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Abstract

Agent supervision is a form of control/customization where a
supervisor restricts the behavior of an agent to enforce certain
requirements, while leaving the agent as much autonomy as
possible. In this work, we investigate supervision of an agent
that may acquire new knowledge about her environment dur-
ing execution, for example, by sensing. Thus we consider
an agent’s online executions, where, as she executes the pro-
gram, at each time point she must make decisions on what to
do next based on what her current knowledge is. This is done
in a setting based on the situation calculus and a variant of
the ConGolog programming language. To reason about such
agents, we first define a notion of online situation-determined
agent that ensures that for any sequence of actions that the
agent can perform online, the resulting agent configuration is
unique. The main results of this paper are (i) a formalization
of the online maximally permissive supervisor, (ii) a sound
and complete technique for execution of the agent as con-
strained by such a supervisor, and (iii) a new type of looka-
head search construct that ensures nonblockingness over such
online executions.

1 Introduction
In many settings, we want to restrict an agent’s behavior to
conform to a set of specifications. For instance, the activities
of agents in an organization have to adhere to some busi-
ness rules and privacy/security protocols. Similarly, a mo-
bile robot has to conform to safety specifications and avoid
causing injuries to others. One form of this is customization,
where a generic process for performing a task or achieving
a goal is refined to satisfy a client’s constraints or prefer-
ences. Process customization includes personalization (Fritz
and McIlraith 2006) and configuration (Liaskos et al. 2012)
and finds application in number of areas.

A key challenge in such settings is ensuring confor-
mance to specifications while preserving the agent’s auton-
omy. Motivated by this and inspired by supervisory con-
trol of discrete event systems (Wonham and Ramadge 1987;
Wonham 2014; Cassandras and Lafortune 2008), De Gia-
como, Lespérance and Muise (De Giacomo, Lespérance,
and Muise 2012) (DLM) proposed agent supervision as a
form of control/customization of an agent’s behavior. The
DLM framework is based on the situation calculus (Mc-
Carthy and Hayes 1969; Reiter 2001) and a variant of the
ConGolog (De Giacomo, Lespérance, and Levesque 2000)

programming language. DLM represent the agent’s possible
behaviors as a nondeterministic ConGolog process. Another
ConGolog process represents the supervision specification,
i.e., which behaviors are acceptable/desirable.1

If it is possible to control all of the agent’s actions,
then it is easy to obtain the behaviors of the supervised
agent through a kind of synchronous concurrent execution of
the agent process and the supervision specification process.
However, some of the agent’s actions may be uncontrol-
lable. DLM formalize a notion of maximally permissive su-
pervisor that minimally constrains the behavior of the agent
in the presence of uncontrollable actions so as to enforce
the desired behavioral specifications. The original DLM ac-
count of agent supervision assumes that the agent does not
acquire new knowledge about her environment while exe-
cuting. This means that all reasoning is done using the same
knowledge base. The resulting executions are said to be of-
fline executions.

In this paper we study how we can apply the DLM frame-
work in the case where the agent may acquire new knowl-
edge while executing, for example through sensing. This
means that the knowledge base that the agent uses in her
reasoning needs to be updated during the execution. For in-
stance, consider a travel planner agent that needs to book a
seat on a certain flight. Only after querying the airline web
service offering that flight will the agent know if there are
seats available on the flight.

Technically, this requires switching from offline execu-
tions to online executions (De Giacomo and Levesque 1999;
Sardiña et al. 2004), which, differently from offline ex-
ecutions, can only be defined meta-theoretically (unless
one adds a knowledge operator/fluent (Scherl and Levesque
2003)) since at every time point the knowledge base used by
the agent to deliberate about the next action is different.

Based on online executions, we formalize the notion of
online maximally permissive supervisor and show its exis-
tence and uniqueness, as in the simpler case of DLM. More-
over, we meta-theoretically define a program construct (i.e.,
supervision operator) for online supervised execution that
given the agent and specification, executes them to obtain

1In some cases, a declarative specification language would be
preferable, e.g., linear temporal logic (LTL). (Fritz and McIlraith
2006) show how an extended version of LTL interpreted over a
finite horizon can be compiled into ConGolog.
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only runs allowed by the maximally permissive supervisor,
showing its soundness and completeness. We also define a
new lookahead search construct that ensures the agent can
successfully complete the execution (i.e., ensures nonblock-
ingness).

2 Preliminaries
2.1 The Situation Calculus
The situation calculus (SC) is a logical language specif-
ically designed for representing and reasoning about dy-
namically changing worlds (McCarthy and Hayes 1969;
Reiter 2001). All changes to the world are the result of ac-
tions, which are terms in the logic. A possible world history
is represented by a term called a situation. The constant S0

is used to denote the initial situation where no actions have
yet been performed. Sequences of actions are built using
the function symbol do, such that do(a, s) denotes the suc-
cessor situation resulting from performing action a in situ-
ation s. Predicates and functions whose value varies from
situation to situation are called fluents, and are denoted by
symbols taking a situation term as their last argument (e.g.,
Holding(x, s)). Within the language, one can formulate
action theories that describe how the world changes as the
result of actions (Reiter 2001). We assume that there is a
finite number of action types A. Moreover, we assume that
the terms of object sort are in fact a countably infinite set
N of standard names for which we have the unique name
assumption and domain closure. As a result a basic ac-
tion theory (BAT) D is the union of the following disjoint
sets: the foundational, domain independent, (second-order,
or SO) axioms of the situation calculus (Σ), (first-order, or
FO) precondition axioms stating when actions can be legally
performed (Dposs), (FO) successor state axioms describing
how fluents change between situations (Dssa), (FO) unique
name axioms for actions and domain closure on action types
(Dca); (SO) unique name axioms and domain closure for
object constants (Dcoa); and (FO) axioms describing the
initial configuration of the world (DS0 ). A special predi-
cate Poss(a, s) is used to state that action a is executable in
situation s; precondition axioms in Dposs characterize this
predicate. The abbreviation Executable(s) means that ev-
ery action performed in reaching situation s was possible in
the situation in which it occurred. In turn, successor state
axioms encode the causal laws of the world being modeled;
they take the place of the so-called effect axioms and provide
a solution to the frame problem.

We write do([a1, a2, . . . , an−1, an], s) as an abbre-
viation for the situation term do(an, do(an−1, . . . ,
do(a2, do(a1, s)) . . .)); for an action sequence ~a, we
often write do(~a, s) for do([~a], s).

2.2 High-Level Programs and ConGolog

To represent and reason about complex actions or processes
obtained by suitably executing atomic actions, various so-
called high-level programming languages have been de-
fined. Here, we concentrate on (a fragment of) ConGolog
(De Giacomo, Lespérance, and Levesque 2000) that in-
cludes the following constructs:

α atomic action
ϕ? test for a condition
δ1; δ2 sequence
if ϕ then δ1 else δ2 conditional
while ϕ do δ while loop
δ1|δ2 nondeterministic branch
πx.δ nondeterministic choice of argument
δ∗ nondeterministic iteration
δ1‖δ2 interleaved concurrency
δ1& δ2 synchronous concurrency/intersection

In the above, α is an action term, possibly with parameters,
and ϕ is situation-suppressed formula, i.e., a SC formula
with all situation arguments in fluents suppressed. As usual,
we denote by ϕ[s] the formula obtained from ϕ by restoring
the situation argument s into all fluents in ϕ. The test action
ϕ? determines if condition ϕ holds. The sequence of pro-
gram δ1 followed by program δ2 is denoted by δ1; δ2. Pro-
gram δ1|δ2 allows for the nondeterministic choice between
programs δ1 and δ2, while πx.δ executes program δ for some
nondeterministic choice of a legal binding for variable x (ob-
serve that such a choice is, in general, unbounded). δ∗ per-
forms δ zero or more times. Program δ1‖δ2 represents the
interleaved concurrent execution of programs δ1 and δ2. The
intersection/synchronous concurrent execution of programs
δ1 and δ2 (introduced by DLM) is denoted by δ1& δ2.

Formally, the semantics of ConGolog is specified in
terms of single-step transitions, using two predicates
(De Giacomo, Lespérance, and Levesque 2000): (i)
Trans(δ, s, δ′, s′), which holds if one step of program δ
in situation s may lead to situation s′ with δ′ remaining
to be executed; and (ii) Final(δ, s), which holds if pro-
gram δ may legally terminate in situation s. The defini-
tions of Trans and Final we use are as in (De Giacomo,
Lespérance, and Pearce 2010); differently from (De Gia-
como, Lespérance, and Levesque 2000), the test construct
ϕ? does not yield any transition, but is final when satisfied.
Thus, it is a synchronous version of the original test con-
struct (it does not allow interleaving). As a result, in our
version of ConGolog, every transition involves the execution
of an action.

2.3 Situation-Determined ConGolog (SDConGolog)
A ConGolog program δ is situation-determined (SD) in a sit-
uation s (De Giacomo, Lespérance, and Muise 2012) if for
every sequence of actions, the remaining program is deter-
mined by the resulting situation, i.e.,

SituationDetermined(δ, s)
.
= ∀s′, δ′, δ′′.

Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ = δ′′,

where Trans∗ denotes the reflexive transitive closure of
Trans. For example, program (a; b) | (a; c) is not SD, while
a; (b | c) is (assuming the actions involved are always ex-
ecutable). Thus, a (partial) execution of a SD program is
uniquely determined by the sequence of actions it has pro-
duced. Hence a program in a starting situation generates a
set/language of action sequences, its executions, and opera-
tions like intersection and union become natural.

Here and in the rest, we use C to denote the axioms defin-
ing the ConGolog programming language.
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3 A Travel Planning Example
As a motivating example, we consider the task of planning a
trip, which may involve booking a hotel and/or flight. Imag-
ine we have a very generic travel agent whose behavior is de-
fined by the ConGolog process δtravelP lanner below, which
we will later customize based on a client’s requirements:
δtravelP lanner(cID, oC, dC, bD, eD) =

(δqryHtl(cID, dC, bD, eD) | δqryAir(cID, oC, dC, bD, eD) |
δpickHtl(cID, dC, bD, eD) | δpickAir(cID, oC, dC, bD, eD))∗;

if ∃htlID SelHtl(cID, htlID) ∨ ∃airID SelAir(cID, airID)
then [
displaySelectedProposals(cID);
πhtlID, airID.[clntResponse(cID, htlID, airID);
if htlID 6= NULL then bookHtl(cID, htlID);
if airID 6= NULL then bookAir(cID, airID)]

] else
reportFailure(cID)

endIf

The argument cID stands for the client session ID, oC for
the origin city, dC for destination city, and finally bD and
eD represent the begin and end dates of the trip respectively.
These are assumed to be known at the outset of the process.
The process begins by querying 0 or more hotel and/or air-
line web services in any order, to check if they can fulfill the
given request. The querying is done by two subprograms
δqryHtl and δqryAir, with the former defined as follows:

δqryHtl(cID, dC, bD, eD) =
(πhtlID.[¬QrdHtlWS(cID, htlID, dC, bD, eD)?;
qryHtlWS(cID, htlID, dC, bD, eD);
πhC, stat.replyHtlWS(cID, htlID, hC, stat)]

This program can query any hotel web service (htlID), as
long as it has not been queried before. The web service’s
reply to the query is represented by the exogenous action
replyHtlWS, where the parameters hC and stat return
the cost and status of the web service (OK if it is able
to fulfill the request and NotAvail otherwise) respectively.
The fluent RpldHtl(cID, htlID, dC, bD, eD, hC, stat, s)
stores the reply from the hotel web service after it is re-
ceived. The procedure δqryAir is defined similarly and the
fluentRpldAir stores the reply from the airline web service.

As it is querying hotel and/or airline web services,
δtravelP lanner also executes the subprograms δpickHtl and
δpickAir to select 0 or more hotel and/or airline web service
IDs, among those that replied positively, in any order. The
procedure δpickHtl is defined as follows:
δpickHtl(cID, oC, dC, bD, eD) =

((πhtlD, hC.[RpldHtl(cID, htlID, dC, bD, eD, hC,OK)?;
selectHtl(cID, htlID)])

δpickAir is defined similarly. The fluents SelHtl(cID,
htlID, s) and SelAir(cID, airID, s) become true for the
selected hotels and airlines after actions selectHtl(cID,
htlID) and selectAir(cID,airID) respectively.

If some hotels and/or airlines are selected, the pro-
cess then presents them to user by executing the action
displaySelectedProposals(cID) after which the fluents
ProposedHtl(cID, htlID, s) and ProposedAir(cID,
airID, s) become true for those hotels and airlines. Sub-
sequently, the client’s response, represented by the ex-

ogenous action clntResponse(cID, htlID, airID) is ob-
tained, where htlID and airID may contain the chosen ho-
tel and airline or NULL. Finally, the process will book the
hotel and/or airline chosen by the client, if any. The flu-
ents BookedHtl(cID, htlID, s) and/or BookedAir(cID,
htlID, s) become true for the hotel and/or airline booked
for the client. The process may also simply report failure
without selecting any hotels and airlines.

In addition to a client’s basic requirements such as begin
and end date of the trip, the client may have further con-
straints and preferences. For instance, he may not want to
fly with a certain airline, or he may want the travel planner
to propose at least two hotels, if possible. He may also have
budget constraints. Such constraints and preferences can be
represented by another ConGolog program. Then, supervi-
sion can be utilized to personalize the travel planner process
based on the given specification. For example, suppose that
the client wants a hotel but not HtlX . We can represent this
by the following supervision specification:

δclient1(cID, oC, dC, bD, eD) =
[(πa.a)∗;
∃htlID. ProposedHtl(cID, htlID) ∨
∀htlID.IsHtl(htlID, dc) ∧ htlID 6= HtlX ⊃
RpldHtl(cID, htlID, dC, bD, eD, hC,NotAvail)?;
(πa.a)∗] &
πa.(a;¬BookedHtl(cID,HtlX)?)∗

This specification is satisfied if eventually (i.e., after some
sequence of actions) a hotel has been proposed or all ho-
tels other than HtlX replied that no room is available, and
HtlX is never booked. In the above, IsHtl is a relation that
holds for all hotels in the destination city.

What executions can we get if we perform supervision
on the generic travel planner agent with this specification?
Suppose for simplicity that there are only three hotel web
services (HtlX , HtlY , and HtlZ) and no airline web ser-
vices. The supervision does not enforce any specific order
in which these hotel web services are queried. Assuming
the process queries HtlY first and it is not able to fulfill
the request, then HtlZ must be queried. The process can
only report failure if neither of HtlY and HtlZ have avail-
able rooms. In case HtlY is able to fulfill the request, then
HtlZ may be queried. In either case, HtlX may be queried
as well. Once HtlY and/or HtlZ indicated availability, the
travel planner must then select and present at least one of
them to the client. After obtaining the client’s response, the
process must book the client’s chosen hotel, if any. Supervi-
sion must ensure that HtlX is not selected and proposed to
the client. If it is, it might be chosen by the client, meaning
that the agent must book it, which clearly violates the su-
pervision specification. At the same time, supervision must
leave as much freedom for the process as possible, so for ex-
ample, the process can still query HtlX and need not query
HtlZ in case HtlY has a room available. What supervision
produces will become clearer after we have given the formal
definitions in Section 5. We will return to our example there.

4 Agents Executing Online
In our account of agent supervision, we want to accommo-
date agents that can acquire new knowledge about their en-
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vironment during execution, for example by sensing, and
where their knowledge base is updated with this new knowl-
edge. Thus we consider an agent’s online executions, where,
as she executes the program, at each time point, she makes
decisions on what to do next based on what her current
knowledge is.

Sensing. A crucial aspect of online executions is that
the agent can take advantage of sensing. Similarly to
(Lespérance, De Giacomo, and Ozgovde 2008), we model
sensing as an ordinary action which queries a sensor, fol-
lowed by the reporting of a sensor result, in the form of an
exogenous action.

Specifically, to sense whether fluent P holds within a pro-
gram, we use a macro:

SenseP
.
= QryIfP ; (repV alP (1) | repV alP (0)),

where QryIfP is an ordinary action that is always executable
and is used to query (i.e., sense) if P holds and repV alP (x)
is an exogenous action with no effect that informs the agent
if P holds through its precondition axiom, which is of the
form:
Poss(repV alP (x), s) ≡ P (s) ∧ x = 1 ∨ ¬P (s) ∧ x = 0.

Thus, we can understand that SenseP reports value 1
through the execution of repV alP (1) if P holds, and 0
through the execution of repV alP (0) otherwise.

For example, consider the following agent program:

δi = SenseP ; [P?;A] | [¬P?;B]

and assume the agent does not know if P holds initially.
So initially we have D ∪ C |= Trans(δi, S0, δ

′, S1) where
S1 = do(QryIfP , S0) and δ′ = nil; (repV alP (1) |
repV alP (0))); [P?;A] | [¬P?;B]. At S1, the agent knows
either of the exogenous actions repV alP (0) or repV alP (1)
could occur, but does not know which. After the occurrence
of one of these actions, the agent learns whether P holds.
For example, if repV alP (1) occurs, the agent’s knowledge
base is now updated to D ∪ C ∪ {Poss(repV alP (1), S1)}.
With this updated knowledge, she knows which action to do
next:
D ∪ C ∪ Poss(repV alP (1), S1) |=

Trans(nil; [P?;A] | [¬P?;B], do(repV alP (1), S1), nil,
do([repV alP (1), A], S1)).

Notice that with this way of doing sensing, we essentially
store the sensing results in the situation (which includes all
actions executed so far including the exogenous actions used
for sensing). In particular the current KB after having per-
formed the sequence of actions ~a is:

D ∪ C ∪ {Executable(do(~a, S0)}.
Note that this approach also handles the agent’s acquiring
knowledge from an arbitrary exogenous action.

Agent online configurations and transitions. We denote
an agent by σ, which stands for a pair 〈D, δi〉, where δi is the
initial program of the agent expressed in ConGolog and D is
a BAT that represents the agent’s initial knowledge (which
may be incomplete). We assume that we have a finite set
of primitive action types A, which is the disjoint union of

a set of ordinary primitive action types Ao and exogenous
primitive action types Ae.

An agent configuration is modeled as a pair 〈δ,~a〉, where
δ is the remaining program and ~a is the current history, i.e,
the sequence of actions performed so far starting from S0.
The initial configuration ci is 〈δi, ε〉, where ε is the empty
sequence of actions.

The online transition relation between agent configura-
tions is (a meta-theoretic) binary relation between configu-
rations defined as follows:
〈δ,~a〉 →A(~n) 〈δ′,~aA(~n)〉

if and only if
either A ∈ Ao, ~n ∈ N k and
D ∪ C ∪ {Executable(do(~a, S0))} |=

Trans(δ, do(~a, S0), δ′, do(A(~n), do(~a, S0)))

or A ∈ Ae, ~n ∈ N k and
D ∪ C ∪ {Executable(do(~a, S0)),
T rans(δ, do(~a, S0), δ′, do(A(~n), do(~a, S0)))} is satisfiable.

Here, 〈δ,~a〉 →A(~n) 〈δ′,~aA(~n)〉 means that configuration
〈δ,~a〉 can make a single-step online transition to configu-
ration 〈δ′,~aA(~n)〉 by performing action A(~n). If A(~n) is an
ordinary action, the agent must know that the action is exe-
cutable and know what the remaining program is afterwards.
If A(~n) is an exogenous action, the agent need only think
that the action may be possible with δ′ being the remaining
program, i.e., it must be consistent with what she knows that
the action is executable and δ′ is the remaining program.
As part of the transition, the theory is (implicitly) updated
in that the new exogenous action A(~n) is added to the ac-
tion sequence, and Executable(do([~a,A(~n)], S0)) will be
added to the theory when it is queried in later transitions,
thus incorporating the fact that Poss(A(~n), do(~a, S0)) is
now known to hold.

The (meta-theoretic) relation c →∗~a c′ is the reflexive-
transitive closure of c→A(~n) c

′ and denotes that online con-
figuration c′ can be reached from the online configuration c
by performing a sequence of online transitions involving the
sequence of actions ~a.

We also define a (meta-theoretic) predicate cX mean-
ing that the online configuration c is known to be final:
〈δ,~a〉X if and only if
D ∪ C ∪ {Executable(do(~a, S0))} |= Final(δ, do(~a, S0)).

Online situation determined agents. In this paper, we are
interested in programs that are SD, i.e., given a program, a
situation and an action, we want the remaining program to be
determined. However this is not sufficient when considering
online executions. We want to ensure that the agent always
knows what the remaining program is after any sequence of
actions. We say that an agent is online situation-determined
(online SD) if for any sequence of actions that the agent can
perform online, the resulting agent configuration is unique.
Formally, an agent σ = 〈D, δi〉 with initial configuration
ci = 〈δi, ε〉 is online SD if and only if for all sequences of
actions ~a, if ci →∗~a c′ and ci →∗~a c′′ then c′ = c′′.

We say that an agent σ = 〈D, δi〉 always knows the re-
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maining program after an exogenous action if and only if
for all action sequences ~a,A ∈ Ae, ~n ∈ N k

if D ∪ C ∪ {Executable(do(~a, S0)),
T rans(δ, do(~a, S0), δ′, do([~a,A(~n)], S0)) is satisfiable,

then there exists a program δ′ such that
D ∪ C ∪ {Executable(do([~a,A(~n)], S0))} |=

Trans(δ, do(~a, S0), δ′, do([~a,A(~n)], S0)).

Essentially, this states that whenever the agent considers
it possible that an exogenous action may occur, then she
knows what the remaining program is afterwards if it does
occur.

We can show that:2

Theorem 1 For any agent σ = 〈D, δi〉, if δi is known to be
SD inD, i.e.,D∪C |= SituationDetermined(δi, S0), and if
σ always knows the remaining program after an exogenous
action, then σ is online SD.

Being online SD is an important property. It means that
for any sequence of actions that the agent can perform in an
online execution, there is a unique resulting agent configu-
ration, i.e., agent belief state and remaining program. From
now on, we assume that the agent is online SD.

Online Runs. For an agent σ that is online SD, online ex-
ecutions can be succinctly represented by runs formed by
the corresponding sequence of actions. The set RR(σ) of
(partial) runs of an online SD agent σ with starting config-
uration ci is the sequences of actions that can be produced
by executing ci from S0: RR(σ) = {~a | ∃c.ci →∗~a c}. A
run is complete if it reaches a final configuration. Formally
we define the set CR(σ) of complete runs as: CR(σ) = {~a |
∃c.ci →∗~a c ∧ cX}. Finally we say that a run is good if it
can be extended to a complete run. Formally we define the
set GR(σ) of good runs as: GR(σ) = {~a | ∃c, c′, ~a′.ci →∗~a
c ∧ c→∗~a′ c

′ ∧ c′X}.

5 Online Agent Supervision
5.1 Motivation
Agent supervision aims at restricting an agent’s behavior to
ensure that it conforms to a supervision specification while
leaving it as much autonomy as possible. DLM’s account
of agent supervision is based on offline executions and does
not accommodate agents that acquire new knowledge dur-
ing a run. DLM assume that the agent’s possible behav-
iors are represented by a (nondeterministic) SD ConGolog
program δi relative to a BAT D. The supervision specifi-
cation is represented by another SD ConGolog program δs.
First note that if it is possible to control all the actions of
the agent, then it is straightforward to specify the result of
supervision as the intersection of the agent and the speci-
fication processes (δi& δs). However in general, some of
agent’s actions may be uncontrollable. These are often the
result of interaction of an agent with external resources, or
may represent aspects of agent’s behavior that must remain

2Proofs of this and all other results in the paper appear in ap-
pendix.

autonomous and cannot be controlled directly. This is mod-
eled by the special fluent Au(a, s) that means action a is
uncontrollable in situation s.

DLM say that a supervision specification δs is control-
lable wrt the agent program δi in situation s iff:
∀~aau.∃~b.Do(δs, s, do([~a,~b], s)) ∧Au(au, do(~a, s)) ⊃
(∃~b.Do(δi, s, do([~a, au,~b], s)) ⊃ ∃~b.Do(δs, s, do([~a, au,~b], s))),

i.e., if we postfix an action sequence ~a that is good offline
run for δs (i.e., such that ∃~b.Do(δs, s, do([~a,~b], s)) holds)
with an uncontrollable action au which is good for δi, then
au must also be good for δs.

Then, DLM define the offline maximally permissive su-
pervisor (offline MPS)mpsoffl(δi, δs, s) of the agent behav-
ior δi which fulfills the supervision specification δs as:

mpsoffl(δi, δs, s) = set(
⋃

E∈E E) where

E = {E | ∀~a ∈ E ⊃ Do(δi & δs, s, do(~a, s))
and set(E) is controllable wrt δi in s}

This says that the offline MPS is the union of all sets of ac-
tion sequences that are complete offline runs of both δi and
δs (i.e., such that Do(δi & δs, s, do(~a, s))) that are control-
lable for δi in situation s.

The above definition uses the set(E) construct intro-
duced by DLM, which is a sort of infinitary nondetermin-
istic branch; it takes an arbitrary set of sequences of actions
E and turns it into a program. We define its semantics as
follows:
Trans(set(E), s, δ′, s′) ≡ ∃a,~a.a~a ∈ E ∧ Poss(a, s) ∧

s′ = do(a, s) ∧ δ′ = set({~a | a~a ∈ E ∧ Poss(a, s)})
Final(set(E), s) ≡ ε ∈ E

Therefore set(E) can be executed to produce any of the se-
quences of actions in E.3

DLM show that their notion of offline MPS,
mpsoffl(δi, δs, s), has many nice properties: it always
exists and is unique, it is controllable wrt the agent behavior
δi in s, and it is the largest set of offline complete runs of
δi that is controllable wrt δi in s and satisfy the supervision
specification δs in s, i.e., is maximally permissive. How-
ever, the notion of offline MPS is inadequate in the context
of online execution, as the following example shows.
Example 1 Suppose that we have an agent that does not
know whether P holds initially, i.e., D 6|= P (S0) and
D 6|= ¬P (S0). Suppose that the agent’s initial program is:

δi4 = [P?; ((A; (C | U)) | (B;D))] |
[¬P?; ((A;D) | (B; (C | U)))]

where all actions are ordinary, always executable, and con-
trollable except for U , which is always uncontrollable. Sup-
pose that the supervision specification is:

δs4 = (πa.a 6= U?; a)∗

i.e., any action except U can be performed. It is easy to
show that the offline MPS obtained using DLM’s definition
is different depending on whether P holds or not:

3Obviously there are certain sets that can be expressed directly
in ConGolog, e.g., when E is finite. However in the general case,
the object domain may be infinite, and set(E) may not be repre-
sentable as a finitary ConGolog program.

5



D ∪ C |= (P (S0) ⊃ mpsoffl(δi4, δ
s
4, S0) = set({[B,D]})) ∧

(¬P (S0) ⊃ mpsoffl(δi4, δ
s
4, S0) = set({[A,D]}))

For models of the theory where P holds, the offline MPS
is set({B,D}), as the set of complete offline runs of δs4 in
S0 is {[B,D], [A,C]} and set({[A,C]}) is not controllable
wrt δi4 in S0. For models where P does not hold, the of-
fline MPS is set({A,D}), since the set of complete offline
runs of δs4 in S0 is {[A,D], [B,C]} and set({[B,C]}) is not
controllable wrt δi4 in S0. Since it is not known if P holds,
it seems that a correct supervisor should neither allow A nor
B.

As the above example illustrates, we have an offline MPS
for each model of the theory. Instead, we want a single on-
line MPS that works for all models and includes sensing in-
formation when acquired. The difference between offline
MPS and online MPS is analogous to the difference between
classical plans and conditional plans that include sensing in
the planning literature (Ghallab, Nau, and Traverso 2004).

5.2 Online Maximally Permissive Supervisor

In our account of supervision, we want to deal with agents
that may acquire knowledge through sensing and exogenous
actions as they operate and make decisions based on what
they know, and we model these as online SD agents. Let’s
see how we can formalize supervision for such agents. As-
sume that we have an online SD agent σ = 〈D, δi〉 whose
behavior we want to supervise. Let’s also suppose that we
have a supervision specification δs of what behaviors we
want to allow in the supervised system, where δs is a SD
ConGolog program relative to the BAT D of the agent. In
fact, we assume that the system 〈D, δs〉 is also online SD.
We say that a specification δs is online controllable wrt on-
line SD agent σ = 〈D, δi〉 iff:

∀~aau.~a ∈ GR(〈D, δs〉) and
D ∪ {Executable(do(~a, S0))} 6|= ¬Au(au, do(~a, S0)) implies

if ~aau ∈ GR(σ) then ~aau ∈ GR(〈D, δs〉).
This says that if we postfix a good online run ~a for 〈D, δs〉
with an action au that is not known to be controllable
which is good for σ (and so ~a must be good for σ as
well), then au must also be good for 〈D, δs〉. (Note that
~aau ∈ GR(σ) and ~aau ∈ GR(〈D, δs〉) together imply that
~aau ∈ GR(〈D, δi& δs〉).) This definition is quite similar to
DLM’s. But it differs in that it applies to online runs as op-
posed to offline runs. Moreover it treats actions that are not
known to be controllable as uncontrollable, thus ensuring
that δs is controllable in all possible models/worlds compat-
ible with what the agent knows. Note that like DLM, we
focus on good runs of the process, assuming that the agent
will not perform actions that don’t lead to a final configura-
tion of δi. The supervisor only ensures that given this, the
process always conforms to the specification.

Given this, we can then define the online maximally per-
missive supervisor mpsonl(δ

s, σ) of the online SD agent
σ = 〈D, δi〉 which fulfills the supervision specification δs:

mpsonl(δ
s, σ) = set(

⋃
E∈E E) where

E = {E | E ⊆ CR(〈D, δi & δs〉)
and set(E) is online controllable wrt σ}

i.e., the online MPS is the union of all sets of action se-
quences that are complete online runs of both δi and δs that
are online controllable for the agent σ. Again, our definition
is similar to DLM’s, but applies to online runs, and relies on
online (as opposed to offline) controllability. We can show
that:
Theorem 2 For the online maximally permissive supervisor
mpsonl(δ

s, σ) of the online SD agent σ = 〈D, δi〉 which
fulfills the supervision specification δs, where 〈D, δs〉 is also
online SD, the following properties hold:

1. mpsonl(δ
s, σ) always exists and is unique;

2. 〈D,mpsonl(δ
s, σ)〉 is online SD;

3. mpsonl(δ
s, σ) is online controllable wrt σ;

4. for every possible online controllable supervision spec-
ification δ̂s for σ such that CR(〈D, δi&δ̂s〉) ⊆
CR(〈D, δi&δs〉), we have that CR(〈D, δi&δ̂s〉) ⊆
CR(〈D,mpsonl(δ

s, σ)〉), i.e., mpsonl is maximally per-
missive;

5. RR(〈D,mpsonl(δ
s, σ)〉) = GR(〈D,mpsonl(δ

s, σ)〉),
i.e., mpsonl(δ

s, σ) is non-blocking.

Example 2 If we return to the agent of Example 1, who
does not know whether P holds initially, it is easy to show
that our definition of online MPS yields the correct result,
i.e. mpsonl(δ

s
4, 〈D, δi4〉) = set({ε}).

Example 3 Supervision can also depend on the informa-
tion that the agent acquires as it executes. Again, suppose
that we have an agent that does not know whether P holds
initially. Suppose also that the agent’s initial program is
δi5 = SenseP ; δi4. We can show that:
D ∪ C |= (P (S0) ⊃ mpsoffl(δi5, δ

s
4, S0) =

set({[QryIfP , repV alP (1), B,D]})) ∧
(¬P (S0) ⊃ mpsoffl(δi5, δ

s
4, S0) =

set({[QryIfP , repV alP (0), A,D]}))
Again, we have different offline MPSs depending on

whether P holds. But since the exogenous report makes the
truth value of P known after the first action, we get one on-
line MPS for this agent as follows:
mpsonl(δ

s
4, 〈D, δi5〉) = set({[QryIfP , repV alP (1), B,D],

[QryIfP , repV alP (0), A,D]})
Because the agent queries if P holds, the supervisor has

enough information to decide the maximal set of runs from
then on in each case. So if the reported value of P is true,
then the online supervisor should eliminate the complete run
[A,C] as it is not controllable, and if P does not hold, the
run [B,C] should be eliminated for the same reason.

As well, an action’s controllability or whether it satisfies
the specification may depend on a condition whose truth
only becomes known during the execution. Such cases can-
not be handled by DLM’s original offline account but our
online supervision account does handle them correctly.
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5.3 Online Supervision Operator
We can also introduce a meta-theoretic version of a syn-
chronous concurrency operator δi&onl

Au
δs that captures the

maximally permissive execution of an agent 〈D, δi〉 under
online supervision for specification δs. Without loss of gen-
erality, we assume that both δi and δs start with a common
controllable action (if not, it is trivial to add a dummy ac-
tion in front of both so as to fulfill the requirement). We
define δi&onl

Au
δs by extending the online transition relation

as follows:
〈δi&onl

Au
δs,~a〉 →a 〈δi

′
&onl

Au
δs

′
,~aa〉

if and only if
〈δi,~a〉 →a 〈δi

′
,~aa〉 and 〈δs,~a〉 →a 〈δs

′
,~aa〉 and

if D ∪ {Executable(do(~a, S0))} |= ¬Au(a, do(~a, S0))
then for all ~au s.t. D ∪ {Executable(do(~aa~au, S0)),

Au(~au, do(~aa, S0))} is satisfiable,
if ~aa ~au ∈ GR(〈D, [~a; δi]〉), then ~aa ~au ∈ GR(〈D, [~a; δs]〉).

where Au( ~au, s), means that action sequence ~au is un-
controllable in situation s, and is inductively defined on
the length of ~au as the smallest predicate such that: (i)
Au(ε, s) ≡ true; (ii) Au(au ~au, s) ≡ Au(au, s) ∧
Au( ~au, do(au, s)). Thus, the online maximally permissive
supervised execution of δi for the specification δs is allowed
to perform action a in situation do(~a, S0) if a is allowed by
both δi and δs and moreover, if a is known to be control-
lable, then for every sequence of actions ~au not known to
be controllable, if ~au may be performed by δi right after a
on one of its complete runs, then it must also be allowed by
δs (on one of its complete runs). Essentially, a controllable
action a by the agent must be forbidden if it can be followed
by some sequence of actions not known to be controllable
that violates the specification.

The final configurations are extended as follows:

(〈δi&onl
Au
δs,~a〉)X if and only if (〈δi,~a〉)X and (〈δs,~a〉)X

We can show that firstly, if both the agent and supervision
specification processes are online SD, then so is the program
obtained using the online supervision operator, and more-
over, this program is controllable wrt to the agent process:

Theorem 3
1. If 〈D, δs〉 and 〈D, δi〉 are online SD, then so is
〈D, δi&onl

Au
δs〉.

2. δi &onl
Au

δs is online controllable wrt 〈D, δi〉.
Moreover, the complete runs of the program obtained us-

ing the online supervision operator are exactly the same the
complete runs generated under synchronous concurrency of
the agent and mpsonl(δ

s, σ):

Theorem 4
CR(〈D, δi &onl

Au
δs〉) =

CR(〈D, δi & mpsonl(δ
s, σ)〉).

While δi &onl
Au

δs and mpsonl(δ
s, σ) have the same com-

plete runs, it is not the case that they have the same set of
partial runs. In fact in general, RR(〈D, δi &onl

Au
δs〉) 6=

GR(〈D, δi &onl
Au

δs〉), i.e., the program obtained using the
online supervision operator is not necessarily non-blocking.

This is in contrast with mpsonl(δ
s, σ), which is guaranteed

to be non-blocking (Theorem 2).

Example 4 Suppose we have the agent program:

δi6 = (A | [B;C; (U1 | U2;D)])

where all actions except U1 and U2 are ordinary and con-
trollable. Moreover, assume the supervision specification is:

δs6 = (πa.a 6= D?; a)∗

i.e. any action except D can be performed. The online MPS
for this agent is simply set({A}), since CR(〈D, δs6〉) =
{A, [B,C,U1]} and set({[B,C,U1]}) is not controllable
wrt δi6. However, under online supervised execution, the
agent may execute the actionB. We have 〈δi6&onl

Au
δs6, ε〉 →B

〈δ′6&onl
Au
δs6, B〉 where δ′6 is what remains from δi6 after ex-

ecuting B. The resulting program is not final in do(B,S0),
yet there is no transition from this state, as the action C
could be followed by the uncontrollable action U2 and it is
not possible to ensure successful completion of the process,
as the action D is not allowed. Thus, one must do looka-
head search over online executions of δi6 &onl

Au
δs6 to obtain

good/complete runs. We propose such a search/lookahead
construct next.

5.4 Search Over a Controllable Process
When we have a specification/process δs that is control-
lable with respect to an agent 〈D, δi〉 (like for instance,
δi &onl

Au
δs), for any choice of uncontrollable action that is

on a good run of δi, it is always possible to find a way to
continue executing δs until the process successfully com-
pletes. We can define a search construct4 that is applicable
to these cases. It makes an arbitrary choice of action that
is on a good run of δi when the action is not known to be
controllable, while still only performing actions that are on
a good run of δs otherwise. We call this construct weak on-
line search Σwonl(δ

s, δi) and define it (metatheoretically) as
follows:5

〈Σw
onl(δ

s, δi),~a〉 →a 〈Σw
onl(δ

s′ , δi
′
),~aa〉

if and only if
〈δs,~a〉 →a 〈δs

′
,~aa〉 and 〈δi,~a〉 →a 〈δi

′
,~aa〉 and

if D ∪ {Executable(~a, S0)} |= ¬Au(a, do(~a, S0))

then ~aa ∈ GR(〈D, [~aa; δs
′
]〉)

else ~aa ∈ GR(〈D, [~aa; δi
′
]〉)

The final configurations are extended as follows:

(〈Σw
onl(δ

s, δi),~a〉)X iff (〈δs,~a〉)X and (〈δi,~a〉)X

4In IndiGolog a simple type of search is provided that only
allows a transition if the remaining program can be executed to
reach a final state in all the offline executions (De Giacomo and
Levesque 1999). However, this search does not deal with sensing
and online executions.

5Since δi can include exogenous actions, in general, executions
of the process could actually perform exogenous actions that are
not on a good run of δi. However, in this paper we are interested in
the case where the exogenous actions are mainly sensor reports and
external requests (rather than the actions of an adversary) and as-
sume that this won’t occur. Handling adversarial nondeterminism
in δi is left for future work.
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It is easy to show that:

Theorem 5 If 〈D, δs〉 and 〈D, δi〉 are online SD, than so is
〈D,Σwonl(δ

s, δi)〉.
Now, we can show that the weak online search construct

has many nice properties when the process is controllable:

Theorem 6 Suppose that we have an agent 〈D, δi〉, and a
supervision specification δs which are online SD. Suppose
also that δs is online controllable with respect to 〈D, δi〉,
and that CR(〈D, δs〉) ⊆ CR(〈D, δi〉). Then we have that:

1. CR(〈D,Σwonl(δ
s, δi)〉) = CR(〈D, δs〉), i.e. the complete

runs of Σwonl(δ
s, δi) are the complete runs of δs.

2. If CR(〈D, δs〉) 6= ∅, then RR(〈D,Σwonl(δ
s, δi)〉) =

GR(〈D, δs〉), i.e., the partial runs of Σwonl(δ
s, δi) are the

good runs of δs.
3. If CR(〈D, δs〉) 6= ∅, then RR(〈D,Σwonl(δ

s, δi)〉) =
GR(〈D,Σwonl(δ

s, δi)〉), i.e., partial runs must be good
runs, and the resulting program is “non blocking”.

It is also easy to show that none of these properties hold for
arbitrary non-controllable processes.

Now we can show that if we apply this weak lookahead
search to δi &onl

Au
δs, we obtain a program that has the same

partial runs as mpsonl(δ
s, σ) and is thus non-blocking:

Theorem 7
RR(〈D,Σwonl(δ

i &onl
Au

δs, δi)〉) =
RR(〈D, δi & mpsonl(δ

s, σ)〉).
If we apply the weak online search construct over

δi6 &onl
Au

δs6 in Example 4, we no longer have an online tran-
sition involving action B; the only possible online transition
is 〈Σwonl(δ

i
6&onl

Au
δs6, δ

i
6), ε〉 →A 〈Σwonl(nil &onl

Au
δs6, nil), A〉

where action A is performed, after which we have
(〈Σwonl(nil &onl

Au
δs6, nil), A〉)X.

5.5 Travel Planning Example Revisited
Let’s return to the travel planning example of Section 3.
There we presented a generic travel planning agent/process
δtravelP lanner and a simple customization supervision spec-
ification δclient1 where the client requires at least one hotel
to be proposed provided one has a room available and that
hotel HtlX is never booked. What is the online MPS for
this? Essentially, the supervised process cannot report fail-
ure unless it has queried all hotels at the destination other
than HtlX and none has a room available; if some such
hotel has a room available, then one such hotel must be se-
lected; moreover, HtlX cannot be selected because if it is
selected, then it must be proposed, and then the client may
choose it and then it must be booked, thus violating the su-
pervision specification.

The resulting online MPS can be obtained by inserting the
following program in the δtravelP lanner process right after
the lines for querying/selecting airlines and/or hotels:

¬SelHtl(cID,HtlX) ∧
(∃htlID. ProposedHtl(cID, htlID) ∨
∀htlID.IsHtl(htlID, dc) ∧ htlID 6= HtlX ⊃
RpldHtl(cID, htlID, dC, bD, eD, hC,NotAvail)?;

Observe that the intersection of the process and supervi-
sion specification δtravelP lanner & δclient1 does not give the
right result in this case. In particular, it allows the agent to
select HtlX and so it is not controllable for δtravelP lanner,
since ifHtlX is selected, then it must be proposed, and then
the client may choose it, in which case it it must be booked
and the supervision specification process will not terminate
successfully.

Now let’s look at a second example of customization.
Suppose the client has a given budget (B) and does not want
the total cost of hotels (hC) and flights (aC) proposed to him
to be over this budget. One could represent this as follows:

δclient2(cID, oC, dC, bD, eD) =
πa.(a;¬∃ htlID.ProposedHtl(cID, htlID) ∧
RpldHtl(cID, htlID, dC, bD, eD, hC,OK) ∧
∀airID.ProposedAir(cID, airID) ∧
RpldAir(cID, airID, oC, dC, bD, eD, aC,OK) ⊃
hC + aC > B?)∗

This says the process should never have proposed a hotel
such that with every proposed flight the total cost of hotel
and flight exceeds the budget (normally, this would be com-
bined with other constraints). Intuitively, the online MPS
for this specification is such that the agent can do anything
it wants, as long as it never selects any flight, or if it does
select a flight, then it does not select a hotel unless it knows
of an available flight such that the combined hotel and flight
cost is within budget and then such a flight must be selected
before the selected proposals are displayed. Note that the
agent may choose to simply report failure or avoid selecting
any hotel. Again, the intersection of the agent process and
supervision specification is not controllable with respect to
the former, and is not the MPS. If a flight has been selected
and a hotel is selected without the agent knowing of an avail-
able flight such that the combined hotel and flight cost is
within budget, then the responses of airline websites about
flight availability and cost, which are uncontrollable, may
not yield such a flight, and the process may have no way of
satisfying the constraint and completing successfully.

In a similar way, it is possible to perform configuration
of the generic travel planner process for a travel service
provider. For example, suppose we have a service provider
for business executives that only offers 4 or 5 star hotels
which are located in a downtown area. We can define a su-
pervision specification for this configuration task as follows:
δbzProfileConfig(cID, oC, dC, bD, eD) =
πa.(a; [¬∃htlID.QrdHtlWS(cID, htlID, dC, bD, eD)∧
¬BzHtlProfile(CID, htlID))]?)∗

where BzHtlProfile(cID, htlID) =
[HtlRating(htlID, 4) ∨HtlRating(htlID, 5)] ∧
HtlArea(htlID,Downtown)

Personalization of the travel planner process for a client can
be done simultaneously with configuration for the service
provider. In this case, the supervision specification will be
the intersection of the service provider’s configuration spec-
ification with the the client’s personalization specification.

6 Discussion
One popular approach to automated service composi-
tion (McIlraith and Son 2002; Sohrabi, Prokoshyna, and
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McIlraith 2006) involves customizing a generic ConGolog
process based on the user’s constraints and preferences.
(Sardiña and De Giacomo 2009) on the other hand, syn-
thesizes a controller that orchestrates the concurrent exe-
cution of library of available (nondeterministic) ConGolog
programs to realize a target program not in the library. How-
ever, they assume complete information on the initial situa-
tion, and their controller is not maximally permissive. In
related work, (De Giacomo, Patrizi, and Sardina 2013) syn-
thesize a controller generator that represents all possible
compositions of the target behavior and may adapt reac-
tively based on runtime feedback. In (Yadav et al. 2013),
optimal realization of the target behavior (in the presence
of uncontrollable exogenous events) is considered when its
full realization is not possible. In contrast to agent supervi-
sion, the latter does not assume the controllability of events
to be dynamic. Moreover, both approaches model behav-
iors/services as (nondeterministic) finite state transition sys-
tems.

Also related, is the approach in (Alechina et al. 2015) that
regulates multiagent systems using regimented norms. A
transition system describes the behavior of a (multi-) agent
system and a guard function (characterized by LTL for-
mulae with past operators) can enable/disable options that
(could) violate norms after a system history (possibly using
bounded lookahead). This work does not consider uncon-
trollable events. Finally, we would like to mention the work
in (Aucher 2014), which reformulates the results of super-
visory control theory in terms of model checking problems
in an epistemic temporal logic. Our work differs from these
approaches in that due to its first-order logic foundations, it
can handle infinite object domains and infinite states. It also
enables users to express the system model and the specifica-
tions in a high-level expressive language.

In the literature on supervisory control theory, nondeter-
minism in a discrete event system is often considered as the
result of lack of information (e.g. partial observation or un-
modeled internal dynamics of a system). Nondeterministic
plants e.g. (Kumar and Shayman 1997), nondeterministic
supervisors e.g. (Inan 1994) and nondeterministic specifica-
tions e.g. (Zhou, Kumar, and Jiang 2006) have been studied.

In this paper, building upon DLM’s proposal (De Gia-
como, Lespérance, and Muise 2012) and earlier work on
supervisory control of discrete event systems (Wonham and
Ramadge 1987; Wonham 2014; Cassandras and Lafortune
2008), we have developed an account of supervision for
agents that execute online and can acquire new information
through sensing and exogenous actions as they operate. In
future work, we will examine how we can relax the assump-
tion that the supervisor and supervised agent share the same
belief state. Furthermore, we would like to generalize our
approach to support supervision of complex multiagent sys-
tems, where local supervisors control individual agents or
teams of agents that play particular roles so as to ensure that
the whole system satisfies its specification. We conclude by
mentioning that if the object domain is finite, then ConGolog
programs assume only a finite number of possible configu-
rations, and in this case, finite-state techniques developed
for discrete events systems (Wonham and Ramadge 1987)

can be adapted to synthesize a program that characterizes
the online MPS. It should also be possible to develop effec-
tive techniques for synthesizing supervisors for agents that
use bounded action theories, where the agent only has be-
liefs about a finite number of objects in any situation, even
though it may deal with an infinite number of objects over
an infinite run (De Giacomo, Lespérance, and Patrizi 2013;
De Giacomo et al. 2014); verification of temporal properties
over such agents is known to be decidable.
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A Proofs
A.1 Some Lemmas about the set Construct

It is straightforward to show that:

Proposition 8
If 〈set(E),~a〉 →a c and 〈set(E),~a〉 →a c

′, then c = c′.

Proof. If a is not an exogenous action, then it must be
known in do(~a, S0) that a is executable and there must be
some action sequence in E that starts with a. The unique
new configuration c is then 〈set(E′),~aa〉 with E′ = {~b |
a~b ∈ E}. If a is an exogenous action, then it must be con-
sistent in do(~a, S0) that a is executable and some action se-
quence in E must start with a; the the unique new configu-
ration c is just as in the previous case.

It then trivially follows that:

Corollary 9
Any agent 〈D, δi〉 with the initial program δi = set(E) is
online situation determined.

The following lemmas about the set(E) construct will
also prove useful later:

Lemma 10 If ~a ∈ RR(〈D, set(E)〉), then there exists ~b
such that ~a~b ∈ E.

Proof (sketch). By induction on the length of ~a.

Lemma 11 If 〈δi, ε〉 →∗~a c, then 〈set(E ∪ {~a~b}), ε〉 →∗~a
〈set(E′ ∪ {~b}),~a〉.

Proof (sketch). By induction on the length of ~a, noticing
that the antecedent implies that the agent actions are known
to be executable and the exogenous actions are thought to be
possibly executable, and so the transitions exist.

Lemma 12
If~a ∈ RR(〈D, δi〉) and~a ∈ E, then~a ∈ CR(〈D, set(E)〉).

Proof. Assume that the antecedent. Since ~a ∈
RR(〈D, δi〉), there exists c such that 〈δi, ε〉) →∗~a c. Since
~a ∈ E, it then follows by Lemma 11 that 〈set(E), ε〉 →∗~a
〈set(E′),~a〉 with ε ∈ E′. Thus Final(〈set(E′),~a〉), and
therefore ~a ∈ CR(〈D, set(E)〉).
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A.2 Online Situation-Determined Agents Proofs
Proof of Theorem 1

Proof. By induction on the length of the action (and on-
line transition) sequence. If the sequence is empty, the result
trivially follows. Assume that the result holds for all action
sequences of length k (IH). Suppose that ci →∗~aa 〈δ1,~aa〉
and ci →∗~aa 〈δ2,~aa〉 and δ1 6= δ2 with ~aa of length k+ 1 . It
follows by the definition of online execution and the IH that
ci →∗~a 〈δ,~a〉 and 〈δ,~a〉 →a 〈δ1,~aa〉 and 〈δ,~a〉 →a 〈δ2,~aa〉
and δ1 6= δ2. If action a is not exogenous, then by the defini-
tion of online transitionD∪C∪{Executable(do(~a, S0))} |=
Trans(δ, a, δ′, do(~a, S0)) (where δ′ is unique), which con-
tradicts δ1 6= δ2. If action a is exogenous, then both δ1
and δ2 are satisfiable as remaining programs. In each case,
Poss(a, do(~a, S0)) is also satisfiable.

Since σ always knows the remaining program af-
ter an exogenous action, we have that D ∪ C ∪
{Executable(do(~aa, S0))} |= Trans(δ, a, δ′, do(~a, S0))
(where δ′ is unique), which contradicts δ1 6= δ2.

A.3 Online MPS Proofs
Proof of Theorem 2

Proof. [For claims 1, 3, and 4, we make essentially the
same argument as in the offline case.]
Claim 1. The online MPS exists as set(∅) satisfies the con-
ditions to be included in mpsonl(δ

s, σ). Uniqueness follows
from the existence of a supremal element.
Claim 2. Trivially follows from Corollary 9.
Claim 3. It suffices to show that for all ~a and
au such that ~a ∈ GR(〈D,mpsonl(δ

s, σ)〉) and D ∪
{Executable(do(~a, S0))} 6|= ¬Au(au, do(~a, S0)), we have
that if ~aau ∈ GR(σ) then ~aau ∈ GR(〈D,mpsonl(δ

s, σ)〉).
Indeed, if ~a ∈ GR(〈D,mpsonl(δ

s, σ)〉) then there is an on-
line controllable supervision specification set(E) such that
~a ∈ GR(〈D, set(E)〉). set(E) being online controllable
wrt σ, if ~aau ∈ GR(σ) then ~aau ∈ GR(〈D, set(E)〉), but
then ~aau ∈ GR(〈D,mpsonl(δ

s, σ)〉).
Claim 4. This follows immediately from the definition
of mpsonl(δ

s, σ), by noticing that CR(〈D, δi&δ̂s〉) =
CR(〈D, δi&set(Eδ̂s)〉), and observing that mpsonl(δ

s, σ)
is essentially the union of such controllable set(Eδ̂s).
Claim 5. Suppose that ~a ∈ RR(〈D,mpsonl(δs, σ)〉). By
the definition of mpsonl, mpsonl(δs, σ) = set(E) where
E ⊆ CR(〈D, δi & δs〉). Since ~a ∈ RR(〈D, set(E)〉),
by Lemma 10 there exists ~b such that ~a~b ∈ E. Since
~a~b ∈ CR(〈D, δi & δs〉), by Lemma 12, we have that
~a~b ∈ CR(〈D, set(E)〉). It then follows by the definition
of GR that ~a ∈ GR(〈D,mpsonl(δs, σ)〉).

A.4 Supervision Operator Proofs
Proof of Theorem 3

Proof. Claim 1. By induction on the length of the action
(and online transition) sequence. If the sequence is empty,
the result trivially follows. Assume that the result holds for

all action sequences~a of length k (IH). We need to show that
the result holds for all action sequences ~aa of length k + 1.

Assume 〈δi&onl
Auδ

s,~a〉 →a c′ where c′ =

〈δi′&onl
Auδ

s′ ,~aa〉. Due to the way online transition is
defined for &onl

Au , configuration c′ can only be reached if we
have both 〈δi,~a〉 →a 〈δi

′
,~aa〉 and 〈δs,~a〉 →a 〈δs

′
,~aa〉.

Since both 〈D, δs〉 and 〈D, δi〉 are online SD, they both
evolve to a unique configuration. The new configuration of
〈D, δi&onl

Auδ
s〉 (i.e. c′) is obtained from these two, so it must

be unique if it exists.
Claim 2. We have to show that for all ~a and au, ~a ∈
GR(〈D, δi &onl

Au
δs〉) and D ∪ Executable(do(~a, S0)) 6|=

¬Au(au, do(~a, S0)) implies if ~aau ∈ GR(σ) then ~aau ∈
GR(〈D, δi &onl

Au
δs〉).

Since, wlog we assume that 〈D, δi〉 and
〈D, δs〉 started with a common controllable ac-
tion, we can write ~a = ~a′ac ~au, where D ∪
{Executable(do(~a′, S0))} |= ¬Au(ac, do(~a′, S0)) and
D ∪ {Executable(do(~a′ac, S0)), Au( ~au, do(~a′ac, S0))}
is satisfiable. Let 〈δi′ , ~a′〉 and 〈δs′ , ~a′〉 denote the con-
figurations reached by 〈δi, ε〉 and 〈δs, ε〉 after performing
~a′ respectively; in other words: 〈δi, ε〉 →∗~a′ 〈δ

i′ , ~a′〉
and 〈δs, ε〉 →∗~a′ 〈δ

s′ , ~a′〉 By the fact that ~a′ac ~au ∈
GR(〈D, δi &onl

Au
δs〉), we know that there is a configuration

such that 〈δi′ &onl
Au

δs
′
, ~a′〉 →ac 〈δi

′′
&onl
Au

δs
′′
, ~a′ac〉

But then by the definition of the online transi-
tion relation (→) we have that for all ~bu such that
D ∪ {Executable(do(~a′ac, S0)), Au(~bu, do(~a′ac, S0))}
is satisfiable, if ~a′ac ~bu ∈ GR(〈D, δi〉) then
~a′ac ~bu ∈ GR(〈D, δs〉). In particular this holds
for ~bu = ~auau. Hence we have that if ~aau ∈
GR(σ) then ~aau ∈ GR(〈D, δi &onl

Au
δs〉).

Proof of Theorem 4
Proof. We start by showing: CR(〈D, δi &onl

Au
δs〉) ⊆

CR(〈D, δi & mpsonl(δ
s, σ)〉). By Theorem 3 claim 2

we have that 〈D, δi &onl
Au

δs〉 is online controllable for
〈D, δi〉. Considering that 〈D, δi & mpsonl(δ

s, σ)〉 is the
largest online controllable supervisor for 〈D, δi〉, and that
RR(〈D, δi & (δi &onl

Au
δs)〉) = RR(〈D, δi &onl

Au
δs〉), we

get the thesis.

Next we prove: CR(〈D, δi & mpsonl(δ
s, σ)〉) ⊆

CR(〈D, δi &onl
Au

δs〉). Suppose not. Then there exist a
complete run ~a such that ~a ∈ CR(〈D, δi & mpsonl(δ

s, σ)〉)
but ~a 6∈ CR(〈D, δi &onl

Au
δs〉). As an aside, notice that

if ~a ∈ CR(〈D, δ〉) then ~a ∈ GR(〈D, δ〉), and for all
prefixes ~a′ such that ~a′~b = ~a, we have ~a′ ∈ GR(〈D, δ〉).
Hence, let ~a′ = ~a′′a such that ~a′′ ∈ GR(〈D, δi &onl

Au
δs〉),

~a′′a ∈ GR(〈D, δi & mpsonl(δ
s, σ)〉), but ~a′′a 6∈

GR(〈D, δi &onl
Au

δs〉), and let 〈δi, ε〉 →∗~a′′ 〈δ
i′′ , ~a′′〉 and

〈δs, ε〉 →∗~a′′ 〈δ
s′′ , ~a′′〉. Since ~a′′a 6∈ GR(〈D, δi &onl

Au
δs〉),

it must be the case that there is no configura-
tion c such that 〈δi′′ &onl

Au
δs

′′
, ~a′′〉 →a c. Since,
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~a′′a ∈ GR(〈D, δi & mpsonl(δ
s, σ)〉), it fol-

lows that both 〈δi′′ , ~a′′〉 →a 〈δi′′′ , ~a′′a〉 and
〈δs′′ , ~a′′〉 →a 〈δs′′′ , ~a′′a〉. But then it must be
the case that D ∪ {Executable(do( ~a′′, S0))} |=
¬Au(a, do( ~a′′, S0)), and there exists ~bu such that
D ∪ {Executable(do( ~a′′a, S0)), Au(~bu, do( ~a′′a, S0))}
is satisfiable and ~a′′a~bu ∈ GR(〈D, δi〉) but
~a′′a~bu 6∈ GR(〈D, δs〉).

Notice that ~bu 6= ε, since we have that
~a′′a ∈ GR(〈D , δs〉). So ~bu = ~cubu ~du with
~a′′a~cu ∈ GR(〈D , δs〉) but ~a′′a~cubu 6∈ GR(〈D , δs〉).
Now ~a′ ∈ GR(〈D, δi & mpsonl(δ

s, σ)〉) and
D ∪ {Executable(do( ~a′′a, S0)), Au( ~cubu, do( ~a′′a, S0))}
is satisfiable, we have that ~a′ ~cubu ∈
GR(〈D, δi & mpsonl(δ

s, σ)〉); this holds since,
mpsonl(δ

s, σ) is controllable for σ, and we have
that, if ~a′ ~cubu ∈ GR(〈D, δi〉) then ~a′ ~cubu ∈
GR(〈D,mpsonl(δ

s, σ)〉). This, by the definition of
mpsonl(δ

s, σ), implies ~a′ ~cubu ∈ GR(〈D, δi & δs〉).
Hence, we can conclude that ~a′ ~cubu ∈ GR(〈D, δs〉),
getting a contradiction.

Proof of Theorem 5
If 〈D, δs〉 and 〈D, δi〉 are online SD, than so is

〈D,Σwonl(δ
s, δi)〉.

Proof. By induction on the length of the action (and on-
line transition) sequence. It can be shown in a similar way
to Theorem 3 claim 1.

Proof of Theorem 6
Proof. Claim 1. (⊆) Suppose that ~a ∈

CR(〈D,Σwol(δs, δi)〉). By the definition of online transition
for Σwol, it is easy to show that 〈δs, ε〉 →∗~a 〈δs

′
,~a〉 for some

δs
′
. By the definition of Final for Σwol, we must have that

Final(〈δs′ ,~a〉). Thus ~a ∈ CR(〈D, δs〉).
(⊇) Suppose that ~a ∈ CR(〈D, δs〉). Since

CR(〈D, δs〉) ⊆ CR(〈D, δi〉), we also have that
~a ∈ CR(〈D, δi〉). Clearly, every prefix of ~a is
in GR(〈D, δs〉) and GR(〈D, δi〉). By the definition
of online transition for Σwonl, it is easy to show that
〈Σwonl(δs, δi), ε〉 →∗~a 〈Σwonl(δs

′
, δi

′
),~a〉 for some δs

′

and δi
′
. By the definition of Final for Σwonl, we

must have that Final(〈Σwonl(δs
′
, δi

′
),~a〉). Thus ~a ∈

CR(〈D,Σwonl(δs, δi)〉).
Claim 2. (⊆) By contradiction. Suppose that ~a ∈

RR(〈D,Σwonl(δs, δi)〉) but ~a 6∈ GR(〈D, δs〉). Then there
exists ~b, a, and ~c such that ~a = ~ba~c and ~b ∈ GR(〈D, δs〉)
and ~ba 6∈ GR(〈D, δs〉) (note that since CR(〈D, δs〉) 6=
∅, we have that ε ∈ GR(〈D, δs〉)). If a is not an ex-
ogenous action, then by the definition of online transition
for Σwonl, ~ba 6∈ RR(〈D,Σwonl(δs, δi)〉), and thus ~a 6∈
RR(〈D,Σwonl(δs, δi)〉), contradiction. Suppose that a is an
exogenous action. Since δs is controllable wrt 〈D, δi〉, if
~ba ∈ GR(〈D, δi〉), then~ba ∈ GR(〈D, δs〉), contradiction.

(⊇) Suppose that ~a ∈ GR(〈D, δs〉). Then there ex-
ists ~b such that ~a~b ∈ CR(〈D, δs〉). Since CR(〈D, δs〉) ⊆
CR(〈D, δi〉), we also have that ~a~b ∈ CR(〈D, δi〉). Clearly,
every prefix of ~a~b is in GR(〈D, δs〉) and GR(〈D, δi〉). Thus
by the definition of online transition for Σwonl, it is easy to
show that ~a ∈ RR(〈D,Σwonl(δs, δi)〉).

Claim 3. (⊆) Suppose that ~a ∈ RR(〈D,Σwonl(δs, δi)〉).
By Claim 2, ~a ∈ GR(〈D, δs〉). Then by the definition
of GR, there exists ~b such that ~a~b ∈ CR(〈D, δs〉). By
Claim 1, it follows that ~a~b ∈ CR(〈D,Σwonl(δs, δi)〉). Thus
~a ∈ GR(〈D,Σwonl(δs, δi)〉).

(⊇) Follows trivially from the definitions ofRR and GR.

Proof of Theorem 7
Proof. By Theorem 3 Claim 2 we have

that 〈D, δi &onl
Au

δs〉 is online controllable for
〈D, δi〉. By Theorem 4, CR(〈D, δi &onl

Au
δs〉) ⊆

CR(〈D, δi & mpsonl(δ
s, σ)〉). Thus by the definition of &,

it is easy to show that CR(〈D, δi &onl
Au

δs〉) ⊆ CR(〈D, δi〉).
Therefore by Theorem 6 Claim 2, we have that
RR(〈D,Σwonl(δi &onl

Au
δs, δi)〉) = GR(〈D, δi &onl

Au
δs〉).

Theorem 4 says that CR(〈D, δi &onl
Au

δs〉) =

CR(〈D, δi & mpsonl(δ
s, σ)〉), and since a set of com-

plete runs has a unique set of prefixes, it follows that
GR(〈D, δi &onl

Au
δs〉) = GR(〈D, δi & mpsonl(δ

s, σ)〉).
Thus RR(〈D,Σwonl(δi &onl

Au
δs)〉) =

GR(〈D, δi & mpsonl(δ
s, σ)〉).

It remains to show that GR(〈D, δi & mpsonl(δ
s, σ)〉) =

RR(〈D, δi & mpsonl(δ
s, σ)〉). By the definition of

mpsonl, CR(〈D,mpsonl(δs, σ)〉) ⊆ CR(〈D, δi & δs〉).
Thus by the definition of &, it is easy to show
that CR(〈D,mpsonl(δs, σ)〉) ⊆ CR(〈D, δi〉).
Then by the definition of GR and CR, it fol-
lows that GR(〈D,mpsonl(δs, σ)〉) ⊆ GR(〈D, δi〉).
Thus by the definition of &, it is easy to show
that GR(〈D, δi & mpsonl(δ

s, σ)〉) = GR(〈D,
mpsonl(δ

s, σ)〉). By Theorem 2, we have that
GR(〈D,mpsonl(δs, σ)〉) = RR(〈D,mpsonl(δs, σ)〉).
Since GR(〈D,mpsonl(δs, σ)〉) ⊆ GR(〈D, δi〉), it fol-
lows that RR(〈D,mpsonl(δs, σ)〉) ⊆ GR(〈D, δi〉).
Therefore by the definition of &, it is easy
to show that RR(〈D, δi & mpsonl(δ

s, σ)〉) =
RR(〈D,mpsonl(δs, σ)〉). Thus, RR(〈D, δi & mpsonl(δ

s,
σ)〉) = GR(〈D, δi & mpsonl(δ

s, σ)〉).
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