
Controlling the Response Time of Web Servers

Mohamed Ghazy Shehata1, Navid Mohaghegh2, and Mokhtar Aboelaze2
1Department of Electrical Engineering, Effat University, Jeddah, Saudi Arabia

2Department of Computer Science and Engineering, York University, Toronto, ON, Canada

Abstract - Internet server provisioning is a very challenging
problem for content providers and large server farms. In this
paper we investigate the control theoretic approaches of
managing servers in order to satisfy a required Quality of
Service (QoS). We compare between two widely used models
in the literature and our proposed simple technique. First
model is a queueing based M/G/1 model with a PI controller.
The second technique represents the server as a second order
system and estimates the system parameters on line every
sampling period. The estimated parameters are used in the
design of a first order filter/controller in order to track the
required QoS. Finally we present a simple technique based on
the Additive Increase Multiplicative Decreases used in TCP
congestion avoidance. We use simulation to compare these
three techniques. Surprisingly, the AIMD performs the best
among these three and it requires the least computation
overhead among the three.

Keywords: Quality of Service, web server provisioning,
response time control, performance guarantees.

1 Introduction
 The Internet is growing with an unprecedented rate and is
infiltrating every aspect of our lives. E-commerce sites, mail
servers, file servers, content servers, and search engines are
few examples of applications that we use almost every day of
our lives. It is difficult to imagine our lives without the heavy
use of the Internet.

These sites are powered by powerful servers (or in many
cases a large server farms where hundreds and may be
thousands of servers are used) that receive users’ requests,
process them and send back the response. One of the major
problems facing providers is how to condition the servers in
order to produce the agreed-upon quality of service (QoS) and
at the same time minimize their cost.

The Qos is either an agreed-upon contract between the servers
owners and the content provider that must be maintained by
the server owners, or a generally accepted criterion that is
enforced by the server owners in order not to drive clients
away. The consumers are known to be impatient, if the
response is not within a specific period of time (that period
varies greatly according to the application) the customer will

probably terminate the session and navigate away to another
site (the just-a-click-away syndrome).

Throwing hardware at the problem (also known as over
provisioning) is not the optimal solution. Designing the
system to work at the peak capacity wastes a lot of resources
that most of the time would be unused. What is required is a
policy that achieves the required QoS without wasting a lot of
hardware. That is usually achieved by using admission
control, where requests will be turned down if accepting the
request results in a longer response time than what is required
in the QoS agreement. If the system is overloaded, accepting a
request not only means that this request will suffer more than
usual response time, but also it means that all requests
arriving after that request will suffer a longer than normal
response time. By turning down one request, we lost one
request but the following ones will be served according to the
required QoS agreement.

Recently, there have been a lot of studies that suggests the use
of classical feedback control theory in order to control access
to the server and maintain the required response time. The
argument is just as in the case of a controller controlling the
gas rate going into a furnace in order to maintain the output
(temperature) at a specific level, a controller to control the
request rate delivered to the server can maintain the required
output (response time) at a specific level.

However, the main differences between systems where
classical control showed a lot of promise and internet servers
are:

• Systems where classical control is very promising are very
well understood; usually its behavior is governed by
differential equations (difference equations in case of
discrete systems). This lends itself very nicely to classical
control theory. Where controllers are designed in the
continuous time (discrete time) case using Laplace (Z)
transform.

• Servers work in a highly unpredictable environment with
probabilistic inputs (at best) and a lot of randomness in
both arrival pattern and service time. Queuing theory has
been successfully used to describe such a system.
However almost all queuing theory results are based on a
stable system and are valid at the steady state (average).

In this paper, we study the problem controlling the arrival rate
in order to maintain the required QoS. We use 2 methods
from classical control theory and one method that has proved
itself to be successful in controlling congestion in TCP/IP
traffic. We use simulation to compare these three methods.

The remainder of the paper is organized as follows: Section II
describes our motivation and surveys previous work in this
area. Section III describes the setting and the proposed
solutions. Section IV shows the result of our work and
compares it with previous solutions. Section V concludes the
paper and describes our future work.

2 Motivation and Related Work
2.1 Motivation
 Our motivation is to control the response time of an
Internet server. Usually, and specifically in E-commerce
applications the service is structured as 3-tier server. The first
tier deals with static contents. The server gets a request to
send a specific page, and it responds by sending the page.
The second tier deals with dynamic contents. Requests arrive
to the second tier server that fetches and calculate dynamic
contents and sends it back. Third tier deals with database
accesses.

Although 3-tier architecture is quite common in E-commerce
applications, in this paper Our motivation is to control the
response time of an Internet server. Usually, and specifically
in E-commerce applications the service is structured as 3-tier
server. The first tier deals with static contents. The server gets
a request to send a specific page, and it responds by sending
the page. The second tier deals with dynamic contents.
Requests arrive to the second tier server that fetches and
calculate dynamic contents and sends it back. Third tier deals
with database accesses.

Although 3-tier architecture is quite common in E-commerce
applications, in this paper we deal with single tier services
only. The reason for that is we are concentrating on
comparing the different approaches of admission control.
Currently we are in the process of building a low power
server with a 3-tier architecture. Once this system is built, we
will test it using the three approaches mentioned here. Our
objective is to implement a low power server that could
achieve the same performance as bigger, more powerful, and
more power hungry servers.

2.2 Previous Work
A lot of work is done in improving the performance of web
servers and achieving a specific QoS. Earlier work in this area
was mainly either service differentiation [3] or using data
prefetching [4]. In service differentiation customers
(requests) are treated differently giving a priority for one type
of requests (more important customers) over the others. In

prefetching, data we think will be requested soon is
prefetched ahead of being actually requested. Both of these 2
techniques can improve the performance of the system (for
only one group of requests in service differentiation case) but
there are no guarantees that a specific level of performance is
met.

Service differentiation is combined with admission control in
 [12]. They classified incoming requests into two categories,
and admission control is based on the queue size of each
category and some real time system measurements. They
tested their system using Apache with static contents and
some basic form of dynamic content.

A self tuning controller is proposed in [11]. They used a
queuing model known as processor sharing model and a
proportional integral (PI) controller to satisfy a target
response time. Their queuing mode is M/G/1 where the
response time is given by the equation

][1
][
XE

XETRT λ−
= (1)

Where λ is the arrival rate (assumed to be Poisson arrival) and
E [X] is the Expected value of the service time. They also
linearize the model around the operating point. Equation (1)
that describes the system is valid only in the steady state and
for stable queues (by stable we mean average arrival rate is
less than average service rate). For short time periods and in
heavy traffic the arrival rate may be greater than the service
rate. Although the objective of the controller is to avoid such
a case, but when it happens the equation used to model the
system is not valid anymore.

The authors in [13] proposed an admission control to control
the response time of the server. In their model they used Eq.
(1) to represent the system. They also proposed an adaptive
control scheme where the model parameters are estimated on
line (using RLS technique) and is used to modify the
controller parameters [2]. While in [16] the authors proposed
an adaptive architecture that performs admission control.
Their technique depends on using TCP SYN policer and an
HTTP header-based connection control in order to maintain
the required response time limit.

Malarait et al in [14] proposed a nonlinear continuous time
model using fluid approximation for the server. They used
this model to obtain an optimal configuration of the server in
order to achieve maximum availability with performance
constraints and maximum performance with availability
constraints. They also validated their design using TPC-C
benchmark.

Elnikety et al in [7] proposed a proxy called Gatekeeper to
perform admission control as well as user-level request
scheduling. Their idea depends on estimating the cost of the

request, then deciding if admitting that request will exceed the
system capacity or not (system capacity is determined by
using offline profiling). they noted that since the proxy is
external to the server, no server modification is required for
their gatekeeper.

Guitart in [8] proposed a session based admission control for
secure environment. In their technique, they gave preference
for connections that could use existing SSL connections on
the server. They also estimated the service time for incoming
requests in order to prevent overloading the server.

Blanquer et al [5] proposed a software solution for QoS
provisioning for large scale Internet servers. They proposed
the use of traffic shaping and admission control together with
monitoring response time and weighted fair queuing in order
to guarantee the required QoS. For an excellent review of
performance management for internet applications, the reader
is referred to [9].

Almost everyone who used Control theory used the average
response time as the parameter to control. One major problem
with that is the QoS requested is not on the form of average
response time or average delay. The QoS is usually on the
form x% of requests have a response time better than y msec.
Guarantees to average response time do not solve this
problem.

In this paper we investigate this problem. We compare
between using average response time and the actual QoS
percentage of the requests that satisfied the required response
time guarantees. We also present a simpler technique that
does require much less overhead compared with control
theoretic approaches and produces better results in our
simulation.

3 System Setup
As we mentioned before, most of the work done using control
theoretic approach to control quality of service considered the
average response time as the parameter to control. The
problem of that approach is that most of the required QoS is
not about the average response time [11]. Usually, the QoS
requirement is described as 90% of the requests face a
processing delay of not more than 150 milliseconds.
Controlling the average response time will not lead us to a
specific condition such as the one described above.

The reason for that is the Internet traffic is highly volatile and
unpredictable. Classic queuing theory deals with such
scenarios if we know the distribution of the incoming traffic
and service time (or at least know some parameters about the
underlying distribution such as the average and the standard
deviation). For example consider the simplest type of queues
known as M/M/1. The cumulative probability distribution of
the response time is [10].

)1(1)(ρτμτ −−−= eF (2)

Where, μ is the service rate and ρ is the server utilization.
Since the average time spent in the system for M/M/1 is
1/(μ(1-ρ)) = 1/(μ-λ), where λ is the arrival rate. By simple
substitution of τ to be the average time spent in the system,
we find that the probability that any customer meets a
response time more than the average to be 36.8%.

Another problem with using control theoretic approach is how
to handle the overhead in calculating and adjusting the system
and the controller parameters. Consider for example
admission control. The system output should be monitored to
collect statistics about the parameter to be controlled. Every
sampling period, the collected data are used in order to
calculate the admission probability and modulate the arrival
with this probability to meet the required service performance
measure. The major question here is how should we select the
sampling period?

The requests arrivals to a server are usually in the
milliseconds range, or even less for very powerful servers.
Now, what should be the sampling period? If we consider the
sampling period to be on order of seconds, that is good from
the overhead point of view. After all we do not want to
overload the server with control calculation since that time is
taken from serving incoming requests. However, since the
web traffic is highly volatile and unpredictable, what
happened few seconds ago might not have an impact on the
current operation of the system. For examples 3-5 seconds
ago we received a rush of requests that resulted in prolonging
the response time and not meeting the required QoS, Now we
reduce the admission probability in order to slow down the
arrival, but there is very little arrival now. That leads to
wasting CPU cycles because of the time difference between
the sampling rate and traffic variations.

The second choice is taking the sampling time in the order of
milliseconds. Although the response will be much faster than
the previous case, however that is too much overhead for the
CPU. Even the online recursive estimator in [15] requires a
number of large matrix multiplications every sample period in
order to estimate the system parameters.

In this paper, we present three different techniques for QoS
guarantees in a web server. First we consider a simple M/G/1
model similar to the one proposed in [13]. This model
predicts the response time, so the only controllable parameter
here is the average response time. Then we consider a general
model for the system. We assume a second order model and
we estimate the system parameters on line. Then a first order
controller/filter is used to control the average response time.
Our third model is a variation of the previous one where the
parameter to control is the percentage of the requests that
failed the QoS requirements. Finally we consider a fourth
model where we used a simple variation of the Added

Increase Multiplicative Decrease AIMD that was successfully
implemented in congestion avoidance for TCP/IP protocols
 [1].

3.1 Using PI Controller
This is the method proposed in [11]. Eq 1 is considered to
represent the system where TRT represents the response time.
The schematic diagram of the controller is shown in Figure 1
where the server is represented by Eq. 1

In Fi.g 1 τ represents the response time, τref is the required
average response time, P0 is the admission probability derived
from Eq. 1 in order to make τ =τref. λ0 is the unmodulated
arrival rate, and Δp is the correction produced by the
controller to p in order to guarantee the required τref.

Linearizing Eq. 1 using Taylor series around the operating
point λ0 we can solve for the PI controller. The results of this
scheme together with some comments about the scheme is
discussed in the next section.

3.2 Estimating the System Parameters
Similar to [13] we assume no knowledge of the system under
control (the server). By monitoring the input and output of the
server we derive the model parameters. Here the system under
control is the server with input λ0 and output either the
average response time or the percentage of the requests that
confirm to the required QoS. We tried several models for the
system and found out that the best fit is a second order
system. In this part, we consider two solutions one that adjusts
the average response time and one that adjusts the percentage
of requests conforming to QoS.
In this case, we assume that the system output y (no matter
what the output is, it could be response time, or the
percentage of packets that missed the service time threshold)
can be represented as a second degree system where the input
u is the arrival rate as follows.

2
2

1
10

2
2

1
11

−−

−−

++

++
=

ZbZbb
ZaZa

u
y

 (3)

Where Z-1 is the delay operator. The parameters ai and bi are
estimated on line by measuring the output y and the input u
and averaging them over the sampling period. We use a well
known recursive least square estimator [15].

The controller was designed as a PI controller on the form

1
1

0

1
1

0

αα

ββ

+

+
=

−

−

Z
Z

Gc (4)

α0, α1, β0, β1, and K0 are chosen in order to achieve a
reasonable overshot, settling time within the sampling period
and the proper tracking of the output for K0

3.3 Additive Increase Multiplicative Decrease
This idea came from the sliding window control in TCP [1].
In TCP the window size is decreased (by a multiplicative
factor) if there is a lost packet and is increased (by an additive
factor) for successful transmission of a packet [6].

The proposed scheme works as follows. If the queue size
grows beyond a high threshold Nhigh the probability of
accepting a new packet is multiplied by γ, where 0 <γ < 1. If
the queue size drops below Nlow, the admission probability is
increased by η, where 0<η<1. The probability is bounded in
the interval [0.1, 1] for practical purposes.

The obvious question is how to choose the values of Nhigh,
Nlow,γ, and η, The proper choice of these parameters depend
on the service time and inter-arrival time distributions. In our
simulation, we tried different values for the parameters and
found that the best choice for Nhigh is the target delay divided
by the average service time, while Nlow = Nhigh/2. We also
found the best values for η =0.4, and γ=0.8-0.9. Clearly the
optimal values for these parameters depend on the arrival and
service distribution and can be fine tuned online.

4 Results and Discussion
In this section we show the results of our simulation using
Matlab for the four cases proposed in Section III.

For all the experiment we ran the simulation for 1600 seconds
using Matlab. We collected the percentage of the requests
accepted, the percentage of the requests that required less than
150 msec. and the average response time. For every
experiment we considered two traffic scenarios.

Fig. 1 Schematic diagram of the controller

Server
Eq. 1

τ PI
Controller ⊗ ⊕

λ0 p0

ΔP τref

Fig. 2 Schematic diagram of the controller where we estimate

the system parameters.

Server
Eq. 3

Controller ⊕K0

τref p

• Traffic A: This is the baseline system, we assumed an
average exponential interarrival time of 55 msec. and an
average exponential service time of 35 msec. (64%
utilization). The target response time is 150 msec.

• Traffic B: In this scenario, we start as in Traffic A. At
the simulation midpoint (after 800 seconds) we increase
the arrival rate by decreasing the interarrival time to 45
msec. (utilization of 78%). The objective here is to see
how the controller reacts to increasing the arrival rate in
order to satisfy the QoS requirements.

Fig 3 shows that response time for a 20 minutes simulated run
under traffic B. We can see that after 800 msec. the average
response time increases. The main function of any controller
is to adjust the admitting probability in order to avoid such a
scenario.

Figure 3. Response time without a PI controller under traffic B

Fig. 4 (same setting as Fig. 3) shows the response time and
the acceptance probability as a function of time. It is obvious
that the controller suppressed the input in the second half of
the simulation leading to a more consistent (equal) response
time. One thing that is very noticeable here is the rapid
changes in the admitting probability compared to the other
method we used. Although the probability changes very
rapidly, the performance is the worse compared to the other
techniques. One possible explaination this is that Eq. (1) does
not describe the system when the traffic increases beyond
stability even for a short period of time

Fig. 4. Response time and admitting probability under traffic B for a PI
controller

Then we consider our technique where we assume a second
order system and estimate system parameters on line. Once
the parameters are estimated on line, the parameters are used
to choose the parameters of a first order controller/filter in
order to track the required QoS criterion either directly by
controlling the percentage of conforming packets, or
indirectly through controlling the average response time.

Fig 5. Response time and admitting probability assuming a second order
system and a first order filter under traffic A (c0ntrolling averge response

time).

Figure 5 shows the response time and admitting probability
for our system under traffic A assuming a 2nd order system
with on-line parameters estimation. While Fig. 6 shows the
same system under traffic B scenario. The parameter to be
controlled in this case is the average response time.

Fig 6. Response time and admitting probability assuming a second order
system and a first order filter under traffic B (controlling average response

time).

The changes in the admitting probability for this system is
much less than the case of a PI controller. That is by itself is
not an advantage (however it might give an indication that the

system is stable and does not oscillate) but as we will see in
Table 1, the performance here is much better than the PI
controller case.

Fig 7. Response time and admitting probability assuming a second order
system and a first order filter under traffic A (controlling QoS).

Figure 7 and 8 shows the same results as Figures 5 and 6 but
in this case we use the percentage of the conforming requests
as the parameter to control. Although it is difficult to see,
directly from the Figures, which one is better in maintaining
the required QoS, controlling the response time, or the
percentage of conforming packets directly from the Figures,
Table 1 shows that in fact controlling the percentage of
conforming packets produces better results.

Fig 8. Response time and admitting probability assuming a second order
system and a first order filter under traffic B (controlling QoS).

Figures 9 shows the system using AIMD with Nhigh
=Ttarget/τav, Nlow = Nhigh/2. η =0.4, and γ=0.8. Where Ttarget is
the target delay and is set to 150 msec. and τav is the average
response time under traffic A. Figure 10 shows the same
setting under traffic B. The admitting probability varies very
quickly compared to Fig 5,6,7,8. However that is expected

since the changes in the admitting probability is calculated
every time the queue size grows beyond a specific threshold,
or decreases below another threshold. However as we will see
in Table 1, this is the best performance among the three
techniques.

Fig 9 Response time and admitting probability using Additive Increase
Multiplicative Decrease AIMD under traffic A

Fig 10 Response time and admitting probability using Additive Increase
Multiplicative Decrease AIMD under traffic B

We summarize the results in Table 1. The first column shows
the 4 different techniques we used. The second column shows
for every technique the results under traffic A and traffic B.

The actual results are shown in columns 3, 4, and 5. Column 3
shows the percentage of admitted requests. Column 4 shows
the percentage of the requests that is conforming to the
required QoS. The first number shows the percentage of
conforming requests to all arrived requests, while the number
in parenthesis shows the percentage of conforming requests to
admitted requests only. Finally column 5 shows the average
response time for all admitted packets.

From Table 1 we can also see that AIMD has the highest
admitting policy under traffic A (97%), while PI has the
lowest (61%). It also shows that AMD has the highest
conforming percentage under traffic A. Under traffic B
assuming a 2nd order system with online parameters
estimation has slightly higher admitting probability than
AIMD (94% vs. 93%), however the percentage of conforming
requests is much higher for AIMD (compared to all arriving
requests or admitted requests). basically that states that the
AIMD rejects a very small percentage of incoming requests,
but it rejects the tight ones.

5 Conclusions
 In this paper we investigated 3 different techniques for
controlling admitting probability in an internet server in order
to conform to a required QoS. Using simulation we show that
a simple AIMD technique outperforms more complicated
control-theoretic approaches, and it requires much less
overhead compared to the control-theoretic approaches.

For future work, we are building a low power server using
small embedded microprocessors. We will be testing these
proposed methods under realistic traffic when the server is up
and running

6 References
[1] M. Allman, V. Paxson, and W. Stevens “TCP
Congestion Control” RFC2581 April 1999. IETF. Available
at tools.ietf.org/html/rfc2581 Checked March 2011.

[2] K. Astrom, and B. Wittenmark “Adaptive control” 2nd
Edition. Prentice-Hall 1994.

[3] J. Almeida, M. Dabu, A. Manikutty, and P. Cao G. O.
“Providing differentiated levels of service in web content
hosting”. Workshop on Internet Server Performance.
Madison, WI June 1998. pp 92-101

[4] M. Banatre, V. Issamy, F. leleu, and B. Charpiot.
“Providing quality of service over the Web: A newspaper-
based approach”. Proc. of the 6th International World Wide
Web Conference. April 1997.

[5] J. Blanquer, A. Batchelli, K. Schauser, and R. Wolski.
Quorum: Flexible quality of service for internet services.
Second Symposium on Networked Systems Design and
Implementation (NSDI’05), Boston, MA, U.S.A., 2–4 May
2005; 159–174.

[6] D. Comer Internetworking with TCP/IP 5th Edition.
Prentice-Hall Upper Saddle, N.J. 2006

[7] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel .
“ Method for transparent admission control and request
scheduling in e-commerce web sites”. Proc. of the 13th
International Conference on World Wide

[8] J. Guitart, D. Carrera, V. Beltran, J. Torres, E. Ayguade
. “Designing an overload control strategy for secure e-
commerce applications”. Computer Networks 2007;
51(15):4492–4510.

[9] J. Guitart, J. Torres, and E. Ayguade. “A survey on
performance management for Internet applications”.
Concurrency and Computation: Practice and Experience. Vol-
22 No. 1. 2010 pp 68-106.

[10] R. Jain. The art of computer system performance
analysis: techniques for experimental design, measurements,
simulation and modeling. Wiley Interscience. 1991.

[11] A. Kamra, V. Misra, and E. Nahum “Yaksha: A self
tuning controller for managing the performance of 3-tiered
web sites”. Proc. of the 12th IEEE International Workshop on
Quality of Service IWQOS. June 2004. pp 47-56.

[12] K. Li, and S. Jamin. “A measurement-based admission
control web server”. Proc. of IEEE Infocom. March 2000.

[13] X. Liu, J. Heo, L. Sha, and X. Zhu “adaptive control of
multi-tiered web application using queueing predictor”. Proc.
of 10th IEEE/IFIP Network Operations and Management
Symposium (NOMS) 2006

[14] L. Malrait, S. Bouchenak, and N. Marchand
“Experience with ConSer: a system for server control through
fluid modeling”. IEEE Transactions on Computers Vol ? No.
? 2010

[15] P. Paraskevopoulos Digital control system Prentice-Hall
1996.

[16] T. Voigt, and P. Gunningberg. “Adaptive resource-
based web server admission control”. Proc. of the 7th
International Symposium on Computers and Communication.
2002

TABLE 1 COMPARISON BETWEEN THE FOUR RPOPOSED METHODS

Technique %
accepted

%
conforming

Av. delay
msec.

A 61% 53%(86%) 74
PI

B 57% 48%(84%) 80

A 92% 73%(79%) 90
Est.(tresp)

B 88% 63%(72%) 119

A 95% 75%(79%) 95
Est. (Tresp)

B 94% 66%(70%) 125

A 97% 83%(86%) 78
AIMD

B 93% 77%(83%) 85

