response and system’s impulse response are

used interchangeably. In the rest of this section, preliminary observations of the

system response are presented to design the text messaging system, and in the next

chapter the system response is modeled in more details.
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Many parameters can effect the overall system impulse response. The most

notable factors that have a major effect are:

• The sensor: Each sensor has its own response to a changing concentration.

Three different sensors are used and the one that has the best overall response

is chosen.

• The fan (flow type): Each fan has its own flow signature. An inexpensive

bladed fan as well as a bladeless fan are used to generate different types of

flow at different flow velocities. The Dyson fan can produce a more laminar

flow at various velocities.

• The spray: Although the spray is electronically controlled with precise electri-

cal signals, there are differences in the amount of particles that are released

during each trial, and the size of the droplets in each spray stream. It is

very difficult to precisely control these parameters within an inexpensive ap-

paratus. Therefore, instead of precisely controlling the amount of chemical

released by the spray, the overall response of the system is measured using

a very short spray burst. By using similar burst durations, the amount of

chemicals released is loosely controlled across different experimental trials.

There are other factors that could potentially affect the overall system response such

as other flow patterns within the room, room temperature, and humidity. To lessen
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the effects of these parameters, all the experiments are performed in a closed room

with loosely regulated temperature and humidity. These precautions are enough,

because other factors have a much greater effect on the overall response.

7.2.1.1 The Effects of the Sensor

To study the effects of the sensor on the overall response, the spray duration is set

at 100 ms (i.e. the spray is switched on for 100 ms), and the system response is

measured using each of the three sensors at various separation distances between

the transmitter and the receiver. This scheme is used as it would be difficult to

control and measure the actual volume of alcohol released during each burst. Figure

7.9 shows the system response for 2 meter separation distance (7.9a), and 4 meter

separation distance (7.9b) for all three sensors. The Honeywell fan on the high

setting is used to produce the flows for all these plots. As expected the amplitude

of the peak decreases and the delay before the peak increases as the separation

distance is doubled. The peaks also become wider and more flat as the separation

distance increases. Similar effects are also observed when the Dyson fan is used to

generate the flow.

From the overall system response, it is evident that there is a large amount of

noise in the MR513’s signal because of the operational amplifier used as part of its

circuitry. Although the MQ303 has a high peak at 2 meters, the peak’s full width
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Figure 7.9: Comparing the three sensors. The system response to a short spray of
100 ms for all three sensors at (a) 2 m separation, and (b) 4 m separation between
the transmitter and the receiver.

at half max (the width of the peak at half the value of its maximum shown in

Figure 7.12) is much larger than the other two sensors. Ideally, this width must be

as small as possible. Moreover, the height of the MQ303’s peak drops significantly

at 4 meters. The MQ-3 sensor has low noise and better system response over wider

range of separation distances. Moreover, the MQ-3 has the simplest circuitry and

can draw power directly from the Arduino microcontroller board. Therefore, the

MQ-3 sensor is selected for the final implementation.

One of the major caveats of metal oxide gas sensors, including all three sensors
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used, is the delays in responding to a changing concentration [160]. These delays

core categorized as:

• The sensor’s response time, i.e., the time it takes for the sensor to respond to

a change in concentration; and

• The sensor’s resume time, i.e., the time it takes for the sensor to be used

reliably again after a change in concentration.

The change in system response based on the initial voltage reading (i.e., initial

concentration at the sensor) is another factor affecting these sensors. This effect

can be seen in Figure 7.10, where the system response to a single short spray of

100 ms at the distance of 4 meters away with different initial voltage readings (i.e.

different initial concentrations) at the sensor is plotted. The flow in this figure is

generated using the Honeywell fan on high setting (similar results are also observed

when the Dyson fan is used for flow generation). This figure shows that the system

response changes for different initial concentration levels at the sensor. To make

sure that the sensor resume time is not effecting the readings, the sensor is brought

up to a voltage level (i.e. concentration level) higher than the target initial voltage.

Then, by waiting long enough the voltage reading drops to the target initial voltage

level. This wait period is also long enough to eliminate the effects of sensor resume

time. The impulse spray is then initiated and the corresponding system response
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Figure 7.10: System response for different initial voltages. The system response
changes based on the initial voltage.

is measured.

7.2.1.2 The Effects of Flow

Flow is an important part of the setup, because it carries the alcohol droplets from

the transmitter to the receiver. Therefore, it has a significant effect on the overall

system response. However, isolating the effects of flow can be very challenging.

For example, the spray itself cannot release very precise amounts of alcohol with

uniform droplet sizes between different experimental trials. Another factor that

could potentially effect the results is random flows within the room. As a result,
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Figure 7.11: The system response for different experimental trials. The flow
in these trials is generated using the Dyson fan on very low setting. The spray
duration is 100 ms, and the separation distance is 2 m.

the overall impulse response of the system changes between different trials. This

effect can be seen Figure 7.11, where the system response to a 100 ms spray 2

meters away is plotted for 5 different experimental trials. The initial voltage for

each trial is kept constant at 1.02 volts, and the Dyson fan on the very low setting

is used to generate the flow. Moreover, the sensor, the spray and the fans are kept

at the same height. From the plot it is evident that there is some difference across

the trials.

To mitigate this problem, and further isolate the effects of flow, multiple experi-

mental trials are performed and average the results are presented. Two performance
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Figure 7.12: The peak’s full-width at half maximum (FWHM) is shown in the
plot. The peak’s maximum (PM) is fmax, and delay to peak’s max (DPM) is xmax.

metrics are used for comparing the system response generated using different fans

and flow speeds: the peak’s max to full-width at half max (PMFWHM), and delay

to peak’s max (DPM). The PMFWHM is the ratio of the peak’s maximum volt-

age to the full width of the peak at half max. The larger this ratio the taller and

narrower the peak shape will be. Ideally the peak must be as tall and as narrow

as possible. Therefore, larger ratios are desirable. The DPM, is the time from the

start of the spray to the time where the peak’s maximum point is achieved. The

smaller this time duration, the faster the peak’s maximum is reached. It is desirable

for this delay be as small as possible. Figure 7.12 shows FWHM, PM, and DPM.

As explained earlier, two different table fans are used, one made by Dyson and

one by Honeywell. The Dyson fan is bladeless, more expensive, and can create

more laminar flows. The Honeywell fan is inexpensive, but it is a bladed fan and

236



it creates more turbulent flows. Five different fan settings are considered for the

Dyson fan, while the Honeywell fan has only two possible settings as explained in

previous sections. The average flow velocities over a 2 meter distance are tabulated

in Table 7.2. For each fan and each corresponding fan setting, the overall system

response to a short spray of 100 ms, 2 meters away, is measured for 10 experimental

trials. The initial sensor voltage reading for each trial is kept constant at about

1.02 volts (i.e. there is enough delay between trials such that the sensor voltage

falls back to 1.02 volts).

To compare the fans and their corresponding fan settings, performance metrics,

PMFWHM and DPM, are calculated for each of the 10 trials. The results are then

averaged and presented in Figure 7.13. In Figure 7.13a, the DPM is plotted for

different flow speeds generated by each fan and its corresponding fan setting. As

can be seen, the Dyson fan has a shorter DPM for the same average flow speed

because the flow generated by this fan is more laminar compared to the Honeywell

fan. Moreover, the flow speed also decreases the delay. Finally, from the Dyson

plot it can be seen that this delay decreases almost linearly with increasing flow

speed.

The PMFWHM is shown in Figure 7.13b for different fans and setting. From

the plots it can be observed that the PMFWHM ratio increases as the fan speed

increases. Therefore, the impulse response becomes narrower and taller as the
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Figure 7.13: Analysis of the system response for different flows. The delay to
peak’s maximum is used as one performance metric (a), and the peak’s maximum
to full width at half max is used as a second performance metric (b). The results
from 10 different trials are averaged to create each point. The spray duration is
100 ms, and the separation distance is 2 m.

fan speed increases. The Dyson fan also achieves higher ratios compared to the

Honeywell fan. Therefore, the more laminar flows that the Dyson fan generates

can create taller and narrower system response.

From these results, it is concluded that the Dyson fan is a better choice for

generating flows. However, because it is more than 10 times expensive compared to

the Honeywell fan, and one of the goals is to create a cost effective demonstration

of macroscale molecular communication, for the final communication system the

238



Honeywell fan is used. Therefore, the achievable transmission rates can potentially

be improved by simply using the Dyson fan in place of the Honeywell fan.

7.2.1.3 System Nonlinearity

In this section, it is shown that the overall system response of the setup is nonlinear.

Although the exact cause for nonlinearity is not known, and more extensive research

is required, this result by itself is very interesting. To show that the system is

nonlinear, a set of periodic sprays of 100 ms are considered with a period of 2

seconds. The output sensor voltage is then measured and recorded as the system

response. Figure 7.14 shows the results for both the Dyson fan on the very high

setting and the Honeywell fan on the high setting.

As can be seen in Figure 7.14, the output does not follow that of a linear system.

For example, between the 13 and 15 second marks (the arrows in the plot point

to this time duration), where there should be another increase in concentration

because of the seventh periodic spray, there is a sudden drop in voltage. This effect

is observed for both the case where the Dyson fan is used and the case where the

Honeywell fan is used. However, there are more clear peaks when the Dyson fan is

used because of the narrower and taller system response explained in the previous

section.

The nonlinear responses observed in the experiments are surprising, because
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most molecular communication systems are normally assumed to be linear in the

literature. Many of the mathematical tools used in the literature at microscales

require the system to be linear, and these tools cannot be directly applied to a

nonlinear communication system. Although the source of nonlinearity is not known,

some likely candidates are: the sensor with its response and resume times, the flow

generated by the fans which may be turbulent, the spray which is not precise

enough to create uniform streams, and other environmental factors such as other

flows within the room. It may be possible for the system response to become linear
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with the use of more expensive and sensitive hardware, and within a precisely

controlled environment. Nonetheless, the potential nonlinearity of the system is an

issue, which is investigated further in the next chapter.

7.2.2 Final Implementation and Discussion

The final steps of implementation are discussed in this section. The Honeywell fan is

used for demonstration despite the fact that the Dyson fan can create better system

response, to make the final platform more cost effective. Moreover, experimenting

using Honeywell fan provides a lower bound on reliability. In the final platform,

MQ-3 sensor is used because it provides the best system response, and it has the

simplest circuitry between all three sensors.

First, the noise issue is addressed. Although the MQ-3 sensor response is less

corrupted by noise compared to the other two sensors, there is still some noise

present in the signal. To further reduce this noise, 20 ms of sensor data is averaged

to generate a single sensor reading. Because the Arduino sampling rate is observed

to be about 8.33 kHz, 20 ms of sensor data contains 167 different readings which

are then averaged. Therefore, in the wait state the receiver checks consecutive 20

ms of averaged sensor readings, and triggers a change to the reception state if the

difference between the current reading and the previous reading is greater than 0.5

levels (because Arduino has a 10 bit analog to digital converter the sensor reading
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would be an integer between 0 and 1023 representing 1024 different voltage levels,

where 0 represents 0 volts and 1023 represents 5 volts).

An important communication parameter is the transmission rate. One of the

major factors that affects reliable communication at a given transmission rate is the

DPM. The DPM is in turn affected by the flow type and the flow speed. Therefore,

for the platform the fan speed is always set to high. Another factor that effect the

transmission rate is the sensor response and resume times discussed in the previous

section. Finally, many other factors such as the environmental noise (e.g. random

flow patterns in the room) can also effect the transmission rate.

Different experiments are carried out with various transmission rates from one

bit per 5 seconds (a character per 25 seconds) to one bit per 2 seconds (a charac-

ter per 10 seconds). To measure the reliability at each rate, multiple experiments

are performed at different separation distances between the transmitter and the

receiver. Each transmission rate at each separation distance is then classified ac-

cording to the following ranking: very reliable (bit error rates of less than 0.01),

reliable (bit error rates of 0.01 to 0.03), unreliable (bit error rates greater than

0.03). Table 7.3 summarizes the results.

At one bit per 2 seconds the transmission is unreliable at small distances of up

to 2 meters, because of the sensor’s resume time at higher concentrations is longer.

Moreover, at larger distances (greater than 2 meters) successful communication is
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Table 7.3: Different transmission rates and their reliability.

Distance

Transmission Rate (bits/s) 2 m 3 m 4 m

0.2 Very Reliable Very Reliable Very Reliable

0.33 Reliable Very Reliable Reliable

0.5 Unreliable Unreliable Unreliable

not possible at the rate of one bit per 2 seconds. At the rate of one bit per 5

seconds, the transmission is very reliable over various separation distances from 4

meters to 1 meters. Based on experiments, the smallest transmission rate that is

reliable at distances up to 4 meters is one bit per 3 seconds. At this rate over

the separation distance of 4 meters the communication session is reliable, over the

separation distance of 3 meters the communication session is very reliable, and

over the separation distance of 2 meters the communication session is reliable. The

reason that the communication channel degrades slightly as the separation distance

is decreased from 3 meters to 2 meters is because of the higher concentration levels

at the sensor, and hence sensor saturation and longer sensor resume times.

In the rest of the section, this transmission rate is used (one bit per 3 seconds),

and the demodulation and detection algorithm is described in details for this rate.

Although the thresholds used in this algorithm may be slightly different for each

243



0 10 20 30 40 50 60 70 80
0.5

1

1.5

2

2.5

3

3.5

Se
ns

or
 V

olt
ag

e 
(V

)

Time (s)

Sensor’s Measurement for the Test Bit Sequence, 4 m Away, 1 Bit Per 3 s

1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 11 0
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meters away at the rate of one bit per 3 seconds. The dashed red lines represent
the start and the end of each bit. Honeywell fan is used to create the flow for this
figure.

transmission rate, the same underlying principal is used for detection and demod-

ulation at all rates: the rate of change in the concentration at the sensor. To fine

tune this algorithm a 26 bit test sequence “10101100111000101011110110” is trans-

mitted at the distance of 4 meters away, and the sensor reading is recorded. Figure

7.15 plots the sensor voltage reading during this transmission session. Dashed red

lines are used to represent the start and the end of each bit. From this plot a simple

detection and demodulation scheme is devised. The difference between the voltage

level (there are 1024 levels in the Arduino’s 10 bit analog to digital converter) at the
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end of a bit interval and the middle of a bit interval is measured. If the difference

is greater than 2.2 levels (this threshold is derived through experimentation), the

bit is detected as 1; otherwise the bit is detected as 0.

Using this scheme, the test phrase “O CANADA” (the name of the national

anthem of Canada) is successfully transfered from the transmitter to the receiver.

Figure 7.16 shows this test phrase at the transmitter and received at the receiver.

245



(a)

(b)

Figure 7.16: Transmitted and received text message. Pictures from a communi-
cation session: (a) the text entered at the transmitter (b) the text received at the
receiver.
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8 Channel Models for the Tabletop Platform

In the previous chapter, an experimental platform for molecular communication

was developed that is capable of transporting short text messages. The impulse

response for the system was presented and it was shown that the system tends to

be nonlinear. In this chapter, mathematical models are developed for the impulse

response of the system, and this nonlinearity property is further investigated to

show that it could be represented as additive noise.

8.1 Experimental Setup and Previous Theoretical Models

8.1.1 Tabletop Test bed

The macroscale tabletop test-bed which was presented in the previous chapter is

used for the experiments performed in this chapter. As shown in the previous chap-

ter, the end-to-end system impulse response for this platform can be obtained by

using a very short spray (e.g. 100 ms) at the transmitter (which resembles the delta

function from signal processing), and measuring the sensor output at the receiver.
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Figure 8.1: The end-to-end system impulse response is generated by using a very
short spray.

This is demonstrated in Figure 8.1. The end-to-end system impulse response in-

cludes the transmitter block, the channel and the propagation mechanise, and the

receiver block. Therefore, the effects of all these blocks are incorporated in the

end-to-end system impulse response.

To perform measurements, the transmitter and the receiver are separated by

225 cm. This distance is selected as an example, and the separation can be any

distance. At the sensor, the voltage output is measured and the observed data

is recorded. Figure 8.2 shows the system responses for 5 different trials. Between

each trial there is sufficient wait period until the initial voltage reading of the sensor

drops to about 1 volts. Although it is extremely difficult to find the exact cause

of deviations between trials, some likely causes are: the spray, which is not precise

enough to spray the same amount of alcohol for each trial; the flow, which can be

turbulent; the sensor, which can be noisy; and other environmental factors such as

random flows within the room.
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Figure 8.2: The end-to-end system impulse response obtained experimentally
across five different trials.

8.1.2 Previous Theoretical Models

It is assumed that the spray and the sensor have the same height in the 3-D space,

and that the fan’s flow is perfectly aligned with the line connecting the transmitter

to the receiver1. Therefore, the problem reduces to a one dimensional flow-assisted

diffusion. If it is also assumed that the sensor and the transmitter are perfect, and

1These assumptions can be easily satisfied through careful placement of the transmitter and
the receiver
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much greater than diffusion coefficient. Therefore, although the molecules are not
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the flow.

that the sensor does not absorb (or adsorb) the alcohol molecules (i.e. the alcohol

molecules stay in the environment after detection), the impulse response at the

receiver should be well approximated by [66]:

h1(t) =
M√
4πDt

exp
(
− (d− vt)2

4Dt

)
, (8.1)
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where M is the number of molecules released during the short burst, D is the

diffusion coefficient, d is the separation distance between the transmitter and the

receiver, v is the average flow speed from the transmitter to the receiver, and t

is time. This is essentially the probability distribution of a Wiener process with

drift, conditioned at a fixed distance d and multiplied by the number of molecules

M . If it is assumed that the alcohol molecules are absorbed (or adsorbed) by the

sensor upon detection, then the problem would be equivalent to the first arrival

time, and the impulse response would have a similar shape to the inverse Gaussian

distribution [66] given by

h2 =
Md√
4πDt3

exp
(
− (vt− d)2

4Dt

)
. (8.2)

Although the number of molecules sprayed by the transmitter is not known

(in fact it is random because each spray is not perfectly and precisely similar to

previous sprays), based on theoretical results, it is expected that the sensor output

should have a shape similar to the curves obtained from either (8.1) (in case the

molecules are not absorbed by the sensor) or (8.2) (in case they are absorbed by

the sensor).
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Table 8.1: System Parameters.

Parameters Values

Spraying duration for each bit 100 ms
Distance between a transmitter and a receiver 225 cm

Approximated fan speed Honeywell 190 cm/s
Diffusion coefficient of isopropyl alcohol 0.0959 cm2/s

Temperature (room temperature) 25 ◦C = 298 K

8.1.3 Models versus Experimental Results

In this section, it is shown that the previously published theoretical models, de-

scribed in the last section do not match the experimental results obtained using

the tabletop platform. To demonstrate this, the transmitter and the receiver are

separated by 225 cm. The Honeywell fan is set on the high setting to generate flows.

Table 8.1 summarizes all the system parameters of this setup. The flow speed of

the wind generated by the fan, which is tabulated in Table 8.1 is measured using

Pyle PMA82 digital anemometer.

If these parameters are used in the theoretical Equations (8.1) and (8.2), the

system response can be calculated. Because the number of particles released by

the transmitter is not known, it is assumed that M = 1 and then the plots are

normalized by dividing them by their respective maximums. Similarly, the system

responses obtained from experimental results is normalized with its maximum. By
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normalizing the plots, only the shape of the theoretical results are compared with

the shape of the experimental results. For the experimental system response, the

response from 12 different experimental trials are averaged to produce a single plot.

Moreover, the initial voltage is subtracted from the system response to effectively

zero the starting voltage.

As shown in Figure 8.3, the experimentally obtained response has a much wider

peak width, and longer tail compared to theoretical predictions. The difference be-

tween the theoretical results and the observed system response is because of many

assumptions made in the derivation of the theoretical results. For example, the

flow is assumed to be perfectly laminar and the sensor are assumed to be perfect

at detection of concentration. These assumptions do not hold for the experimen-

tal platform. Therefore, in the next section more realistic theoretical models are

derived based on the observed experimental data.

8.2 Realistic Models

In this section, the experimental data are used to derive a more realistic theoretical

model for the platform. First, likely causes of the deviation from the theoretical re-

sults are found. In particular, two system components can have a huge effect on the

system response: the sensor, and the flow. The previously published channel mod-

els assume a perfectly laminar flow, as well as perfect and instantaneous detection
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at the sensor. These assumptions do not hold for this experimental platform.

All metal-oxide sensors, have a response time and a recovery time [160]. The

response time is the time it takes for the sensor to respond to a sudden change in

concentration. The recovery time is the time it takes for the sensor to drop to its

initial voltage after a sudden change in concentration. The concentration function

with respect to time is therefore expanded because of the response and recovery

times. To compensate for this effect, the system response function in (8.1) and (8.2)

must be scaled in time by a factor of α as h1(αt) and h2(αt), where 0 < α < 1.

Another factor that affects the system response is the flow. Previous channel

models have assumed the flow to be perfectly laminar and uniform. This is, however,

not the case for the platform. The high wind speeds generates turbulence within

the flow. Moreover, the Honeywell fan’s blades can create pockets of air pressure

that can result in more turbulent flows. Fortunately, Fick’s law of diffusion can

still be applied to turbulent flows with a correction term added to the diffusion

coefficient [155]. Therefore, a correction must be made to the diffusion coefficient D

in (8.1) and (8.2).

The final factor considered is the flow speed. Although the wind speed generated

by the fans is known, the alcohol droplets in the spray stream may be travelling at

a slower average speed because of their weight and air friction. Therefore, a third

correction is needed in (8.1) and (8.2) for the average flow velocity v.
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Considering these three effects, two new models are proposed based on (8.1)

and (8.2),

M1(t) =
a√
t

exp
(
− b(d− ct)2

t

)
, (8.3)

M2(t) =
a√
t3

exp
(
− b(ct− d)2

t

)
, (8.4)

where a, b, and c are corrected constants. The corrected constant a contains the

scaling factor α from the sensor respond and resume times, and the correction to the

diffusion coefficient because of turbulent flow. The corrected constant b contains

the correction to diffusion coefficient because of turbulent flow and scaling factor

α. Finally, the corrected coefficient c contains the correction to the average flow

speed as well as the scaling factor α.

8.2.1 Estimating the Coefficients

The experimental data from the platform are used to estimate the value of these

corrections. To do this the transmitter and the receiver are placed 225 cm apart.

The sensor, the spray and the fans are placed at the same height, with the fan

blowing in the direction of the line connecting the spray to the sensor. The end-

to-end system impulse response to a very short spray burst of 100 ms is measured

and recorded during 12 different experimental trials.
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To estimate the coefficients of models M1 and M2, let Mi(tk,p) i ∈ {1, 2} be

the corresponding model (i.e. model M1 or M2) at the sampled time instance tk

with parameter vector p = [a, b, c]T , where a, b, and c are the three coefficients for

each model. Nonlinear least square curve fitting is used to estimate the coefficients.

Assuming that there are N points in each sensor measurement and that each point

in the measurement is represented by a function m(tk) k ∈ {1, 2, · · · , N}, the

coefficient estimation problem can be formulated as

min
p

N∑
k=1

(
m(tk)−Mi(tk,p)

)2
. (8.5)

This problem can then be solved using iterative algorithms such as Levenberg-

Marquardt algorithm [262].

To perform the nonlinear least square estimation using Levenberg-Marquardt al-

gorithm, MATLAB’s curve fitting function fit() is used for coefficients estimation

of each experimental trial. Because in the experimental setup it was demonstrated

that only the first few seconds of the impulse response is typically used in practice

for information transmission, only the first 5 seconds of sensor measurements are

used for curve fitting. Figs. 8.4 and 8.5 show the results where the Honeywell fan

on the high setting is used for flow generation, and model M1 is used for curve

fitting. In Figure 8.4, it can be seen that the fitted model resembles the obtained
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Figure 8.4: Sensor measurements and the fitted model for set of 12 trials. The
measurements are fitted with model M1.

results much more accurately compared to Figure 8.3. Figure 8.5 shows the plot of

each coefficient value for each trial. The dashed red line indicates the mean value

of each coefficient.

For the goodness of fit measure, the root mean square error (RMSE) between

the fitted model and the experimentally observed system responses is used. The

variance-to-mean ratio (VMR) is employed as a goodness of fit measure. If this

ratio is greater than one, then the resulting coefficient is not a good fit. If this ratio
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Figure 8.5: The coefficients’ variation for 12 trials. The dashed red line is the
mean value of each coefficient.

is less than 1, then the coefficient is a good fit. Table 8.2 summarize the result for

both model M1 and model M2 given in (8.3) and (8.4), respectively. In the table,

the mean RMSE is the average RMSE across all 12 experimental trials.

From the results it can be seen that model M1 has a better VMR, while model

M2 has a slightly better RMSE. Generally, because model M1 has a lower VMR,

the coefficients are more consistent between different experimental trials. Therefore,

model M1 may be more effective at consistently modelling the end-to-end system

impulse response.

To further compare the proposed models to the experimental results, the system

response from all 12 trials are averaged to generate the final experimental system

response. The mean of the coefficients across all 12 trials are used in each model to

generate the corresponding system response. The results are shown in Figure 8.6.
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Figure 8.6: Average system response of experimental observations and fitted
models.

Based on the results, it is evident that both new models capture the average system

response of the test bed platform much more accurately compared to old models.
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Table 8.2: The obtained coefficients for each model.

Model M1

Mean Variance Variance/Mean Mean RMSE
a 2.9050 0.0672 0.0231
b 1.3839×10−4 6.6117×10−10 4.7775×10−6 0.0539
c 54.3405 15.3455 0.2824

Model M2

Mean Variance Variance/Mean Mean RMSE
a 15.3909 4.2150 0.2739
b 1.6×10−4 6.9109×10−10 4.31×10−6 0.0501
c 35.3136 29.5543 0.8369

8.3 System Nonlinearity

In the previous chapter, it was demonstrated that the platform has a nonlinear

system impulse response. This nonlinearity, however, was not investigated in great

detail. Although it is extremely difficult to find the exact cause of nonlinearity

(some likely causes are imperfect receiver, transmitter, and turbulent flows), in

the previous chapter the nonlinearity property was demonstrated through mea-

surements. In this section, the nonlinearity property is verified through systematic

experimentation using two transmitters and a single receiver. This nonlinearity is

then modeled as noise and the underlying distribution for this noise is found by

employing the developed models in the previous section.

To study the nonlinearity, two transmitters and one receiver are used. Each
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(a)

(b)

(c)

Figure 8.7: The setup used to demonstrate the nonlinearity.

transmitter has its own Honeywell fan. The transmitters are 30 cm apart, and the

receiver is directly in front of the first transmitter separated by 225 cm. Figure 8.7

summarizes this setup. Let h(1)(t) and h(2)(t) be the end-to-end system impulse

response, when transmitter 1 and 2 spray a short burst of 100 ms in duration,

respectively. Moreover, let h(1,2)(t) be the end-to-end system impulse response
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Figure 8.8: Representation of system’s nonlinearity.

when both transmitters spray a short burst of 100 ms in duration simultaneously.
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If the system is linear, then

h(1,2)(t) = h(1)(t) + h(2)(t). (8.6)

As shown in Figure 8.8 this property does not hold. The system responses for

h(1)(t) (Tx1), h(2)(t) (Tx2), and h(1,2)(t) (Tx12) are generated by averaging 12

different trials to reduce the noise that may be introduced by other processes such

as random flow patterns in the room. As can be seen the h(1,2)(t) (Tx12) plot and

the h(1)(t) + h(2)(t) (Tx1 + Tx2) plot are not equal.

Although there may be many contributors to the end-to-end system nonlinearity,

based on these results, one of the most important contributors is the sensor. In

essence the sensor may act as a nonlinear filter. In the next section, this nonlinearity

is modeled as a noise process. Through this formulation the effects of this nonlinear

may be counter by using a filter.

8.3.1 Modelling the Nonlinearity as Noise

The nonlinearity in the system can be modelled as noise. Because the functions

h(1)(t), h(2)(t), and h(1,2)(t) are random processes, the nonlinearity noise can be
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represented as a random process given by

h(1,2)(t) = h(1)(t) + h(2)(t) + n(t), (8.7)

where n(t) is the noise process. To find the underlying model for the noise process

using experimental measurements, (8.7) is rewritten as

n(t) = h(1,2)(t)− h(1)(t)− h(2)(t). (8.8)

The expected value of the noise process is then given by:

E[n(t)] = E[h(1,2)(t)]− E[h(1)(t)]− E[h(2)(t)]. (8.9)

In Figure 8.8 the expected value of the noise process is represented by the solid

cyan plot. The noise process in this case is therefore nonstationary, because its

expected value in not a constant in time.

To simplify the noise model, the mathematical models derived in the previous

sections are used. To find the coefficients of this model h(1)(t), h(2)(t), and h(1,2)(t)

are measured using 36 different trials (12 distinct trials for each case). Let h
(1)
i (t),

h
(2)
j (t), and h

(1,2)
k (t) (i, j, k = 1, 2, . . . , 12) be the results of each trial. Using least

squares, the coefficients of model M1 and M2 are estimated based on the observed
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Table 8.3: The obtained mean coefficients of model function.

Model M1

Coefficient h(1) h(2) h(1,2)

a 2.905 1.9815 3.9737
b 1.3839×10−4 1.5605×10−4 1.3474×10−4

c 54.3405 59.4961 58.669

Model M2

Coefficient h(1) h(2) h(1,2)

a 15.3909 12.6246 18.7617
b 1.6035×10−4 1.5119×10−4 1.5885×10−4

c 35.3137 28.9746 40.7749

data from each trial. Again, the first 5 seconds of sensor measurements are used

for curve fitting, since in practice this would be the information carrying interval.

Table 8.3 shows the average value of each coefficient across different trials.

From this table it can be seen that coefficients b and c do not differ by more

than about 10 to 15 percent. Moreover, the separation distance between the trans-

mitters 1 and 2, and the receiver are almost similar. However, coefficient a changes

significantly, depending on which transmitters are spraying. This is consistent with

previous theoretical works, where system linearity is assumed. Assuming that the

coefficients b and c are similar across different trials and different transmitter sprays,
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(8.8) becomes

n(t) = h(1,2)(t)− h(1)(t)− h(2)(t),

nM1(t) ≈
a

(1,2)
M1√
t

exp
(−b(d− ct)2

t

)
(8.10)

−
a

(1)
M1√
t

exp
(−b(d− ct)2

t

)
−
a

(2)
M1√
t

exp
(−b(d− ct)2

t

)
,

nM1(t) ≈
NM1√
t

exp
(−b(d− ct)2

t

)
, and (8.11)

NM1 = a
(1,2)
M1
− a(1)

M1
− a(2)

M1
, (8.12)

where a
(1)
M1

, a
(2)
M1

, and a
(1,2)
M1

are the first coefficients of model M1 fitted to h(1)(t),

h(2)(t), and h(1,2)(t), respectively, and NM1 is the simplified noise model. Using the

same procedure a simplified noise model can be generated based on model M2 as

nM2(t) ≈
NM2√
t3

exp
(−b(ct− d)2

t

)
, and (8.13)

NM2 = a
(1,2)
M2
− a(1)

M2
− a(2)

M2
, (8.14)

where a
(1)
M2

, a
(2)
M2

, and a
(1,2)
M2

are the first coefficients of model M2 fitted to h(1)(t),

h(2)(t), and h(1,2)(t), respectively, andNM2 is the simplified noise. Using this method

the noises becomes NM1 and NM2 become random variables.
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To find underlying probability distribution of NM1 and NM2 , the first coeffi-

cient (a coefficients) of each model is estimated for each h
(1)
i (t), h

(2)
j (t), and h

(1,2)
k (t)

(i, j, k = 1, 2, . . . , 12) from the experimental trials. In these estimations, it is as-

sumed that the value of coefficients b, c and d are constant, and use the average

value of bM1 = 1.4306×10−4 and cM1 = 57.5018 when model M1 is used, and values

of bM2 = 1.57 × 10−4 and cM2 = 35.021 when model M2 is used. These values are

obtained by averaging the corresponding row in Table 8.3. It is also assumed that

the distance to the receiver for both transmitters is d = 225. From the obtained

coefficients 1728 (123) different noise samples are generated using

NM1 [i, j, k] = a
(1,2)
M1

[k]− a(1)
M1

[i]− a(2)
M1

[j], (8.15)

NM2 [i, j, k] = a
(1,2)
M2

[k]− a(1)
M2

[i]− a(2)
M2

[j], (8.16)

Figs. 8.9 and 8.10 show the histogram of the of the sample noises generated

using Equations 8.15 and 8.16, respectively. As can be seem the results are close

to Gaussian. Therefore, although the exact distribution is not known Gaussian

assumption is favourable [263, 264]. The Gaussian fit plot is generated using the

mean and the variance of the sample. The mean of the sample for samples generated

based on model M1 is µ = −0.7356 and the variance of the sample is σ2 = 0.5214.
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Figure 8.9: Histogram of the noise samples based on modelM1 and fitted Guassian
probability density.

The mean and variance for the samples generated using model M2 are µ = −3.9811

and σ2 = 14.9589. The samples generated based on model M2 have a much larger

variance because of the lager VMR of this model compared with model M1.
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Figure 8.10: Histogram of the noise samples based on model M2 and fitted Guas-
sian probability density.

269



8.3.2 Noise Model Evaluation

To validate the noise estimation model of nonlinearity, two random noise processes

are generated using

nM1(t) ≈
NM1√
t

exp
(−bM1(d− cM1t)

2

t

)
, (8.17)

nM2(t) ≈
NM2√
t3

exp
(−bM2(cM2t− d)2

t

)
(8.18)

where NM1 is the Gaussian random variable with mean µ = −0.7356 and variance

σ2 = 0.5214, bM1 = 1.4306 × 10−4 (average value of the corresponding row in Ta-

ble 8.3), cM1 = 57.5018 (average value of the corresponding row in Table 8.3), and

d = 225 is the separation distance between the transmitter and the receiver. Sim-

ilarly NM2 is the Gaussian random variable with mean µ = −3.9811 and variance

σ2 = 14.9589, bM2 = 1.57 × 10−4 and cM2 = 35.021. Using this noise process, 144

different samples for when both transmitters spray is generated using the sensor

measurements from a single transmitter spray data using

ĥ
(1,2)
i,j = h

(1)
i (t) + h

(2)
j (t) + n(t), (8.19)

where ĥ
(1,2)
i,j is the estimated sample, h

(1)
i (t), and h

(2)
j (t), are sensor measurement

from 12 different trials (i, j = 1, 2, . . . , 12), and n(t) is the noise process generated
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Figure 8.11: Effectiveness of modeling the nonlinearity as noise.

either using model M1 (i.e. Equation 8.17) or model M2 (i.e. Equation 8.18).

Figure 8.11 shows the results. The Tx12 plot shows the the average system

response h(1,2) when both transmitters spray (averaged across 12 different trials).
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The Tx1+Tx2 plot shows the average system response for h(1)(t) + h(2)(t), the

Tx1+Tx2+Noise M1 plot shows the average ĥ(1,2) across the 144 samples when

the noise model is based on M1, and the Tx1+Tx2+Noise M2 plot shows the red

plot shows the average ĥ(1,2) across the 144 samples when the noise model is based

on M2. As can be seen from the plot, both noise models that are presented can

effectively represent the nonlinearity which is present in the system. This is a

significant result since the system can now be represented as a linear model with

noise. The noise estimation is accurate.
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9 Conclusions and Future Work

In this dissertation, I considered molecular communication systems from both the-

oretical and practical perspectives. I described that molecular communication is a

new branch of communication engineering, where small information particles such

as molecules are used to transfer data from a transmitter to a receiver.

In Chapter 2, I presented the physical, chemical, and biological processes that

underlay molecular communication systems at both microscales and macroscales. I

described what components are needed for the molecular communication transmit-

ter and receiver. Moreover, I described different types of molecules and chemicals

that could be used as carriers of information. I also discussed different types of

transport mechanisms that could be employed by a molecular communication sys-

tem, and presented the underlying mathematical models for these transport mecha-

nisms. Finally, potential applications for molecular communication were discussed,

where medical applications such as lab-on-a-chip devices and on-chip diagnostic

devices were highlighted to be the main deriving force behind molecular commu-
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nication. Chapter 3 discussed molecular communication from a communication

engineering lens and a survey of recent works was presented.

Throughout the first two chapters, I showed that most previous works are theo-

retical in nature and have only focused on diffusion transport. Therefore, I identified

two gaps in the literature: lack of theoretical work on active transport propagation

schemes, and lack of any practical implementations of molecular communication

systems.

To lessen these gaps, first, I focused on on-chip molecular communication. In

Chapter 4, I developed a computer simulation environment for on-chip molecular

communication using diffusion-based, flow-based, and active transport propaga-

tion schemes. I then used the simulator to compare the channel capacity of each

transport mechanism. I showed that active transport can be very effective for

on-chip applications. The simulation software that I developed in this chapter is

the only simulator for molecular communication in confined environments, capable

of modeling different propagation schemes. Previous simulators had only focused

on diffusion-based molecular communication, mostly with infinite boundary condi-

tions.

Chapter 5 presented different mathematical models for active transport molecu-

lar communication. First, a simple model was derived to gain a deeper understand-

ing of on-chip active transport. Then, a more complicated, and more accurate
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model was developed using Markov chains. It was shown that the derived models

could speed up the simulation process significantly, and be used to solve optimal de-

sign problems. The models presented in this chapter are the first models developed

for kinesin-microtubule-based molecular communication. These models could be

used to solve various design problem, to calculate performance measures efficiently,

and to improve the communication system.

Using these new mathematical models, in Chapter 6, I provided optimal design

strategies for on-chip active transport molecular communication. First, I found

the optimal location for the transmission area on the chip, and then I developed a

strategy for finding the optimal size of the vesicles that encapsulate the information

particles. Finally, I considered the problem of finding the optimal channel shape.

In particular, I developed an optimization formulation that could be used to find

the optimal channel shape and dimensions. Using the model, I showed that the

optimal shape is the circular-shaped channel. Using the simulator, I showed that

the optimal designs increase the channel capacity significantly.

In Chapter 7, I focused on the lack of any experimental implementations of

molecular communication. I designed and built an inexpensive tabletop platform,

from readily available and off-the-shelf parts, that is capable of transferring short

text messages. The importance of this system is twofold. First, it proves that

chemical signals could be used for reliable data transfer. Second, it provides re-
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searchers with an experimental platform that they could use to test their theoretical

models. Because the system is inexpensive, it could easily be replicated by other

researchers. One of the important results that was presented in Chapter 7, was the

nonlinearity of the system. Most theoretical works on molecular communication

assume linearity. However, I show that in practical implementations, the system

may be nonlinear.

Mathematical models for this experimental platform was presented in Chapter

8. To derive these models, I first showed that the experimental results obtained

from the platform does not match the previously used models in the literature.

I then proposed corrections to these models using the experimental data. The

corrected models were then used to show that the nonlinearity of the system can

be represented as additive noise. I showed that the nonlinearity could be then be

removed. These were interesting and non-trivial results.

9.1 Future Research Directions

The field of molecular communication is still in its infancy. Therefore, there are

many open problems for future research. Based on some of the results presented in

this dissertation, I highlight some future research projects below.

1. In Chapter 4, I developed a simulation environment for on-chip molecular
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communication. In the future, I would like to improve this simulation en-

vironment by including models for chemical reactions and chemical decay,

non-deterministic loading mechanisms, and more realistic transmitter and re-

ceiver models. Also, other propagation schemes, such as bacterial shuttles

could be added to the simulator.

2. As was shown in this dissertation, kinesin-microtubule active transport can be

very effective for on-chip molecular communication. However, a laboratory

demonstrator for such a communication system is non-existent. There are

a number of works that use this form of transport for molecular assembly

[89]. Therefore, it should be possible in the future to develop a laboratory

demonstrator for this system.

3. There are similarities between optical channels and molecular communica-

tion channels. In optical communications photons are the information carry-

ing particles, and there exists a wealth of work on modeling these channels.

Therefore, the similarities and differences of these channels must be investi-

gated in greater detail in the future.

4. A promising application for molecular communication, is chemical commu-

nication in robotics. Although there are a number of previous works that

present some preliminary results on this topic [15,166–168], a comprehensive
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study of this area is lacking. For example, inspired by ants, small robots could

use chemical trails and chemical tags to complete a predefined task very ef-

ficiently. Such a demonstrator would show the true potential of molecular

communication in robotics.

5. In Chapter 7, I developed a general purpose molecular communication demon-

strator that was capable of transmitting short text messages. This system

achieved a data rate of 1/3 bits per second, over several meters. In the fu-

ture, I would like to decrease the size of the system by one order of magnitude,

and increase the data rate by one order of magnitude. One way this could be

achieve is through miniaturizing the spray and the sensor, developing more

sophisticated detection algorithms at the receiver, and using suitable error-

correction codes. Ultimately, the goal is to shrink the system enough to

demonstrate the feasibility of molecular communication in an environment

analogous to human body.

6. As was shown in Chapter 8, practical molecular communication systems could

be nonlinear in nature. However, most previous works have only focused on

the linearity of the transport mechanisms such as diffusion. Therefore, non-

linear molecular communication systems must be studies in more details in

the future. For example, as the information particles travel from the trans-
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mitter to the receiver, chemical reactions in the environment may result in a

nonlinear propagation. It may be possible to use the nonlinearity to improve

system performance. For example, the nonlinearity present in some optical

communication channels are used to enhance these systems.
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