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Abstract

Wireless sensor networks (WSNs), which consist of numerous devices that take

measurements of a physical phenomenon, are becoming a popular area of research.

Since the sensor nodes are typically battery powered, energy optimization and ef-

ficiency is extremely important in WSNs. However, optimizing power proves to be

a non-trivial task since decreasing the transmission power will result in degraded

signal and unsuccessful transmission. In this thesis, we look at the physical layer

and propose two schemes based on channel codes that could be employed for op-

timization of transmission power of WSNs. First we consider the fact that the

phenomena being observed by the sensor nodes are commonly correlated in space.

Therefore, we devise a low-complexity coding scheme for correlated sources based

on Slepian-Wolf compression, and analyze its performance in terms of diversity

order. The main idea of this scheme is to use the correlated measurements as

a substitute for relay links. Although we show that the asymptotic diversity or-

der is limited by the constant correlation factor, we give experimental results that

iv



show excellent performance over practical ranges of SNR. In the second part of the

thesis, we consider the fact that there may be many potential relays within radio

range of a source; similarly, there may be many potential sources seeking to use

relays. Allocating these resources is a non-trivial optimization problem. We con-

sider fractional cooperation, where each potential relay only allocates a fraction of

its resources to relaying. It is shown that linear programming can be used to opti-

mally allocate resources in multi-source, multi-relay networks, where the relays use

the demodulate-and-forward (DemF) or the decode-and-forward (DF) strategy, and

where the transmissions are protected by low-density parity-check (LDPC) codes.

Compared with existing optimization schemes, this method is particularly suitable

for very large networks with numerous sources and relays. Simulation results are

presented to demonstrate the performance of this scheme.
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1 Introduction

Wireless Sensor Networks [1](WSNs), are a special class of wireless networks where

distributed sensors, embedded in nodes, take local measurements of a phenomenon,

and form a wireless network to share their information amongst themselves, or

transmit it to some central authority, known as the data sink. For many ap-

plications, wireless sensor networks (WSNs) are required to be unobtrusive, with

numerous nodes that are dependent on a battery power source. These nodes are

typically very simple, small, and inexpensive modules that are equipped with a

sensor to measure a phenomenon. A simple transceiver is used to transmit and

receive the measured observations to and from neighboring nodes. Figure 1.1 de-

picts a typical sensor node with these simple components. Ultimately, the sensor

nodes cooperate in transmitting their observations to a data sink where they can

be processed as shown in Figure 1.2. Since nodes must be as small, inexpensive,

and as efficient as possible, there are stringent constraints on their computational

and energy resources. On the other hand, the data sink is assumed to have access
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Figure 1.1: A typical sensor node.

to substantial energy and computational resources, within the limits of reasonable

expense and contemporary technology. Therefore one of the main challenges of de-

signing a successful WSN is in minimizing the probability of error in transmitting

data, subject to constraints in available power and computational resources.

WSNs have a wide variety of potential applications, from habitat monitoring [2]

to load monitoring in structures [3] to industrial monitoring and control, secu-

rity and military sensing, and health monitoring. In [2] for example, Zhang et

al. present their experiences developing hard-ware and low-level software for Ze-

braNet, a wireless network of sensor nodes used for monitoring Zebra movements

in the wild. They develop a fully-functional, highly-mobile, energy-efficient sensing
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Figure 1.2: A typical Sensor Network.

Figure 1.3: Wireless Sensor Network used for volcano monitoring.

system that determines accurate positional data and can propagate it through the

network. As another example, in [3], the authors describe the design of a wireless

structural data acquisition system called Wisden. The system mimics wired data

acquisition systems, and incorporates novel reliable transport, time synchroniza-

tion, and compression algorithms. As a final example, in [4], Werner-Allen et al.

study the feasibility of using wireless sensors for volcanic studies. They use an array
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of microphones along with seismometers connected wirelessly to monitor volcanic

activity. Figure 1.3 shows the setup proposed by the authors1.

1.1 Motivations

Driven by ever increasing applications WSNs are becoming a popular area of re-

search. There are numerous research challenges associated with WSNs. Some of

these challenges include real-world protocols, real time data collection and trans-

mission, power management, and security and privacy [5]. The most active area of

research is however power management.

The low-cost deployment of WSNs is one of its acclaimed advantages. To keep

the cost down typically sensor nodes are small and have limited computation power

and energy. The limited processor power and small memory are two constraints

in sensor networks, which will disappear with the development of new fabrication

techniques. However, the energy constraint is unlikely to be solved soon due to

slow progress in development of new battery technologies. Moreover, for many

applications, the untended nature of sensor nodes and hazardous sensing environ-

ments preclude battery replacement as a feasible solution. On the other hand, the

surveillance nature of many sensor network applications requires a long lifetime.

Therefore, it is a very important research issue to provide a form of energy-efficient

1Picture taken from the project website at: http://fiji.eecs.harvard.edu/Volcano
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surveillance service.

There are different techniques in literature for minimizing the energy consump-

tion of WSNs that are not based on modification of hardware. They can be divided

into different groups. In one major group efficient protocols such as energy efficient

MAC layer protocols [6–10] are used to reduce the energy. Other methods based

on efficient data sensing and gathering are also proposed in [11–13], to name a few.

Finally, methods based on energy efficient error correcting codes are proposed by

some as a method of energy reduction. In this thesis, we will focus on the later and

propose methods of our own to reduce energy consumption of WSNs.

1.2 Contributions

Our contributions can be divided in to two main groups. First, we propose a low

complexity cooperative method that takes advantage of the correlated nature of

the data measured to minimize transmission power of WSNs. We will then sug-

gest an analytic method based on linear programing to minimize the transmission

power while maintaining successful transmission links. To drive our low complexity

cooperative method based on correlated sources, we use two typical properties of

WSNs, namely spatial correlation and spatial diversity. Our analytic technique for

minimizing the transmission power while maintaining a successful link is based on

Extrinsic Information Transfer Chart (EXIT Chart) of Low-Density Parity-Check
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(LDPC) codes.

1.2.1 Using Correlated Sources

One typical property of WSNs is their spatial distribution. This means that the

nodes are typically distributed over a large area compared to transmission range of

each node. Spatially distributed sensor networks typically have two benefits: first,

they have spatial diversity which means the fading on different links are indepen-

dent; and second, measured data are spatially correlated. The latter can be due

to nature. For example in Figure 1.3 we can see a sensor network measuring seis-

mic activities around a volcano. It is highly probable that two neighboring nodes

measure a highly correlated seismic curves.

Spatial diversity can be generalized to cooperative diversity [14], where each

node can assist its neighboring nodes in transmitting their information to a com-

mon receiver or a data sink. This can result in an increase in system throughput

which can lead to a more efficient network. On the other hand, spatial correla-

tion can be exploited by the Slepian-Wolf theorem [15] where the output of two

correlated sources can be compressed without any communication between them.

This compression permits a reduction in the number of transmitted bits, and hence

a power efficient system. Meanwhile, from the node’s perspective, Slepian-Wolf

compression can be accomplished with relatively low complexity [16].
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Based on these two properties of WSNs we propose a novel coding technique

with the following advantageous features:

1. Higher diversity order. The source-destination link diversity order is depen-

dent on the number of relays assisting the source in transmitting its infor-

mation bits to the destination. However, if we introduce correlated sources

where their information bits are correlated with the source’s information bits,

we can show that the diversity order of the system can still be increased by

increasing the number of correlated sources. Therefore in a WSN if a source

has a limited number of relays we can still increase the diversity order if we

utilize the nodes measuring correlated data.

2. Decreased power in transmission and computation. The relay nodes need

to either decode the source’s information bits (decode-and-forward) or make

hard-decisions (demodulate-and-forward) before forwarding to the destina-

tion. This requires computational power. By using correlated sources the

decode or hard decision step at the relay is eliminated resulting in reducing

the overall energy consumption of the system. Also the use of correlated

sources will permit Slepian-Wolf compression of sources’s information bits

before transmission. This will in turn reduce the number of bits transmitted

by the source and relayed by the relays thereby further reducing the overall

7



energy on the system.

3. Better Transmission Error Rate. Using correlated sources it is possible to

achieve better error rates, specially at low signal-to-noise ratio (SNR). One

reason behind this is that, at low SNR, the source-relay link can get worst than

the correlation factor between the source and the correlated source. There

using the correlated source will be advantageous.

4. Applicable to Fractional Cooperation. Fractional cooperation was proposed

in [17] as energy saving technique for WSNs. In fractional cooperation relay

would select a small fraction of source’s transmission bits at random and

would relay them to the destination. Similar idea can be applied to correlated

sources, where each correlated source selects a small fraction of its correlated

bits and transmits them to the destination.

1.2.2 Analytic Energy Optimization

In [17], Eckford et al. proposed fractional cooperation where each relay would select

a small fraction of source’s transmission bits at random and would relay them to

the destination. However, it is not clear what fraction each relay must select and

forward to ensure successful decoding at the destination. To solve this problem we

propose Extrinsic Information Transfer Chart (EXIT chart) analysis of Low-Density
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Parity-Check (LDPC) codes based on channel mean. We use similar EXIT chart

analysis proposed in [18] by Ardakani et al. From this analysis we can get a close

estimate of the channel mean required for successful decoding at the destination.

We will then propose a linear programming solution to the problem of relay’s

forward fraction that will minimize the overall transmission power of the WSN

system while maintaining a successful transmission. Our method has the following

benefits:

1. Minimizes energy. This analytic method will select the minimum transmission

power by selecting the fractions of bits forwarded by each relay with the

constraint that the transmission is successful. This is achieved by ensuring

that channel means are within the threshold derived by EXIT chart analysis.

2. Flexibility. There can be other constraints added to this method and the

process will still find a solution that will minimize the overall power of the

system with respect to those constraints. For example one might add the

constraint that each relay can select a maximum of n-bits to forward to the

destination. Then our analytic method will minimize the overall transmission

power with respect to these constraints while ensuring successful decoding at

destination. This process can also be applied to decode-and-forward scheme,

demodulate-and-forward scheme as well as any other scheme as long as it

9



can be represented as a linear programing constraint. More complicated con-

straints are also possible and the method in very flexible.

3. Dynamic. The method is also dynamic meaning it can adjust to the changes

in channel instantly. For example, if a source-relay channel SNR changes

the number of bits forwarded by this relay can be calculated and adjusted

instantly. This dynamic properly makes this method ideal for real world

applications where channel SNRs are constantly changing.

1.3 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 provides a literature

survey of some of the related work in the area. The system models based on both

single-nodes and multi-nodes are described in Chapter 3. In Chapter 4, we propose

the use of correlated-sources and compression and study the effects on the rate,

diversity order, and transmission error rate. Our simulation results are presented

to show the advantages of this method. Our analytic method based on linear

programing is presented in Chapter 5. We also present experimental results to

demonstrate the correctness and flexibility of this technique. Chapter 6 concludes

the thesis and outlines some directions for future work.
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2 Literature Survey

In this chapter, a literature survey of some of the background and related works

is presented. As discussed in the introduction, two main properties of WSNs,

namely spatial diversity and spatial correlation will result in cooperative diver-

sity and Slepian-Wolf compression. In this thesis, we propose a novel scheme for

combining these two techniques to achieve a better optimized WSN with excellent

performance. To the best of our knowledge there has not been a study on combin-

ing these two properties for energy optimization of WSNs. As the result, we first

survey some of the work on cooperative diversity followed by some of the work on

Slepian-Wolf compression.

2.1 Cooperative Diversity

In this section, we will focus of cooperative diversity [21]. In the first subsection,

an overview of basic cooperative techniques will be presented in detail. In particu-

lar, coded cooperation, amplify-and-forward (AF), Decode-and-Forward(DF), and

11



demodulate-and-Forward (DemF) are described in detail. In the second subsection,

some of the other related works are mentioned.

2.1.1 Cooperation Overview

It is well known that multiple-input multiple-output (MIMO) that is, systems with

many transmit and receive antennas, are advantageous compared to single-input

single-output (SISO) systems because of better transmission diversity. Transmis-

sion diversity in wireless systems is defined as the number of independent fading

paths from a source to a destination. Transmission diversity is usually achieved

through the use of multiple antennas at the transmitter. However, in some wireless

networks such as cellular networks, some ad hoc networks and sensor networks, the

size of the devices is typically small for incorporation of multiple antennas at each

node. One way to overcome this limitation is through the use of cooperative com-

munication. In cooperative communication, each single-antenna device can borrow

its antenna to other devices in the network and create a virtual MIMO system.

Typically wireless channels, and especially mobile wireless channels, suffer from

fading, which means that signal attenuation can vary significantly over the course

of transmission. Therefore, transmitting independent copies of the signal over in-

dependent channels will generate diversity and can effectively combat the effects

of fading. In spatial diversity, transmitting the signal from different locations will

12



generate diversity by allowing independently faded versions of the signal at the

receiver.

In its simplest form, cooperative communication achieves diversity through a re-

lay channel system. Figure 2.1 shows an overview of this basic cooperation scheme.

In this figure User 1 or the Source wants to send some information to the Base

Station or the Destination. User 2 or the Relay assists User 1 by relaying its in-

formation to the destination. The Base Station will then use the signals received

from both User 1 and User 2 to decipher source’s information. The groundbreaking

work of Cover and El Gamal [19] analyzed the information theoretic capacity of

this simple relay scheme. They assumed that all nodes operate in the same band,

so the system can be decomposed into a broadcast channel from the viewpoint of

the source and a multiple access channel from the viewpoint of the destination.

Many ideas from this paper were later appeared in other cooperation literature.

Cover and El Gamal mostly analyzed the capacity in an additive white Gaussian

noise (AWGN) channel, while recent developments are motivated by the concept of

diversity in the fading channel. Moreover, in most cooperative schemes the total

system resources are fixed and users act both as information sources as well as

relays. This difference is shown in Figure 2.2, where the dotted arrows indicate

the transmission of User 2 through User 1, and the solid arrows indicate the trans-

mission of User 1 through User 2. We now review different cooperative signaling

13



User 1
(Source)

User 2
(Relay)

Base Station
(Destination)

Figure 2.1: Basic Relay Channel Cooperation

schemes.

2.1.1.1 Decode-and-Forward

In this method, the relay decodes the signal coming from the source, re-encodes

it using error correcting codes, and retransmits to the destination. Figure 2.3

summarizes this cooperative scheme. In [14] and [20], user cooperation diversity

based on decode-and forward (DF) was proposed by Sendonaris et al. as a form

of transmission diversity for mobile users. The authors showed that this version of

DF signaling cooperation can achieve higher data rates and decreased sensitivity

to channel variations. The increase in data rate can also be translated to reduced

power for the user (better battery life) or increase in cell coverage (fewer Base
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Figure 2.2: Cooperation where each user is both a source and a relay.

Stations).

Sendonaris et al. implemented the DF signaling scheme on a conventional code-

division multiple-access (CDMA) system. In this method, each user has its own

spreading code, denoted by c1(t) and c2(t). The two user’s data bits are represented

by b(n)
i where i = 1, 2 are the user indices and n represents the time index of the

information bits. Each signaling period consists of three bit intervals. Therefore,

we have

X1(t) = [a11b
(1)
1 c1(t), a12b

(2)
1 c1(t), a13b

(2)
1 c1(t) + a14b̂

(2)
2 c2(t)]

X2(t) = [a21b
(1)
2 c2(t), a22b

(2)
2 c2(t), a23b̂

(2)
1 c1(t) + a24b

(2)
2 c2(t)],

where X1(t) is the signal from user 1, X2(t) the signal from user 2, and ai,j are the

signal amplitudes. Therefore, in the first and second intervals, each user transmits
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Figure 2.3: Decode-and-Forward (DF)

its own information bits. Each user will then estimate (decode) the other user’s

second bit denoted by b̂i. In the third interval, both users transmit a linear combi-

nation of the their own second bit as well as the estimate of their partner’s second

bit, each multiplied by corresponding spreading code. The individual signal ampli-

tudes for the first, second and third intervals are used to adjust the transmission

power according to the conditions of each link, and provides adaptability to channel

conditions.

Sendonaris et al. also considered the performance analysis of an optimal and

suboptimal receiver design in the implementation in [14]. In [20], the authors

considered a high rate CDMA implementation and a cooperation strategy when

assumptions about channel state information at the transmitter was relaxed. The

results showed that, in all scenarios considered, cooperation increased the system
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Figure 2.4: Amplify-and-Forward (AF)

throughput and cell coverage and also decreased sensitivity to channel variations.

One of the major disadvantages of this signaling scheme is that it is possible

that the decoding at the relay is unsuccessful, in which case cooperation can be

detrimental to the decoding process at the destination. To avoid this problem of

error propagation, Laneman et al. in [22], proposed hybrid decode-and-forward. In

this method, if the relay can not decode the source’s transmission successfully (e.g.

at times where the SNR between source and relay is low), noncooperative scheme

is used.

2.1.1.2 Amplify-and-Froward

Amplify-and-forward (AF) is another simple cooperative signaling scheme. The

relay in this method receives a noisy version of the signal transmitted by the source.
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The relay will then amplify and retransmit this noisy signal to the destination as

depicted in Figure 2.4. The destination combines the signals received from the

relay and the source to decode the information bits. Although noise is amplified in

this scheme, the destination receives two independently faded versions of the signal

and can make better decision at detecting information bits. This work was first

presented by Laneman et al. in [22], where they showed that this method achieves

diversity order two, which is the best possible outcome at high SNR.

One disadvantage of AF is that it is assumed that the destination knows the

interuser channel coefficients to do optimal decoding. Therefore, some method for

exchanging or estimating this information must be included in the implementation.

Moreover, in a time division scheme, sampling, amplifying, and retransmitting ana-

log values is technologically non trivial.

2.1.1.3 Coded Cooperation

In coded cooperation [27,28], channel coding and cooperation are integrated, where

different portions of the code word are sent through different fading paths. In its

simplest form, each user tries to add redundancy to its partner’s code, when this

is not possible, the user will revert back to noncooperative mode. The major

advantage of coded cooperation is that the cooperation is managed automatically

through coding and no feed back is necessary between users.
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Figure 2.5: Coded Cooperation.

Error correcting codes must be used by users in coded cooperation, and since

most commutations use some sort of error correcting code, coded cooperation does

not add any overhead to the system. It is easier to explain coded cooperation

using an example depicted in Figure 2.5. In this example both users encode their

information using error correcting codes and a length-N transmission codeword is

generated. This length-N codeword is then partitioned into two segments of length

N1 and N2, where N = N1 + N2. For example, one way of partitioning is by

puncturing the codeword down into N1 bits, where exactly N2 bits are punctured.

Therefore, these N1 bits are still a valid and weaker codeword.

The data transmission period for each user is also divided into two time seg-

ments, where N1 bits are transmitted in the first time segment or frame and N2
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Figure 2.6: Relay Channel Coded Cooperation.

bits are transmitted in the second time segment or frame. In the first frame each

user transmits its punctured down N1 bits codeword. Since the wireless channels

broadcast, each user will receive the N1 bits codeword of its partner and attempts

to decode this codeword. If the decoding attempt is successful, in the second trans-

mission frame each user will re-encode and transmit the N2 punctured bits of its

partner. However, if the decoding is unsuccessful by a user, it will transmit its own

N2 punctured bits in the second frame instead of its partner’s. Therefore, each user

will transmit a total of N = N1 +N2 bits over two frames, where N1 bits code from

one fading channel and N2 bits come from another fading channel if the decoding is

successful by the partner. Finally, the level of cooperation can be defined as N2/N ,

the percentage of the bits each user transmits for its partner. Figure 2.6 shows

coded cooperation in a relay system where user 1 acts as the source and user 2 acts
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Figure 2.7: Demodulate-and-Forward

as the relay. One advantage of coded cooperation is that various channel coding

schemes, such as block or convolutional codes, can be used. Moreover, the code bits

for two frames can be selected through puncturing, product codes, or other forms

of concatenation.

2.1.1.4 Demodulate-and-Forward

Demodulate-and-forward [24, 25] is another cooperative signaling scheme. This

method is very similar to decode-and-forward, but instead of decoding the source’s

signal, the relay demodulates the signal, re-encodes it and transmits to the desti-

nation. This method is more suitable for WSNs since the process of demodulation

is less costly than decoding in terms of computational complexity. Figure 2.7 sum-

marizes this scheme. Demodulate-and-forward was first proposed by Chen and
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Laneman in [24], and was used in [26] to discuss the capacity of relay systems.

In [17] re-encoding of the demodulated data by the relay was proposed and used to

drive a low complexity fractional cooperation scheme. Independently, demodulate-

and-forward was proposed to implement cooperative diversity in sensor networks

in [25].

In [24], Chen and Laneman compared some aspects of the performance of un-

coded cooperative diversity with different relay processing, particularly decode-and-

forward (DF) and amplify-and-forward (AF), and different demodulations, namely

coherent and noncoherent. The paper’s main contribution was its focus on DF

processing and noncoherent demodulation. For purposes of comparison, Chen and

Laneman developed a general framework for maximum likelihood (ML) demodula-

tion in cooperative diversity. A simple piecewise-linear combiner was proposed as

an accurate approximation of the nonlinear ML combiner for DF and leads to tight

closed-form BER approximations for the noncoherent ML combiner. This paper

also develops tight bounds on diversity order for DF, revealing that DF loses about

half of the diversity order compared to AF.

2.1.2 Other Related Works

In this section, some of the other related works in cooperative diversity will be

surveyed. We include only the works that are most recent and most relevant to
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this thesis. For more specific information the reader is referred to references of each

paper.

In [23], Laneman et al., developed low-complexity, cooperative protocols that

enabled a pair of wireless terminals, each with a single antenna, to fully exploit

spatial diversity in the channel. These protocols combined different fixed relaying

modes, namely AF and DF, with strategies based on adapting to channel state in-

formation between cooperating source terminals as well as utilizing limited feedback

from the destination terminal. The costs associated with the proposed cooperative

protocol were also discussed. It was noted that cooperation with half-duplex oper-

ation required twice the bandwidth of direct transmission of the same rate. This

led to larger effective SNR losses for increasing spectral efficiency. It was also men-

tioned that additional receiver hardware may be required for relaying. There may

also had been additional power costs due to relays operating instead of powering

down. However, despite all these costs, it was shown that significant performance

enhancements are achieved in practice.

In [29], it was shown that under the aggregate power constraint, cooperative re-

lays can be useful even when they do not retransmit but cooperatively listen, giving

priority to the transmission of a single opportunistic relay. The authors showed the

equivalence of opportunistic DF relaying to the outage bound of the optimal DF.

They also presented that opportunistic AF relaying as the outage optimal solution
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for single relay selection and showed the significant gain over equal power multi

relay SF relaying. The authors therefore concluded that cooperation should be

viewed not only as a transmission problem but also as a distributed relay selection

task. They also mentioned that the opportunistic relaying required no simultane-

ous same-frequency transmissions and its simplicity allowed implementation with

existing low-complexity radio front ends.

Azarian et al., in [30], considered the design of cooperative protocols for a

system consisting of half-duplex nodes. Three different scenarios were considered.

First for the relay channel, AF and DF protocols were investigated. Azarian et

al. developed a dynamic DF protocol (DDF) and showed its dominance over all

known full diversity cooperation strategies and its optimality in a certain range

of multiplexing gains. It was shown that in the cooperative broadcast channel,

the gains offered by the DDF strategy was more significant compared to the relay

channel. Lastly, for the multiple-access scenario, AF cooperative protocol where an

artificial ISI channel was created was proposed. Azarian et al. proved the optimality

(in the sense of diversity multiplexing tradeoff) of this protocol by showing that it

achieved the same trade off curve as the genie-aided point to point system.

In [31], Hong and Scaglione, analyzed the fundamental gain in terms of en-

ergy efficiency that is achievable with a novel form of cooperative broadcasting, in

which each receiver uses the accumulation of signal energy from multiple transmit-
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ting nodes. In previous methods, when a broadcast tree was created each receiver

received a signal from one transmitter. The authors suggested using the wireless

broadcast advantage to accumulate the signal from all possible transmitters at the

receiver for better detection and decoding. This cooperation was provided through

a system called the Opportunistic Large Array (OLA) where network broadcast-

ing is done through signal processing techniques at the physical layer. The authors

showed that the OLA strategy achieves a lower minimum energy solution compared

to another scheme where no user cooperation is considered.

Coded cooperation was considered by Janani et al. in [32]. In the original coded

cooperation framework users transmitted their partners’ data in the second trans-

mission frame whenever possible. The authors however proposed a new method,

called space-time cooperation, where users sent both their own as well as their

partners’ parity bits in the second frame. In the second part of the paper cooper-

ation through use of turbo codes was considered. The authors showed that better

performance in terms bit-error-rate (BER) is achieved by using these cooperative

schemes.

A new coded cooperation method using punctured convolutional codes was pre-

sented by Stefanov et al. in [33]. In order to study the error performance of these

cooperative codes, an analytical framework was considered that showed the po-

tential diversity and coding gains as a function of the inter-user channel quality.
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Stefanov et al. showed that for good inter-user channels, cooperative coding in-

deed achieves diversity. However, when the inter-user channel is very noisy, while

there are no diversity gains, there is still some coding gain over direct transmis-

sion. These analytical results were confirmed by simulations. Cooperative gains

for a symmetric scenario (both nodes have similar quality channels toward their

destination) and an asymmetric scenario (one node has a better channel than the

other) for a wide range of inter-user channel qualities were studies. The effects of

cooperation on the routing decisions in wireless networks were also discussed.

In [34], a turbo-based coding framework for both SISO and MIMO relay sys-

tems with various encoding and decoding approaches was proposed. Relay node

was assumed to operate in a full-duplex mode, i.e., it transmits and receives sig-

nals simultaneously. The destination observed a superposition of the transmitted

codewords from the source and the relay nodes, and used a joint decoding scheme

working iteratively on all of the available blocks. When the source-to-relay link is

perfect, the performance of the proposed coding and decoding technique can be as

close as 1.0 dB to the theoretical limits for relay channel. When the source-to-relay

link is noisy it is about 1.5 dB of the theoretical limit for the relay channel. Employ-

ing this practical method can significantly improve system performance compared

to direct and multi-hop transmission schemes.

Practical implementation of the DF strategy for the relay channel was considered
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in [35]. The Gaussian relay channel at low signal-to-noise ratios (SNRs) for which

binary linear codes are suitable was considered. It was shown that the binning

strategy in which a bin index of the codeword is transmitted by the relay to the

destination can be interpreted as a parity forwarding scheme. Moreover, the optimal

code design for the DF strategy was achieved by design of a Low-Density Parity-

Check (LDPC) code working at two different channel SNRs: a high SNR at the relay

and a low SNR at the destination. This novel LDPC code construction was named

bilayer LDPC coding by the authors and was shown to have good performance

results.

In [36], the authors, considered the design and analysis of the Low-Density

Parity-Check (LDPC) coded relay systems based on time division half duplex re-

laying. In particular, a series of coding strategies for different channel conditions

was proposed and suitable receiver structures were developed. Also, the conver-

gence behavior of the LDPC coded relay system was analyzed and predicted by

employing the measure of average mutual information. Both the convergence anal-

ysis and simulation results had shown that relay systems based on LDPC codes

can approach the theoretical information limits for the relay channel very closely

with appropriate code design. In addition, the optimization problem of the time

division parameters and the related bit allocation strategies were discussed. It was

shown that by choosing suitable parameters and designing the codes accordingly,
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the system performance can be improved significantly.

Chakrabarti et al., in [37], presented Low-Density Parity-Check (LDPC) code

designs for the half-duplex relay channel. The authors first presented a near-optimal

LDPC coding scheme in which side information was conveyed through additional

parity bits. The key challenge of relay code design lied in the utilization of side

information from the relay to decode the source transmission. Chakrabarti et al.,

then proposed three simplifications to reduce the complexity of encoding and de-

coding without significantly compromising performance. Since the gain of relaying

over direct communication was maximum at low SNR, the use of binary modula-

tion in conjunction with binary codes on each channel dimension was considered.

The relay coding scheme in multiple access mode was a superposition of two fun-

damental extremes. In one, the source and the relay sent identical messages, and

combined their signals coherently at the destination. In the other, the source and

relay sent completely independent information. Any source-relay correlation can

be achieved by a combination of these two cases, but the interesting observation

was that excellent performance can be achieved if we can simply choose the better

of these two schemes. Finally, it was shown that successive decoding was optimal

in MAC mode of the relay channel, an observation that simplified the decoder’s

design.

In [17], Eckford et al., proposed fractional cooperation. In this scheme a source
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was considered to have several relays where each relay forwards a randomly se-

lected portion of the source’s transmission bits to the destination. Using fractional

cooperation, it was shown that energy-efficient diversity gain can be achieved by

a system that was flexible enough to be used in a distributed network. Moreover,

the derivation of fractional cooperation had made practical assumptions about the

capabilities of wireless networking hardware; specifically a relay node does not nec-

essarily need to decode the sources transmission. Practical implementations of this

scheme based on Low-Density Generator-Matrix (LDGM) codes and Punctured

Systematic Repeat-Accumulate (PSRA) codes were presented. It was shown that

fractional cooperation can have transmission diversity of order two or more if a

certain number of relays were used. This work was of significance since it showed

that the transmission power can be distributed over a large number of relays, that

retransmit only a small fraction of the source’s bits, while the same diversity gains

present in regular cooperation can be achieved.

2.2 Slepian-Wolf Compression

In this section, we survey the works on Slepian-Wolf Compression [15]. WSNs

are typically distributed spatially over a geographic area. Moreover, usually the

phenomena being measured are spatially correlated, i.e., measurements taken in

different places will be similar or close (e.g. Temperature). Therefore, neighbor-
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Figure 2.8: Two correlated sources that communicate with each other.

ing nodes measure correlated data and as the results compression can be applied

to reduce the number of transmission bits and therefore reduce the power of the

system. Although compressing two correlated sources that communicate with each

other is trivial, as we will discuss, the task proves to be difficult when correlated

sources do not communicate with each other. In this section, we will first present

an overview of the Slepian-Wolf concept in which compression is achieved by non-

communicating sources, and then a practical implementation known as Distributed

Source Coding Using Syndromes (DISCUS) in detail. We will then present some

of the other related work in this area.
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2.2.1 Slepian-Wolf Compression Overview

A general overview of the Slepian-Wolf compression concept will be presented in

this section. To formulate the problem, assume we have two correlated sources, X

and Y , that want to transmit their information to a common destination, as shown

in Figure 2.8. If the two correlated sources communicate with each other as shown

in Figure 2.8 the compression is trivial. For example, assume each correlated source

has three information bits to send to the destination. Moreover, lets assume X and

Y are correlated such that the Hamming distance between them is at most one (i.e.

they differ at most at one bit position). The compression can then be achieved

using the following step.

1. Y broadcasts its information bits to destination and X

2. X receives the information bits from Y and XORs them with its own infor-

mation bits. Since X and Y are correlated such that the Hamming distance

between them is at most one there are four possible out comes,

X ⊕ Y =






000 −→ 00

001 −→ 01

010 −→ 10

100 −→ 11

,
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which can be encoded using two bits. Therefore, X has been compressed from

three bits down to two bits

3. X transmits these two bits to the destination.

4. At the destination the information from Y is readily available. X is decoded

by first mapping the two bits back to three bits as follows,

X ⊕ Y =






00 −→ 000

01 −→ 001

10 −→ 010

11 −→ 100

.

find the place of one in these three bits and flip the corresponding bit position

in Y to get X

If correlated sources do not communicate, as shown in Figure 2.9, the problem

will be nontrivial. In 1973, Slepian and Wolf [15], presented their famous work

and showed the compression is still possible even if two correlated sources are

independent of each other (i.e. they do not communicate with each other). They

determined the minimum number of bits per source character required for the

two encoded message streams, from the two correlated sources, in order to ensure

accurate reconstruction by the decoder of the outputs of both information sources.
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Figure 2.9: Two correlated sources that do not communicate with each other.

In particular, they showed that the overall rate of transmission of the system which

includes rate of transmission of X, RX , and rate of transmission from Y , RY can

be as low as

min (RX + RY ) = H(X, Y ) ≤ H(X) + H(Y ), (2.1)

where H(.) is the entropy. In other words the achievable rate of the system is given

by

RX + RY ≥ H(X, Y ). (2.2)

We can extend this results to our example with three information bits that are

correlated such that the Hamming distance is at most one (i.e. they differ at most

at one bit position). Lets assume as in the previous example Y transmits all of its

information bits to the destination, which means RY = H(Y ) = 3. From statistics
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Figure 2.10: Achievable rate region defined by the Slepian-Wolf bounds.

it is clear that H(X, Y ) = H(X|Y ) + H(Y ), and therefore using Equations (2.1)

and (2.2) we get RX = H(X|Y ). Since, X is correlated with Y such that the

Hamming distance is at most one, we have H(X|Y ) = 2. Therefore, according to

Slepian-Wolf theorem same level of compression can be achieved when correlated

sources are independent of each other (i.e. they do not communicate with each

other).

In the example above, RY = H(Y ), which means that Y is not compressed while

X is compressed. This is called a “corner case” and is represented by a corner point

in Figure 2.10. In general however, both X and Y can be compressed as long as

Equation 2.1 is satisfied. This property can be represented as a two dimensional

rate region graph shown in Figure 2.10. In this graph the y-axis is RY and the x-
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axis is RX , and the borderline shows the maximum rate of compression achievable.

This graph is known as the achievable Slepian-Wolf rate region.

Although Slepian and Wolf proved that it is possible to compress two correlated

sources independently, they did not provide any insight on how this can be achieved

in a practical sense. In the next section, we will describe a practical implementation

known as Distributed Source Coding Using Syndromes (DISCUS), presented by

Pradhan and Ramchandran in 1999.

2.2.1.1 DISCUS

Pradhan and Ramchandran, in [16, 38], proposed distributed source coding using

syndromes (DISCUS), as a practical method of implementing Slepian Wolf theorem.

They focused on a special case when the correlation between X and Y is specified as

a prescribed maximal Hamming distance. We now present the general idea behind

DISCUS using an example. Lets assume we have a system similar to the one in the

previous section where both X and Y have three bits to send and are correlated

such that the maximum Hamming distance between them is at most one. The

following process can be used to compress and decompress the information bits

without any communication between correlated sources.

1. Just like before Y transmits all its information to destination. However, these

transmitted information bits are not available at X.
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2. X creates four cosets such that the elements at each coset have Hamming

distance 3 as shown bellow.



000

111



 → 00,




001

110



 → 01,




010

101



 → 10,




100

011



 → 11.

These four cosets can be encoded using two syndrome bits as shown. For

example, if the information bits at X is 100 or 011 then syndrome bits is 11.

3. X transmits the two bit syndrome bits to the destination.

4. At the destination the information bits from Y is readily available. To de-

termine the information of X the syndrome bits are mapped back to the

corresponding coset. Since each coset has two elements the Hamming dis-

tance between each element and information bits of Y is measured, and the

one with the smallest Hamming distance is selected.

As an example, lets assume information at X is 100 and at Y is 101. Therefore,

Y transmits 101 while X transmits 11. At the destination the information from

Y is readily available. From mapping of the coset to syndrome bits we know that

X’s information is in the fourth coset. To determine which of the two element in

the coset corresponds to X, the Hamming distance between information bits of Y ,

101, and the two elements in the coset, 100 and 011, is measured. The Hamming

distance with respect to the first element, 100, is 1 while the Hamming distance
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with respect to the second element, 011, is 2. Therefore, the destination can decide

that information bits of X is 100.

Pradhan and Ramchandran [16, 38], also proposed a low complexity encoding

and decoding method based on linear codes that achieved all points in the achiev-

able rate region of Slepian-Wolf theorem. The extension of these concepts to the

construction of Euclidean space codes is also studied and analyzed for the case of

trellis and lattice codes. The performance of these symmetric methods for encoding

with a fidelity criterion was shown to be the same as that of asymmetric encoding.

2.2.2 Other Related Works

In this section, some of the other related works in Slepian-Wolf compression will

be surveyed. We include only the works that are most recent and most relevant

to this thesis. For more specific information the reader is referred to references of

each paper.

The use of turbo codes as applied to the Slepian-Wolf problem was investigated

in [39]. Finite-state machine (FSM) encoders, concatenated in parallel, were used

at the transmit side and an iterative turbo decoder was applied at the receiver.

Simulation results of system performance were presented for binary sources with

different amounts of correlation. Obtained results showed that the proposed tech-

nique outperforms by far both an equivalent uncoded system and a system coded
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with a single FSM encoder and BCJR decoding.

The use of punctured turbo codes for compression of correlated binary sources

was considered by Garcia-Frias et al. in [40]. They achieved the compression

by puncturing turbo codes. In the encoding process, no information about the

correlation between sources was required. The proposed decoder used an iterative

scheme, and performed well even when the correlation between the sources was

not known at the decoder since this correlation can be estimated jointly with the

iterative decoding process. The resulting performance of the proposed scheme was

close to the theoretical limit provided by the SlepianWolf theorem.

In [41], Liveris et al., presented a way of doing distributed compression with side

information using binary Low-Density Parity-Check (LDPC) codes. They focused

on the asymmetric use of compression with side information. This means one

source is compressed fully while the other source is not compressed (also known as

a corner point in Slepian-Wolf rate region). Their approach was based on viewing

the correlation as a channel and applying the syndrome concept. The encoding

and decoding procedures, i.e. the compression and decompression, were explored

in detail. The authors showed through simulation that the performance results

were better than most of the existing turbo code results and very close to the

Slepian-Wolf limit in case of irregular LDPC codes.

Systematic irregular repeat accumulate (IRA) codes were used as joint source-
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channel codes for the transmission of an equiprobable memoryless binary source

with side information at the decoder, in [42]. A special case of this problem under

consideration was joint source-channel coding for a nonequiprobable memoryless

binary source. The theoretical limits of this problem were derived by combining

the Slepian-Wolf theorem, the source entropy in the special case, with the channel

capacity. The authors viewed the correlation between the binary source output

and the side information as a separate channel or an enhancement of the original

channel. They then described the encoding and decoding procedures, used as joint

source-channel coding, based on systematic IRA codes, in detail. The simulated

performance results were then presented and shown to be better than some turbo

code results and very close to the theoretical limits of Slepian-Wolf theorem.

In [43], the use of Low-Density Generator-Matrix (LDGM) codes for both chan-

nel coding and joint source-channel coding of correlated sources over noisy channels

was presented. In particular the concatenated schemes was used in order to avoid

the error floors associated with LDGM codes. The encoding and decoding complex-

ity of the proposed scheme presented advantages with respect to turbo and standard

LDPC codes. For channel coding, the performance over BSCs, AWGN channels and

ideally interleaved Rayleigh fading channels with perfect channel state information

(CSI) at the receiver was comparable to that of turbo codes and standard irregular

LDPC codes, and close to the theoretical limits of Slepian-Wolf theorem. In the
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case of correlated sources the proposed system also achieved a performance close

to the theoretical limits and similar to those of turbo codes.

A Slepian-Wolf cooperation scheme was proposed to improve the inter-user out-

age performance in wireless cooperative communications in [44]. To do this the

authors applied Slepian-Wolf cooperation to a relay system. Since the data sent

through the relay was corrupted by noise, and therefore correlated with original

data, the authors suggested compressing source’s information bits and transmit-

ting them with the original uncompressed sources bits. The authors called this

method Slepian-Wolf cooperation. It was shown that this scheme can significantly

increase the performance compared to the case where no cooperation is used.

In [45], the transmission of information from two correlated sources to a common

destination through a Rayleigh fast fading multiple access channel was considered.

Each source was encoded independently using a turbo-like code and neither the

correlation model nor the channel state information was assumed to be known at

the encoder. A novel iterative decoding technique was performed at the destination

that exploits the correlation between the two senders. Because of the iterative

coding method, the noise variance and correlation model did not need to be known

at the decoder site, since they could be estimated jointly. However, when perfect

channel state information was available at the decoder, the resulting performance

was very close to theoretical limits given by Slepian-Wolf theorem. When the
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channel state information was not available at the decoder, the performance loss

would depend on the correlation strength, becoming smaller for highly correlated

sources.

In [46], Low-Density Parity-Check (LDPC) codes were used in providing reli-

able data transmission and developing aggregation techniques for correlated data in

wireless sensor networks. This work, first proposed forward error correction (FEC)

technique using LDPC codes that can reduce the transmission power. The simu-

lation results showed that this approach was significantly more efficient than using

BCH codes and convolutional codes. The authors then studied the problem of

source and channel coding for two and three correlated nodes. They also proposed

the use of non-uniform LDPC codes for distributed source coding of two correlated

nodes. This scheme improved the performance of the source coding considerably.

They also extended the results to the case of three correlated nodes and showed

similar performance gains.

2.3 Thesis Overview

In this chapter, we surveyed some of the background and related works of this thesis.

In this section, we will give an overview of the thesis with respect to the materials

presented in the previous sections. As it was mentioned in Chapter 1, WSNs are

typically distributed spatially over an area. Because of this spatial distribution

41



independent fading paths exist from a sensor node to the data sink. Therefore,

cooperative diversity can be applied to ensure a better communication and lower

overall system power consumption. On the other hand, because naturally occurring

phenomena are usually spatially correlated, Slepian-Wolf theorem can be applied

to compress the information bits before transmission. This will reduce the number

of bits transmitted by sensor node, thereby saving valuable battery power.

Given the beneficial effect of, cooperation and Slepian-wolf compression, it is

natural to study the effects of one on the other and the overall effects of combining

these two schemes to make a more energy efficient WSN. However, as it was shown

in the survey section there is no work in the literature that studies these effects.

Therefore, in this thesis we combine cooperation and Slepian-Wolf compression and

study the effects on a WSN system. Also, in the second part of this thesis, we try to

provide an analytic technique for a special class of cooperation known as Fractional

Cooperation, surveyed in section 2.1.2, that minimizes the overall energy of the

WSN while it maintains the needed diversity.

The rest of this thesis is organized as follows. In Chapter 3, we present the

system model, the relay model, channel codes and codes for Slepian-Wolf compres-

sion. Then, in Chapter 4, we combine cooperation with Slepian-Wolf compression

and study the effects of compression on cooperation and the diversity order. We

will also analyze the performance and energy consumption when both cooperation
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and compression are combined. An analytical method based linear programing for

minimizing the energy of a fractional cooperative WSN will be presented in Chapter

5. Finally, we conclude the thesis with Chapter 6.
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3 System Model

In this chapter we will present our system model, which consists of a relay system

and coding methods and techniques. In general, our system models are inspired

by the model used in [17]. We consider a sensor network with multiple sensors

and one information sink. Each sensor measures a phenomenon and transmits its

measurements to the data sink. We assume the sensors have simple two-way radios,

processors of limited complexity, and limited power resources; while the data sink

possesses virtually unlimited radio, computational, and power resources.

The sensors’ limited capabilities, and their ability to communicate with each

other, imply that they should co-operate in conveying information to the sink.

We also assume that the measured data across different sensors in close vicinity

of each other are correlated. With these assumptions in mind, the rest of this

chapter is organized as follows. In Section 3.1 we will discuss our relay model that

represents the cooperation between nodes. Then, in Section 3.2, we will discuss

different coding techniques used throughout the rest of this thesis for transmission
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and compression of information.

3.1 Relay Model

Our relay model consists of a source, a destination, zero or more relays, and zero or

more correlated sources. The purpose of the system is to convey sensor measure-

ments from the source to the destination. The relays receive the source’s transmis-

sion and assist the source in transmitting its information to the destination. The

correlated sources, which observe a physical phenomenon that is correlated with

the source’s phenomenon, also assist the source in transmitting its information,

but have no radio link with the source. We start by giving a detailed description

of a single-relay, single-correlated-source model and then extend the results to a

multi-relay, multi-correlated-source system.

3.1.1 Single correlated source and relay

Here we give a detailed description of a single-relay, single-correlated-source models.

Our four-node model has a source, a single relay, a correlated source and a destina-

tion. As shown in Figure 3.1, there are four radio links: source to relay (SR), source

to destination (SD), relay to destination (RD), and correlated source to destina-

tion (CSD). We assume these communication links use binary phase shift keying

(BPSK) for data modulation. A particular realization of the channel is parame-
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Figure 3.1: Single relay, single correlated source model.

terized by representing the amplitude on the four links with (aSD, aSR, aRD, aCSD),

where aSD is the amplitude over SD link, aSR is the amplitude over SR link, aSR is

the amplitude over RD link and aCSD is the amplitude over CSD link.

The length-n information strings at the source and correlated source sensors

are represented by x(S) = {x(S)
1 , x(S)

2 , ..., x(S)
n } and x(CS) = {x(CS)

1 , x(CS)
2 , ..., x(CS)

n },

respectively, where x(S)
i , x(CS)

i ∈ {0, 1}. To represent the correlation between the

source and correlated source we assume Pr[x(S)
i (= x(CS)

i ] = p < 0.5.

The source transmits its information bits in two phases. In the first phase

DISCUS [13] source coding is used to compress source’s information bits according

to Slepian-Wolf theorem. As we described the operation of discus in Chapter 2,

we will have a length-k vector of syndrome bits s = {s1, s2, ..., sk} where k ≥

nH(x(S)
i | x(CS)

i ). The source will then encode the resulting syndrome bits with error

correcting codes, which results in a length-m codeword z(S) = {z(S)
1 , z(S)

2 , ..., z(S)
m }.
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The correlated source will also encode all its information bits with error correcting

codes and the length-l codeword z(CS) = {z(CS)
1 , z(CS)

2 , ..., z(CS)
l } will be transmitted

to the destination. Since we are using BPSK we assume z(S)
i , z(CS)

i ∈ {+1,−1} and

we define σ : {0, 1} →{ +1,−1} as a function which translates zero and one to one

and minus one respectively. The relay and destination will therefore observe the

real valued vectors

y(SR) = aSRz(S) + n(SR), (3.1)

y(SD) = aSDz(S) + n(SD), (3.2)

y(CSD) = aCSDz(CS) + n(CSD), (3.3)

where n(SR), n(SD), and n(CSD) represent unit-variance additive white Gaussian

noise (AWGN) vectors at the relay and destination links respectively.

The relay receives y(SR) and uses a processing function φ : Rm → {0, 1}m on

y(SR) to estimate the data sent by the source. The result of the processing function,

x(R) = φ(y(SR)), (3.4)

is encoded using error correcting codes and the resulting length-h codeword z(R) =

{z(R)
1 , z(R)

2 , ..., z(R)
h }, z(R)

i ∈ {+1,−1}, is transmitted to the destination. Therefore

the signal received by the destination is given by

y(RD) = aRDz(R) + n(RD). (3.5)
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To keep the processing function energy efficient and simple, we make hard de-

cisions on y(SR) at the relay. Therefore the processing function is given by

xR = φ(y(SR)) = σ−1(sign(y(SR))), (3.6)

where the sign(.) function returns +1 if the argument is positive and -1 if the argu-

ment is negative. Furthermore, σ−1(.) is the inverse of the σ(.) function explained

before.

The Rayleigh fading model is parameterized by γ̄, the average signal-to-noise

ratio, assuming unit noise power. Therefore, in Rayleigh fading the channel ampli-

tude is a random variable with probability distribution function (PDF)

PA(a) =
2a

γ̄
exp

(
−a2

γ̄

)
. (3.7)

As a result, E [A2] = γ̄, and the average signal-to-noise ratio is γ̄. Thus, in a

fading channel, the four amplitudes (aSD, aSR, aRD, aCSD) are a four-dimensional

vector of independent Rayleigh-distributed random variables, parameterized by

(γ̄SD, γ̄SR, γ̄RD, γ̄CSD).

3.1.2 Multi-relay and multi-correlated-source

Here we consider a system with r relays and q correlated sources, as shown in Figure

3.2. Each relay and correlated source behaves as described in the last section, and

the notion is similar to the one-relay case, with the following generalizations:
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Figure 3.2: Multi-relay, multi-correlated-source model.

1. There are two index sets I(R) = {1, 2, ..., r} and I(CS) = {1, 2, ..., q} containing

a unique index for each relay and correlated source, respectively.

2. Channel amplitudes are (a(SD), a(SR), a(RD), a(CSD)), where the vectors ele-

ments a(SR) = [a(SR)
1 , a(SR)

2 , ..., a(SR)
r ] and a(RD) = [a(RD)

1 , a(RD)
2 , ..., a(RD)

r ] rep-

resent the source-to-relay and relay-to-destination amplitude for each relay in

I(R), respectively. Similarly, a(CSD) = [a(CSD)
1 , a(CSD)

2 , ..., a(CSD)
q ] is the vector

of correlated source-to-destination amplitudes for each correlated source in

I(CS).

3. The equations (3.1), (3.3) and (3.5) are modified as follows

Y(SR) = A(SR)Z(S) + N(SR), (3.8)
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Y(CSD) = A(CSD)Z(CS) + N(CSD), (3.9)

Y(RD) = A(RD)Z(R) + N(RD), (3.10)

while the equation (3.2) remains unchanged For (3.8), we define

Y(SR) :=





y(SR,1)

y(SR,2)

...

y(SR,r)





,A(SR) := diag(a(SR)),

Z(S) :=





z(S)

z(S)

...

z(S)





,N(SR) :=





n(SR,1)

n(SR,2)

...

n(SR,r)





.

The superscript (R, i) for i ∈ I(R) refers to processes at the ith relay. Using a

similar technique, we can define Y(CSD), Y(RD), A(CSD), A(RD), N(CSD) and

N(RD) for equations (3.9), (3.10). For equation (3.9) the index i is i ∈ I(CS)

instead of I(R). The Z(CS) and Z(R), however are defined as

Z(R) :=





z(R,1)

z(R,2)

...

z(R,r)





,Z(CS) :=





z(CS,1)

z(CS,2)

...

z(CS,q)





.
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where, z(R,i) and z(CS,j) are the bits to be transmitted to the destination by

the ith relay and jth correlated source respectively.

4. In Rayleigh fading, (γ̄(SD), γ̄(SR), γ̄(RD), γ̄(CSD)), represents the average SNR

on each link.

3.1.3 Multi-Source, Multi-Relay Fractional Cooperation

In this section we consider a multi-source, multi-relay system with no correlated

source and compression. The relay model that we use is an extension of the frac-

tional cooperation model proposed in [17]: we consider s sources, r relays, and a

single destination. The r relays are shared amongst all s sources (i.e. each sin-

gle source has r relays that assists in its transmission), as shown in Figure 3.3.

Each source measures a phenomenon, encodes it using LDPC codes, and broad-

casts the encoded codeword to the r relays, as well as the destination. The relays

are assumed to employ both demodulate-and-forward (DemF), as well as decode-

and forward (DF) cooperative schemes. After decoding or demodulating the ith

source’s signal, the jth relay, selects a small fraction ε(i,j) for retransmission to the

destination. The destination will then decode each source’s information bits using

the received signal from the r relays, as well as the source itself.

Each source has a length-n information sequence to transfer to the destination

represented by x(Si) = {x(Si)
1 , x(Si)

2 , ..., x(Si)
n }, where x(Si)

k ∈ {0, 1} and Si repre-

51



S1

S2

Rr

R2

R1

Ss

D

...
...

Figure 3.3: Multi-Source, Multi-relay fractional cooperation model.

sents the ith source. Each information sequence is encoded by an LDPC code

for each source. Let R1, R2, · · · , Rs be the code rates at each source. Therefore

the codeword ready for transmission at the ith source is represented by z(Si) =

{z(Si)
1 , z(Si)

2 , ..., z(Si)
mi }, where mi = n/Ri is the length of the codeword.

As shown in Figure 3.3, there are s×r source to relay (S-R), s source to destina-

tion (SD), and r relay to destination (R-D) links. We assume these communication

links use binary phase shift keying (BPSK) for data modulation. We define the

function φ : {0, 1} →{ +1,−1} as the modulation function where 0 is mapped to a

+1 and 1 is mapped to -1. Also, the demodulation function is defined as

φ−1(y) =






0 if y ≥ 0

1 otherwise

, (3.11)
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with slight abuse of the inverse notation.

The S-D links are therefore given by

y(Si,D) = φ(z(Si)) + n(Si,D), (3.12)

where Si corresponds to the ith source and n(Si,D) is AWGN with variance σ2
(Si,D).

The channel SNRs for each of the s S-D links are represented by γ(Si,D) = 1/(2σ2
(Si,D)).

The S-R links are also given by

y(Si,Rj) = φ(z(Si)) + n(Si,Rj), (3.13)

where Si and Rj correspond to the ith source and the jth relay respectively and

n(Si,Rj) is AWGN with variance σ2
(Si,Rj)

. Therefore, all the S-R links can be repre-

sented by s × r channel SNRs γ(Si,Rj) = 1/(2σ2
(Si,Rj)

).

Decode-and-forward. In DF a relay will first decode a sources’s information

bits, then re-encode the information bits using the exact same encoding process

used by the original source. Therefore, if the decoding process for the ith source

at a relay is successful the information sequence, x(Si), is recovered by that relay

and the re-encoding process will reproduce the same codeword, z(Si), transmitted

by the source. For simplicity, we assume that the relays can always decode the

source’s information bits successfully. In practice this assumption is achievable by

using higher code rates. Therefore, we assume the codeword z(Si) is available at

each relay.
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The jth relay will select a small fraction, ε(i,j), of codeword, z(Si), to forward to

the destination assisting the ith source. We define a vector b(Si,Rj) ∈ {0, 1}mi such

that if a codeword position k is selected by the jth relay to be forwarded for the

ith source, the k position is set to one and zero otherwise. Therefore, the vector,

b(Si,Rj), has a Hamming distance of miε(i,j). The R-D channels can be formulated

using b(Si,Rj) as

y
(Si,Rj ,D)
DF = b(Si,Rj) * [φ(z(Si)) + n(Rj ,D)] (3.14)

where * is element wise multiplication of vectors, and n(Rj ,D) is AWGN with vari-

ance σ2
(Rj ,D). The channel SNRs for each of the r R-D links are represented by

γ(Rj ,D) = 1/(2σ2
(Rj ,D)).

Demodulate-and-forward. In DemF, a relay first demodulates the signal

received from a source. This process can be formulated as

z(Si,Rj) = φ−1(y(Si,Rj)), (3.15)

where z(Si,Rj) is the results of hard decisions (demodulation) for the jth relay as-

sisting ith source.

Each relay will then select a fraction of the demodulated signal, re-encodes it

using error correcting codes and retransmits to the destination. In DemF any type

of code (such as RA codes or irregular LDPC codes) can be used. For simplicity

we assume that using powerful and capacity approaching codes such as irregular
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RA [51], and irregular LDPC [57] codes, over R-D links, can result in perfect

recovery of demodulated bits at the destination, at rates close to capacity. Thus,

for any DemF system, we will assume that a capacity-approaching code is used in

the R-D link, and is decoded without error.

The vector b(Si,Rj) represents the demodulated bit positions selected for retrans-

mission to the destination: if b
(Si,Rj)
k = 1, then the kth bit is relayed; if b

(Si,Rj)
k = 0,

then the kth bit is not relayed. Therefore, the demodulated sequence resulting from

the jth relay assisting ith source is available at the destination as

y
(Si,Rj ,D)
DemF = b(Si,Rj) * φ(z(Si,Rj)), (3.16)

where where * is element-wise multiplication of vectors, z(Si,Rj) is given by equation

(3.15), and y(Si,Rj ,D) represents the results of demodulations available at the desti-

nation. The elements of y
(Si,Rj ,D)
DemF can take three possible values: +1 (representing

a demodulated 0 bit), −1 (representing a demodulated 1 bit), and 0 (representing

a position that is not selected for relaying).

3.2 Coding Methods

In this section we will look at different coding techniques used in the rest of this

thesis. We use two well known classes of codes namely, Low-Density Parity-Check

(LDPC) codes and Repeat-Accumulate (RA) codes. The LDPC codes are used
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for correlated source compression as well as in channel coding as a form of error

correcting code. The Repeat-Accumulate (RA) codes are used as error correcting

codes for channel coding. The rest of this section is organized as follows. In section

3.2.1, RA codes are discussed as well as a special class of RA codes called Punctured

Systematic Repeat-Accumulate (PSRA) codes. LDPC codes for both compression

and channel coding are discussed in section 3.2.2.

3.2.1 Repeat-Accumulate Codes

Repeat-Accumulate codes (RA Codes), proposed by Divsalar et al. [47], are a low

complexity class of error correcting codes that are competitive alternative to turbo

codes [48] and Low-Density Parity-Check (LDPC) [49] codes. Throughout the years

different extensions are made to RA codes. In 2000, Jin et al. [51], proposed Irreg-

ular RA (IRA) codes that consist of an outer code that is a mixture of repetition

codes and an inner code that consists of parity-check and an accumulator. IRA

codes are shown to out perform turbo codes and achieve limits close to Shannon’s

limits. In [17,53,54], puncturing was proposed for adjusting the rate of transmission

and Punctured Systematic RA (PSRA) codes were developed.

RA codes are an excellent choice for WSNs since they have a low complexity

encoder and perform well at low signal-to-noise ratio. Because typically sensors

nodes have limited computational power, the RA code’s low complexity encoder
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can be implemented easily. Also, because RA codes perform well at low signal-to-

noise ratio, the sensor node can use less power in transmission and save energy. In

the rest of this section we will discuss the RA code’s encoder and iterative decoder

as well as use of PSRA codes for adjusting the rate of transmission.

3.2.1.1 Encoder

The encoder is explained in the following algorithm.

1. Take x1x2x3 · · ·xn, a sequence of n information bits to be encoded.

2. Repeat each bit three times to form a sequence of length N = 3n

x1x1x1x2x2x2x3x3x3 · · ·xnxnxn

3. Permute these N bits using a random permutation and call the permuted

sequence v

v1v2v3v4v5v6v7v8v9 · · · vN

4. Create the final encoded sequence z by accumulating using modulo two ad-
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dition as follows.

z1 = v1

z2 = z1 ⊕ v2

...

zn = zn−1 ⊕ vn

...

zN = zN−1 ⊕ vN

At step 2 of this algorithm, information bits where repeated three times. However,

it is noted that this repetition factor can be any number in practice. It is also noted

in [47] that the repetition factor of at least three is needed in noisy environments,

and hence the use of three in this algorithm.

3.2.1.2 Decoder

In this section an iterative decoding algorithm for RA codes based factor graphs

and sum-product algorithm [52] is presented. The factor graph of an RA code is

presented in Figure 3.4. This factor graph consists of variable nodes, the circular

purple nodes, and check nodes, the square blue nodes. The small red circular nodes

represents messages received from the channel. The information bit sequence x

is presented by the top variable nodes. The number edges connected to the top

variable nodes define the repetition factor. For example, Figure 3.4 represents an
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Figure 3.4: The factor graph representation of RA codes.

RA code with repetition factor 3. These edges are connected to the check nodes

beneath according to the random permutation step described in encoding section.

The check nodes in the middle represent a modulo-2 addition of the incoming edges.

The variable node at the bottom represents the sequence z of the resulting encoded

bit. From the figure we can see that for this particular RA code z1 = x1, z2 = z1⊕x2

and z3 = z2 ⊕ x1 and so on.

From Section 3.1 we know that the received signal at the receiver is given by

y = aσ(z) + n, (3.17)

where n represents unit-variance additive white Gaussian noise (AWGN) vectors, a

the channel amplitude, and the function σ(.) maps 0 to 1 and 1 to -1. Therefore, y,

59



the signal received at the destination, is real valued. We can convert each element

in vector, y, to a corresponding log-likelihood-ratio (LLR) as follows

%i = ln

[
Pr(yi|zi = 0)

Pr(yi|zi = 1)

]
, (3.18)

where

Pr(yi|zi = 0) =
1√
2π

e−(yi−a)2/2, and, Pr(yi|zi = 1) =
1√
2π

e−(yi+a)2/2. (3.19)

Therefore, substituting equation 3.19 into equation 3.18 and simplifying, we get

%i = 2ayi. (3.20)

The small red circles at the bottom of Figure 3.4 represent these LLR values.

Let the repetition factor be q, the top variable nodes be represented by x,

the middle check nodes be represented by c, and the bottom variable nodes be

represented by z. According to sum-product algorithm there are four possible

messages on the edges of the graph as shown in Figure 3.4, namely mz→c, message

from variable nodes z to check nodes c, mx→c, message from variable nodes x

to check nodes c, mc→z, message from check nodes c to variable nodes z, and

mc→x, message from check nodes c to variable nodes x. Let m!z be the message

corresponding to channel LLR corresponding to node z as shown in Figure 3.4.

The decoder algorithm will take the channel LLRs, %, as an input and decode the

information bits as follows.
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1. Initialize all messages on all edges to zero.

2. Update mz→c for all the edges between nodes z and nodes c as follows

mz→c =






m!z if z = zqn

m!z + mc′→z o/w, where (c′, z) is an edge and c′ (= c

.

3. Update mx→c for all the edges between nodes x and nodes c as follows

mx→c =
∑

c′

mc′→x where (c′, x) is an edge and c′ (= c .

4. Update mc→z for all the edges between nodes c and nodes z as follows

mc→z =






mx→c if c = c1 and (x, c) is an edge

2 tanh−1 [tanh (mx→c/2) tanh (mz′→c/2)] o/w, where z′ (= z

.

5. Update mc→x for all the edges between nodes c and nodes x as follows

mc→x =






mz→c if c = c1 and (z, c) is an edge

2 tanh−1 [tanh (mz→c/2) tanh (mz′→c/2)] o/w, where z′ (= z

.

6. Repeat step 1 to 4 until K iterations or until all parity check nodes are

satisfied.

7. If after K iterations the parity check nodes are not satisfied return decoding

failure.
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8. If parity check nodes are all satisfied, calculate the sum of all incoming mes-

sages to nodes x as follows

s(x) =
∑

c

mc→x.

The bits are then estimated (decoded) from this sum as shown below

x̂ =






0 if s(x) ≥ 0

1 Otherwise

.

3.2.1.3 PSRA Codes

Although RA codes are powerful and simple error correcting codes, they are not

flexible in terms of code rate. The only way to adjust the rate of an RA code is

through changing the repletion factor and only repetition factors greater than or

equal to 3 are proved to perform well as shown in [47]. However, code rates for

repetition factors above 4 are considered very low and require a lot of transmission

power and are highly inefficient. Therefore, for some wireless applications where

the channel conditions change relatively fast more flexible code rates are needed.

To overcome this problem the use of puncturing has been proposed in a number of

papers, e.g., [17, 53, 54]. Since it is known that for better performance punctured

codes must be systematic, we will describe the Punctured Systematic RA (PSRA)

codes in this section.
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The encoder of a PSRA code performs like the RA encoder described in section

3.2.1.1 with the following steps added to the end.

1. Puncture the RA encoded sequence, z, (achieved at step 4 of the encoder in

section 3.2.1.1) by randomly selecting M elements where M ≤ N as follows.

z1z2z3z4z5z6z7z8z9 · · · zN

↓ ↓ RAND ↓ ↓

u1 u2 u3 · · ·uM

2. Create the new PSRA encoded sequence by concatenating the original n in-

formation bit sequence, x, with the punctured sequence u.

x1x2x3 · · ·xnu1u2u3 · · ·uM

From this algorithm it is clear that by selecting the number of bits to be punctured

at step 1 the code rate can be changed easily. For example if we want to achieve a

code rate of 2/5, then M = N/2 or only one of every two bits from z is selected at

random in step 1.

The decoder for a PSRA code will also perform similarly to the iterative decoder

of RA codes described in section 3.2.1.2. Since, instead of N bits, n + M bits are

received, there would be n + M channel LLRs where the first n correspond to the

systematic bits and the last M correspond to coded parity bits. Moreover, for

the punctured bits we can assume the channel LLRs are zero. Figure 3.5 shows
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Figure 3.5: The factor graph representation of PSRA codes.

the factor graph of a PSRA code. This factor graph is exactly similar to the

factor graph of regular RA code with the exception of channel LLRs. In Figure

3.5, channel LLRs are available at the top variable nodes, x, because the code is

systematic. Also, zero is used for z2, and z4 through z6 since those parity bits were

punctured by the encoder and were not transmitted.

Let m!z be the message corresponding to the channel LLR corresponding to

node z. Moreover, if node z was punctured by the encoder, then m!z = 0 as

shown in Figure 3.5. Similarly, m!x be the message corresponding to the channel

LLR corresponding to node x as shown in Figure 3.5. The decoder algorithm will
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now take as its input n + M channel LLRs and performs similar to the algorithm

presented in section 3.2.1.2 with the following modifications.

1. At step 2, mx→c is updated with addition of the channel LLR.

mx→c =
∑

c′

mc′→x + m!x where (c′, x) is an edge and c′ (= c .

2. At step 7, when the sum of incoming message to node x is calculated the

channel LLR is also added.

s(x) =
∑

c

mc→x + m!x .

Both the RA codes and PSRA codes have a low complexity encoder and decoder

in the order of O(n). They are also very powerful error correcting codes and perform

very well at low SNRs. PSRA codes are also very flexible in terms of code rate

because of puncturing.

3.2.2 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes and a corresponding iterative decoding

algorithm like the one described in the previous section for RA codes, were first

introduced by Gallager [49, 50] in 1960s. However, because computers of the time

could not simulate the performance of these codes, for the next decades LDPC codes

were forgotten until their rediscovery through the work of McKay and Neal [55,56]
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in the late 1990s. LDPC codes had numerous advantages over most of the previously

discovered codes such as block codes and trellis codes. First, they were constructed

in a random manner; second, they had a decoding algorithm whose complexity

was linear in the block length of the code. Finally, when combined with their

spectacular performance, this made LDPC codes a compelling class of codes for

many applications. Therefore, a lot of research has been done on LDPC codes after

their rediscovery in 1996.

Because of its popularity, there has been a lot of different work on LDPC codes

and as the result the their performance [57], the convergence criteria for iterative

decoding algorithm [18, 57], and their use in Slepian-Wolf compression [41] have

been studied in detail. These criteria makes LDPC codes suitable for both channel

coding (error-correcting codes) and Slepian-Wolf compression used throughout this

thesis. Therefore, in this section we will describe the LDPC encoder and decoder.

Then, we will describe their use for Slepian-Wolf compression as described in [41].

Finally, we will take a look at convergence criteria of LDPC codes based on the

mean value of channel log-likelihood-ratios (LLRs).

3.2.2.1 Encoder

Since LDPC codes are very similar to linear block codes, we will first review basics

of linear block codes. An (n, k) block code C is a mapping from k-bit information
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Figure 3.6: Parity-check matrix of an LDPC code.

vector x, to a length-n codeword vector z. The code C is a k-dimensional subspace

of an n-dimensional binary vector space Vn since it is linear. Therefore, the code

can also be viewed as a mapping of k-space to n-space by a k×n generator matrix

G, where zT = xTG. The rows of G create a basis of the code subspace. The dual

space, C∗ consists of all the vectors in Vn orthogonal to C, which means that for

all z ∈ C and all d ∈ C∗, z · d = 0. Let the rows of an (n − k) × n parity-check

matrix H forms a basis for C∗. Therefore, it follows that for all z ∈ C, Hz = 0.

Moreover, a code is completely defined by either G or H since they can be reduced

to G = [Ik | P] and H = [(−P)T ] | In−k] respectively and converted back and forth.

In its simplest form, an LDPC code is a linear code with a parity-check matrix

that is sparse, which means it has a small number of non zero entries. Gallager

[49,50] proposed randomly placing 1’s and 0’s in a m× n, m = n− k, parity-check

matrix H such that each row of H has dc 1’s and each column of H has dv 1’s.

Figure 3.6 shows a m = 4 × n = 8 parity-check matrix where dv = 2 and dc = 4.

Therefore, this code represents a (8,4) linear block code. In general, codes of this
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Figure 3.7: The factor graph representation of an LDPC codes.

form are referred to as regular (dv, dc) LDPC codes of length n which means all the

rows and columns have the same number of 1’s. Although in the example in Figure

3.6 the matrix is not sparse because of lack of space (i.e. dc - n and dv - m do

not hold), the fraction of 1’s given by mdc
mn = dc

n approaches zero as the block length

gets large and the matrix will become sparse.

Just like RA codes LDPC codes can be represented with factor graphs. Figure

3.7 shows the factor graph (also known as Tanner Graph) representation of the

parity-check matrix in Figure 3.6. The purple circular nodes at the top are variable

nodes that represent the columns of the parity-check matrix and the blue square

nodes at the bottom are check nodes and represent the rows of the parity-check

matrix. If there is a 1 at position hij in the parity-check matrix, where i indicates

the row and j the column, there will be an edge between vj variable node and ci

check node. For example, since there is a 1 at h14 there is an edge connecting v4 to
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c1. The degree of all variable nodes (i.e. number of edges connected to the variable

nodes) is dv = 2 and the degree of all check nodes is dc = 4, which makes the code

regular.

The encoder of the LDPC codes typically creates the parity-check matrix by

placing 1’s at random positions in the matrix subject to the constraint that there

are dv ones at each column and dc ones at each row. A similar equivalent approach

would involve randomly permuting edges between variable nodes and check nodes

in the factor graph subject to the constraint that the degree of all variable nodes are

dv and the degree of all check nodes are dc. This constraint is not enough because

this random permutation might connect the same variable node to the same check

node through more than one edge. For example, in Figure 3.7 changing the edge

(v1, c4) to (v1, c2) and the edge (v2, c2) to (v2, c4) would constitute a valid random

permutation. However, in this permutation variable node v1 is connected to check

node c2 with two edges and this will make the code irregular. Therefore, another

constraint that must be satisfied is that each variable node is connected to the

same check node with only one edge. Another constraint that is usually satisfied

is avoiding short cycles. In Figure 3.7, the path v3 → c2 → v6 → c3 → v3 (the red

path), is an example of such a cycle. It is usually prefered that these short cycles

are avoided for better decoder performance.

Having explained all the constraints we now provide an algorithm for encoding
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LDPC codes bellow.

1. First a parity-check matrix is generated by randomly placing ones in the

matrix such that there are dv 1’s at each column and dc 1’s at each row.

2. The equivalent factor graph is generated and adjustments to the edges are

made such that there are not more that one edges between each variable and

check node pair. Moreover, the adjusted edges might be managed in such a

way that there will be no short cycles for better performance at the decoder.

3. The resulting factor graph is converted back to corresponding parity-check

matrix H.

4. Using Gaussian elimination the parity-check matrix is converted to the form

H = [(−P)T ] | In−k].

5. The parity-check matrix is then converted to the equivalent generator matrix

G = [Ik | P].

6. The generator matrix is then used to encode the information bit vector x, as

follow zT = xTG, where z is a vector of the encoded bits.

At the first glance the encoder algorithm explained above performs in O(N2) or

quadratic complexity with respect to the code length. The main reason is conversion

of parity-check matrix to generator matrix. However, there has been number of
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papers on more efficient encoding schemes. If we assume the code is systematic

them it is possible to encode directly using the parity check matrix. Suppose the

encoded codeword has the structure z = [zuzp], where x = zu and zp is the vector

of parity bits. Similarly the parity-check matrix can be split into H = [Hu|Hp]

such that

Hpx
T
p = Hux

T
u ⇒ xT

p = H−1
p Hux

T
u (3.21)

The authors of [59] proposed an efficient way of achieving this task and showed

that using such a method the encoder complexity can be reduced to O(n) or linear

time. Moreover, for simulation purposes, since the all-zero codeword is part of any

LDPC code, there is no need for an encoder (i.e. in simulations we always use the

all-zero codeword without encoding).

3.2.2.2 Decoder

In this section we explain the LDPC iterative decoder algorithm based on factor

graphs and sum-product algorithm. Just like RA codes we need to calculate the

channel LLRs. This calculation is similar the one explained in section 3.2.1.2 which

derived equation 3.20, and therefore %i = 2ayi. Figure 3.8, shows these LLRs as

inputs to variable nodes as well as the two messages passed along each edge, namely

mv→c, message from variable nodes to check nodes, and mc→v.

Let m!v be the message corresponding to channel LLR corresponding to node
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Figure 3.8: The factor graph representation of an LDPC codes.

v as shown in Figure 3.8. The decoder algorithm takes the channel LLRs as input

and performs as follows.

1. Initialize all messages on all edges to zero and all mv→c = m!v .

2. Calculate mc→v for all edges as

mc→v = 2 tanh−1

(
∏

V

tanh(mv′→c/2)

)

where (v′, c) is an edge and v′ (= v

3. Calculate mv→c for all edges as

mv→c =
∑

C

mc′→v + m!v where (c′, v) is an edge and c′ (= c

4. Repeat step 2 to 3 until K iterations or until all parity check nodes are

satisfied.
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5. If after K iterations the parity check nodes are not satisfied return decoding

failure.

6. If parity check nodes are all satisfied, calculate the sum of all incoming mes-

sages to nodes v as follows

s(v) =
∑

c

mc→v + m!v .

The bits are then estimated (decoded) from this sum as shown below

v̂ =






0 if s(v) ≥ 0

1 Otherwise

.

7. An estimate of the original information bits, x̂, is recovered by extracting the

systematic parts of v̂.

The iterative decoder algorithm described above perform in O(n) which makes it

suitable for many applications. In the next section we will describe how LDPC codes

can be used in Slepian-Wolf compression to compress and decompress correlated

information.

3.2.2.3 LDPC Slepian-Wolf Compression

It is possible to use the LDPC codes for compression and decompression of bi-

nary correlated sources as explained in [41]. In this section we will describe this
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Figure 3.9: The corner point of Slepian-Wolf rate region (x compressed fully).

process in details. Let’s assume that there are two sources, x = [x1, x2, . . . , xn]

and y = [y1, y2, . . . , yn], where xi’s and yi’s are binary independent and identically-

distributed (i.i.d.) equiprobable random variables. The correlation is defined as

Pr[xi (= yi] = p < 0.5. We try to compress at the corner point of Slepian-Wolf rate

region, the red dot in Figure 3.9. This means x is compressed fully while y is not

compressed at all. Therefore, the rate of y is its entropy and the number of bits

transmitted is nRY = nH(yi) = n bits. The number of bits x is compressed to is

nRX ≥ nH(xi|yi) = nH(p) = n[−p log2 p − (1 − p) log2(1 − p)].
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rithms.

In the compression step first a valid LDPC parity-check matrix H is generated

similarly with the techniques discussed in section 3.2.2.1. The syndrome bits are

then calculated as s = xHT . Therefore, the length-n information bits are com-

pressed to length-(n − k) syndrome bits. Alternatively, this compression process

can be viewed as binary addition of all the variable nodes that are connected to the

same check node in the factor graph representation.

To decompress the syndrome bits, y is required to calculate the LLR of variable

nodes similar to the channel LLRs calculated in section 3.2.2.2 for LDPC decoder.

This time the LLRs are calculated as

%i = log
Pr[xi = 0|yi]

Pr[xi = 1|yi]
= (1 − 2yi) log

1 − p

p
. (3.22)
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Let the function L(v) = % return the channel LLR corresponding to node v which

is a simplified notation for L(vi) = %i. Also, let S(c) be the function that returns

the syndrome bit corresponding to a check node, which is a simplified notation

for S(cj) = sj as shown in Figure 3.10. The decompression algorithm takes the

LLRs " and the compressed syndrome bits s as input and performs exactly like the

LDPC iterative decoder algorithm described in section 3.2.2.2 with the following

modifications.

1. At step 2, mc→v is calculate for all edges as

mc→v = 2 tanh−1

(
[1 − 2S(c)]

∏

V

tanh(mv′→c/2)

)
, (v′, c) is an edge, v′ (= v

2. At step 6, the algorithm ends since x̂ = v̂ and step 7 is not executed.

The above compressor and decompresser algorithms both run in O(n) just like

the regular LDPC encoder and decoder. Another property of this compression and

decompression algorithm is that there are decompression errors associated with

the process. In other words the decompression is not guaranteed to be successful

always. We will present some simulations demonstrating this property in the next

chapter.
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3.2.2.4 LDPC Convergence Requirements: EXIT Charts

It is extremely useful to know what the requirements would be for successful decod-

ing of LDPC codes under iterative decoding algorithm. For example, the encoder

can determine, given the current channel condition, whether the decoder is able

to decode the message in advance and adjusts the rate accordingly. As a result,

there has been a number of studies on the convergence of the iterative decoding

algorithms in the literature. Generally, there are two methods for studying the

convergence, one based on density evolution [58], and one based on extrinsic infor-

mation transfer (EXIT) charts [18]. In this section, we use EXIT charts to analyze

the convergence requirements of LDPC codes, based on channel LLR’s mean, with

a techniques used in [18]. Although, density evolution is exact, EXIT chart analysis

can be optimized using linear programing.

In order to analyze the convergence of the iterative decoder, we must first study

the input to the decoder which is a set of channel LLRs. Let’s assume that the

all zero codeword z was transmitted. Therefore, we have y = σ(z) + n where σ(.)

maps 0 to +1 and 1 to −1. For a single symbol then y = 1+n with the conditional

pdf

p(y|z = 0) =
1√

2πσn

e−(y−1)2/2σ2
n
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Figure 3.11: (3,6) regular LDPC code tree.

where σ2
n is the variance of Gaussian noise. The LLR value % is

% = ln
p(y|z = 0)

p(y|z = 1)
=

2

σ2
n

y =
2

σ2
n

(1 + n) (3.23)

which is a Gaussian random variable. The mean and variance of % are given by

m! = 2/σ2
n and σ2

! = 4/σ2
n respectively. Since σ2

! = 2m! then the channel LLRs

are Gaussian symmetric. In [58], it was shown that if the channel LLRs have a

symmetric pdf, using iterative decoding, the pdf of the message LLR in the decoder

will remain symmetric.

Using this property of channel LLRs and the iterative decoding algorithm, we

can study the convergence by simulating one iteration of decoding algorithm as

follows. Assume we have a (3,6) regular LDPC code, which means dv = 3 and
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dc = 6. A single iteration can then be simulated on a tree of depth-one taken from

the factor graph and shown in Figure 3.11. In this tree, since the code is (3,6), each

variable node has a 3 edges and one input from channel LLR. Each check node also

has 6 edges and uses 5 input edges to calculate the output to the variable node. The

variable node also needs messages from two check nodes to calculate its output.

The tree in Figure 3.11, can be treated as a function with 10 random variables as

inputs and 1 random variable as output, and is the simplest block in a (3,6) regular

LDPC code that is repeated many times. Let this function be represented by f(x)

where x is a vector of 10 random variables. Since for a symmetric Gaussian density

σ2 = 2m, only the mean or variance is sufficient to describe the random variable;

we choose the mean. Therefore, each element in vector x is a random variable with

pdf N (min, 2min). The function f(x) will output a symetric Gaussian random

variable with pdf N (mout, 2mout). To find the mapping between the input pdf and

the output pdf, we run the following algorithm subject to the input mean min, on

the tree in Figure 3.11 for a large number of times and calculate mout by averaging

the outputs.

1. Generate 10 symmetric Gaussian random variables with mean m = min (i.e.

Gaussian variable with N (min, 2min)).

2. These random variables are inputed into the tree and the output is calculated
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Figure 3.12: EXIT chart of (3,6) regular LDPC code.

based on the decoding rules described in section 3.2.2.2.

3. Repeat step 1 and 2 until large number of iterations have been reached.

4. After a large number of iterations have been reached calculate the mean of

all the obtained outputs mout.

5. Start from step one with a different min.

The result of this algorithm is shown in Figure 3.12. The x-axis represents
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the input mean while the y-axis represents the output mean. The green curve at

the bottom represents the function f(x) which is obtained by running the above

algorithm. Since in the real LDPC iterative decoder after each iteration the output

mean mout would become the input mean min in the next iteration, in order for the

algorithm to converge the curve must be above the line min = mout at all times,

otherwise, decoding failure will occur. Let the function g(x, m!) = f(x) + m!

represent the addition of the mean of channel LLR m! to the tree in Figure 3.11.

Therefore, the iterative decoding algorithm converges when the mean of the channel

LLR is big enough such that the green curve at the bottom of the Figure 3.12 is

moved up to a tangent position of line min = mout.

3.3 Summary

In this chapter we first explained the system model that will be used in the next

two chapters. We also explained two different codes namely RA, and LDPC codes.

For each code we explained the encoding and the iterative decoding algorithms. We

also described how LDPC codes can be used for compression and decompression

of correlated binary sources. The convergence of LDPC codes using EXIT charts

were also discussed. In the next two chapters we will use these models and coding

methods to increase the efficiency of WSNs through two different novel techniques.
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4 Low-Complexity Cooperation Using

Correlated Sources

As was mentioned in previous chapters, phenomena under measurement by WSNs

are often spatially correlated. Therefore, Slepain-Wolf compression can be applied

to compress the number of bits transmitted by two correlated sources, thereby re-

ducing the transmission power of the system. Moreover, because of the spatial

distribution of sensor nodes, cooperative diversity can be used to increase the effi-

ciency of transmission. Therefore, both cooperation and compression of correlated

data are beneficial to WSNs.

As was explained in detail in Chapter 2, in wireless networks, it is best if the

system has a high diversity order, since if one link fails because of deep fading,

there will be other links with possibly a better fading and successful transmission.

In WSNs, diversity can be achieved by relaying transmissions through neighbouring

sensor nodes towards the data sink. Therefore, one of the main issues that will be

discussed in this chapter is the effect of compression of correlated sources on the
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diversity order of a low-complexity WSN system.

To answer this question, we first consider the effects of Slepian-Wolf compression

on diversity order of a cooperative network with a single source and a single des-

tination, along with relays and correlated sources. We will apply the Slepian-Wolf

compression and cooperation together (explained in Chapters 2 and 3) to study the

effects on the diversity order of the system, system performance and transmission

rates. Our main assumption is that there exist constraints on the nodes’ computa-

tional power. We will show that in spite of the simplicity and adaptability of this

scenario, excellent and robust performance can be achieved. Although these results

are applicable to general wireless networks, they are perfectly suited for networks

with low complexity nodes, such as WSNs.

The rest of this chapter is organized as follows. We will explain the system

under study in details in section 4.1, using the relay models and coding techniques

described in Chapter 3. We will then present our theoretical results in section 4.2,

where we will show that the diversity order of the system under study will drop

asymptotically to the minimum of the number of relays and number of correlated

sources. In section 4.3 we will present our simulation results and show that diversity

orders of greater than the theoretical asymptotic bond can be achieved at lower

SNRs.
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4.1 System Setup

In this section, we describe the system to be studied and set up the problem to be

investigated. The relay models, along with some of the coding techniques described

in Chapter 3, will be used to set up the system. A simple example will then be

presented to show how different components of the system work together. We will

then describe our contribution by formulating some of the questions we will answer

in the rest of the chapter.

The relay model that we will use in this chapter is based on the multi-relay

multi-correlated-source model described in section 3.1.2 in Chapter 3. Therefore,

our system consists of a source and a destination along with r relays and q corre-

lated sources. The source measures a phenomenon and compresses the measure-

ments using the LDPC compression technique described in Chapter 3, encodes the

compressed bits using PSRA codes and broadcasts to the r relays as well as to the

destination. Each relay makes a hard decision on the received bits and re-encodes

them using PSRA codes and transmits to the destination. Each correlated source

takes its own measurements, and encodes them using PSRA codes and transmits

to the destination.

Although in the system described above we specify the coding methods (i.e.

LDPC codes for compression and PSRA codes as error correcting codes for channel
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coding), in general we can use any asymptotically good coding scheme, and the

theoretical results that will be presented in the next section are independent from

the coding method used. However, since the system under study is a WSN, and

we need low-complexity coding with good performance and flexibility in terms of

code rate, we choose LDPC and PSRA codes for our simulations as an example of

practical implementation.

4.1.1 An Example

We now provide an example of a system with r = 1 and q = 1 (i.e. one relay

and one correlated source) in detail. The example provides just an outline of the

processes at the source, relay, correlated source, and destination and does not work

in practice because of the its small size (i.e. the small size of the information bits,

encoder, decoder, etc.). We divide the procedure into five parts: compression at

the source, channel encoder at the source and correlated source, processing and

retransmission at the relay, decoding source’s compressed bits at the destination,

and finally decompression of source’s information bits.

Compression at the source. Assume the number of information bits at the

source and correlated source is n = 8. Also assume the information bits at source
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Figure 4.1: Example of compression by a (2,4) regular LDPC code.

and correlated source are given by

x(S) = 1 0 1 0 0 1 1 1 , and

x(CS) = 0 0 1 0 0 1 1 1 ,

respectively. Therefore, the source and correlated source differ only at the first

bit position on the left. The source compresses its information bits using a (2,4)

regular LDPC code, shown in Figure 4.1. The resulting syndrome bits are given by

s = 1 1 0 0.

Channel encoder at the source and correlated source. The resulting

length-4 syndrome bits are encoded using PSRA codes with repetition factor of
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Figure 4.2: Example of PSRA code.

three where half of the parity bits are punctured as shown by the red cross over the

red variable nodes in Figure 4.2. Therefore, the resulting transmission bits from

the source are

σ−1
(
z(S)

)
= 1 1 0 0 1 0 0 1 0 0,

where the first four bits on the left are the systematic bits and the last six bits are

the parity bits. Similarly, the 8-bit information at the correlated source are encoded

using the PSRA codes to create the transmission sequence z(CS). The transmission

sequence, z(S), is broadcast to the relay and the destination by applying Equations

(3.1,3.2) and the transmission sequence, z(CS), is transmitted to the destination by
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applying Equation (3.3).

processing and retransmission at the relay. The relay makes hard deci-

sions on the received signal. Suppose the result is,

x(R) = 1 1 0 0 1 0 0 1 0 1,

that is, there is only one bit error in transmission to relay, namely the first bits

from the right. The 10-bit x(R) is then encoded with PSRA codes to create the

transmission sequence z(R), which is transmitted to the destination by applying

equation (3.5).

decoding source’s compressed bits at the destination. At the destina-

tion, three signals are received: y(SD), y(RD) and y(CSD), from the source, the relay

and the correlated source respectively. The signal from the relay, y(RD), is first de-

coded using the PSRA decoder and the channel LLRs are calculated as described in

Equation (3.20). Let the decoded bits be represented by x̂(R), which is an estimate

of x(R). These estimated bits along with the signal from the source y(SD), are used

jointly to decode the syndrome bits s. To do this, the channel LLRs inputed to the

PSRA decoder are calculated as a combination of LLR from the relay and the LLR

from the source. The LLR from the source, %(S), is calculated using the equation

(3.20) in chapter 3. That is,

%(S)
i = ln

Pr[y(SD)
i | z(S)

i = +1]

Pr[y(SD)
i | z(S)

i = −1]
= 2aSDy(SD)

i (4.1)
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The LLR from the relay, however, is calculated as

%(R)
i = ln

Pr[x̂(R)
i | z(S)

i = +1]

Pr[x̂(R)
i | z(S)

i = −1]
= (1 − 2x̂(R)

i ) log

[
1 − pHD

pHD

]
(4.2)

where pHD is the probability that the hard decision at the relay was incorrect.

Therefore, pHD can be calculated as

pHD =
1

2
erfc(

√
aSR) (4.3)

where aSR is the channel amplitude or the average SNR. The LLR that is input

top the PSRA decoder is given by

%i = %(S)
i + %(R)

i , (4.4)

and the result of this decoding process is an estimate of the syndrome bits sent by

the source ŝ.

In general, if we have r relays, first the signal from each relay is decoded using

a PSRA decoder to get an estimate of hard decision at the jth relay, x̂(R,j). Then,

to decode the syndrome bits, s, sent by the source, the joint LLR from r relays and

the S-D link is calculated as

%i = %(S)
i +

r∑

j=1

%(R,j)
i , (4.5)

and is input to the PSRA decoder.

decompression of source’s information bits. The signal from the correlated

source y(CSD) is also decoded using PSRA decoder just like the signal from the relay,
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y(RD). The result of this decoding process is an estimate of the information bits

at the correlated source given by x̂(CS). Using this estimate, the decompression

of the earlier estimated syndrome bits is achieved by running the decompression

algorithm described in section 3.2.2.3, with LLR

%(CS)
i = log

Pr[x(S)
i = 0 | x̂(CS)

i ]

Pr[x(S)
i = 1 | x̂(CS)

i ]
= (1 − 2x̂(CS)

i ) log
1 − p

p
, (4.6)

where p is the correlated factor described in Chapter 3. The result of the decompres-

sion is an estimate of the information bits at the source x̂(S). The communication

process is successful when x̂(S) = x(S).

In general if there are q correlated sources, the signal from each correlated source

is decoded individually. Therefore, there are q estimates, where the kth estimate

is given by x̂(CS,k). The input LLR to the decompression algorithm is therefore

calculated as sum of all the individual LLR, calculated separately using equation

(4.6),

%i =
q∑

k=0

%(CS,k)
i . (4.7)

4.1.2 Problem Setup

Although in that system we also specify coding methods (i.e. PSRA and LDPC

codes) in general, we can use any coding technique for channel coding and compres-

sion. With these assumptions in mind, we will try to answer the following questions

in the rest of this chapter.
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1. Can the use of correlated sources increase the diversity order of the system?

2. Is it better to use correlated sources to increase the diversity than using relays?

3. How well does the process of compression and decompression perform in the

presence of noise?

The most important question is question 1, since diversity is very important

in wireless systems. Because the system under study is complicated, it is hard to

obtain an exact theoretical result for diversity order of the system. Instead, we

have to rely on asymptotic bond (i.e. as the SNR approaches infinity). Therefore,

in the next section, we will try to obtain this asymptotic bond. Then in section

4.3, through simulation, we try to answer these questions.

4.2 Theoretical Result

In this section, we present our theoretical contributions. In particular we will show

that the diversity order of the multi-relay multi-correlated-source system described

in Section 4.1 will asymptotically drop to min (r + 1, q) (Theorem 1), where r is

the number of relays and q is the number of correlated sources.

Although our theoretical results indicate that the diversity order will asymp-

totically drop to min (r + 1, q) our simulations show that the diversity order can

be greater than min (r + 1, q) for q > r + 1, over SNR ranges of practical interest.
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Therefore, using correlated sources we can compress source’s information bits and

reduce the amount of information that needs to be relayed by the system while

increasing the diversity order of the system. The correlated sources are other sen-

sor nodes in the network transmitting their own informations. Therefore, there is

no increase in the system’s total power. Finally we mention that, using correlated

sources the system can outperform a system with no correlated source in terms of

frame error rate (as will be shown in our simulations).

4.2.1 Key Assumptions and Definitions

We consider the multi-relay multi-correlated-source model given in Section 3.1.2.

We assume for convenience that the average SNR γ̄ on every link is the same (but

as shown in [17], relaxing this assumption makes no difference to our results). As

before, let r represent the number of relays in the system and q the number of

correlated sources.

We define a system outage as the event during which the overall probability

of frame error between the source and destination falls below some minimum. To

describe asymptotic outage probabilities, designated Pout, we will be using the Θ

order notation, where g(x) = Θ(f(x)) means that there exists a constant c such

that limx→∞ f(x)/g(x) = c.

For a single link in Rayleigh fading, and given a minimum SNR γmin to avoid
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system outage, it is easy to show that Pout is given by

Pout = Pr(γ < γmin) = 1 − e−ηγmin/γ , (4.8)

where η is a positive constant. Given the Taylor series expansion of ex, it is easy

to show that 1 − e−ηγmin/γ = Θ(γ̄−1). Therefore in Rayleigh fading, a system with

diversity order d has probability of system outage Pout = Θ(γ̄−d).

When using error-correcting codes, we assume that there exists an SNR γ > 0

so that the code (and its decoding algorithm) is equal or superior to using no coding

for every SNR greater than γ. In other words, for sufficiently high SNR, the use

of the code does not result in a higher probability of error than using no code.

Also, since we are using DISCUS as a method of compression at the source, there

is a certain probability of error in decompression, Pout Decomp, given the system

parameters, p (probability of decorrelation) and frame size. In other words, if the

source’s compressed syndrome bits, and the correlated source’s information bits are

perfectly available at the destination, there is still some probability Pout Decomp that

we cannot retrieve the source’s information bits successfully. We will demonstrate

this effect through simulation in the next section. However, to derive the asymptotic

theoretical results, we generally assume that Pout Decomp = ε, a small negligible

number. In practice, this assumption can be implemented by increasing the frame

size or adjusting the rate the compression code.
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4.2.2 Main Theoretical Results

Our asymptotic theoretical result is expressed through the following theorem as-

suming serial decoding at the destination (i.e. procedure outlined in section 4.1:

Theorem 1 The diversity order of the multi-relay, multi-correlated-source model

with r relays and q correlated sources, described in section 4.1, will asymptotically

drop to min (r + 1, q) for 0 ≤ r, q < ∞ as SNR→ ∞.

Proof: Let there be γ(SD)
◦ such that whenever γ(SD) < γ(SD)

◦ the S-D link will

be in outage. Also, let there be γ(SRD,i)
◦ for any relay i such SRD link through

relay i is in outage whenever γ(SRD,i) < γ(SRD,i)
◦ . Here the SRD link is the

combination of SR link and RD link. Therefore we can consider SRD link as

γ(SRD,i) = min γ(SR,i), γ(RD,i). Then using serial decoding, sufficient condition for

system outage is that γ(SD) < γ(SD)
◦ and γ(SRD,i) < γ(SRD,i)

◦ for all i. We therefore

have

Psynd out = Pr(γ(SD) < γ(SD)
◦ )

r∏

i=1

Pr(γ(SRD,i) < γ(SRD,i)
◦ ) (4.9)

where Psynd out is the probability that syndrome bits are not received at the des-

tination. Since, by assumption, the average SNR for every channel is equal γ̄, we

have

Psynd out = (1 − e−ηγ(SD)
◦ /γ̄)

r∏

i=1

(1 − e−ηγ(SRD,i)
◦ /γ̄)

= Θ(γ̄−1)Θ(γ̄−r) = Θ(γ̄−(r+1))
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Similarly, let there be γ(CSD,j)
◦ for any correlated source j such that whenever

γ(CSD,j) < γ(CSD,j)
◦ the CS-D link j will be in outage. Therefore the probability

that the CS bits are not received at the destination is given by

Pcs out =
q∏

j=1

Pr(γ(CSD,j) < γ(CSD,j)
◦ ) (4.10)

where Pcs out that correlated source information bits are not received at the desti-

nation. Again, since the average SNR for every channel is equal γ̄ we have

Pcs out =
q∏

j=1

(1 − e−ηγ(CSD,i)
◦ /γ̄) = Θ(γ̄−q)

In order to decode sources information bits both the syndrome and information

bits from at least one of the correlated source must be available to the decoder

(please note that we have assumed if these information are available perfectly at the

decoder, the source’s information bits can be decoded without any error). Therefore

the system is in outage as a whole when either systematic bits are not available or

correlated source’s information bits are not available. We have

Pout = Psynd out + Pcs out

= Θ(γ̄−(r+1)) +Θ(γ̄−q) = Θ(γ̄−min(r+1,q))

Therefore the system has diversity order equal to min (r + 1, q).

Although the system’s diversity order drops asymptotically to min (r + 1, q) we

will show in the next section through simulations that at practical SNR regions

(i.e. lower SNR regions) it can be greater for q > r + 1.

95



4.3 Experimental Results

The theoretical results in the previous section are derived as SNR approaches in-

finity. However, in practice such high SNR values do not exist in nature. Since,

deriving exact theoretical results is extremely difficult at lower SNRs, we have to

rely on simulations for investigation. Therefore, in this section we will study the ef-

fects of compression through the use of correlated sources, on the diversity and the

performance of WSNs, with different simulations. To do this, we use the slope of

the curve that represents the frame error rate versus the SNR on a semilog plot. In

the Rayleigh fading channel, this slope represents the diversity order of the system.

Therefore, by running different simulations and plotting these graphs we can study

diversity order of the systems. The rest of this section is organized as follows. We

first present general information about our implementation and simulations. We

will then present and discuss our simulation results.

4.3.1 System Model Implementation

In our simulations, the length-n information bits at the source, x(S), are selected

at random with an equiprobable density. The correlated sources’ information bits,

x(S), are then selected in such a way that there are exactly K = np bits that are

different from x(S). In other words Pr[x(S)
i (= x(CS)

i ] = p. Similar to the example
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Figure 4.3: Error rate of LDPC compression.

described in section 4.1, we use LDPC codes for compression and PSRA codes as

error correcting codes for channel coding.

As we mentioned in sections 4.1 and 4.2, LDPC compression is not error free.

In our simulations we use (3,6) regular LDPC codes. To show the error associated

with the compression and decompression process, we ran a simulation using the

frame size of 10000 on different decorrelation factors (i.e. different p values). The

results are presented in Figure 4.3, where the blue curve is the bit error rate and the

red curve is the frame error rate. Since a (3,6) regular LDPC code compressed the

original length-n information bits to syndrome bits of length-n
2 , the Slepian-Wolf
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limit is at H(x(S)
i | x(CS)

i ) = 0.5. However, it is clear from Figure 4.3 that the

(3,6) LDPC code performs over this limit. Also, it is clear that there is an error

associated with the decompression process that quickly approaches zero as p and

in turn H(x(S)
i | x(CS)

i ) gets smaller.

In [41], the performance of some other LDPC codes, including irregular LDPC

codes, were presented. It was shown that irregular LDPC codes can get closer

to Slepian-Wolf limit. Moreover, it was shown that as the frame size increases,

the code performance gets closer to the Slepian-Wolf limit. In our simulations

because of limited computational power we use regular LDPC codes with small

frame size. In order to capture the effects of better compression performance (i.e.

better compression error rates), we use a higher correlation factor (i.e., smaller p

values). Although such a high correlation might not occur in nature, the effects can

be countered by use of bigger frame size (frame sizes as high as 100000 is possible

in practice) and stronger codes such as irregular LDPC codes.

Our simulations are all performed with the following parameters, unless specified

otherwise. The number of information bits to be transmitted by the source and

correlated source at each iteration is 4096 (i.e. frame size). For compression, (3,6)

regular LDPC codes are used. The repeat factor for PSRA code is 3. The SNR on

all the links are the same. We define the rate as number of information bits per

transmitted bit. Let RS be the rate of the source, RR the rate of the relay, RCS
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the rate of the correlated source and Rsys the overall rate of the systems. Since the

overall rate can be different for each system under comparison we use normalized

SNR which means Eb/No = 1/(2Rsysσ2
n) where Rsys is the total rate of the system,

σ2
n the noise variance. As usual let r be the number of relays and q the number

of correlated sources. With these coding schemes and parameters we are ready to

present our simulation results in the next section.

4.3.2 Simulation Results

Since we want to study the effects of number of correlated sources have on the

diversity order of the system, we first consider a system with zero relays and one

to three correlated sources. Therefore, according to Theorem 1, the asymptotic

diversity order of the system is 1 for all q ≥ 1. Figures 4.4, 4.5, and 4.6, show the

frame error rate (FER) and bit error rate (BER) of systems with q = 1, q = 2 and

q = 3 in Rayleigh fading channel. The ‘NCS’ curve in all the graphs represents the

system where there is no correlated source and no compression (i.e. there is a source

and a destination node only). In this system, the source encodes its information bits

using PSRA code and transmits them at the rate RS = 1/4. Clearly the diversity

order of such a system is one since there is only one link from source to destination.

Therefore, the slope of ‘NCS’ curve is one. The ‘NCS’ curve has been included in

all the graph as a reference.
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Figure 4.4: FER and BER of systems with no relays and one correlated source in

Rayleigh fading.
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Figure 4.5: FER and BER of systems with no relays and two correlated sources in

Rayleigh fading.
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The other three curves in all the graphs present systems with correlated sources

(i.e. a source, a destination and one to three correlated sources). The decorrelation

factor p is the differentiating factor in these curves. The purple curves represent

p = 0.07, the green curves represent p = 0.008, and the red curves represent

p = 0.001. The source’s information bits are first compressed using the LDPC codes.

The resulting syndrome bits are encoded using PSRA codes, and are transmitted

at the rate RS = 1/2. Each correlated source will also encode its information bits

using PSRA codes and transmit them at rate RCS = 1/2. Therefore, the overall

rate of the system for each ‘CS’ curve is Rsys = 1/3 for one correlated source,

Rsys = 1/5 for two correlated sources and Rsys = 1/7 for three correlated sources.

From Figure 4.4, we can see that for one correlated source the diversity order is

one. The overall rate of the system is lower when we add the correlated source and

compress the data at the source. However, the performance in term of BER and

FER is worse. From Figure 4.5, it is clear that the diversity order can go above one

for intermediate SNRs since the red curve, representing two correlated sources with

p = 0.001, and the blue curve (our reference curve) intersect (i.e. the slopes are not

the same). We also notice that as the correlation factor between the source and

the correlated sources increase the diversity and the performance in terms of FFR

and BER increases. This increase in diversity is temporary and as SNR increases

approaches the theoretical asymptotic results which is one. This effect can be seen
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Figure 4.6: FER and BER of systems with no relays and three correlated sources

in Rayleigh fading.
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to a certain degree at the end of the red curve in FER graph in Figure 4.5 where

the slope seems to be changing towards 1. We also notice from BER graph that for

higher correlations and SNR values the BER is better than our reference with no

correlated sources. Finally, from 4.6, we can see higher diversity orders and better

performance in terms of BER and FER to a degree that one order of diversity

increase is observed for the red curve representing p = 0.001.

A system with a relay is considered next, where the only difference is the in-

troduction of the relay. Figures 4.7, 4.8, and 4.9, show the BER and FER such

system with zero to three correlated sources in Rayleigh fading channel. Again the

‘NCS’ curve represents a system that does not have a correlated source and does

not use compression, while the ‘CS’ curves represent the systems with correlated

sources and compression. As explained before, the source encodes its transmission

bits (compressed syndrome bits or uncompressed information bits) using PSRA

codes, and transmits them at the rate RS = 1/2. The relay makes hard decisions

on the received bits, re-encodes them using PSRA codes, and transmits at the rate

RR = 1/2. Each of the possible correlated sources will also encode their information

bits using PSRA codes and transmits at the rate RCS = 1/2.

The overall rate of the ‘NCS’ curve is therefore Rsys = 1/6, while the overall

rate of the ‘CS’ curves are Rsys = 1/5 for one correlated source, Rsys = 1/7 for two

correlated sources and Rsys = 1/9 for two correlated sources. Again, the purple
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Figure 4.7: FER and BER of systems with one relay and one correlated source in

Rayleigh fading.
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curves represent p = 0.07, the green curves represent p = 0.008, and the red curves

represent p = 0.001. It is clear that a system with a single relay (i.e. no correlated

sources or compression) has a diversity order of two since there are two possible

paths from the source to destination, the S-D path and the S-R-D path. This is

reflected through the slope of the blue curve (i.e. slope is 2). The ‘NCS’ curve is

therefore included as a reference in all the graphs.

Again we start by looking at Figure 4.7, where the slope of the ‘CS’ curves are

all one for a single correlated source. This is because, according to Theorem 1, the

minimum of the number of relays and the number of correlated sources is one, and

hence the slopes and the diversity orders are one. In Figure 4.8, where we have two

correlated sources the slopes are two or higher. For example, the red curve where

p = 0.001 touched the blue curve (reference ‘NCS’ curve) at around 15dB which

can happen only is its slope is greater than that of the reference curve. Also, we see

as correlation factor increases the slopes and hence the diversity order increases.

Figure 4.9, represent curves with three correlated sources. Therefore, according to

Theorem 1, the asymptotic diversity must be 2. However, again we see greater

diversity orders since both the red and the green curves (p = 0.001 and p = 0.008)

intersect and pass the reference curve.

From previous results it is clear that although asymptotically diversity order can

not be increased by introducing correlated sources, it can be increased at practical
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Figure 4.8: FER and BER of systems with one relay and two correlated sources in

Rayleigh fading.
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Figure 4.9: FER and BER of systems with one relay and three correlated sources

in Rayleigh fading.
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Figure 4.10: Using relays for diversity vs using correlated sources.

SNRs. Therefore, in the next set of simulations we compare the use of correlated

sources for adding diversity with the use of relays. In particular two systems are

considered, the ‘NCS’ source with a single source, relay and destination nodes and

the ‘CS’ systems with a single source and destination as well as three correlated

source. The rates of ‘NCS’ system are RS = 1/2, RR = 2/5 and Rsys = 1/7, while

the rates for the ‘CS’ system are RS = 1/2, RCS = 1/2 and Rsys = 1/7. Since both

systems have the same overall rate, the overall transmission power in both systems

are the same; even though there are three correlated sources but only one relay.

Figure 4.10 shows the results of these simulations. The blue curve represents

the ‘NCS’ case and the purple, green and red curves represent the correlated source

curves with decorrelation factors of p = 0.07, p = 0.008 and p = 0.001, respectively.

As we can see from the curves, for high enough correlation factors (or possibly
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Figure 4.11: Frame error rate of a system with a relay and three correlated sources

in AWGN channel.

larger frame size and stronger compression codes), the use of correlated sources can

perform as well (and maybe even better than) using relays for adding diversity. For

example, the red curve representing three correlated source with p = 0.001 can be

seen to outperform the blue curve that represents the relay.

The final figure, Figure 4.11, compares the performance of a system with no

correlated source and no compression versus a system with a correlated source and

compression in AWGN channel. The ‘CS’ curve has a single relay and a single

correlated source while ‘NCS’ curve has a single relay and no correlated source.

110



The rates of transmission are RS = 1/2, RR = 1/2 and RCS = 1/2. The overall

rate of the ‘NCS’ curve is therefore RNCS = 1/6, while the overall rate of the ‘CS’

curve is Rsys = 1/5. The correlation between the source and correlated source is

given by p = 0.008. Although in this case the ‘CS’ curve has higher rate (and hence

lower power requirements), we can see it outperforms the ‘NCS’ curve. Therefore,

by introducing a correlated source and compression not only the transmission power

is lowered but also the performance of the system is improved.

4.4 Summary

In this chapter, we proposed a system for studying the effects of introducing corre-

lated sources and compression on the diversity and performance of the WSN. We

first derived an asymptotic theoretical result that showed adding correlated sources

will not increase the diversity as the SNR approaches infinity. We then used sim-

ulation to study these effects under practical SNR values. We showed that using

correlated sources can increase the diversity of the system at practical SNRs. We

also showed that the use of correlated sources can be as good or maybe better than

the use of relay in terms of diversity and error rates at similar transmission power.

Although at first glance this might not seem like a big improvement, a closer look

reveals that the correlated sources in WSNs are other sensor nodes transmitting

their information. Therefore, the use of correlated sources to increase diversity
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might not come at extra cost of the overall transmission power of WSN while the

use of relay does. We then showed that introduction of correlated sources and

compression can also improve the performance in AWGN channel, also increasing

the rate and reducing the transmission power. In the next chapter we introduce an

analytic method for optimizing the transmission power of WSN with lots of nodes,

using fractional cooperation.

112



5 Analytic Optimization

WSNs typically consist of large number of sensor nodes, which both send their own

information to the data sink and assist their neighbours via cooperation. Therefore,

since there are possibly a large number of relays in a WSN, the use of fractional

cooperation [17], described in section 3.1.3, is appropriate. However, the challenge

in using fractional cooperation is that it is difficult to know what fraction needs to be

retransmitted to the destination, by each relay, that helps minimize the transmission

power while ensuring successful decoding at the destination. In this chapter, we

present an analytic method based on linear programming for this optimization task.

To derive this analytic method we first study, what fraction must be retransmit-

ted at each relay to ensure decoding success given the channel SNR and the coding

method being used. This question can be answered by using EXIT chart analysis,

as described in Chapter 3. We will then consider a multi-source multi-relay system

and pose a linear programming problem, where the answer to the problem is the

optimized fractions to be retransmitted by each relay for each source.
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The rest of this chapter is organized as follows. We will explain the system

under study in detail in section 5.1, using the relay models and coding techniques

described in Chapter 3. We will then derive our theoretical analytic method in

section 5.2. In section 5.3 we will present our simulation results to illustrate our

method.

5.1 System Setup

In this section, we describe the system to be studied and the problem to be in-

vestigated. The relay models, along with some of the coding techniques described

in Chapter 3, will be used to set up the system. A simple example will then be

presented to show how different components of the system work together. We will

then describe our contribution by formulating some of the questions we will answer

in the rest of the chapter.

The relay model that we use in this chapter is based on the fractional cooper-

ation model described in section 3.1.3. The fractional cooperation system consists

of s sources, and r relays, and a destination. Each source measures a phenomenon,

encodes it using LDPC codes, and broadcasts the encoded codeword to the r re-

lays, as well as the destination. Each relay makes hard decisions (or decodes the

received bits), and selects a small fraction for retransmission to the destination.

The destination will then decode each source’s information bits using the received
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signal from the r relays, as well as the source itself.

Next we will provide an example for both decode-and-forward (DF) method

where sources’ informations are decoded at the relays and demodulate-and-forward

(DemF) method where the relays make hard decisions.

5.1.1 An Example

Consider a system with r = 3 relays and s = 2 sources. For simplicity, let’s assume

that there are n = 3 information bits that need to be sent by each source. The

information bits are given by x(S1) = [1 0 1] for the first source and x(S2) = [1 1 0]

for the second source. Let

H =





1 1 1 1 0 0

0 0 1 1 0 1

1 0 0 1 1 0





represent a (6,3) LDPC parity-check matrix, which each source uses to encode its

information bits. This parity-check matrix is too small to be useful as an LDPC

encoder. However, it is sufficient for this example. The corresponding generator

matrix is given by

G =





1 0 0 1 0 1

0 1 0 1 1 1

0 0 1 1 1 0




.
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The resulting encoded bits for the two sources are given by z(S1) = x(S1)G =

[1 0 1 0 1 1] and z(S2) = x(S1)G = [1 1 0 0 1 0]. These encoded transmission

sequences are then broadcast to destination and each of the r relays.

5.1.1.1 Demodulate-and-Forward

Each relay selects a small fraction of the signal from each source and demodulates

them by making hard decisions. Table 5.1 summarizes this process for our example.

In this example, each relay selects two bits from each source. For example, the

first relay selects bit positions 1 and 4 from the first source which were 1 and 0,

respectively. It makes an error in demodulating the second bit, which results in

bits 1 and 1, respectively. Similarly, the second and third relays, randomly select

two bit positions and demodulate those as shown in table 5.1. The same process

occurs when the second source broadcasts to relays.

As explained in chapter 3, if DemF is used by the relays, for simplicity we assume

powerful and capacity approaching codes (such as irregular RA [51] and irregular

LDPC [57] codes) are used on R-D links, which can result in perfect recovery of

demodulated bits at the destination. As explained in section 3.1.3, let y
(Si,Rj ,D)
DemF be

the signal representation of the demodulation values for ith source through jth relay

available at the destination. Therefore, y
(Si,Rj ,D)
DemF contains: a -1 if a bit position is

demodulated as 1, +1 if a bit position is demodulated as 0, and 0 if a bit position

116



Table 5.1: Relay selections and demodulations

Relay Positions Selected Actual Position Values Demod Values

R(S1)
1 1 , 4 1 , 0 1 , 1

R(S1)
2 2 , 5 0 , 1 0 , 1

R(S1)
3 1 , 6 1 , 1 1 , 1

R(S2)
1 2 , 3 1 , 0 0 , 1

R(S2)
2 1 , 4 1 , 0 1 , 0

R(S2)
3 5 , 6 1 , 0 1 , 1

is not selected to be forwarded to the destination. In our example, the y
(Si,Rj ,D)
DemF

values are given by

y(S1,R1,D)
DemF =

[
−1 0 0 −1 0 0

]
,

y(S1,R2,D)
DemF =

[
0 +1 0 0 −1 0

]
,

y(S1,R3,D)
DemF =

[
−1 0 0 0 0 −1

]
,

y(S2,R1,D)
DemF =

[
0 +1 −1 0 0 0

]
,

y(S2,R2,D)
DemF =

[
−1 0 0 +1 0 0

]
,

y(S2,R3,D)
DemF =

[
0 0 0 0 −1 −1

]
.

At the destination the channel LLRs are calculated similar to the example in

chapter 4 section 4.1. Therefore for the signals coming from the sources, the channel
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LLRs are given by

"(S1,D) = 4γ(S1,D)y
(S1,D) ,

"(S2,D) = 4γ(S2,D)y
(S2,D) .

(5.1)

Meanwhile, the channel LLRs from the jth relay are given by

"
(S1,Rj ,D)
DemF = y

(S1,Rj ,D)
DemF log

[
1 − p

(S1,Rj)
Dem

p
(S1,Rj)
Dem

]
,

"
(S2,Rj ,D)
DemF = y

(S2,Rj ,D)
DemF log

[
1 − p

(S2,Rj)
Dem

p
(S2,Rj)
Dem

]

,

(5.2)

where p
(S1,Rj)
Dem and p

(S2,Rj)
Dem are probabilities that the hard decisions at the relays

were incorrect. Therefore, p
(Si,Rj)
Dem is given by

p
(Si,Rj)
Dem =

1

2
erfc

(√
γ(Si,Rj)

)
, (5.3)

where γ(Si,Rj) is the average SNR of the link between the ith source and the jth

relay. Finally, the input LLRs to the LDPC iterative decoder algorithms at the

destination are calculated as

"(S1)
DemF = "(S1,D) +

r∑

j=1

"
(S1,Rj ,D)
DemF ,

"(S2)
DemF = "(S2,D) +

r∑

j=1

"
(S2,Rj ,D)
DemF .

(5.4)

in general, the channel LLR for the S-D link is calculated as

"(Si,D) = 2y(Si,D)/σ2
(Si,D) = 4γ(Si,D)y

(Si,D), (5.5)

and for the S-Rs link as

"
(Si,Rj ,D)
DemF = y

(Si,Rj ,D)
DemF log

[
1 − p

(Si,Rj)
Dem

p
(Si,Rj)
Dem

]
, (5.6)
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where p
(Si,Rj)
Dem is the probability of demodulation error at the jth relay assisting ith

source given by

p
(Si,Rj)
Dem =

1

2
erfc

(√
γ(Si,Rj)

)
. (5.7)

Consequently, the message LLR input to the iterative LDPC decoder of the ith

source can be calculated as

"(Si)
DemF = "(Si,D) +

r∑

j=1

"
(Si,Rj ,D)
DemF . (5.8)

5.1.1.2 Decode-and-Forward

In this scheme, each relay decodes each source’s signal, and re-encodes it using

exactly the same LDPC encoder as the one used by that source. As explained

in chapter 3, if DF is used by the relays, for simplicity we assume powerful and

capacity approaching codes (such as irregular RA [51] and irregular LDPC [57]

codes) are used on S-R links, which can result in perfect recovery of each source’s

information bits at each relay. Since we have assumed the decoding step is successful

and we re-encode using exactly the same encoding process, each relay will have the

exact transmission sequence sent by the source and will select only a fraction for

retransmission to the destination. In this example each relay selects two bits from

each source. For example, the first relay selects bit positions 1 and 4 from the first

source (which were 1 and 0) and retransmits them to the destination. Similarly,

the second and third relay randomly select two bits positions and retransmits them
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as shown in table 5.2. The same process occurs when the second source broadcasts

to relays.

Table 5.2: Relay selections and retransmissions

Relay Positions Selected Position Values

R(S1)
1 1 , 4 1 , 0

R(S1)
2 2 , 5 0 , 1

R(S1)
3 1 , 6 1 , 1

R(S2)
1 2 , 3 1 , 0

R(S2)
2 1 , 4 1 , 0

R(S2)
3 5 , 6 1 , 0

The signals received at the decoder, through relay to destination links, are cor-

rupted by noise, as explained in 3.1.3, and are represented by the vector, y
(Si,Rj ,D)
DF .

This vector is defined such that the values of the positions not selected by the jth

relay is zero. Therefore, for our example, the values for the received signals from
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the relays at destination are

y(S1,R1,D)
DF =

[
y(S1,R1,D)

DF1
0 0 y(S1,R1,D)

DF2
0 0

]
,

y(S1,R2,D)
DF =

[
0 y(S1,R2,D)

DF1
0 0 y(S1,R2,D)

DF2
0

]
,

y(S1,R3,D)
DF =

[
y(S1,R3,D)

DF1
0 0 0 0 y(S1,R3,D)

DF2

]
,

y(S2,R1,D)
DF =

[
0 y(S2,R1,D)

DF1
y(S2,R1,D)

DF2
0 0 0

]
,

y(S2,R2,D)
DF =

[
y(S2,R2,D)

DF1
0 0 y(S2,R2,D)

DF2
0 0

]
,

y(S2,R3,D)
DF =

[
0 0 0 0 y(S2,R3,D)

DF1
y(S2,R3,D)

DF2

]
,

where y
(Si,Rj)
DFk

represents the noise corrupted signal of the kth transmission bit,

received at the destination, from the jth relay retransmitting ith source’s data.

The channel LLRs are calculated similar to the the DemF case. First the source-

destination channel LLRs is calculated from the signal received from each source

as in equation 5.5. Then the LLRs of the relay-destination links are calculated as

follows

"
(S1,Rj ,D)
DF = 4γ(Rj ,D)y

(S1,Rj ,D)
DF ,

"
(S2,Rj ,D)
DF = 4γ(Rj ,D)y

(S2,Rj ,D)
DF ,

(5.9)

where γ(Rj ,D) is the channel amplitude and the average SNR of the link between

jth relay and the destination. The final input LLRs to the LDPC iterative decoder
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algorithms at the destination are calculated by adding all the LLR as

"(S1)
DF = "(S1,D) +

r∑

j=1

"
(S1,Rj ,D)
DF ,

"(S2)
DF = "(S2,D) +

r∑

j=1

"
(S2,Rj ,D)
DF .

(5.10)

In general, the channel LLR for the S-D links can be calculated as in equation

(5.5), and for the R-D links as

"
(Si,Rj ,D)
DF = 4γ(Rj ,D)y

(Si,Rj ,D)
DF . (5.11)

Consequently, the message LLR input to the iterative LDPC decoder of the ith

source can be calculated as

"(Si)
DF = "(Si,D) +

r∑

j=1

"
(Si,Rj ,D)
DF . (5.12)

5.2 Linear Programming Model

In this section we present a linear programming model that will minimize the num-

ber of transmission bits of a multi-source multi-relay system, described in the pre-

vious section, subject to the constraint of successful transmission. The relays can

use both DF and DemF cooperation methods. In the next section we will confirm

these methods by presenting simulations.

The main challenge in implementing a fractional cooperation system is obtaining

the fraction that must be forwarded by each relay. This value must be chosen such
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that the transmission is successful, while the number of transmission bits is at

its minimum, which is a non-trivial design problem. To find a solution to this

problem we divide the problem into two parts. First, we investigate the criteria for

successful transmission using EXIT chart analysis. Then, we will try to satisfy that

criteria while minimizing the number of transmission bits by presenting a linear

programming model.

5.2.1 Key Assumptions and Definitions

We consider the multi-relay, multi-source system, explained in section 5.1, with r

relays and s sources. For each source, we have r relays, and therefore r source-relay

(S-R) and relay-destination (R-D) links (as well as a single source-destination (S-

D) link). We assume that the all-zero codeword is transmitted by source which is

equivalent to the all-(+1) channel codeword. We assume all links are independent

AWGN channels represented with their respective channel SNR.

We define an s× (s× r) matrix ΓRD such that the rows of the matrix represent

each source and the columns represent s× r R-D channels. The columns are listed

in the following order

(S1, R1) · · · (S1, Rr) (S2, R1) · · · (S2, Rr) · · · (Ss, Rr),

which represents the relays 1 through r forwarding for the first source and then

for the second source and so on. For the ith row the only non zero elements are
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columns (Si, R1) to (Si, Rr) where the values are the SNR of corresponding R-D

channels. Therefore, matrix ΓRD is given by




γ(R1,D) γ(R2,D) · · · γ(Rr ,D) 0(s×r)−r

0r γ(R1,D) · · · γ(Rr ,D) 0(s×r)−2r

02r γ(R1,D) · · · γ(Rr ,D) 0(s×r)−3r

...
...

...
. . .

...

0(s×r)−r γ(R1,D) γ(R2,D) · · · γ(Rr,D)





, (5.13)

where 0l is a row vector of l zeros. We also define a vector of length s, γSD, as

γSD =
[
γ(S1,D) γ(S2,D) · · · γ(Ss,D)

]T
. (5.14)

As explained in section 5.1, for simplicity, we assume that for DemF the R-D

links are perfect and for DF the S-R links are perfect. We define ε(i,j) as the fraction

of ith source transmission that was forwarded by the jth relay. We define a vector

of length s × r, ε, as

ε =
[
ε(1,1) · · · ε(1,r) ε(2,1) · · · ε(2,r) · · · ε(s,1) · · · ε(s,r)

]
, (5.15)

where the elements represent the fractions that are selected for retransmission by

each relay for each source.

In [15] it was shown that using EXIT chart analysis of channel parameters such

as channel LLR mean and variance, an approximate threshold of the LDPC iterative

decoder convergence can be estimated. Therefore, for LDPC codes an approximate
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minimum channel LLR mean required for successful decoding, written m!min , can

be calculated using simulations and EXIT chart analysis. Hence, we can assume

that if the channel LLR mean, m!, that is input to the iterative decoding algorithm,

satisfies m! ≥ m!min , the iterative decoding process is successful with a very high

probability.

Since for each source we can have a different minimum channel LLR mean

requirements, we define a vector of length s, m!min , as vector with s elements that

are

m!min =
[
m{1}

!min
m{2}

!min
· · · m{s}

!min

]T

, (5.16)

where m{i}
!min

is the minimum channel LLR mean threshold for the ith source.

The density of LLR intrinsic messages for a Gaussian channel is symmetric,

and remains symmetric under sumproduct iterative decoding, as shown in [14]. A

Gaussian pdf with mean m and variance σ2 is symmetric if and only if σ2 = 2m.

For a symmetric Gaussian density the SNR is defined as m2/σ2 where m is the

mean and σ2 = 2m is the variance. Therefore we can simplify the expression to

m/2. Since the channel SNR and the SNR of the channel LLR messages are the

same, the channel LLR mean, m!, can be calculated as m! = 2γ, where γ is the

channel SNR.
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5.2.2 Successful Transmission Requirements

As described in the previous section, in order to ensure successful transmission and

decoding at the destination, the mean of the input channel LLR should be greater

than a minimum, m!min . Therefore, we need to be able to calculate the mean of

the input channel LLRs. In this section we present two theorems for calculation of

the input LLR mean to the decoder for both DemF and DF.

Theorem 2 For the system described in section 5.1, assuming that the relays use

DemF, the channel mean that is input to the iterative decoder for the ith source,

Si, is given by

m(DemF )
!i

=

2γ(Si,D) +
r∑

j=1

ε(i,j)(1 − 2p
(Si,Rj)
Dem ) log

[
1 − p

(Si,Rj)
Dem

p
(Si,Rj)
Dem

]

,

where γ(Si,D) is the channel SNR between the ith source and the destination, p
(Si,Rj)
Dem

is the probability of hard decision error at the relay given by equation (5.7) and ε(i,j)

the fraction selected by each relay.

Proof: When the relays use DemF the input LLR to the iterative decoding

algorithm at the destination will consist of summation of, "(Si,D) and "(Si,Rj) as

shown in equation (5.8) in section 5.1. For the single S-D link the channel LLR

mean is calculated as

m(Si,D)
! = 2γ(Si,D), (5.17)
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where γ(Si,D) is the channel SNR of the S-D link for the ith source. This is the first

term in Theorem 2.

Since we have assumed that the R-D links are perfect, "(Si,Rj) represents the LLR

of hard decisions at the jth relay. From equation (5.6) we know that the channel

LLR mean for "(Si,Rj) depends on p
(Si,Rj)
Dem the probability that an error occurs when

making hard decisions at the jth relay retransmitting ith source signal. If for

example we assume y(Si,Rj) (the results of hard decisions mapped to +1 and -1

instead of 0 and 1) is all-(+1) the channel LLR mean is given by

m
(Si,Rj)
! = log

[
1 − p

(Si,Rj)
Dem

p
(Si,Rj)
Dem

]

,

where p(Si,Rj) is calculated according to equation (5.7).

In general since according to our assumption the all-zero codeword was trans-

mitted by the source, assuming the length of the codeword is m, the expected

number of +1s in the demodulated sequence is (1 − p
(Si,Rj)
Dem )m while the expected

number of -1s in the sequence is p
(Si,Rj)
Dem m. Therefore, the LLR average is calculated

as
[
(1 − p

(Si,Rj)
Dem )m − p

(Si,Rj)
Dem m

]
log

[
1 − p

(Si,Rj)
Dem

p
(Si,Rj)
Dem

]

m
=

(1 − 2p
(Si,Rj)
Dem ) log

[
1 − p

(Si,Rj)
Dem

p
(Si,Rj)
Dem

] (5.18)

Since the relay will only forward, ε(i,j) fraction of the demodulated sequence which

is equivalent to replacing the unselected positions with zero, the channel LLR mean
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for the jth relay is given by

m
(Si,Rj)
! = ε(i,j)(1 − 2p

(Si,Rj)
Dem ) log

[
1 − p

(Si,Rj)
Dem

p
(Si,Rj)
Dem

]
(5.19)

Finally, since all the channel LLRs from the sources and relays have a symmetric

Gaussian distribution, the mean of their sum is the sum of all the channel LLR

means of S-D and R-D links; That is for the ith source Si

m(DemF )
!i

= m(Si,D)
! +

r∑

j=1

m
(Si,Rj)
! (5.20)

Corollary. For the system described in section 5.1 assuming that the relays

use DemF the transmission and the decoding process is successful whenever

m(DemF )
!i

≥ m!min

This corollary follows directly from Theorem 2 and the EXIT chart analysis.

The next theorem considers the input channel LLR mean to decoder for the DF

case.

Theorem 3 For the system described in section 5.1, assuming that the relays use

DF, the channel mean that is input to the iterative decoder for the ith source, Si,

is given by

m(DF )
!i

= 2γ(Si,D) +
r∑

j=1

2ε(i,j)γ(Rj ,D),
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where γ(Si,D) is the channel SNR between the ith source and the destination, γ(Rj ,D)

is the channel SNR between the jth relay and the destination and ε(i,j) the fraction

selected by each relay.

Proof: The proof is very similar to the proof of Theorem 2. The input LLR to

the iterative decoding is the summation of two main LLR from S-D and R-D links.

S-D link channel LLR mean is calculated exactly as in equation 5.17. Since we

have assumed that the S-R links are perfect for DF in section 5.1, the channel LLR

means for the R-D links can be treated as a separate S-D link (i.e. the channel mean

is calculated in the same manner as equation 5.17). Because only ε(i,j) fraction of

each transmission sequence is selected by each relay and the unselected bits can be

treated as zeros, the channel LLR mean for the R-D links is given by

m
(Si,Rj ,D)
! = 2ε(i,j)γ(Rj ,D). (5.21)

Finally since all the channel LLRs from the sources and relays have a symmetric

Gaussian distribution, the mean of their sum is the sum of all the channel LLR

means of S-D and R-D links; That is for the ith source Si

m(DF )
!i

= m(Si,D)
! +

r∑

j=1

m
(Si,Rj ,D)
! (5.22)
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Corollary. For the system described in section 5.1 assuming that the relays

use DF the transmission and the decoding process is successful whenever

m(DF )
!i

≥ m!min

This corollary follows directly from Theorem 3 and the EXIT chart analysis.

5.2.3 Energy Minimization

In the previous section we discussed the criteria for successful transmission and

decoding at the destination for both DemF and DF based on input channel LLR

means. In this section we present a linear programming model that minimizes the

number of transmission bits (i.e. transmission power), subject to the constraint

that the decoding is successful. In this section we derive a linear programming

model [20] that achieves this task.

In linear programming the goal is to minimize or maximize a linear function of

some variables. This function is called objective function. For example the function

f(x) = c1x1 + c2x2 + · · ·+ cnxn

is an objective function of decision variables xi. In addition to the objective function

the decision variables need to satisfy a number of constraints that are a linear
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combination of decision variables. For example,

a1x1 + a2x2 + · · · + anxn






≤

=

≥






b,

is a constraint that is a linear combination of decision variables xi.

In our model the objective is to minimize the number of transmitted bits with

the constraint of successful decoding at the destination, where decision variables

are ε(Si,Rj), the forwarding fractions of relays. We derive the objective functions and

the constraints for both DF and DemF. To solve this linear programming model,

any of the known linear programming solver algorithms such as simplex algorithm

can be used.

5.2.3.1 Decode-and-forward

If DF is used by the relays, and the ith source has a codeword of length mi to

transmit to the destination, the objective function is given by

f(ε) =
s∑

i=1

mi +
s∑

i=1

r∑

j=1

ε(Si,Rj)mi,

where the first summation represents the number of transmission bits over the S-D

and S-R links, and the second double summation term corresponds to the number of

transmission bits over the R-D links. Since the first summation term is a constant
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and we are trying to minimize this objective function with respect to ε(Si,Rj), we

can drop it. Therefore, the simplified objective function is given by

f(ε) =
s∑

i=1

r∑

j=1

ε(Si,Rj)mi. (5.23)

The constraints can be derived using Theorem 3 as

2ΓRDε ≥ m!min − 2γSD, (5.24)

where ΓRD is a s× (s× r) matrix defined in equation (5.13), ε is a vector of length

(s× r) defined in equation (5.15), m!min is a vector of length s defined in equation

(5.16) and γSD is a vector of length s given by equations (5.14).

5.2.3.2 Demodulate-and-forward

If DemF is used by the relays, and the ith source has a codeword of length mi to

transmit to the destination, the objective function is given by

f(ε) =
s∑

i=1

mi +
s∑

i=1

r∑

j=1

ε(Si,Rj)mi

Ri,j
,

which is very similar to the objective function for DF except Ri,j, the rate of

transmission for the jth relay retransmitting ith source. Since in section 5.1 we

assumed the R-D links are perfect through the use of powerful capacity approaching

codes, we can replace Ri,j with the capacity of the R-D channels. We can also omit

the constant terms since we are minimizing. Therefore, the objective function can
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be simplified to

f(ε) =
s∑

i=1

r∑

j=1

ε(Si,Rj)mi

C(γ(Rj ,D))
,

where C(γ(Rj ,D)) is the channel capacity between jth relay and the destination.

To drive the constraints for the DemF we define a variable g(Si,Rj) as

g(Si,Rj) = (1 − 2p
(Si,Rj)
Dem ) log

[
1 − p

(Si,Rj)
Dem

p
(Si,Rj)
Dem

]
, (5.25)

where the right term in the equation is given derived in equation (5.18) an represent

the R-D link channel LLR mean before fractional selection at the relays. An s ×

(s × r) matrix, GSR, is defined similar to the s × (s × r) matrix, ΓRD, presented

in equation (5.14), such that instead of γ(Rj ,D) the elements are g(Si,Rj). Therefore,

matrix GSR is given by




g(S1,R1) g(S1,R2) · · · g(S1,Rr) 0(s×r)−r

0r g(S2,R1) · · · g(S2,Rr) 0(s×r)−2r

02r g(S3,R1) · · · g(S3,Rr) 0(s×r)−3r

...
...

...
. . .

...

0(s×r)−r g(Ss,R1) g(Ss,R2) · · · g(Ss,Rr)





, (5.26)

where 0l is a row vector of l zeros.The constraints can be derived using Theorem 2

and matrix GSR as

GSRε ≥ m!min − 2γSD, (5.27)

where ε, m!min , and γSD are given by equations (5.15), (5.16), and (5.14), respec-

tively.
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5.3 Experimental Results

In section 5.2 we presented a Linear programming model that will optimize the

number of transmission bits subject to the constraint that the decoding is successful.

Since in our derivation of this linear programming model we use EXIT chart analysis

which is an estimation tool, our optimization solution is also an estimate of the real

optimized solution. In this section through simulation we show that this estimation

is very close to the real optimized solution.

To do this we will present two sets of simulations, one to prove that the concept

works through trivial examples, and another to show that the concept works and is

close to the optimized solution for a non-trivial scenario. For all of our simulations

we use a (3,6) regular LDPC code to encode the data and therefore all sources

have the same codeword length. Using EXIT chart analysis of the (3,6) regular

LDPC code we have calculated the convergence threshold for channel LLR mean

as m!i = 2.53.

5.3.1 Simple Example

For our trivial example we consider a system with 2 relays and a source as well as

a system with 50 relays and a source. The system is considered trivial since we

assume that all the links in the system have the same SNR. Therefore, the objective
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Figure 5.1: DF frame error rate and bit error rate.

function is a minimum when all the ε(i,j) are the same. For our two relay, single

source system, we assume that the normalized SNR on all the links is −1.5dB.

Using our linear programming model the fraction to be forwarded by the two relays

for DF is ε(DF ) = 0.1676 and for DemF is ε(DemF ) = 0.2926. Our 50 relay, single

source model, is adjusted in such a way to have the same threshold values. Hence,

for DF the normalized SNR on all the links is −9.966dB and for DemF is −10.32dB.

Figure 5.1, shows the resulting BER and FER for DF with the frame size of

10k and 100k. Since our linear programming model relies on exit chart analysis it
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Figure 5.2: DemF frame error rate and bit error rate.

will be more accurate as the frame size or number of relays increase. This effect is

captured in these graphs and it can be seen that for the case of 50 relays the curve

drops close to the threshold ε. Similar effect can be seen in Figure 5.2 where DemF

cooperative system is used.

5.3.2 Realistic Example

For our non-trivial example we consider a DemF cooperative scheme with 5 sources

and 50 relays where the channel SNRs on each link is randomly selected from
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Figure 5.3: Source 1 optimal and non-optimal error rates.
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Figure 5.4: Source 2 optimal and non-optimal error rates.
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Figure 5.5: Source 3 optimal and non-optimal error rates.
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Figure 5.6: Source 4 optimal and non-optimal error rates.
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Figure 5.7: Source 5 optimal and non-optimal error rates.
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Figure 5.8: Overall system’s average optimal and non-optimal error rates.
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a Gaussian distribution with mean −9dB and variance 1dB. Also the maximum

value that the ε(i,j) can take is set to 0.25 instead of 1. Since the SNRs on each

link is different the problem becomes highly non-trivial. By running our linear

programming model we can calculate the optimized values of ε(i,j).

We also generate non-optimized instances by changing some of the ε(i,j) values

from the optimized solution such that most constraints are preserved. Table 5.3,

at the end of the chapter, shows the fractions forwarded by each relay for each

source for both the linear programming optimized and a non-optimized case. The

sum of all the rows and columns of the table add up to the same number for both

optimized and non-optimized case. This ensures that the constraints are the same

for both the optimized and non-optimized instances.

For each source we define a measure of distance from the linear programming

optimized solution as

‖Si‖ =
r∑

j=1

|ε(i,j) − ε̂(i,j)| (5.28)

where ε(i,j) is the optimized solution and ε̂(i,j) a non-optimized instance. Therefore,

using equation 5.28 and Table 5.3 we calculate this distance for each source as,

‖S1‖ = 2.1, ‖S2‖ = 3.4, ‖S3‖ = 2.9, ‖S4‖ = 1.7, and ‖S5‖ = 1.9. Therefore, from

the non-optimized instance we created, the fourth source is closest to the optimal

and the second source is the farthest.

Figures 5.3-5.8 represent the result of simulating both the linear programming
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optimized and the non-optimized systems given in table 5.3. The x-axis represents

the value that is added to non-zero ε(i,j) (since some relays might not be selected

to forward any information for a particular source). The y-axis represents the

error rates in terms of BER and FER. From all six figures we can see that for

the linear programming optimized system, the BER and FER of the five sources

drop quickly after the threshold value. We can also see that the optimized solution

always performs better than the non-optimized solution.

Moreover, we can see that as the distance between the optimized and non-

optimized systems increase the gap between their respective BER and FER curves

increase. In particular, since the fourth source has the lowest distance between

the optimized and non-optimized solutions, from Figure 5.6 we can see that the

optimized and non-optimized curves are closer together with respect to the other

graphs. Similarly, since the second source has the greatest distance between the op-

timized and non-optimized solutions, from Figure 5.4 we can see that the optimized

and non-optimized curves are farthest with respect to the other graphs.

5.4 Summary

In this chapter we first considered a multi-source, multi-relay system that uses frac-

tional cooperation. Then we investigated the non-trivial problem of minimizing the

number of transmission bits subject to the constraint of successful decoding at the
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destination. This problem was broken into two parts, successful decoding require-

ments and a transmission bit minimization. The successful decoding requirement

was solved using Theorems 2 and 3. A linear programming model was derived for

minimization of number of transmitted bits subject to successful decoding at the

destination. Then through simulations, it was shown that the linear programming

model presented approximates the optimized solution accurately.
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Table 5.3: Optimized and non-optimized ε
Relay S1(Opti, Non-Opti) S2(Opti, Non-Opti) S3(Opti, Non-Opti) S4(Opti, Non-Opti) S5 (Opti, Non-Opti)

R1 (0 | 0.25) (0.25 | 0) (0.25 | 0.25) (0.25 | 0.25) (0 | 0)

R2 (0.25 | 0) (0 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0 | 0)

R3 (0.25 | 0.15) (0.25 | 0.25) (0.25 | 0.25) (0 | 0) (0 | 0.1)

R4 (0.25 | 0.15) (0.25 | 0.25) (0 | 0) (0 | 0) (0 | 0.1)

R5 (0.25 | 0.25) (0.25 | 0.25) (0 | 0) (0.25 | 0.25) (0.25 | 0.25)

R6 (0 | 0.2) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.05)

R7 (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0) (0 | 0.25)

R8 (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0 | 0.25) (0.25 | 0)

R9 (0.1107 | 0.1107) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0.1393 | 0.1393)

R10 (0.25 | 0) (0 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25)

R11 (0 | 0.25) (0.25 | 0) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25)

R12 (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0) (0 | 0.25)

R13 (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0 | 0.25) (0.25 | 0)

R14 (0.25 | 0.15) (0.25 | 0.25) (0.25 | 0.25) (0 | 0.1) (0.25 | 0.25)

R15 (0 | 0.1) (0.25 | 0.25) (0.1674 | 0.1674) (0.25 | 0.15) (0.25 | 0.25)

R16 (0.25 | 0.25) (0.25 | 0.15) (0 | 0.1) (0.25 | 0.25) (0.25 | 0.25)

R17 (0.25 | 0.25) (0.25 | 0.15) (0 | 0.1) (0.25 | 0.25) (0.25 | 0.25)

R18 (0 | 0) (0 | 0.2) (0.25 | 0.05) (0.25 | 0.25) (0 | 0)

R19 (0.25 | 0.25) (0.25 | 0.25) (0 | 0) (0 | 0) (0.25 | 0.25)

R20 (0.25 | 0.25) (0.25 | 0.25) (0 | 0) (0.25 | 0.25) (0.25 | 0.25)

R21 (0.25 | 0.25) (0.25 | 0.25) (0 | 0.25) (0.25 | 0) (0.25 | 0.25)

R22 (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0) (0 | 0.25) (0.25 | 0.25)

R23 (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0 | 0)

R24 (0.25 | 0.25) (0.25 | 0.25) (0 | 0) (0.25 | 0.25) (0.25 | 0.25)

R25 (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0 | 0)

R26 (0.25 | 0.25) (0.25 | 0.25) (0 | 0) (0.1654 | 0.1654) (0.25 | 0.25)

R27 (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0 | 0)

R28 (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0 | 0) (0.25 | 0.25)

R29 (0.25 | 0.25) (0.0388 | 0.0388) (0.25 | 0.25) (0.25 | 0.25) (0.2112 | 0.2112)

R30 (0.25 | 0.25) (0.0745 | 0.0745) (0.25 | 0.25) (0.1755 | 0.1755) (0.25 | 0.25)
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Relay S1(Opti, Non-Opti) S2(Opti, Non-Opti) S3(Opti, Non-Opti) S4(Opti, Non-Opti) S5 (Opti, Non-Opti)

R31 (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0 | 0) (0.25 | 0.25)

R32 (0 | 0) (0.25 | 0.25) (0.25 | 0.25) (0 | 0) (0 | 0)

R33 (0 | 0) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25)

R34 (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0 | 0)

R35 (0 | 0) (0.25 | 0.25) (0 | 0) (0.25 | 0.25) (0.25 | 0.25)

R36 (0.25 | 0.25) (0 | 0) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25)

R37 (0.25 | 0.25) (0 | 0) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25)

R38 (0.25 | 0.25) (0 | 0) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25)

R39 (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0) (0.25 | 0.25) (0 | 0.25)

R40 (0.25 | 0.25) (0.25 | 0.25) (0 | 0.25) (0.25 | 0.25) (0.25 | 0)

R41 (0.25 | 0.25) (0.25 | 0) (0 | 0.25) (0.25 | 0.25) (0 | 0)

R42 (0.25 | 0.25) (0 | 0.25) (0.25 | 0) (0.25 | 0.25) (0.25 | 0.25)

R43 (0 | 0.25) (0.25 | 0) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25)

R44 (0.25 | 0) (0 | 0.25) (0.25 | 0.25) (0.25 | 0.25) (0.25 | 0.25)

R45 (0.25 | 0.25) (0.25 | 0) (0 | 0.25) (0.25 | 0.25) (0.25 | 0.25)

R46 (0.25 | 0.25) (0 | 0.25) (0.25 | 0) (0.25 | 0.25) (0.25 | 0.25)

R47 (0.25 | 0.25) (0.25 | 0) (0 | 0.25) (0.25 | 0.25) (0.25 | 0.25)

R48 (0.25 | 0.25) (0 | 0.25) (0.25 | 0) (0.25 | 0.25) (0.25 | 0.25)

R49 (0.25 | 0.25) (0.25 | 0.25) (0 | 0) (0 | 0) (0.25 | 0.25)

R50 (0 | 0) (0.25 | 0.25) (0.25 | 0.25) (0 | 0) (0.25 | 0.25)
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6 Conclusion and Future Work

In this thesis, we considered different techniques for optimizing a cooperative WSN

system. In particular, we proposed two novel schemes, one based on the correlation

of measured data, and the other based on analytic optimization using linear pro-

gramming. To study the proposed techniques two system models were presented.

One was a multi-relay, multi-correlated source model and the other a multi-relay,

multi-source model.

In the multi-relay, multi-correlated source model the source could compress its

information bits before transmission thereby reducing the number of transmission

bits. The relays forwarded all the transmission bits from the source to the desti-

nation. The destination used both the source’s transmission as well as the relays

transmission to decode the compressed bits, transmitted by the source. It then used

the correlated source’s information bits to decompress the original information bits

at the source.

It was shown using Slepian-Wolf compression the diversity of such a multi-relay,
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multi-correlated source can be increased by adding both relay and correlated sources

at practical SNRs. Also through Theorem 1 it was shown that as the SNR goes to

infinity the diversity on the system dropped to minimum of number of relays and

number of correlated sources.

In the multi-source, multi-relay model, we used fractional cooperation where

each relay would randomly select a small fraction of the source’s transmission bits

to retransmit to the destination. We also assumed LDPC codes where used for

channel coding. The relays in this model used two type of cooperative schemes,

namely DF and DemF. If DF was used by the relays for simplicity we assumed

powerful and capacity approaching codes could be used over the source to relay

links which resulted in perfect recovery of source’s data at the relays. Also if DemF

was used for simplicity we assumed such codes could be used over the relay to

destination links which would result in recovery of the relays’ demodulated bits at

the destination.

Using this multi-source, multi-relay system we derived a linear programming

model based on EXIT chart analysis that would optimize the number of transmis-

sion bits while ensuring successful decoding at the destination. Since EXIT chart

analysis is an approximation method, the linear programming finds the approx-

imation of the optimized solution. Through simulations it was shown that this

approximation is a close estimate of the optimized solution.
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For future work fractional cooperation can be used with our multi-relay, multi-

correlated source model and the effect of compression can be studies on the diversity

order of the system. Moreover, density evolution can be used instead of EXIT charts

to derive a more accurate linear programming model. Using density evolution other

error correcting codes such as RA codes can be possibly used for channel coding.
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