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Abstract
Two of the most important factors in the design of any processor

are speed and energy consumption. In this paper, we propose a new
cache architecture that results in a faster memory access and lower
energy consumption. Our proposed architecture does not require any
changes to the processor architecture, it only assume the existence of a
BTB. Using Mediabench, a benchmark used for embedded applications,
Simplescalar simulator, and CACTI power simulator,we show that our
proposed architecture consumes less energy, and have better memory
access time, than many existing cache architectures.

1 Introduction

The processor speed is advancing at a much higher rate than the memory
access speed. The cache memory is generally considered to be the only
solution to bridge the gap between the processor speed and the memory
speed. By placing a small cache memory between the CPU and the main
memory, memory access could be reduced to one or two cycles. Another
reason for the popularity of the cache memory, is that cache access requires
less energy than accessing the main memory. With the increasing demands
of portable (battery operated) devices, energy consumption has become a
very important factor in the design of the CPU.

In today’s processors, cache memory takes a very large portion of the
area of the CPU, even a larger portion of the transistor count. A large
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cache requires longer access time, and consumes more energy due to the
increase in the bit-line and word-line capacitance [10]. Adding more cache to
improve performance is not the ideal solution in this case. But rather a good
cache architecture that can produce a good performance in terms of average
memory access time, and energy consuption.

In this paper, we propose a new cache architecture that consists of the
cache, and a single line buffer between the cache and the CPU. Adding a line
buffer is not a new concept. However, the main contribution of the paper is
the prediction mechanism used where the CPU predicts if the next access is
from the line buffer, or the main cache. Thus, saving at least one cycle when
we miss on the line buffer. Using Simplescalar and CACTI power simulator,
and Mediabench testbench we show that our proposed architecture have a
faster memory access, and lower energy consumption compared to single line
buffer without prediction, filter cache, and hotspot cache.

The organization of the paper is as follows. In section 2 we present
some recent attempts to reduce energy and memory access time. Section
3 introduces our proposed architecture. Section 4 explains the simulation
setup, and the simulation results and compares it with the above mentioned
architectures. Section 5 is a conclusion and future work.

2 Previous Works

There have been many attempts to improve the cache performance (average
memory access time) as well as decreasing the energy consumption of the
cache. In this section, we briefly discuss some of recent attempts of reducing
energy consumption, and the average memory access time.

Jouppi in [4] showed how to use a small fully associative cache and
prefetching to improve the performance of a direct-mapped cache. The au-
thors in [9] showed how to tune the filter cache to the needs of a particular
application in order to save energy.

Hotspot cache was introduced in [11] where frequently executed loops are
detected and placed in a small filter cache. Their architecture led to a less
energy consumption than a regular filter cache. In [1] the authors proposed
a variable sized block cache. Their scheme depends on identifying the basic
blocks (block tail is a backward branch, block head is the target of the back-
ward branch) and they mapped them to a variable size cache block. They
successfully addressed the problem of the instruction overlap among traces
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that was present in the trace cache [6]. In [5] the authors investigated the en-
ergy dissipation in the bit array and the memory peripheral interface circuits.
Taking these parameters into consideration, they optimized the performance
and power dissipation in the cache. Different techniques for reducing static
energy consumption in multiprocessors caches were compared in [3]. While
[2] proposed code compression techniques, where the instructions are accessed
from the cache in a compressed form.

3 Proposed Architecture

In this paper, we assume a cache memory with a single line buffer. We also
propose a mechanism to predict if the next access is from the line buffer or
from the cache. If our prediction is correct, then we save one clock cycle (the
miss in the line buffer) together with the energy consumed in accessing the
line buffer.

3.1 Conventional line buffer

In a conventional line buffer a cache line is placed in front of L1 cache to
capture the spatial locality of reference. Once a word is accessed , the line
containing that word is transfered to the line buffer. The next access, if
sequential, will be accessed from the line buffer instead of the cache. The
energy required to access the line buffer is much less than the energy required
to access the cache. In case of a miss from cache line, it requires an extra
clock cycle to fetch the instruction from L1. If we can access the cache in
the same cycle as the line buffer, that saves the extra cycle, but increases the
cycle time.

3.2 Predictive Line Buffer

To avoid performance overhead of using conventional line buffer, we now
propose a new scheme. The key difference is that our scheme use prediction
between line buffer and L1 cache. Predictive line buffer architecture is shown
in Fig. 1. By dynamic steering between line buffer and L1 cache we avoid
the extra cycle therefore improving both energy and average access time.

Our technique does not add any extra hardware to the architecture except
the prediction mechanism. Also it assumes the existence of a BTB which is
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common in almost every modern processor. The prediction mechanism itself
consists of few multiplexers and comparators.

Figure 1: Cache with Line Buffer and Predictive Steering Scheme

3.3 Implementation Details

The main idea in our prediction is the following. The access of the next
instruction is from the line buffer except in 2 cases.

1. If the current instruction is a control transfer instruction, and will be
taken. Or

2. If the current instruction is not a control transfer, but the address of
the current instruction at the end of the line buffer.

During the fetch stage, the CPU accesses the BTB in order to now if the
current instruction is a control transfer or not, and if a control transfer,
where is the target address if taken. The decision is sent to he control unit.
Also the control units checks the least significant log k bits of the instruction
address where k is the size of the line buffer, if they all ones, the access is
from the cache, otherwise the access is from the blockbufer. Figiuref 2 shows
the pseudocode for the prediction mechanism. LAST-ADDR means that the
last accessed byte is the last byte in the line buffer . The exact details of
how to calculate that condition depends on the particular memory system.
for a byte addressable word referenced processor with cache line of k bytes,
the condition is (PC/4) mod k=k-1.
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/*Fetch modes:

* Modes_L1: fetch from the cache

Mode_B1: fetch from the line buffer

*

*Instruction types:

INST_UNCTRL: non control transfer instruction

INST_CTRL: a control transfer instruction

*/

/* Initialization */

fetch_mode := MODE_L1
inst_offset := offset(PC)
inst_type := OPCODE(PC)

if(inst_type == INST_CTRL and predicted taken) {
fetch_mode := MODE_L1
}
else if (PC == LAST_ADDR) {
fetch_mode := Mode_L1
}
else {
fetch_mode := MODE_L1
}

Figure 2: Pseudocode for Single Predictive Line Buffer
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4 Experimental Results

In this section, we’ll compare energy and avenge memory access time of
predictive line buffer with conventional line buffer, Filter Cache, and HotSpot
Cache using Direct Mapped Caches as our base model.

4.1 Experiment Setup

We use SimpleScalar toolset [7] along with CACTI [8] to conduct our ex-
periments. We have modified SimpleScalar to simulate Filter Cache, line
buffer, hotspot Cache and Predictive line buffer. Our base architecture is
using 16KB direct mapped cache with 32 bytes line size. our line buffer
is also of 32 bytes line size. We also assumed 512 bytes, direct-mapped L0
cache for both Filter and HotSpot Cache. The BTB has 4-way set-associative
with 64 sets. We also assumed 2-level branch predictor in our simulation.
We evaluated energy consumption using 0.35µm process technology. Table
1 shows the energy consumption per-access for line buffer, L0 and L1 cache.
For HotSpot cache, we used a threshold value of 16 as suggested in [11]. We
used Mediabench with each applications executing 500 Million instructions.

Table 1: Energy consumed per access

Cache Energy

Line Buffer 0.12nJ
L0 Cache 0.69nJ
L1 Direct-Map 1.63nJ
L1 Set-assoc 2.49nJ

4.2 Energy

Fig 3 shows the normalized energy consumption of the predictive line buffer,
regular line buffer, filter cache and Hotspot cache, normalized to a directmapped
cache for the different programs in the mediabench testbench. While Table 2
compares the average energy consumption (over the Mediabench suite) of the
same cache architectures. It is obvious that our prosed architecture consumes
less energy than the other three architectures.
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Figure 3: Normalized energy consumption of Filter Cache, conventional line
buffer predictive line buffer and hotSpot Cache using direct-map as L1 cache

4.3 Average memory Access Time

The average memory access time of the predictive line buffer cache for the
Mediabench suite is shown in Figure 4. While Table 2 compares the aver-
age memory access time for our proposed architecture and compares it with
the three mentioned architecture. Our architecture has almost an average
memory access of 1.

5 Conclusion

We proposed Instruction cache architectural architecture that has a low en-
ergy consumption and a fast average memory access time. Depending on the
current instruction we set the next instruction be fetched from either the line
buffer or L1 cache. Our scheme uses existing hardware and does not require
any modification to the CPU architecture. Predictive line buffer scheme
could be used with direct-map or set-associative cache. Our architecture
reduces the instruction caches energy by up to 64%.
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Table 2: Various Schemes Average Energy Reduction Using Direct-map

Scheme Energy consumption Average memory access time

Line buffer 57.33 1.290
Filter Cache 42.20 1.21
HotSpot Cache 46.94 1.066
Predictive Line buffer 59.98 1.004
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