Single Copy vs. Multiple Copies Cache Coherence Protocols for
Hierarchical Bus Multiprocessors

Jason Tsui and Mokhtar Aboelaze
Department of Computed Science

York University
N. York, Ontario M3J 1P3 CANADA

Abstract

Reducing memory access time is a very important fac-
tor in increasing the performance of multiprocessors.
This could be achieved by using caches to hide the
memory latency. In multiprocessors, caches introduce
another problem, namely, the cache coherence prob-
lem. In this paper, we investigate single copy cache
coherence protocols for multiprocessors with a hierar-
chical bus structure. We introduce two different sin-
gle copy cache coherence protocols and a third protocol
that allows a limited number of copies in the system.
We compare our protocol to some of the well known
cache coherence multiple copies protocols for hierar-
chical systems using a synthetic workload model.

1 Introduction

With the switching speed, and consequently the pro-
cessor speed, approaching its physical limit, parallel
processing is considered the only approach to achieve
the high performance computing power required for
the ever increasing requirements in scientific and non
scientific applications. One of the major obstacles
in designing high performance computers is the un-
even growth of the processor speed and memory speed.
This problem is usually addressed by using caches. A
cache is a small but fast memory that holds the most
frequently accessed data. The cache speed is the same
as the processor speed, thus could be accessed in one
processor cycle. Adding a cache to a uniprocessor sys-
tem involves the added complexity of managing the
cache and ensuring that it holds the data that is most
probably to be referenced in the near future.

In multiprocessors, there is an added problem, namely,
the cache coherence problem. In multiprocessors,
each processor has its own cache, data blocks may be
cached in more than one cache at the same time. Mod-
ifying any data block in one of the caches, leaves the
other copies in other caches stall i.e. the contents of
the cache is outdated. That is why we have to enforce
a cache coherence policy to guarantee the consistency
of the data.

Cache coherence protocols can be divided into
two major categories, software-based protocols, and
hardware-based protocols. Software-based protocols

151

depends on the compiler to tag the different data
blocks either cachable or non-cachable in order to
avoid caching a shared block. Software-based proto-
cols may lead to a poor performance due to its com-
plexity and its conservative policy. On the other hand,
although hardware-based protocols require additional
hardware, their performance is better than software-
based protocols. Hardware-based protocols may be
further classified into invalidate-based, or write prop-
agate protocols. In invalidate-based protocols, if a
block of data exists in more than one cache, before
any processor modifies one of the copies, this proces-
sor must send a signal to invalidate all the other copies
in the system. Thus, making its copy the only copy in
the system, and could be modified without any incon-
sistencies. In write propagate protocols, a write to a
certain block is not complete until the modified data
is propagated to all the other copies of the same block
in the system. Thus, guaranteeing a consistent view
of the memory.

In this paper we propose two single copy cache co-
herence protocols for hierarchical bus multiprocessors.
We also propose another protocol that allows a limited
sharing of the blocks between more than one proces-
sor if the processors belong to the same cluster, thus
combining the advantages of the single copy proto-
col with the advantages of multiple copies protocols.
We compare the performance of our protocol with the
previously known protocols for hierarchical bus archi-
tecture using a probabilistic workload access model.

The organization of this paper is as follows, in section
2 we briefly review the existing cache coherence pro-
tocols. In Section 3 we present the workload model
we use in our simulation. In section 4 we present our
proposed protocols. In section 5 we present simulation
results for our protocol and compare it with other pro-
tocols. Section 6 is a conclusion.

2 Cache Coherence Protocols

One of the most simple cache coherence protocols is
the snoopy cache coherence protocol{GooS?)], EgK89],
and [ThiS87]. The snoopy protocol is suitable for a
bus-based multiprocessors, where every transaction by
each processor is heard by all other processors. In
snoopy cache coherence protocols, each processor has

a snoopy controller that is continuously monitoring
the bus. A block in a processor cache can be in one
of two states, either shared (consistent with the main
memory, and possibly other copies exist in other pro-
cessors caches), or exclusive (only copy in the system).
A block in an exclusive state could be either clean
(not modified and consistent with the main memory)
or dirty (modified, must be written back upon replace-
ment). Every snoopy controller monitor every request
on the bus. The requests could be one of three cat-
egories: read (local or external), write (local or ex-
ternal), or invalidate. Based on the type of request,
an action is taken to guarantee the consistency of the
data. This action could be either invalidating an ex-
isting block, modifying an existing block, supplying a
copy of an existing block to another processor cache
or changing the state of this block. The major draw-
back of snoopy protocols is the single bus. The single
bus is suitable for a small number of processors. How-
ever, with increasing the number of processors in the
system, the bus becomes a bottleneck, and the system
performance degrades considerably.

Another class of protocols that is successfully used
with multiprocessors with a large number of proces-
sors is the directory based cache coherence protocols

[Ste89], [ThD90], and [ChK91].

The idea behind the directory-based cache coherence
protocols is to supply enough information for the dif-
ferent processors to know the locations of all other
copies of each block in the system. This is usually
implemented by using a directory to hold information
about the location of every cached block in the sys-
tem [ChK91], [AgS88]. This directory is usually kept
in the main memory, and every reference to a shared
block must go through this directory.

The directory.could be implemented as a vector of
length N for every cache block, where N is the number
of processors (caches) in the system. If processor ¢
contain a copy of this block, then the i*h entry of
this vector is set to 1. If a processor wants to modify
block j, the cache coherence protocol checks the jt*
vector, and sends either invalidation, or write update
signal to every cache with a copy of block j. The main
disadvantage of this technique, is that with increasing
the number of processors, the overhead in storing the
directory is increased.

Since simulation studies have shown that the proba-
bility of a large number of processors sharing a single
data block is small [EgK88], [ChK91], We can decrease
the amount of storage required by Limiting the num-
ber of entries (the number of caches allowed to share
a single block) to a small number k. If the & + 1°
processor requests a copy of the, we have to invalidate
one of the existing copies. This method is known as
limited pointer directories.

Anderson and Baer in [AnB93] proposed a directory
based protocol for use with systems with hierarchi-
cal buses. Their architecture assume private caches at
the processor site, and shared caches on the buses at
higher levels. they proposed a directory based cache
coherence protocols. In their protocol they used a

152

transitional states in order to deal with the problem
of looking for a block that is in motion between two
caches.

Recently, there has been some interest in single copy
cache coherence protocols. In single copy protocols,
only one copy of every block is permitted to exist at
any time in the system. Thus, we don’t have to worry
about cache coherence at all. The disadvantage of
these protocols is its inability to share data between
two processors, even if the processors are reading it
only. In cases where two processors access the same
block simultaneously, ping-pong effect arises.

Mizrahi et al in [MiB89] proposed a memory hierarchy
network (MHN) and a single copy protocol in which
the cache coherence is guaranteed by disallowing mul-
tiple copies of the same memory block. They also
proposed that the MHN is used for handling shared
data, while a separate network is used for handling
private data and requests. The MHN idea is to con-
sider the main memory as the root of a tree, while
processors and their private caches are considered to
be the leaves of that tree. Each internal tree node
(excluding the root and the leaves) consists of a cache
memory to hold data, a directory to locate the re-
quested data block, and switching mechanism to for-
ward the requested block. The authors also developed
a data migration policy to control the movement of
the memory blocks in order to minimize the average
memory access time.

Omran and Aboelaze in [OmA94] has proposed a sin-
gle copy cache coherence protocol for multiprocessors
with multistage interconnection networks. They pro-
posed a network where the switches has caches, and
data can be stored in the switches caches. They in-
vestigated both cases where caches are allowed only in
the first stage vs. cache allowed in any internal switch.

3 Workload Model

In uniprocessor simulation studies, real address traces
have been used in order to measure protocol perfor-
mance. However, in multiprocessors, the real-trace
driven simulations have been less successful. Some
researchers have used real parallel program traces to
simulate cache coherence protocol in multiprocessors.
These traces are usually for a fixed number of pro-
cessors, and depends on the particular machine being
used. It is difficult to measure the effect of changing
the number of processors in the system, the percentage
of the write access, or the degree of coupling between
the different processes. In this paper, we use a flexi-
ble workload model that can synthetically emulate the
reference pattern of a variety of applications.

Our synthetic trace is generated using four parame-
ters, pw, pi, B, and H.

H is the number of levels in the hierarchical system
Pw 1s the probability that the access is a write access.
p; is the incremental probability. For an H levels hier-
archical bus system, we assume that the reference by
any processor is a hit with a probability 1 —(H +1)p;.

Main Memory
Bus 0
Level-3
caches
Lo 2 2
Bus 1
5 6
4 0 Level-2
Bus 4 Bus 5 Bus 6 caches
i-a)l l- 0 Level-1
7 9 11 13 15 caches
8 10 12 14
Figure 1: Hierarchical Shared Bus
Multiprocessors

We assume that the reference is a miss, but the re-
quested block resides in the same level-1 cluster as
the requesting processor to be 1 — Hp;. Similarly,
the probability that the requested block resides in
the same level-2 cluster as the requesting processor
is 1 —(H — 1)p;, ... and so on. Finally the probability
that the referenced block reside in any cache (not the
main memory) is 1 — p;. Moreover, for every proces-
sor, we have a list of the Most Recently Used blocks
(MRU list). If the reference is a hit, then there is a
probability B that the reference is to one of the blocks
in the MRU list, and with a probability 1 — 8 to a
block in the cache but not on the MRU list.

By using this model, we can change the degree of cou-
pling between the processes as well as the write prob-
ability in order to test our proposed protocol under a
wide range of workload.

4 Proposed Protocol

In this paper, we propose and analyze a single copy
cache coherence protocol for hierarchical bus systems.
We assume a tree hierarchy of single buses as shown
in Figure 1. Hierarchical systems have proven to be a
very effective, and scalable way of extending the num-
ber of processors in a multiprocessor system. In such a
system, adding more processors means adding one or
more buses which increase the total bandwidth of the
system. Hierarchical systems are also suitable for the
connectionist models of computations [FeB82], which

153

require a very large number of processors and its appli-
cations are hierarchical in nature [GhH89]. One other
advantage of hierarchical buses is it combines the sim-
plicity of a single bus cluster with the scalability of
multistage interconnection network; thus avoiding the
bottleneck of connecting a large number of processors
to a single bus.

As shown in Figure 1, this system consists of pro-
cessors each with its own cache, we call these caches
processor’s cache or level-1 cache. At level-1, each k
processors are attached to a single bus forming a first-
level cluster. Every k first-level clusters are attached
via k caches to a single bus (we call this intermediate
or shared cache) forming a second-level cluster, and

so on. The number of processors in the system is k¥
where H is the number of levels in the system.

The first level caches behave just like ordinary cache.
The idea is to maximize the hit ratio by predicting the
next reference and trying to get the data to the cache
before it is referenced. The function of the intermedi-
ate caches depends on the protocol used. In this pa-
per we present three variations of a single copy cache
coherence protocol. In BSCP (Basic Single Copy Pro-
tocol) data blocks are allowed to reside only in the
processor’s caches, the intermediate caches hold infor-
mation about the blocks in the descendant caches in
order to help locating any requested block quickly. In
ESCP (Extended Single Copy Protocol) data blocks
may reside anywhere in the system, thus the interme-
diate caches hold data blocks as well as information
about the blocks in the descendant caches. In SMCP
(Single Multiple Copies Protocol) we allow multiple
copies of the same block within a single level-1 cluster
only. In the same cluster, a snoopy cache coherence
protocol is used to guarantee the consistency of the
data.

Notice that because the protocol is a single copy pro-
tocol, the inclusion property has a different meaning
in this context. Instead of saying that a cache at a
certain level contains copies of all the blocks in the
descendant caches, we modify this to state an inter-
mediate cache at ¢ certain level contains information
about the location of all the blocks in all the descen-
dant caches. This information could be in the form of
a table with the block tag, and a number : 1 <1< k,

to indicate that the required block is in the i*" subtree
rooted at this cache.

The Extended Single Copy Protocol (ESCP) seems
suitable in cases where there is a large amount of
sharing between processors, especially for some syn-
chronization primitives that are frequently accessed
by more than one processor. In order to avoid ping-
pong effect, when more than one processor make more
than one reference to the same data block, We allow
the block to reside in an intermediate cache, the block
could be placed in a cache that is as close as possible
to the two requesting processors (root of the shortest
subtree containing these two processors). In order to
successfully manage such a scheme, we have to know
in advance which block will be shared between more
than one processor in the future. This is not always

possible, and we have to depend on a simpler though
less effective measures.

The Single Multiple Copy Protocol (SMCP), allows
more than one copy of any block to reside simulta-
neously in the same level-1 cluster, but could not re-
side in more than one single level-1 cluster. A snoopy
cache coherence protocol is used in each level-1 cluster
to guarantee the consistence of the data.

4.1 BSCP Basic Single Copy Protocol

In the basic protocol, we assume a system like the one
in Figure 1. Each processor fetches instruction and
data from its own cache. In case of a cache miss, the
processor sends a request to get the missing block.
The request travels up the hierarchy. It checks every
intermediate cache it encounters to see if the requested
block is located in the subtree rooted at this particular
intermediate cache. If the block does not exist, the
request travels one level up, and continue searching
for the block. If the block arrives at the main memory
without locating the tree, the block is fetched from
the main memory and returned back to the requesting
processor. If the request located the block in a subtree
rooted at a specific cache, it start descending down
this subtree till the block is located and sent to the
requesting processor.

One of the problems we encountered is as follows: A
request is traveling up the tree looking for a specific
block. After checking a specific cache, it indicates that
the block does exist in the i** subtree of this node.
The request is enqueued waiting for this bus to access
the lower level cache in the i** subtree. While this re-
quest is waiting for the bus, the block is removed from
its location by another request. After the original re-
quest capture the bus, and try to locate the block, it
does not find it. In this case, our protocol sends a
negative acknowledgment NAK to the requesting pro-
cessor. After receiving the NAK, the requesting pro-
cessor tries again without any delay (The delay the
NAK encountered in its way to the processor is con-
sidered enough for the block to settle somewhere in
the network). This is similar to the problem of tran-
sient blocks mentioned in [AnB93]. Our solution in
this paper indicates an upper bound on the delay, i.e.
any proposed solution to deal with this problem will
result in more efficient protocol. we chose to deal with
the worst case scenario because we are concentrating
on the idea of a single copy protocols in hierarchical
systems rather than the implementation details.

If an access results in a read or write miss, and the
cache is full, then an LRU replacement policy is as-
sumed and one block is chosen either to be written
back to the memory if modified (dirty), or discarded
if not modified (clean). The state of the requested
bock will be the same as in the source cache.

Another point we considered, is the priorities in ac-
cessing the bus. In our simulation we assumed three
different priority levels. The lowest priority is given
to a request from a cache for a block that traveling up
in the network. The second highest priority is given
to a cache request traveling down the hierarchy. The

highest priority is assumed for a moving data block, a
write-back data block, a negative acknowledgment, or
adding or removing a directory entry.

4.2 ESCP Extended Single Copy Proto-

col

In this protocol, we allow the data blocks to reside
anywhere in the system, i.e. intermediate caches hold
data blocks as well as information about blocks in the
descending caches. The goal of this modification is to
avoid ping-pong effect, where a block is referenced by
2 processors simultaneously. According to BSCP, this
block will be bouncing back and forth between these
two processor’s caches.

In order to determine the blocks that are likely to
be shared, (simultaneously accessed by more than one
processor), We maintain for every cache a list with the
« Most Recently Used MRU blocks as we explained
before (in our simulation we set « to 8). If processor ¢
issued a memory request and could not be found in its
local cache, the request propagates up in the network
till the block containing the requested data is located.
The block could be in one of four locations, the action
taken depends on the location of the requested block.

1 The block is found in the main memory: In this case,
the block is transferred to processor ¢ cache.

2 The block is found in processor j cache, but not in
MRUj: In this case, the block is transferred to pro-
cessor ¢ cache.

3 The block is found in processor j cache and is in
MRU;: then, according to the principal of locality,
processor j will reference this block in the near fu-
ture with a high probability. In this case, the block
is transferred to the caching switch which is the root
of the subtree that contain both processors ¢ and j as
leaves.

4 The block is found in an intermediate cache. In this
case the block is transferred to processor ¢ cache in the
second consecutive reference by the same processor (7).

The actions taken if the block is in locations 1 or 2 are
self explanatory, and simply state that the requested
block is brought to the requesting processor cache.

If the block 1s in location 3 (i.e. in MRU;), then
processor j will probably request this block in the near
future, moving 1t to cache ¢ will result in ping-pong
effect, we want this block to be on an equal distance
from both processor 7 and processor j, that is why
we move it to the root of the subtree containing both
processor i and processor j.

If the block is in location 4, there are two possible
reasons for any block to be in this location; either there
are two processors actively referencing this block, or
because 1t was brought to this location some time ago
and no processor is actively referencing it. That is why
we prefer to send the requested memory word and not
the entire block on the first reference, but if the same
processor (i) accesses the same block twice in a row,
the block is moved to processor #’s cache.

154

4.3 SMCP Single Multiple Copies Proto-
col

In this protocol we allow multiple copies of the same
block to reside in multiple caches in the same level-
1 cluster, thus decreasing the access time if a block
is shared between two processors in the same clus-
ter. In this protocol, data is allowed only in the pro-
cessor’s cache. The intermediate caches hold infor-
mation about the location of each data block in the
tree rooted at this particular intermediate cache ex-
cept level-2 caches. Level-2 caches contain tables with
two fields per entries. The first is the block number
for all the block in the level-1 cluster. The second
entry is the number of copies of this block in level-
1 cluster. A snoopy controller monitors the bus and
changes the number of copies for each block according
to the transaction on the bus.

Each block in any processor cache could be in two
states; either SHARED, or EXCLUSIVE. A shared
block means that there are more copies of this block in
the same cluster. Exclusive means it is the only copy
in the cluster. Also each block could be clean (not
modified), or dirty gmodiﬁed). The protocol can be
best described by following the actions of the snoopy
controllers in 2 cases. Processors read or write, and
requests from another processors. The action taken
by the snoopy controller in case of read or write (hit
or miss) can be described as

1 Read hit In case of a read hit, the processor
goes ahead and read the requested word.

2 Write hit If the block is in Exclusive state,
the processor goes ahead and writes. If the
block is in a Shared state, the processor put
an invalidate signal on the bus (as a result
all other caches with a copy of the block set
their copy to Invalid, and the level-2 cache
sets the number of copies for this block to
1). Then, the block is modified.

3 Read miss The processor puts a request on
the bus, if there are another copies in the
cluster, one of the processor with a copy sup-
ply the block to the requesting processor, and
the level-2 cache increment the number of
copies for this block. If no other copies ex-
ists in the cluster, the request travels up the
hierarchy to locate the block as in BSCP.

4 Write miss Similar to a read miss followed
by a write hit.

The actions by the snoopy controllers in response to
requests from other processors depends on the type of
request, and can be described as follows.

1 Invalidate If the request is invalidate, the
controller invalidates the copy of the block.

2 Read if the request is to read from a local
(in the same cluster) processor, the controller

155

supply a copy of the block on the bus, and
sets the block state to shared. The level-
2 cache increment the number of copies for
this block. If the request is from a remote
processor, the controller puts the block on
the bus, and invalidate its own copy. The
level-2 cache invalidate (purges) its entry for
this block.

3 Write The controller puts the block on the
bus, and invalidate its own copy. Level-2
cache sets the number of copies to 1 if the
request is local. Otherwise, it invalidates its
entry for this block and copies it to a higher
level cache.

Replace If a block is to be replaced, the ac-
tions taken depends on the state of the block.

e Shared: The block is discarded and the
higher level cache decrement the num-
ber of copies for this block.

e Exclusive: the block is written back to
the main memory, and level-2 cache in-
validates its own entry for this block

5 Simulation Results

We have simulated the system in Figure 1 using CSIM
[Sch90], a process oriented discrete-event simulation
package for use with C language. The number of
processors is 27. We have assumed a total memory
size of 1MBytes, a cache size of 128 blocks, a block
size of 16 bytes, and a MRU list of size 8. Figure
2 shows the average access time for our BSCP and
the protocol in [AnB93] for a probability of write 20%
and # = 0.8. Figure 3 compares the performance of
our three proposed protocols for a probability of write
20%, and B8 = 0.8. Figure 2 shows that our BSCP
outperforms the directory based protocol proposed in
[AnB92]. Figure 3 shows that the BSCP outperforms
ESCP and SMCP. We explain this to the low proba-
bility of sharing between processors, thus making the
overhead of moving the block to higher caches out-
weigh the benefits. It is remain to be seen if the same
pattern will hold for real program traces instead of
synthetic ones Figure 4 is the same as Figure 3 but
with a probability of write 50%. In Figure 4 we no-
tice that the performance of ESCP is approaching that
of BSCP due to the increase of the write references.
Figure 5 compares the three proposed protocols for
B =0.2, and p, = 0.2. Figure 6 is the same as Figure
5 but with p,, = 0.5. :

6 Conclusion

In this paper we proposed two single copy cache coher-
ence protocols and a third protocol that allows a lim-
ited number of copies to exist provided that the copies
are in the same level-1 cluster. We used a synthetic
workload that can emulate a wide range of reference
patterns. Our simulation shows that the performance
of our three protocols exceeds the performance of the
directory based protocol proposed in [AnB93] for a
wide range of workload.

REFERENCES

[AgS88] A. Agarwal, R. Simoni, J. Hennessy, and M.
Horowitz, An Ewvaluation of Directory Schemes
for Cache Coherence “Proceedings of t he 15th
Annual International Symposium on Computer
Architecture,” 1988, pp. 280-289.

[AnB92] C. Anderson and J.-L. Baer, A Multi-Level
Hierarchical Cache Coherence Protocol for Mul-
tiprocessors, Technical Report number 92-10-04,
Department of Computer Science & Engineering,
University of Washington, 1992.

[AnB93] C. Anderson and J.-L. Baer, A Multi-Level
Hierarchical Cache Coherence Protocol for Mul-
tiprocessors ¢ ‘Proceedings of the 7th Interna-
tional Symposium on Parallel Processing,” New-
port Beach, CA May 1993, pp. 142-148.

[ChF90] D. Chaiken, C. Fields, K. Kurihara, and
A. Ararwal, Directory-Based Cache Coherence in
Large Scale Multiprocessors “IEEE Computer,”
Vol. 23, No. 6, June 1990, pp. 49-58.

[ChK91] D. Chaiken and K. Kubiatowicz, LimitLESS
Directories: A Scalable Cache Coherence Scheme
“Proceedings of the 4th International Conference
on ASPLOS,” 1991, pp. 224-234.

[EgK88]S. J. Eggers and R. H. Katz, A Characteriza-
tion of Sharing in Parallel Programs and Appli-
cation to Coherency Protocol Fuvaluation “15th
Annual International Symposium on Computer
Architecture,” 1988, pp. 373-382.

[EgK89] S. Eggers and R. Katz, FEwvaluating the
Performance of Four Snooping Cache Coherency
Protocols “Proceedings of the 16th Annual Inter-
national Symposium on Computer Architecture,”
1989, pp. 2-15.

[FeB82] J. A. Feldman and D. H. Ballard, Connec-
tionist Models and their Properties “Cognitive
Science,” Vol. 6 No. 3, 1982, pp. 205-254.

[GhH89] J. Ghosh and K. Hwang, Mapping Neural
Networks Onto Message Passing Multicomputers
“Journal of Parallel and Distributed Computing,”
Vol. 6, No. 2, April 1989, pp. 1-19.

156

150 ' ' ' ' :
140}
130 |
120 i
1ot
10.0
9.0 | Ve
80}
70t

BSCP —~—
Baer's Algorithm -—+-

50+
40+
30r
20+

Cache Request Mean Time

1 [! 1 1

001% 002% 0.03% 0.04% 0.05%
The (Incremental) Probability of Locality

Figure 2: Average access time vs. the
incremental probability for g = 0.8, p, = 0.2

[Goo83] J. R. Goodman, Using Cache Memory to
Reduce Processor-Memory Traffic “International
Symposium on Computer Architecture,” 1983,
pp. 124-131.

[MiB89] H. E. Mizrahi, J.-L. Baer, E. D. Lazowska,
and J. Zahorjan, Ertending the Memory Hierar-
chy into Multiprocessor Interconnection Network:
A Performance Analysis “Proceedings of the In-
ternational Conference on Parallel Processing,”
1989, pp. [-41-150.

[OmA94] R. Omran and M. Aboelaze, An Effi-
ctent Single Copy Cache Coherence Protocol for
Multiprocessors with Multistage Interconnection
Networks “Proceedings of Scalable High Per-
formance Computer Conference,” Knoxville, TN
May 23-25, 1994, pp. 1-8.

[Sch90] H. Schwetman, CSIM User’s Guide, MCC
Technical Report Number:ACT-126-90, MCC
Austin Texas, 1990.

[Ste89] P. Stenstrom, A Cache Consistency Proto-
col for Multiprocessors with Multistage Networks

“Proc. of 16th Annual International Symposium
on Computer Architecture ,” 1989, pp. 407-405.

[ThD90} M. Thapar and B. Delagi, New Directions
in Scalable Shared Memory Multiprocessor Archi-
tecture: Stanford Distributed-Directory Protocol
“IEEE Computer,” Vol. 32, No. 6, May 1990,
pp- 78-80.

Cache Request Mean Time

incremental probability for f= 0.8, p, = 0.2

Cache Request Mean Time

incremental probability for 3= 0.8, p, = 0.5

60 '
/'/
50t
40t
30t
20} F BSCP ~—
10}
001% 002% 003% 004% 005%

The (Incremental) Probability of Locality

Figure 3: Average access time vs.

60}
50}

40 i

i

i

0.01% 0.02% 0.04%

0.03%

0.05%

The (Incremental) Probability of Locafity

Figure 4: Average access time vs.

157

Cache Request Mean Time

incremental probability for g = 0.2, p, = 0.2

Cache Request Mean Time

incremental probability for 8 =0.2, p, = 0.5

170 ¢
16.0 r
150 f
140 f
130 F
120
or
10.0 ¢
90
80 r
10 1
60
50
40
30+
20 -

1.0 b

BSCP ~+—
ESCP -+
SMCP -o--

i A !

001% 0.02% 0.03% 004% 0.05%
The (Incremental) Probability of Locality

Figure 5: Average access time vs.

17.0

160
150}
140+
130
120}
1ot
100
90 }
80
70}
80}

50

40|
30+
20+
10F

/ BSCP ~+—
ESCP -+
/ SMCP -o--

L

2

0.01%

0.02%

0.03%

0.04%

0.05%

The (Incremental) Probability of Locality

Figure 6: Average access time vs.

