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Abstract

Mining high utility sequential patterns (HUSPs) has

emerged as an important topic in data mining. However,

the existing studies on this topic focus on static data and do

not consider streaming data. Streaming data are fast chang-

ing, continuously generated and unbounded in amount. Such

data can easily exhaust computer resources (e.g., memory)

unless proper resource-aware mining is performed. In this

study, we explore a fundamental problem that is how the

limited memory space can be well utilized to produce high

quality HUSPs over a data stream. We design an approx-

imation algorithm, called MAHUSP, that employs memory

adaptive mechanisms to use a bounded portion of memory,

to efficiently discover HUSPs over data streams. MAHUSP

guarantees that all HUSPs are discovered under certain cir-

cumstances. Our experimental study shows that our algo-

rithm cannot only discover HUSPs over data streams effi-

ciently, but also adapt to memory allocation without sacri-

ficing much the quality of discovered HUSPs. Furthermore,

in order to show the effectiveness and efficiency of MAHUSP

in real-life applications, we conduct an analysis on a web

clickstream dataset obtained from a Canadian news portal.

The results show that MAHUSP effectively discovers useful

patterns that showcases users’ reading behavior.

1 Introduction
Sequential pattern mining is an important task in data
mining and has been extensively studied by many re-
searchers [7]. Despite its usefulness, sequential pattern
mining has the limitation that it neither considers the
frequency of an item within an itemset nor the impor-
tance of an item (e.g., the profit of an item). Thus, some
infrequent sequences with high profits may be missed.
For example, selling a TV is much more profitable than
selling a bottle of milk, but a sequence containing a TV
is much more infrequent than the one with a bottle of
milk. These profitable patterns address several impor-
tant questions in business area decisions such as how to
maximize revenue or minimize marketing or inventory
costs. Recently, high utility sequential pattern mining
has been studied to address this limitation [2, 9, 10]. In
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high utility sequential pattern mining, each item has a
global weight (e.g. unit price/profit) and a local weight
in a transaction (e.g. purchase quantity).

Although some preliminary works have been con-
ducted on this topic, existing studies [2, 9] do not con-
sider the real-world applications, such as web click-
stream analysis and online analysis of user behavior,
that involve data streams. A data stream is a continuous
and unbounded flow of data and mining algorithms need
to process the data in real time with one scan of data. In
general, there are three main types of stream-processing
windows: damped window, sliding window and landmark
window. The first two windows place more importance
on recent data than old ones. Focusing on recent data
can detect new characteristics of the data or changes in
data distributions quickly. However, in some applica-
tions long-term monitoring is necessary and users want
to treat all data elements starting from a past time point
equally and discover patterns over a long period of time
in the data stream [5]. For example, we may want to find
important event sequences in an energy network since a
new set of equipment was installed to monitor the qual-
ity of the equipment over its life-time; we may want to
monitor the sequence of side-effects of a vaccine since it
started to be used; or we may want to detect important
buying sequences of customers since the beginning of a
year or since the store changed its layout. Monitoring
only recent data (e.g, in sliding window) may miss some
sequences that are important for decision making over
a long term. A complete re-scan of a long portion of a
data stream is usually impossible or prohibitively costly.
The landmark window is used for such a purpose, which
consists of all the data from a past time point (called
landmark) until the current time. In this paper, we aim
at finding HUSPs over landmark windows, which has
not been tackled before.

Compared with other data stream mining tasks,
there are unique challenges in discovering HUSPs over
landmark windows. First, HUSP mining needs to search
a large search space due to a combinatorial number of
possible sequences. Second, HUSP mining does not
have downward closure property to prune low utility
patterns efficiently. That is, the utility of a sequence
may be higher than, equal to or lower than those of its



super-sequences and sub-sequences [9]. Consequently,
keeping up the pace with high speed data streams can be
very hard for a HUSP mining task. A more important
issue is the need of capturing the information of data
over a potentially long period of time. Data can be
huge so that the amount of information we need to
keep may exceed the size of available memory. Thus,
to avoid memory thrashing or crashing, memory-aware
data processing is needed to ensure that the size of the
data structure does not exceed the available memory,
and at the same time accurate approximation of the
information needed for the mining process is necessary.

In this paper, we tackle these challenges and pro-
pose a memory-adaptive approach to discover HUSPs
from a dynamically-increasing data stream. To the best
of our knowledge, this is the first piece of work to mine
high utility sequential patterns over data streams in a
memory adaptive manner. Our contributions are sum-
marized as follows. First, we propose a novel method
for incrementally mining HUSPs over a data stream.
Our method cannot only identify recent HUSPs but also
high utility patterns over a long period of time. Sec-
ond, we propose a novel and compact data structure,
called MAS-Tree, to store potential HUSPs over a data
stream. The tree is updated efficiently once a new po-
tential HUSP is discovered. Third, two efficient memory
adaptive mechanisms are proposed to deal with the sit-
uation when the available memory is not enough to add
a new potential HUSPs to MAS-Tree. Fourth, using
MAS-Tree and the memory adaptive mechanisms, our
algorithm, called MAHUSP, efficiently discovers HUSPs
over a data stream with a high recall and precision.
The proposed method guarantees that the memory con-
straint is satisfied and also all true HUSPs are main-
tained in the tree under certain circumstances. Fifth, we
conduct extensive experiments and show that MAHUSP
finds an approximate set of HUSPs over a data stream
efficiently and adapts to memory allocation without sac-
rificing much the quality of discovered HUSPs.

2 Definitions and Problem Statement
Let I∗ = {I1, I2, · · · , IN} be a set of items. An
itemset-sequence S (or sequence in short) is an ordered
list of itemsets 〈X1,X2, · · · ,XZ〉, where Xi ⊆ I∗ and
Z is the size of S. In this paper, each itemset Xd

in sequence Sr is denoted as Sd
r . In a data stream

environment, sequences come continuously over time
and they are usually processed in batches. A batch
Bk = {Si, Si+1, ..., Si+L−1} is a set of L sequences
that occur during a period of time tk. The number of
sequences can differ among batches. A sequence data
stream DS = 〈B1, B2, · · · , Bk, · · · 〉 is an ordered and
unbounded list of batches where Bi

⋂
Bj = ∅ and i �= j.

Item Profit
a 2
b 3
c 1
d 4
e 3

SID Sequence Data
S1 :{(a,2)(b,3)(c,2)}; :{(b,1)(c,1)(d,1)}; :{(c,3)(d,1)}
S2 :{(b,4)}; :{(a,4)(b,5)(c,1)}
S3 :{(b,3)(d,1)}; :{(a,4)(b,5)(c,1)}; :{(a,2)(c,3)}
S4 :{(a,2)(b,5)(e,2)}
S5 :{(c,4)}

Figure 1: An example of a data stream of itemset-
squences

Figure 1 shows a sequence data stream with 2
batches B1 = {S1, S2} and B2 = {S3, S4, S5}.
Definition 1. (External utility and internal util-
ity) Each item I ∈ I∗ is associated with a positive
number p(I), called its external utility (e.g., price/unit
profit). In addition, each item I in itemset Xd of se-
quence Sr (i.e., Sd

r ) has a positive number q(I, Sd
r ),

called its internal utility (e.g., quantity) of I in Xd or
Sd

r .

Definition 2. (Super-sequence and Sub-
Sequence) Sequence α = 〈X1,X2, ...,Xi〉 is a
sub-sequence of β = 〈X ′

1,X
′
2, ...,X

′
j〉 (i ≤ j) or

equivalently β is a super-sequence of α if there
exist integers 1 ≤ e1 < e2 < ...ei ≤ j such that
X1 ⊆ X

′
e1

,X2 ⊆ X
′
e2

, ...,Xi ⊆ X
′
ei

(denoted as α 	 β).

For example, if α = 〈{ac}{d}〉 and β =
〈{abc}{bce}{cd}〉, α is a sub-sequence of β and β is the
super-sequence of α.

Definition 3. (Utility of an item in an itemset
of a sequence Sr) The utility of an item I in an
itemset Xd of a sequence Sr is defined as u(I, Sd

r ) =
p(I) · q(I, Sd

r ).

Definition 4. (Utility of an itemset in an item-
set of a sequence Sr) Given itemset X, the utility of
X in the itemset Xd of the sequence Sr where X ⊆ Xd,
is defined as u(X,Sd

r ) =
∑

I∈X

u(I, Sd
r ).

For example, in Figure 1 the utility of item b in the
first itemset of S1 (i.e., S1

1) is u(b, S1
1) = p(b) ·q(b, S1

1) =
3 × 3 = 9. The utility of the itemset {bc} in S1

1 is
u({bc}, S1

1) = u(b, S1
1) + u(c, S1

1) = 9 + 2 = 11.

Definition 5. (Occurrence of a sequence α in a
sequence Sr) Given a sequence Sr = 〈S1

r , S2
r , ..., Sn

r 〉
and a sequence α = 〈X1,X2, ...,XZ〉 where Si

r and Xi

are itemsets, α occurs in Sr iff there exist integers
1 ≤ e1 < e2 < ... < eZ ≤ n such that X1 ⊆
Se1

r ,X2 ⊆ Se2
r , ...,XZ ⊆ SeZ

r . The ordered list of
itemsets 〈Se1

r , Se2
r , ..., SeZ

r 〉 is called an occurrence of α
in Sr. The set of all occurrences of α in Sr is denoted
as OccSet(α, Sr).



Definition 6. (Utility of a sequence α in a se-
quence Sr) Let õ = 〈Se1

r , Se2
r , ..., SeZ

r 〉 be an occur-
rence of α = 〈X1,X2, ...,XZ〉 in the sequence Sr.
The utility of α w.r.t. õ is defined as su(α, õ) =
Z∑

i=1

u(Xi, S
ei
r ). The utility of α in Sr is defined as

su(α, Sr) = max{su(α, õ)|∀õ ∈ OccSet(α, Sr)}.
Consequently, the utility of a sequence Sr is

defined as su(Sr) = su(Sr, Sr).
For example, in Figure 1, the set of all oc-

currences of the sequence α = 〈{bd}{c}〉 in S3 is
OccSet(〈{bd}{c}〉, S3) = {õ1 : 〈S1

3 , S2
3〉, õ2 : 〈S1

3 , S3
3〉}.

Hence su(α, S3) = max{su(α, õ1), su(α, õ2)} =
{14, 16} = 16.

Definition 7. (Utility of a sequence α in a data
set D) The utility of a sequence α in a data set D
of sequences is defined as su(α,D) =

∑

Sr∈D

su(α, Sr),

where D can be a batch or a data stream processed so
far.

The total utility of a batch Bk is defined as
UBk

=
∑

Sr∈Bk

su(Sr). The total utility of a data

stream DSi = 〈B1, B2, · · · , Bi〉 is defined as UDSi
=∑

Bk∈DSi

UBk
.

Definition 8. (High utility sequential pattern)
Given a utility threshold δ in percentage, a sequence α is
a high utility sequential pattern (HUSP) in data stream
DS, iff su(α,DS) is no less than δ · UDS.

Problem statement. Given a utility threshold
δ (in percentage), the maximum available memory
availMem, and a dynamically-changing data stream
DS = 〈B1, B2, · · · , Bi, · · · 〉 (where batch Bi contains
a set of sequences of itemsets at time period ti), our
problem of online memory-adaptive mining of high
utility sequential patterns over data stream DS is to
discover, at any time ti (i ≥ 1), all sub-sequences of
itemsets whose utility in DSi is no less than δ · UDSi

where DSi = 〈B1, B2, · · · , Bi〉 under the following
constraints: (1) the memory usage does not exceed
availMem, and (2) only one pass of data is allowed
in total.

3 Memory Adaptive High Utility Sequential
Pattern Mining

In this section, we propose a single-pass algorithm
named MAHUSP (Memory Adaptive High Utility Se-
quential Pattern mining over data streams) for incre-
mentally mining an approximate set of HUSPs over a
data stream. Algorithm 1 represents an overview of
MAHUSP. Given a utility threshold δ and a significance

Algorithm 1 MAHUSP
Input: Bk, δ, ε, availMem, mechanismType
Output: MAS-Tree, appHUSPs

1: HUSPBk
← HUSPs returned by USpan on Bk using ε · UBk

as
minimum utility threshold

2: if MAS-Tree is empty (i.e. Bk is the first batch) then
3: Initialize MAS-Tree by creating root node
4: end if
5: Call Algorithm 2 to insert the patterns in HUSPBk

into MAS-
Tree using availMem and mechanismType

6: if user requests for HUSPs over current data stream then
7: appHUSPs ← potential HUSPs in MAS-Tree whose approxi-

mate utility is no less than (δ − ε) · UDS

8: end if
9: return MAS-Tree and appHUSPs if requested

Figure 2: (a) An example of MAS-Tree for B1 in
Figure 1. Note that an underscore ” ” in a node name
{ c} means that the last itemset in the pattern of its
parent, such as {ab}, belongs to the first itemset of the
pattern of this node. (b) MAS-Tree after inserting three
patterns:〈{ab}{bc}{d}〉,〈{b}{a}〉 and 〈{b}{bc}{d}〉.
threshold ε1, as a new batch Bk forms, MAHUSP first
applies an existing HUSP mining algorithm on static
data (e.g., USpan [9]) 2 to find a set of HUSPs over Bk

using ε as the utility threshold. We consider this set of
HUSPs as potential HUSPs since they have the poten-
tial to become HUSPs later. MAHUSP then calls Algo-
rithm 2 to insert these potential HUSPs into the MAS-
Tree structure. Algorithm 2 assures that the memory
constraint is satisfied and the most potential HUSPs
are kept in the tree. Finally, if users request to find
HUSPs from the stream so far, MAHUSP returns the
set of all the patterns (i.e., appHUSPs) in MAS-Tree
with approximate utility more than (δ−ε) ·UDSk

, where
DSk = 〈B1, B2, · · · , Bk〉. In Section 3.5, we will explain
why we use (δ − ε) · UDS as the utility threshold.

3.1 MAS-Tree Structure We propose a novel data
structure MAS-Tree (Memory Adaptive high utility Se-
quential Tree) to store potential HUSPs in a data
stream. This tree allows compact representation and
fast update of potential HUSPs generated in the
batches, and also facilitates the pruning of unpromis-
ing patterns to satisfy the memory constraint. In order

1ε is lower than the utility threshold δ and specifies a tradeoff
between accuracy and run time.

2Note that USpan finds HUSPs with one-pass over data but is
not an incremental learning algorithm.



to present MAS-Tree, the following definitions are pro-
vided.

Definition 9. (Prefix itemset of an itemset)
Given itemsets X1 = {I1, I2, ..., Ii} and X2 =
{I ′

1, I
′
2, ..., I

′
j} (i < j), where items in each itemset are

listed in the lexicographic order, X1 is a prefix itemset
of X2 iff I1 = I

′
1, I2 = I

′
2, ..., and Ii = I

′
i (denoted as

X1 � X2).

Definition 10. (Suffix itemset of an itemset)
Given itemsets X1 = {I1, I2, ..., Ii} and X2 =
{I ′

1, I
′
2, ..., I

′
j} (i ≤ j), such that X1 � X2. The suf-

fix itemset of X2 w.r.t. X1 is defined as: X2 − X1 =
{I ′

i+1, I
′
i+2, ..., I

′
j}.

For example, itemset X1 = {ab} is a prefix itemset
X2 = {abce} and X2 − X1 = {ce}.
Definition 11. (Prefix sub-sequence and Prefix
super-sequence) Given sequences α = 〈X1,X2, ...,Xi〉
and β = 〈X ′

1,X
′
2, ...,X

′
j〉 (i ≤ j), α is a prefix sub-

sequence (or prefixSUB in short) of β or equivalently
β is a prefix super-sequence (or prefixSUP in short) of
α iff X1 = X

′
1,X2 = X

′
2, ...,Xi−1 = X

′
i−1,Xi � X

′
i

(denoted as α � β).

Definition 12. (Suffix of a sequence) Given a
sequence α = 〈X1,X2, ...,Xi〉 as a prefixSUB of
β = 〈X ′

1,X
′
2, ...,X

′
j〉 (i ≤ j), sequence γ = 〈X ′

i −
Xi,X

′
i+1, ...,X

′
j〉 is called the suffix of β w.r.t. α.

For example, α = 〈{abc}{b}〉 is a prefixSUB of
β = 〈{abc}{bce}{cd}〉 and β is the prefixSUP of α.
Hence, suffix of β w.r.t. α is 〈{ce}{cd}〉.

In an MAS-Tree, each node represents a sequence,
and a sequence SP represented by a parent node P is a
prefixSUB of the sequence SC represented by P ’s child
node C. The child node C stores the suffix of SC with
respect to its parent sequence SP . Thus, the sequence
represented by a node N is the ”concatenation” of the
subsequences stored in the nodes along the path from
the root (which represents the empty sequence) to N .
There are two types of nodes in an MAS-Tree: C-nodes
and D-nodes.

A C-node or Candidate node uniquely represents a
potential HUSP found in one of the batches processed
so far. For example, there are 6 C-nodes in Figure 2(a)
representing 6 potential HUSPs (i.e., 〈{ab}〉, 〈{abc}〉,
〈{b}{ab}〉, 〈{b}{abc}〉, 〈{b}{b}〉, and 〈{b}{bc}{b}〉).

A D-node or Dummy node is a non-leaf node with
at least two child nodes, representing a sequence that is
not a potential HUSP but is the longest common pre-
fixSUB of all the potential HUSPs represented by its
descendent nodes. In Figure 2(a), there is one D-node

representing 〈{b}〉, which is the longest common pre-
fixSUB of four C-node sequences 〈{b}{ab}〉, 〈{b}{abc}〉,
〈{b}{b}〉 and 〈{b}{bc}{b}〉. The reason for having D-
nodes in the tree is to use shared nodes to store common
prefixes of HUSPs to save space. Note that D-nodes are
created only for storing the longest common prefixes
(not every prefix) of potential HUSPs to keep the num-
ber of nodes minimum3.

Let SN denote the sequence represented by a node
N . A C-node N contains 3 fields: nodeName, nodeUtil
and nodeRsu. nodeName is the suffix of SN w.r.t. the
sequence represented by the parent of N . nodeUtil is
the approximate utility of SN over the part of the data
stream processed so far. nodeRsu holds the rest utility
value (to be defined in the next section and used in
memory adaptation) of SN . For example, in Figure
2(a), the leftmost leaf node corresponds to pattern
{abc}. Its nodeName is { c} (which is the suffix of {abc}
w.r.t. its parent node sequence {ab}) and its nodeUtil
and nodeRsu are 39 and 54, respectively. A D-node has
only one field nodeName, storing the suffix of sequence
it represents w.r.t. its parent sequence.

3.2 Rest Utility: A Utility Upper Bound Before
we present how a MAS-Tree is built and updated, we
first define the rest utility of a sequence and prove that
it is an upper bound on the true utilities of the sequence
and all of its prefix super-sequences (prefixSUPs).

Definition 13. (First occurrences of a sequence
α in a sequence Sr) Given a sequence Sr =
〈S1

r , S2
r , ..., Sn

r 〉 and a sequence α = 〈X1,X2, ...,XZ〉,
õ ∈ OccSet(α, Sr) is the first occurrence of α in Sr, iff
the last itemset in õ occurs sooner than the last itemset
of any other occurrence in OccSet(α, Sr).
Definition 14. (Rest sequence of Sr w.r.t. se-
quence α) Given sequences Sr = 〈S1

r , S2
r , ..., Sn

r 〉 and
α = 〈X1,X2, ...,XZ〉, where α 	 Sr. The rest se-
quence of Sr w.r.t. α, is defined as: restSeq(Sr, α) =
〈Sm

r , Sm+1
r , ..., Sn

r 〉, where Sm
r is the last itemset of the

first occurrences of α in Sr.
Definition 15. (Rest utility of a sequence α in a
sequence Sr) The rest utility of α in Sr is defined as
rsu(α, Sr) = su(α, Sr) + su(restSeq(Sr, α)).

For example, given α = 〈{ac}{c}〉 and S1 in Figure
1, restSeq(S1, α) = 〈{(b, 1)(c, 1)(d, 1)}{(c, 3)(d, 1)}〉.
Hence, su(restSeq(S1, α)) = 8 + 7 = 15, then
rsu(α, S1) = su(α, S1) + 15 = max{7, 9} + 15 = 24.

3The MAS-Tree is different from the prefix tree used to
represent sequences for frequent sequence mining where all the
sub-sequences of a frequent sequence is frequent and is represented
by a tree node. In a MAS-Tree we do not store all subsequences
of potential HUSPs since a subsequence of a HUSP may not be a
HUSP.



Definition 16. (Rest utility of a sequence α in
data set D) The rest utility of a sequence α in a
data set D of sequences is defined as rsu(α,D) =∑

Sr∈D

rsu(α, Sr).

Theorem 3.1. The rest utility of a sequence α in a
data stream DS is an upper-bound of the true utilities
of all the prefixSUPs of α in DS. That is, ∀β �
α, su(β,DS) ≤ rsu(α,DS).

Proof. We prove that rsu(α, Sr) is an upper-bound
of the true utilities of all the prefixSUPs of
α in sequence Sr. The proof can be eas-
ily extended to batch Bk and data stream DS.
Given sequence α = 〈X1,X2, . . . , XM 〉, and β =
〈X1,X2, . . . , X

′
M ,XM+1, ...,XN 〉, where XM � X

′
M .

According to Definition 6:
su(β, Sr) = max{su(β, õ)|∀õ ∈ OccSet(β, Sr)}

Thus, ∃õ, su(β, Sr) = su(β, õ) (1)
Sequence β can be partitioned into two sub-

sequences:
α = 〈X1,X2, ...,XM 〉 and β

′
= 〈X ′

M −
XM ,XM+1, ...,XN 〉. The Equation 1 can be rewritten
as follows:

∃õα ∈ OccSet(α, Sr) and ∃õβ′ ∈ OccSet(β
′
, Sr−õα),

su(β, Sr) = su(α, õα) + su(β
′
, õβ′ ) (2)

Also, ∀õα ∈ OccSet(α, Sr), su(α, õα) ≤ su(α, Sr) (3)
Similarly, ∀õβ′ ∈ OccSet(β

′
, Sr − õα), su(β

′
, õβ′ ) ≤

su(β
′
, Sr − õα) (4)

where Sr − õα is a sequence consisting of all itemsets
in Sr which occur after the last itemset in õα. Since
Sr − õα 	 restSeq(Sr, α), hence:

su(β
′
, õβ′ ) ≤ su(β

′
, Sr − õα) ≤ su(β

′
, restSeq(Sr, α))

≤ su(restSeq(Sr, α)) (5)

From (3) and (5):
su(β, Sr) = su(α, õα) + su(β

′
, õβ′ ) ≤ su(α, Sr) +

su(restSeq(Sr, α)) = rsu(α, Sr).

3.3 MAS-Tree Construction and Updating The
tree starts empty. Once a potential HUSP is found
in a batch, it is added to the tree. Given a potential
HUSP S in batch Bk, the first step is to find node N
whose corresponding sequence SN is either S or the
longest prefixSUB of S in MAS-Tree. Let su(S,Bk)
be the exact utility value of S in the batch Bk and
rsu(S,Bk) be the rest utility value of S in the batch
Bk. If SN is S and N is a C-node, then nodeUtil(N)
and nodeRsu(N) are updated by adding su(S,Bk) and

rsu(S,Bk) respectively. If N is a D-node, it is converted
to a C-node and nodeUtil(N) and nodeRsu(N) are
initialized by su(S,Bk) and rsu(S,Bk) respectively.

If SN is the longest prefixSUB of S, new node(s) are
created to insert S into the tree. In this situation, there
are three cases:

1. Node N has a child node CN where S � SCN : For
example, in Figure 2(a), if pattern S = 〈{b}{a}〉,
node N with SN = {b} is found. N has a child node
CN where SCN = 〈{b}{ab}〉 and S � SCN . In this
case, a new C-node C is created as child of N and
parent of CN where nodeName(C) is the suffix
S w.r.t. SN . Then nodeUtil(C) and nodeRsu(C)
are initialized by su(S,Bk) and rsu(S,Bk). Also
nodeName(CN) is updated w.r.t SC . In our
example, a new node is created with {a}, 20, and 36
as nodeName, nodeUtil and nodeRsu, respectively
(see Figure 2(b)).

2. Node N has a child node CN where SCN con-
tains (but not exactly is) a longer prefixSUB (i.e.,
Sprefix) of S than SN : For example, in Figure
2(b), given pattern S = 〈{b}{bc}{d}〉, su(S,B1) =
17 and rsu(S,B1) = 17, node N with SN =
〈{b}{b}〉 is found. Its child node CN where SCN =
〈{b}{bc}{b}〉 contains a longer prefixSUB of S,
Sprefix = 〈{b}{bc}〉. In this case, since Sprefix

is the longest common prefixSUB of S and SCN ,
a new D-node D corresponding to Sprefix is cre-
ated as child of N and parent of CN . Then
a new C-node C is created as child of D where
nodeName(C) is the suffix of S w.r.t. Sprefix. Its
nodeUtil and nodeRsu are initialized by su(S,Bk)
and rsu(S,Bk) respectively. Also nodeName(CN)
is updated w.r.t. SD. In the example, node D
with nodeName(D) = 〈{ c}〉 is added as child
of N and parent of CN , and also node C where
nodeName(C) = 〈{d}〉 is created as child of D.

3. None of the above cases: For example in Figure
2(b), given pattern S = 〈{ab}{bc}{d}〉 whose
utility is 21 and rest utility is 21, node N with
SN = {ab} is found. Its child node does not
contain S or a longer prefixSUB of S. In this case,
a new C-node C is created as child of N where
nodeName(C) is the suffix of S w.r.t. SN . Also,
nodeUtil(C) and nodeRsu(C) are initialized by
su(S,Bk) and rsu(S,Bk). In the example, node C
where nodeName(C) = 〈{bc}{d}〉, nodeUtil(C) =
21 and nodeRsu(C) = 21 is created as child of N .
Figure 2(b) shows the updated tree after in-

serting three patterns 〈{b}{a}〉, 〈{ab}{bc}{d}〉 and
〈{b}{bc}{d}〉 to MAS-Tree presented in Figure 2(a).

Algorithm 2 shows the complete procedure for
inserting the potential HUSPs found in batch Bk to



Algorithm 2 Insert potential HUSPs into MAS-Tree
Input: MAS-Tree, HUSPBk

, mechanismType, availMem
Output: MAS-Tree, currMem

1: newPatSetBk
← ∅

2: for ∀S ∈ HUSPBk
do

3: N ← The node with the longest prefixSUB of S in MAS-Tree
4: if SN is the same as S then
5: if N is C-node then
6: nodeRsu(N) ← nodeRsu(N) + rsu(S, Bk)
7: nodeUtil(N) ← nodeUtil(N) + su(S, Bk)
8: else
9: Convert N to C-node

10: nodeRsu(N) ← rsu(S, Bk) + maxUtil
11: nodeUtil(N) ← su(S, Bk) + maxUtil
12: end if
13: else
14: Add pair 〈S, N〉 to newPatSetBk
15: end if
16: end for
17: for ∀〈S, N〉 ∈ newPatSetBk

do
18: CN ← A child of node N with longer common prefixSUB

(i.e.,Sprefix) of S than SN

19: if CN does not exist then
20: SC ← suffix of S w.r.t. SN

21: Call Algorithm 3 to create C-node C as a child of N
22: else
23: if Sprefix is S then
24: SC ← suffix of S w.r.t. SN

25: Call Algorithm 3 to create C-node C as a child of N
26: else
27: SD ← suffix of Sprefix w.r.t. SN

28: Call Algorithm 3 to create D-node D as a child of N
29: SC ← suffix of S w.r.t. Sprefix

30: Call Algorithm 3 to create C-node C as a child of D
31: end if
32: end if
33: end for
34: return MAS-Tree

the tree. It first updates the tree using the patterns
in HUSPBk

that already exist in the tree. This is
to avoid the memory adaption procedure from pruning
nodes that will be inserted again soon in the same batch.
For each pattern S in HUSPBk

, Algorithm 2 finds
node N where SN is either S or the longest prefixSUB
of S in the tree. If SN is S, Algorithm 2 updates
values of nodeRsu(N) and nodeUtil(N) accordingly.
If nodeName(N) is the longest prefixSUB of S, the
pattern S and node N are inserted into newPatSetBk

.
Each pair in newPatSetBk

consists of a new pattern
and a pointer to the node associated to the longest
prefixSUB of the pattern in the tree. After the tree is
updated using the existing patterns, for each pair 〈S,N〉
in newPatSetBk

, the pattern S is inserted into the tree,
in which Algorithm 3 is called to create a node for the
tree in a memory adaptive manner described below.

3.4 Memory Adaptive Mechanisms When in-
serting a new node in MAS-Tree, if the memory con-
straint is to be violated, our algorithm will remove some
tree nodes to release memory. An intuitive approach
to releasing memory is to blindly eliminate some nodes
from the tree. However, this approach could remove
nodes representing high quality HUSPs and make the

mining results highly inaccurate. Below we propose two
memory adaptive mechanisms to cope with the situa-
tion when memory space is not enough to insert a new
potential HUSP in the tree. Our goal is to efficiently de-
termine the nodes for pruning, without sacrificing too
much the accuracy of the discovered HUSPs.

Mechanism 1. Leaf Based Memory Adapta-
tion (LBMA): Given a MAS-Tree, a pattern S and the
available memory availMem, if the required memory to
insert S is not available, LBMA iteratively prunes the
leaf node N with minimum nodeUtil(N) among all the
leaf nodes until the required memory is released.

Rationale: (1) A leaf node is easily accessible and
we do not need to scan the whole tree to find a node with
low utilities. (2) A leaf node does not have a child, so it
can be pruned easily without reconnecting its parent to
its children. (3) In case a great portion of nodes in the
tree are leaf nodes, leaf nodes with minimum utilities
have low likelihood to become a HUSP. Later we prove
that LBMA is an effective mechanism so that all true
HUSPs stay in the tree under certain circumstances.

The second mechanism releases memory by pruning
a sub-tree from MAS-Tree.

Mechanism 2. Sub-Tree Based Memory
Adaptation (SBMA): Given a MAS-Tree, a pattern
S and available memory availMem, if the required
memory to insert S is not available, SBMA iteratively
finds node N with minimum rest utility (nodeRsu(N))
in MAS-Tree and prunes the sub-tree rooted at N from
MAS-Tree till the required memory is released.

Rationale: Since in MAS-Tree a descendant
of a node N represents a prefix super-sequence
(prefixSUP ) of the pattern represented by N , accord-
ing to Theorem 3.1, the rest utility of N (nodeRsu(N))
is an upper bound of the true utilities of all its descen-
dants. Therefore, if node N has a minimum rest utility,
not only the pattern represented by N is less likely to
become HUSP, but also all of its descendants are less
likely to become HUSPs. Thus, we can effectively re-
move all the nodes in the subtree rooted at N . Similar
to LBMA, with this mechanism there is no need to re-
connect N ’s parent with its children.

Algorithm 3 shows how the proposed memory adap-
tive mechanisms are incorporated into node creation. It
removes some nodes based on either LBMA or SBMA
mechanism when there is not enough memory for a new
node. In addition, the following two issues are addressed
in this procedure.

Approximate Utility. When some C-nodes are
removed from the tree, the potential HUSPs represented
by the removed nodes are discarded. If a removed
pattern is a potential HUSP in the new batch, the
pattern will be added into the tree again. But its utility



Algorithm 3 Memory Adaptive Node Creation
Input: S, su(S, Bk), rsu(S, Bk), nodeType, mechanismType, P
(parent of the node to be created)
Output: node N , maxUtil

1: currMem ← current memory usage
2: reqMem ← memory usage for a node of nodeType for pattern S
3: while currMem + reqMem ≥ availMem do
4: if mechanismType is LBMA then
5: Remove the leaf node node with minimum nodeUtil(node)
6: maxUtil ← nodeUtil(node);
7: Adjust the amount of current available memory currMem
8: end if
9: if mechanismType is SBMA then

10: Remove the subtree rooted by node with minimum
nodeRsu(node)

11: maxUtil ← nodeRsu(node)
12: Adjust the amount of current available memory currMem
13: end if
14: if parent P of node has a single child C then
15: Merge P and C into one node
16: Adjust the amount of current available memory currMem
17: end if
18: end while
19: if parent P of node has been removed then
20: Call Algorithm 2 to get a new parent node and exit
21: end if
22: Create node N with pattern S
23: if nodeType is a C-node then
24: nodeRsu(N) ← rsu(S, Bk) + maxUtil
25: nodeUtil(N) ← su(S, Bk) + maxUtil
26: end if
27: currMem ← currMem + reqMem
28: return N , maxUtil

value in the previous batches is not recorded due the
node removal. To compensate this situation, we keep
track of the maximum value of the nodeUtil or nodeRsu
of all the removed nodes, and add it to the nodeUtil
and nodeRsu of a new C-node. The maximum value is
denoted as maxUtil in Algorithm 2 and Algorithm 3.

Node Merging. If the parent of a removed leaf
node or subtree is a D-node and the parent has a single
child left after the node removal, the parent and its child
are merged into a single node (Lines 16-17 in Algorithm
3). This is to make the tree compact and maintain the
property of MAS-Tree (i.e., each node represents the
longest common prefixSUB of its descendants). Note
that our strategy to remove either a subtree or a leaf
node allows us to maintain the MAS-Tree structure
using such minimum adjustments.

Let Lavg and NumPot be the average length and
the number of potential HUSPs respectively. The time
complexity to find the node N to insert a pattern as
its child is O(NumPot × Lavg). For LBMA, the time
complexity for initializing and updating is O(NumPot).
The time complexity to apply SBMA is O(NumPot×
Lavg).

3.5 Mining HUSPs from MAS-Tree As the data
stream evolves, when the user requests to find HUSPs
on the stream so far, MAHUSP traverses the MAS-
Tree once and returns all the patterns represented by
a node whose nodeUtil is no less than (δ − ε) · UDSk

,

where DSk = 〈B1, B2, · · · , Bk〉 is the stream processed
so far. The reason for using this threshold is that a
potential HUSP in a batch Bi may not be a potential
pattern in batch Bj and thus its utility in batch Bj is
not recorded in the tree. However, since when we mine
Bj for potential HUSP, ε ·UBj

is used as the threshold,
the true utility of a non-potential pattern in Bj cannot
be higher than ε · UBj

. Thus, nodeUtil(N) + ε · UDSk

is an over-estimate for the approximate utility of the
pattern represented by node N . Finding nodes whose
nodeUtil(N)+ε·UDSk

≥ δ ·UDSk
is equivalent to finding

those with nodeUtil(N) ≥ (δ − ε) · UDSk
.

3.6 Correctness Given a data stream DS, a se-
quence α and a node N ∈ MAS-Tree where SN is α,
let sutree(α,DS) be nodeUtil(N) when availMem is
infinite and there is no pruning, and let suapprx(α,DS)
be nodeUtil(N) when availMem is limited and pruning
occurs.

Lemma 3.1. Given a potential HUSP α, the difference
between the exact utility of α and its utility in MAS-Tree
is bounded by ε · UDS when availMem is infinite. That
is, su(α,DS) − sutree(α,DS) < ε · UDS.
Proof. According to Definition 7, su(α,DS) =∑

Bj∈DS

su(α,Bj). Given batch Bk ∈ DS, if su(α,Bk) <

ε · UBk
, then α is not returned by USpan. In this

case ε · UBk
is an upper bound on utility of α in

the batch Bk. Hence, su(α,DS) − sutree(α,DS) =∑

Bm∈BSet

su(α,Bm) < ε ·∑Bk∈DS UBk
≤ ε ·UDS , where

BSet is the set of all batches that α is not returned by
USpan.

Lemma 3.2. Given potential HUSP α, the cur-
rent MAS-Tree and C-node C where SC is α,
sutree(α,DS) ≤ suapprx(α,DS).
Proof. If node C is never pruned, then
suapprx(α,DS) = sutree(α,DS) which is nodeUtil(C).
Otherwise, since we have a node with pattern α in
the tree, C has been added back to the tree after
removal. Assume that, when C was pruned from
MAS-Tree, the value of maxUtil was denoted as
maxUtil1, and when C with pattern α was re-inserted,
the value of maxUtil was denoted as maxUtil2.
According to Algorithm 2, the value of maxUtil never
gets smaller. Hence maxUtil1 ≤ maxUtil2. Once
C was re-inserted into the tree, nodeUtil(C) was
incremented by maxUtil2 which is bigger than or equal
to maxUtil1. Since suapprx(α,DS) = nodeUtil(C),
suapprx(α,DS) ≥ sutree(α,DS).

Lemma 3.3. For any potential HUSP α, if
sutree(α,DS) > maxUtil, α must exist in MAS-
Tree.



Table 1: Dataset characteristics
Name #Seq Type batchSize availMem
DS1 10K Dense 1K 100MB
Kosarak 25K Sparse, Large 5K 200MB
DS2 100K Dense, Large 10K 400MB

Proof. We prove it by contradiction. Assume that there
is a HUSP β, where maxUtil < sutree(β,DS), and node
N with nodeName(N) = β does not exist in the tree.
Since 0 ≤ maxUtil < sutree(β,DS), at some point, β
was inserted to the tree. Otherwise, sutree(β,DS) = 0.
Since N does not exist in MAS-Tree, it must have
been pruned afterwards. Let utilold and rsuold denote
nodeUtil(N) and nodeRsu(N) when N was last pruned,
respectively. Based on Lemma 3.2, sutree(β,DS) ≤
suapprx(β,DS), where suapprx(β,DS) = utilold, at
the time N was pruned. So sutree(β,DS) ≤ utilold.
Based on the memory adaptive mechanisms, utilold ≤
maxUtil. Hence, sutree(β,DS) ≤ utilold ≤ maxUtil,
which contradicts the assumption. Thus, if maxUtil <
sutree(α,DS), α is in the tree.

Theorem 3.2. Once the user requests HUSPs over
data stream DS, if maxUtil ≤ (δ − ε) · UDS, all the
high utility sequential patterns will be returned.

Proof. Suppose there is a high utility sequential pat-
tern α. According to Definition 7, su(α,DS) ≥ δ ·
UDS . On the other hand, based on Lemma 3.1, ε ·
UDS > su(α,DS) − sutree(α,DS). Thus, ε · UDS +
sutree(α,DS) > su(α,DS) .
According to Definition 7, ε · UDS + sutree(α,DS) >
δ·UDS . Hence, sutree(α,DS) > (δ−ε)·UDS ≥ maxUtil.

According to Lemma 3.3, α must exist in the
tree. On the other hand, based on Lemma 3.2,
suapprx(α,DS) ≥ sutree(α,DS) > (δ− ε) ·UDS . Hence,
α will be returned by the algorithm.

While this theory only guarantees the perfect recall in
certain situations, in the next section we will show that
our algorithm will return HUSPs with both high recall
and high precision in practice.

4 Experiments

To evaluate the performance of our proposed algo-
rithm, experiments have been conducted on both syn-
thetic datasets generated by the IBM data gener-
ator (DS1:D10K-C10-T3-S4-I2-N1K, DS2:D100K-C8-
T3-S4-I2-N10K)[1], and the real-world Kosarak dataset
[3]. Table 1 shows dataset characteristics and parameter
settings in the experiments. We set availMem heuris-
tically based on the average memory to store the data
structures used by USpan and the average memory used
by MAS-Tree over the datasets. The significance thresh-
old (i.e., ε) is set as 0.5× δ. For example, in DS2, when

δ = 0.0009, ε = 0.00045. We will later show the per-
formance of the algorithms under different parameter
values. In Section 4.4, we also conduct an analysis on a
real web clickstream dataset obtained from a Canadian
news portal.

We use the following performance measures:
(1) Precision and Recall: the average precision
and recall values over data streams: precision =
|appHUSPs

⋂
eHUSP |

|appHUSPs| , recall = |appHUSPs
⋂

eHUSP |
|eHUSP | ,

where eHUSP is the true set of HUSPs and appHUSPs
is the approximate set of HUSPs returned by a method.
(2) F-Score: 2× precision×recall

precision+recall . (3) Run Time, (4)Mem-
ory Usage.

To the best of our knowledge, no method was pro-
posed to mine HUSPs over a data stream in a memory
adaptive manner. Therefore, the following methods are
implemented as comparison methods: (1) NaiveHUSP:
this method is a fast method to approximate the utility
of a sequence over the past batches using the utilities
of items in the sequence. That is, the utility of each
item over a data stream is tracked. If the user requests
HUSPs, the algorithm runs USpan to find all HUSPs
in the current batch Bi. Then for each pattern α, the
utility of α over the data stream is calculated as fol-
lows: su(α,DSi) = su(α,Bi) +

∑

I∈α

u(I,DSi−1). (2)

RndHUSP: this method is a memory adaptive HUSP
mining method which adapts memory by pruning a sub-
tree randomly, (3) USpan: once a user requests HUSPs,
USpan is run on the whole data stream (i.e., DSi) seen
so far using δ · UDSi

as the utility threshold to find the
true set of HUSPs (i.e., eHUSP). Moreover, we evalu-
ate two versions of MAHUSP , named MAHUSP S
(which uses the SBMA mechanism) and MAHUSP L
(which uses the LBMA mechanism).

4.1 Effectiveness of MAHUSP Figure 3(a) shows
the precisions of the methods on the three datasets.
The proposed methods outperform NaiveHUSP and
RndHUSP significantly. MAHUSP L outperforms
MAHUSP S in the most of the cases in DS1 and DS2.
This is because the approximate utility by LBMA is
usually tighter than the one by SBMA, and thus there
are fewer false positives in the results.

Figure 3(b) shows the recalls of the methods, which
indicate that our proposed methods significantly out-
perform other methods in all the datasets. Indeed,
on DS1, MAHUSP L returns all the true patterns for
each threshold value. Also, MAHUSP S returns all the
true patterns for most threshold values on DS2 and
Kosarak. The results imply that the condition pre-
sented in Theorem 3.2 happens often and the proposed
memory adaptive mechanisms prune the nodes effec-
tively.
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Figure 3: (a) Precision, (b) Recall and (c) F-Score
performance on the different datasets
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Figure 4: (a) Execution time, (b) Memory Usage on
different datasets.

Figure 3(c) shows the F-Score values for the four
methods with different δ values on the 3 datasets.
Both proposed methods outperform the other methods
significantly with an average F-score value of 90% over
the DS1, DS2 and Kosarak data sets.

4.2 Time and Memory Efficiency of MAHUSP
Figure 4(a) shows the execution time of each method
with different threshold values. Since NaiveHUSP
only stores and updates the utility of each item over
data streams, it is the fastest method. However,
it generates a high rate of false positives due to its
poor utility approximation. MAHUSP L is slower than
MAHUSP S, since it prunes the tree node by node.
USpan is the slowest, whose run time indicates the
infeasibility of using a static learning method on data
streams although it returns the exact set of HUSPs.
Moreover, MAHUSP methods are only a bit slower than
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Figure 5: Parameter sensitivity on different datasets.

random pruning method (RndHUSP ). Considering the
big difference between them in precision and recall, it is
very worthwhile to use the pruning strategies proposed
in this paper.

Figure 4(b) shows the memory consumption of the
methods on different datasets for different values of
δ. USpan is the most memory consuming method
since it needs to keep whole sequences in the memory.
The memory usage of NaiveHUSP depends on the
number of promising items in the dataset. For example,
NaiveHUSP uses more memory than MAHUSP S on
Kosarak because this dataset is a sparse dataset and
NaiveHUSP stores a huge list of items and their utilities
into the memory. Regardless of the threshold value
and the type of dataset, MAHUSP S and MAHUSP L
guarantee that memory usage is bounded by the given
input parameter availMem.

4.3 Parameter Sensitivity Analysis In this sec-
tion we evaluate the performance of MAHUSP L and
MAHUSP S by varying the batch size (batchSize), the
significance threshold (ε) and the amount of available
memory (availMem). In all the experiments, δ is set to
0.46%, 0.096%, 0.15% for DS1, DS2 and Kosarak re-
spectively. Figures 5(a),(d) present the results on DS1,
DS2 and Kosarak when the number of sequences in the
batch varies. The x-axes in each graph represents the
combination of the dataset name and the number of
sequences in the batch (i.e., batchSize). Figure 5 (a)
shows the trend in the execution time with different
batch sizes. In all the data sets, the run time decreases
as batchSize increases since increasing the batch size
leads to generating less number of intermediate poten-
tial HUSPs. Figure 5 (d) shows F-Scores on different
datasets. From Figure 5(d), we can observe that the
F-score of the methods increases slowly with increasing
batch sizes. Figures 5 (b)(e) show the results on Run



time and F-Score for different values of ε. Each bar in
the graphs is assigned to each dataset and value of ε is
a percentage of δ. As it is observed, a higher value of
ε leads to a lower number of HUSPs returned by US-
pan in each batch and thus the F-Score value decreases.
On the other hand, when the value of ε increases the
processing time decreases since the number of HUSPs
returned by USpan decreases.

Figures 5(c),(f) present the results on different
datasets for different values of availMem. In the
graphs, the x-axes represents the combination of the
dataset name and the input parameter availMem. Fig-
ure 5(c) shows the execution time with different val-
ues of availMem. A higher value of availMem en-
ables MAS-Tree to store more potential HUSPs, hence
LBMA or SBMA is called less frequently to release the
memory. Therefore, the execution time decreases when
the available memory increases. Figure 5 (f) shows the
results on F-Score. When the available memory is small
(e.g., 50 MB in DS1), there are fewer HUSPs in the
memory and usually F-Score is lower. However, after
a certain value of availMem, the performance of the
proposed methods is much higher.

4.4 A Real-life Application In this section, we
analyze a real-world web clickstream dataset, called
the Globe dataset obtained from a Canadian news web
portal (The Globe and Mail 4). The dataset was created
based on a random sample of users visiting The Globe
and Mail during a six months period in 2014. The
dataset contains 116,000 sequences and 24,770 news.
Each sequence in the dataset corresponds to news
articles read by a subscribed user.

The goal is to take both news freshness and in-
terestingness into account to discover behavioral pat-
terns related to users’ interest. We assume that the
time user spends on a news reflects his/her interest in
the news. That is, if the user is not interested in the
news, he/she does not spend much time reading it and
vice versa. Given news nw and user usr, the inter-
nal utility is defined as browsing time in seconds. In
addition, since the importance of nw is dynamic and
varying from time to time, the external utility of nw is
defined as: p(nw) = 1

accessDate(nw)−releasedDate(nw)+1 ,
where accessDate is the date that usr clicks on nw.

We apply MAHUSP to discover HUSPs based on
the above utility model. We also applied SPADE algo-
rithm implemented by [3] to discover frequent sequen-
tial patterns (i.e.,FSPs) from the Globe dataset. Table
2 presents top-4 HUSPs and top-4 FSPs of length 2,
sorted by time spent and support respectively. Table 2

4http://www.theglobeandmail.com/
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Figure 6: (a) Run time, (b) Memory Usage and (c) F-
Measure Performance on the Globe dataset

suggests that the pattern with high support is not nec-
essarily a pattern of users’ interest if we use time-spent
as the interestingness measure. It is because there ex-
ist less frequent patterns (e.g., HUSP1, HUSP2), which
have higher time-spent than highly frequent patterns
(e.g., FSP1, FSP2). These patterns can be directly used
to produce utility-based association rules to navigate
users based on a semantic measure (e.g., news freshness
and interestingness) rather than a statistical measure
(e.g., support). They capture the user’s information
need more precisely, hence the generated rules can rec-
ommend more useful news to the user. They are also
useful for the portal designers to understand users’ nav-
igation behavior and improve the portal design and e-
business strategies.

We also evaluate the performance of MAHUSP in
comparison to the other methods on this dataset. Fig-
ure 6 shows MAHUSP outperforms the other methods
significantly in terms of run time, Memory usage and F-
Measure. The average F-measure value of MAHUSP S
on the Globe dataset is 87%.

5 Related Work
The concept of HUSP mining was first proposed by
Ahmed et al [2], who defined an over-estimated sequence
utility measure, SWU , which has the downward closure
property, and proposed the UL and US algorithms for
mining HUSPs which use SWU to prune the search
space. Yin et al. [9] proposed the USpan algorithm for
mining HUSPs. In this study, a lexicographic tree was
used to extract the complete set of high utility itemset
sequences. In [8], the authors proposed the HUS-Span
algorithm based on two pruning strategies to identify
HUSPs. However, all of the HUSP mining methods were
designed for static datasets, not for data streams.

On the other hand, several studies [4, 5, 6] have been
conducted to use approximate approaches to discover
frequent patterns over the entire data stream. In [5],
authors presented algorithms for computing frequency
counts of items exceeding a user-specified threshold over
data streams. Mendes et al. [6] proposed two methods



Table 2: Top-4 HUSPs versus Top-4 FSPs with respect to time spent and support

Algorithm ID. Pattern (Title of the news in the pattern) Time Spent(mins.) Support

HUSP1.
Retiree, 60, wonders how long her money will last
Which is better,a RRIF or an annuity? You may be surprised

1474 152

MAHUSP

HUSP2.
Robin Williams warp-speed improvisation was almost too fast to be human
CBC lays off veteran sportscasters amid budget cuts

1471 121

HUSP3.
Israel prepares to ’significantly’ expand campaign as UN chief...
MH17: Disaster ratchets up Russia-Ukraine tensions

1212 116

HUSP4.
Massive explosive decompression’ downed MH17: Kiev
Canada should learn from Ireland’s housing crash

994 86

FSP1.
CBC lays off veteran sportscasters amid budget cuts
Celine Dion takes indefinite break to focus on health, family

576 286

SPADE

FSP2.
La Prairie, Quebec mayor dies from wasp stings
Duffy billed taxpayers for attending funerals, RCMP allege

380 254

FSP3.
Supreme Court sides with Ottawa in multibillion-dollar EI case
MH17: Disaster ratchets up Russia-Ukraine tensions

536 247

FSP4.
Controversial First Nation chief??s salary raises concern
Harper sticks to hard line on Hamas; U.S. condemns Israel’s deadly...

830 220

(i.e., SS-BE and SS-MB) inspired by [5] for finding fre-
quent sequential patterns over data streams. However,
all these methods are for finding frequent patterns and
they do not have memory adaptive mechanisms.

The only work on HUSP mining over data streams is
proposed in [10]. The proposed method works based on
the sliding window model and is not able to find HUSPs
over the entire data stream. The authors proposed
an upper bound, called Suffix Utility (i.e., SFU), to
prune patterns during HUSP discovery. However, SFU
is different than the rest utility model proposed in
this paper. SFU is an upper bound of the utilities
of some of its super-sequences while rest utility is an
upper bound of the utilities of all of the super-sequences.
During memory adaptive mechanism, we need an upper
bound regardless of the type of super-sequences, hence
SFU is not applicable in our study. Moreover, the
data structure in [10] is not applicable to store the
information over a long period of time.

6 Conclusions
We tackled the problem of memory adaptive HUSP min-
ing over data streams. We proposed an approximation
algorithm, called MAHUSP, to discover HUSPs over
data streams. We proved that MAHUSP returns all the
true HUSPs under certain circumstances. The experi-
mental results showed that our method effectively ad-
justs the memory usage over the course of HUSP mining
with very little overhead, and it returns more accurate
results than other methods in comparison. As future
work, we will extend our method to consider new types
of resources such as CPU.
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