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Abstract

Timed Transition Models (TTMs) are event-based descriptions for modelling,
specifying, and verifying discrete real-time systems. A system is composed of module
instances. Each module declares an interface and a list of events. An event can be
spontaneous, fair, or timed (i.e., with lower and upper time bounds). TTMs have a
textual syntax, an operational semantics, and an automated tool, including an editor
with type checking, a graphical simulator, and a verifier for linear-time temporal
logic. In this paper, we extend TTMs and its tool with two novel modelling features:
synchronous events and indexed events. Event synchronization allows developers to
decompose simultaneous state updates into actions of separate events. To specify
the intended data flow among synchronized actions, we reference the post-state (i.e.,
one resulted from taking the synchronized actions) using primed variables. The
TTM tool automatically infers the data flow from synchronous events, and reports
type errors when there are inconsistencies due to circular data flow. We apply
synchronous events to verify function blocks from the IEC 61131 standard, and a
part of the requirements of a nuclear shutdown system. Indexed events allow for
concise description of behaviour common to a (possibly unspecified) set of actors.
The indexing construct allows us to select a specific actor and specify a temporal
property for that actor. We use indexed events to verify a mutual exclusion protocol
and a train system. In all examples, the TTM tool is used to verify safety, liveness,
and real-time properties.
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1 Introduction

Cyber-physical systems integrate computational systems (the “controller”) with phys-
ical processes (the “plant”). Such systems are found in areas as diverse as aerospace,
automotive, chemical processes, civil infrastructure, energy, healthcare, manufacturing,
transportation, and consumer appliances. A main challenge in developing cyber-physical
systems is modelling the joint dynamics of computer controllers and the plant [3].

Certification of cyber-physical systems requires making arguments that convince the
relevant certification authority that suitable steps have been taken to ensure the safety,
reliability and integrity of safety critical systems. Formal methods are recognized as one
of the methods used to provide evidence of safety and fitness for purpose. For example,
DO-333 [4] provides guidance to software developers wishing to use formal methods in
all phases of the design of airborne systems to satisfy DO-178C certification objectives.
A recent case study [2] successfully adopts the guidance in DO-333 to satisfy DO-178C
objectives, using different formal verification techniques (theorem proving, model check-
ing, and abstract interpretation) on a flight guidance system. It is widely recognized
that many problems start with incomplete or missing requirements. Thus the validation
of requirements is an important problem.

Timed Transition Models (TTMs) are event-based descriptions for modelling, specify-
ing, and verifying discrete real-time systems. A system is composed of module instances.
Each module declares an interface and a list of events. An event can be spontaneous,
fair, or timed (i.e., with lower and upper time bounds). In [13], we provided TTMs with
a textual syntax, an operational semantics, and an automated tool, including an editor
with type checking, a graphical simulator, and a verifier for linear-time temporal logic.
In that paper, TTMs were used to verify that a variety of implementations satisfy their
specifications.

Contributions. In this paper, we extend the TTM notation and tool with two novel
modelling features: indexed events and synchronous events. These constructs provide
expressive descriptions closer to the specification level, and can thus facilitate the vali-
dation of system requirements.

Indexed events allow for concise description of behaviour common to a (possibly
unspecified) set of actors. The indexing construct allows us to select a specific actor
(such as a train) and specify a temporal property for that actor. For example, let loc be
an array of train locations (a train can be on either the entrance block, a platform, an
exit block, or outside the station). An event move out can be indexed with a set TRAIN

of trains, which results in an indexed event move out(t: fair TRAIN) describing the action
of a train t moving out of a platform and into the exit block. As a result, the event index
t can be used to specify the liveness property that every train t waiting at a platform
eventually moves out, and into the exit block: �(loc[t] ∈ PLF ⇒ ♦move out(t)). A
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stronger property states that each train waiting at a platform eventually departs from
the exit block to leave the station: �(loc[t] ∈ PLF ⇒ ♦(loc[t] = Out)). Without the
index t , we can only state a weaker property that some train eventually leaves the station
(unless we introduce auxiliary variables or events). We can also assert the safety property
that there are no collisions, i.e. no two trains are on the same block at the same time.

TTM notations are rich enough to provide a variety of models at different levels of
abstraction. In Section 3.3, we provide two models for a train system. In both models, the
TTM tool is used to verify safety, liveness, and real-time properties. The first model is an
abstract description of the system, combining events of the plant and the controller and
using the full power of indexed events. We then provide a refinement, where we remove
the index t from the controller event, and replace the strong fairness assumption that
was made by a round-robin queue (making the controller closer to implementation). The
TTM tool allows the queue to be implemented in C# which makes the model description
clearer while reducing state space.

Synchronous events are two (or more) events in different TTM modules that act
together while simultaneously updating their local, output, and shared variables (subject
to rules of consistent updates). In addition, we allow primed and unprimed variables in
event updates, so that the the next-state value of an output variable o can be expressed
using both the current (or pre-state) value of an input variable i and its next-state value
(i’). This makes the update to output o instantaneous (i.e. the output changes at the
same time as the input, rather than after). The TTM tool performs type-checking to
ensure that there is no circularity in the data flow.

Synchronous events, together with primed variables, are suitable for describing the
kind of high-level specifications used in shutdown systems of nuclear reactors [18]. In
such systems, the next-state value of the system controlled variables are expressed in
terms of the current-state and next-state values of the monitored variables of nuclear
reactors. This allows for a simplified description of the requirements that will later be
refined to code in the design phase.

As the first case study of synchronous events, we consider function blocks drawn from
the IEC 61131-3 Standard. Programmable logic controllers (PLCs) are widely used for
developing embedded systems. Function blocks are used to describe the components of
PLCs. In the IEC 61131 standard [8], function blocks are described by structured text
(a Pascal like programming language) and function block diagrams. In Section 4.2, we
use synchronous events to show that systems composed of function blocks satisfy their
intended specification.

Figure 6 (p.17) shows the declarations and implementations of function blocks we
consider, as well as the three-step verification process we take (Figure 6a). First, we
show that a hysteresis function block described by structured text (the implementation)
satisfies an input-output relation (its specification). When hysteresis blocks are used in
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compositions, we may now use their specifications instead of their implementation. This
simplifies the verification of compositions. Second, we implement a limits alarm block
using two hysteresis blocks (one block for a low alarm and one block for the high alarm).
In the composed limits alarm block, the various events in the composition synchronize
with each other and are thus taken simultaneously, as required by the semantics of
function block composition. We then verify that the implementation of the limits alarm
block satisfies its specification. Third, we show that a system composed of the limit
alarm block and an unconstrained environment satisfies an important safety property,
viz. that the high and low alarm will never trip at the same time.

As a second case study, we use synchronous events to describe the Neutron OverPower
(NOP) controller in a nuclear reactor [18]. The main requirement (which we will call a re-
sponse property) is that the NOP controller must trip the nuclear reactor if any one of the
many monitored variables exceeds certain set point (high limit) with a hysteresis region.
The software requirements of the NOP is specified using tabular expressions (also called
function tables [9]). The system is treated as a black box taking input stimuli (monitored
variables) and producing output responses (controlled variables). Hidden from the black
box are intermediate function variables. The entire shutdown system, which the NOP
is part of, is composed of a large number of function tables. Each table documents a
controlled variable, or an intermediate function variable, as a mathematical function of
its dependent monitored and function variables. In their model of requirements, environ-
ment changes (on monitored variables) and controller responses (on controlled variables)
occur simultaneously as a single state transition. That is, in the function table for a
controlled variable, the computation for its next-state value may depend on not only
the pre-state, but also the post-state values of all its dependant monitored and function
variables. Such idealized behaviour is only implementable if the response allowance [19]
is also specified for every pair of controller and monitored variables. Our synchronous
events, together with the primed notation, can thus be used to describe the various func-
tion tables in the NOP. However, function tables that specify individual components in
the NOP cannot be used to validate the overall response property.

In Section 4.3, we present two TTMs of the NOP. The first model presents a high-
level requirements model where the controller responds instantaneously to changes in the
environment (the plant). We synchronize both the environment and controller events to
model such instantaneity. In this abstract model, we use the TTM tool to check the
critical response property as an invariant. In fact, for the abstract specification to be
implementable, it must be specified with a response allowance (RA) on the controller’s
response to input stimuli [19].

However, to keep the example simple for illustration (and without loss of generality),
we assume that the plant changes more slowly than the controller responds. Given this
assumption on response allowance, we provide a second model, a refinement of the first, in
which the plant and the controller are decoupled. That is, the plant and controller events
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are interleaved. The assumption on response allowance is specified using time bounds
of the plant and controller events. In this model, using a timer t , the NOP response
property becomes: �( (any monitored signal unsafe ∧ t = T)⇒ ♦(tripped ∧ t < T + 2) ).

Outline. In Section 2 we summarize the syntax of TTMs. In Section 3 we illustrate
indexed events using a mutual exclusion protocol and a train station. In Section 4 we
illustrate synchronous events (and primed variables) using function blocks drawn from
the IEC 61131-3 Standard on Programmable Logic Controllers and the requirements of
a nuclear shutdown system. In Section 5 we discuss the related works.

Resources. The operational semantics for indexed and synched events are included as an
appendix to this report . Complete TTM listings of all our case studies are available at:
https://wiki.eecs.yorku.ca/project/ttm/index_sync_evt.

2 Preliminaries

We illustrate the basic features of textual TTM using the following small example1.

#define N 10;
type
ST = {on , off}
PID = 1 .. (N−1)

end
share initialization
a : share ARRAY[ST](N) = [on (N)]

end
timers t : 0 .. 2 disabledinit end

module M
interface

p : in PID
s : share ST

local
b : BOOL = false

events
e [1, 3] just
when . . . start t do . . . end

end

instances
m0 = M(in 0, share a[0])

end
composition
ms = || p : PID @ M(in p, share a[p])
system = m0 || ms

end
#assert system |= []<>tick;
#assert system |= []<>‘‘ms[2].e’’;

We use define clauses to declare global constants (e.g., N ) and macro functions (e.g.,
#define min(x, y) ( if x ≤ y then x else y fi )). An explicit call statement is required for
using a macro function (e.g., call(min, 4, 44)). Within a type . . . end clause, we define
a list of named enumerations (e.g., BUTTON ) and intervals (e.g., PID). Within a share

initialization . . . end clause, we declare a list of global variables and their initial values
shared by all module instances (e.g., the Boolean array a of constant size N is initialized
to false for all cells). We may also declare a shared object typed to some imported C#
class (e.g., qe : <Queue>). Within a timers . . . end clause, we declare a list of global timers
with a specified range (e.g., t). Each timer is disabled initially, meaning that it starts
counting only after some event has explicitly started it; otherwise, the timer should be
declared as enabledinit .

Each module . . . end clause declares a module that consists of interface and local
variables, and a list of events. We support primitive types including integer INT , Boolean

1For more examples, Figure 12 (p. 27) shows (part of) requirements of a nuclear shutdown system,
which we will discuss in details in Section 4.3. A pacemaker in TTM is also available [13]. More examples
and the grammar can be found in: https://wiki.eecs.yorku.ca/project/ttm/. We give an informal
account on the behaviour of events. A formal, complete explanation of the semantics is reported [13].
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BOOL, user-defined enumerations (e.g,. ST ) and intervals (e.g., PID). Each module
variable may be typed to a primitive or an array of primitives (e.g., ARRAY [ST ](N )).
Each interface variable is specified with a modifier that indicates the intended usage in
its events: an in variable is real-only; a shared variable may be read and written by any
module declaring such usage; and an out variable means that all other modules may only
read it.

Each module event may be specified with a guarding predicate (via the when clause)
and an action (via the do clause) using parallel assignments and nested if-statements.
Assignments may be performed deterministically (e.g., s := off ) or demonically (e.g., s ::

ST ). Each demonic assignment non-deterministically assigns a value from the specified
type (which can be primitives or arrays). Demonic assignments are useful for modelling
the environment (or plant) module that non-deterministically changes values of variables
that are monitored by the controller module. Each event may also start or stop a list of
global timers (using the start or stop clause).

Each module event e may be specified with a real-time constraint (i.e., [l, u] meaning
lower time bound l and upper time bound u) and with a fairness assumption [17] (i.e., just

or compassionate). Informally speaking, as soon as its guard Ge is satisfied, an implicit
timer Te starts and keeps counting as long as Ge remains satisfied. Event Te is enabled
and must be taken when l ≤ Te ≤ u. On the other hand, the strong compassionate

(resp. weak just) fairness constraint introduces the assumption that if event e is enabled
infinitely often (resp. is eventually continuously enabled), then it occurs infinitely often.

To construct a system for verification, we instantiate modules (via an instances . . . end

clause) and compose instances (via a composition . . . end clause). In creating instances,
we supply value expressions for in variables (e.g., 0 for variable p in module M ) and
rename out variables (e.g., a[0 ] for variable s in module M , specifying that instance m0

shares only a portion of the global array a). In composing instances, we support both
binary parallel compositions (e.g., system) and indexed parallel compositions (e.g., ms).
In each composition, events are qualified by names of their containing module instances
(e.g., m0.e and ms[2 ].e). For simulation and verification, the TTM tool constructs a
reachability graph by flattening the module structure: all qualified events are treated as
possible state transitions.

In checking assertions on compositions, we support operators in the langue linear
temporal logic (LTL) [11]: henceforth (�), eventually (♦), next (©), strong until (U),
and release (R). However, the tool does not support the weak until (W) operator, but
we often find it useful for stating properties. As a result, we reformulate properties using
W to use R instead. In assertions, we may refer to occurrences of events, including the
clock tick to check that the system exhibits no Zeno-behaviour (i.e., �♦ tick).
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3 Indexed Events

3.1 Syntax and Informal Semantics

We introduce the syntax of indexed events using two versions of an event for trains to
move out of the station:

move out(t : TRAIN) just
when . . .
do . . .
end

move out(t : fair TRAIN) just
when . . .
do . . .
end

Both versions parameterize the event with an index t ranging over a set of trains,
and the guards and actions may reference t . Each version denotes a family of events,
with each member event instantiating each of t with a particular train value. In the
version where the index t is declared as fair , each individual member event is chosen
by the scheduler (with the declared fairness assumption on the family, i.e., just). This
makes it possible for us to assert the temporal property that a particular train can
eventually move out of the station upon its entrance. On the other hand, in the version
where the index t is not declared as fair (which we call a demonic index), the scheduler
non-deterministically chooses a member event from the family (with the declared weak
fairness assumption). This makes it only possible for us to assert a weaker property that
some train can eventually move out of the station. In general, we may have a set of fair

indices and a set of demonic indices declared for an event. Each combination of values
for the fair indices will be chosen by the scheduler with the declared fairness assumption
on the event family. On the other hand, each combination of the demonic indices will be
chosen non-deterministically with no fairness assumptions.

3.2 Example: A Locking Protocol

We use indexed events to model, specify, and verify a locking protocol. There are two
justifications for using the indexed events. First, all processes regulated by the locking
protocol share a common behaviour of entering and leaving the critical section (CS).
Second, by declaring that the indexed processes being fair, we can assert that once a
process makes its request, that particular process (rather than an arbitrary process)
is guaranteed to eventually enter its CS. We also assert, using a global timer and an
observer, that once a process makes its request, its waiting time cannot be indefinite.
Furthermore, to model the first-come-first-serve mechanism for processes to enter their
CSs, we illustrate the use of a C# (FIFO) Queue object. Implementation details of queue
operations such as Enqueue, Dequeue, and First are all encapsulated, resulting in a cleaner
model description compared with using a native TTM array.
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Given a finite number N of processes, we derive a set of process identifiers: PID =
0 .. (N− 1). Figure 1 illustrates the common behaviour (i.e., state transitions) of process
p ∈ PID.

state[p]=waiting

request ( p )[1, *]
    do rank.Enqueue(p)

state[p]=busy

state[p]=idle

enter ( p )[1, 1]
    when rank.First() = p

leave ( p )[1, 3]
    when rank.Dequeue() = p

Figure 1: Locking Protocol: State Transitions of Process p ∈ PID

Each process has three possible states: (1) idle for a new request to enter its CS; (2)
waiting for its turn to enter its CS; and (3) busy with performing tasks in its CS. Process
that have requested to enter their CS do so on a first-come-first-serve basis. To achieve
this in TTM, we declare a shared variable rank of type Queue, a C# class from the
standard PAT library. Once it is process p’s turn to enter its CS (i.e., rank.First() = p),
it takes exactly one clock tick to complete the entrance without any indefinite delay.
Similarly, once entering, the time of process p staying in its CS is also bounded (i.e.,
time bounds [1, 3] for event leave).

We describe the common process behaviour (Figure 1) using indexed events (in module
LOCK ):

request(p : fair PID) [1, ∗]
when

state[p] == idle
do

state[p] := waiting,
rank.Enqueue(p)

end

enter(p : fair PID) [1, 1] just
when

state[p] == waiting &&
rank.First() == p

do
state[p] := busy

end

leave(p : fair PID) [1, 3] just
when

state[p] == busy
do

state[p] := idle,
rank.Dequeue()

end

We declare index p of all three events as fair . This allows us to assert that a particular
process p that makes its requests will eventually enter its CS. For example, for process
0, we assert that:

� ( state[0] = waiting⇒ ♦(state[0] = busy) ) (1)

� ( l.request(p=0)⇒ ♦l.enter(p=0) ) (2)
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where l is an instance of module LOCK , and request(p=0) and enter(p=0) identify the
occurrences of events request and enter specific for process 0. Otherwise, if these indices
are not fair, then we can only assert a weaker property: when a process makes a request,
then eventually another (not necessarily the same) process enters its CS.

In fact, since we impose a real-time constraint on the enter event of each process (i.e.,
it takes exactly one clock tick to complete), we can a stronger property than Equations 1
and 2. For example, by introducing a global timer t , we declare an OBSERVER module
that monitors the state of process 0 using two instantaneous events (i.e., with zero lower
and upper time bounds):

p0 starts waiting[0, 0]
when state[0]==waiting && !t on
start t do t on := true end

p0 gets busy[0, 0]
when state[0]==busy && t on
stop t do t on := false end

Then by creating an instance o of module OBSERVER, we assert that

�

(
o.p0 starts waiting⇒

state[0] = waiting ∧mono(t) U o.p0 gets busy ∧ (t ≤ 4× (N − 1) + 1)

)
(3)

Once making its request, the maximum amount of time for process p to wait is when it is
at the end of the queue rank , in which case each of the N− 1 process takes up to 4 clock
ticks to enter and leave its CS, and when it is p’s turn for entrance, it takes another 1
clock tick to do so.

Finally, to ensure that the locking protocol guarantees mutual exclusion, we may assert
that while a process is still in its CS, the turn is not given to any other processes waiting.

� ( ∀p : PID • (state[p] = busy⇒ rank.First() = p) ) (4)

Another property that more explicitly asserts mutual exclusion is that no two distinct
processes are at their CSs (i.e., in their busy states) simultaneously.

� ( ∀p, q : PID • (p 6= q⇒ ¬ (state[p] = busy ∧ state[q] = busy)) ) (5)

3.3 Example: A Train Control System

We illustrate the use of TTM indexed events in a train control system. There are two
reasons for using the indexed events. First, all trains entering and leaving the station
share a common behaviour. Second, by declaring the events’ indices (ranging over trains)
as fair, we can assert that individual trains arriving at the station are guaranteed to
depart, without being blocked indefinitely by other trains. We also assert that the
system is safe: trains never collide. While satisfying these liveness and safety properties,
we provide two versions for the train control system. The abstract version schedules
trains (for leaving the station) non-deterministically. The refined, more realistic version

10



resolves the non-determinism by using a FIFO queue, implemented in C#, together with
a weaker fairness assumption. By using a C# Queue object, implementation details of
operations such as Enqueue, Dequeue, and First are all encapsulated, resulting in a model
simpler than one using a native TTM array. Moreover, the refined version models the
sensors and actuators in a more realistic manner, and the accuracy is stated using a
gluing invariant.

entry platform exit

signals

(a) Topology

loc[t] = 
Entr

arrive ( t )
    when entrance block is free

loc[t] = 
in_switch

loc[t] = 
Out

move_in ( t )
    when incoming signal is green

loc[t] = 
Exit

move_out ( t )
    when outgoing signal is green

depart ( t )

(b) State Transitions of Train t ∈ TRAIN

Figure 2: A Train Control System

Figure 2a shows the topology of the train control system [6, 7]. There is an entry
block (Entr) and an exit block (Exit) on the two ends of the station. Between the entry
and exit blocks is a set BLOCK of special blocks called platforms. At most one train
may stay at the entry or exit block at a time. On the entry bock, there is a signal
isgn regulating the incoming train, as a function of the availability of platforms. On each
platform p ∈ BLOCK, there is a signal osgn[p] regulating the outgoing train, as a function
of the availability of the exit block. Figure 2b illustrate the common behaviour of all
trains. Each train is initially travelling outside the station. The train may first arrive
at the entry block of the station, provided that it is not occupied. When the signal isgn

turns green, the train is directed via an in-switch to move in an available platform. For
some train t , after it moved to platform p, it waits for the light signal of platform p to
turn green and then moves away from p and onto the exit block. Then the train may
depart from thestation.

The train system must satisfy the safety property that trains never collide (i.e., no two
trains are ever at the same location). We ensure that once a train arrives, the scheduling
mechanism for outgoing signals allows that particular train to eventually depart from
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the station.

(∀t1, t2 : TRAIN • ( t1 6= t2 ∧ loc[t1] 6= Out ∧ loc[t2] 6= Out )⇒ loc[t1] 6= loc[t2]) (6)

�( loc[t] = Entr⇒ ♦(loc[t] = Out) ) (7)

where the array variable loc maps a train to its location (outside or at the entry, exit, or
a platform). We present two versions of TTM that satisfy both Equations 6 and 7.

Figure 3a presents the interface of an abstract version of TTM. At this level of abstrac-
tion, there is no separation between monitored and controlled variables. As a result, the
abstract version contains a single STATION module that: (a) owns all variables; and (b)
mixes all events of train movement (e.g., event move out in Figure 4a) and of signal control
(e.g., event ctrl platform signal in Figure 5a). On the other hand, Figure 3b presents the
TTM interface of a refined version of TTM. This refined version distinguishes between
one monitored variable (i.e., the set occ of occupied platforms) and three controlled vari-
ables (i.e, the signal isgn for an incoming train, the platform in switch currently connected
to the entrance block, and signals osgn for outgoing trains).

Consistently, the behavior of the controller and that of the trains are factored in sepa-
rate events and placed in separate modules, respectively CONTROLLER and STATION .
The monitored variable is owned by the STATION module (the environment), and is
read-only for the CONTROLLER module, as indicated by the modifier in its interface.
Similarly, the controlled variables are exclusively written by the CONTROLLER module,
and are read-only for the STATION module.

module STATION
interface
loc : out ARRAY[OPT BLOCK]
isgn : out BOOL
osgn : out ARRAY[BOOL]
in switch : out BLOCK

(a) Abstract

module STATION
interface

occ : out ARRAY[BOOL]
isgn : in BOOL
osgn : in ARRAY[BOOL]
in switch : in BLOCK

local
loc : ARRAY[OPT BLOCK]

share initialization
qe : <Queue>

end
module CONTROLLER
interface

occ : in ARRAY[BOOL]
isgn : out BOOL
osgn : out ARRAY[BOOL]
in switch : out BLOCK

(b) Refined: Separate Station & Controller Events

Figure 3: Train Control System in TTM: Interfaces

The refinement of the abstract train control system changes the representation of the
data used by control events. In the abstract version (Figure 3a), the array variable loc is
used to map each train to its current location, constrained by type OPT BLOCK , {Out}∪
BLOCK where BLOCK , {Entr, Exit}∪PLF. All train events (e.g., move out in Figure 4a)
are indexed with the set of trains and update their location accordingly (e.g., loc[t ] :=
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Exit). All control events (e.g., ctrl platform signal in Figure 5a) query the value of loc in
their guards (e.g., we write !( ||t: TRAIN @ loc[t ] == Exit ) to check that the exit block is
not occupied). However, a more realistic station controller may monitor platforms in the
station only, rather than all trains including those travelling elsewhere outside the station.
Consequently, in the refined version (Figure 3b), by refactoring loc as a local variable
in the STATION module (the environment), we hide it from the CONTROLLER. The
controller then only has access to the monitored variable occ (i.e., the set of occupied
platforms) which encodes a coarser grain of information than loc (i.e., locations of all
trains). Using the new monitored variable occ simplifies guards of controller events (e.g.,
in Figure 5b, we write !occ[Exit ] instead of an existential quantification to express that
the exit block is free). In addition, train events in the environment (e.g., Figure 4b)
updates both the local variable loc and the output variable occ. This raises the question
of whether the CONTROLLER module accesses the monitored variable occ in a way
consistent with the corresponding events in the abstract model. Therefore, we assert the
following invariant (where s is a STATION instance): a block is occupied if and only if
it corresponds to the location of some train.

� (∀b : BLOCK • occ[b] ≡ (∃t : TRAIN • s.loc[t] = b)) (8)

move out(t : fair TRAIN) just
when call(is platform,loc[t]) && osgn[loc[t]]
do loc[t] := Exit, osgn[loc[t]] := false end

(a) Abstract Version

move out(t : fair TRAIN)[2, ∗] just
when call(is platform,loc[t]) && osgn[loc[t]]
do loc[t] := Exit, occ[loc[t]] := false, occ[Exit] := true

end

(b) Refined Version

Figure 4: Train Control System in TTM: the move in Event in Module STATION

ctrl platform signal(p : fair BLOCK) compassionate
when call(is platform, p)

&& (&&p : BLOCK @ call(is platform, p) −> !osgn[p
])

&& !(||t: TRAIN @ loc[t] == Exit)
&& (||t: TRAIN @ loc[t] == p)

do osgn[p] := true end

(a) Abstract Version in module STATION

ctrl platform signal just
when qe.Count() != 0

&& !osgn[qe.First()]
&& !occ[Exit]
&& occ[qe.First()]

do osgn[qe.First()] := true end

(b) Refined Version in module CON-
TROLLER

Figure 5: Train Control System in TTM: Controller Events
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The fundamental difference between the abstract and the concrete TTM models resides
in the scheduling of the green signals that control the passage from the platforms to the
exit block. While the abstract model specifies very little with respect to the order in which
trains gain access to the exit block (i.e., the order is non-deterministic), the concrete
model specifies the order uniquely. The signals are controlled by event ctrl platform signal .
In the abstract version (Figure 5a), the event is indexed by the set of trains. When the
exit block is not occupied, more than one train located at a platforms may be eligible
to move on to the exit block. To satisfy Property 7, we declare the index on trains as
fair and adopt a strong fairness assumption (i.e., compassionate) on the controller event.
That is, a train infinitely often qualified to leave the station does so eventually. However,
such fairness assumption cannot be implemented efficiently in a general manner. This is
why, in the refined version (Figure 5b), we use a C# FIFO Queue to dictate the order of
departure of the trains: the first train to reach a platform is also the first one to leave.
The reduced non-determinism allows us to remove the fair index on trains and weaken
the fairness assumption (i.e., the event becomes just).

4 Synchronous Events

4.1 Syntax and Informal Semantics

We introduce the syntax of synchronous events in TTM using the following example.

module PLANT
interface

x : out INT = 0
events

generate
do

x :: 0 .. 10
end

end

module CONTROLLER
depends p : PLANT
interface

x : in INT
b : out BOOL = false

events
respond sync p.generate as act
do

if x’ > 0 then b := true else b = false fi
end

end

instances
env = PLANT(out x)
c = CONTROLLER(in x, out b)

with
p := env

end
sync env c ::= env || c

end
composition

system = sync env c
end

At the module level (e.g., CONTROLLER), we use a depends clause to specify a list of
instances that the current module depends on. At the event level (e.g., respond), we use a
sync . . . as . . . clause to specify the list of events to be synchronized, qualified by names
of the dependent instances (e.g., p.generate), and to rename the synchronized events with
a new name (act). Actions of events that are involved in synchronization may reference
the primed version of input variables to obtain their post-state values. For example, the
respond event uses the post-state value of the input variable x (i.e., x’) to compute the
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post-state value of its output variable b. In creating an instance, we use a with . . . end

clause to bind all its dependent instances, if any. We use the ::= operator to rename the
synchronized instances (e.g., sync env c). As the instances env and c are synchronized as
the new instance sync env c, taking the event sync env c.act has the effect of updating,
as one atomic step, the monitored variable x then the controlled variable b. Consistency
rules are enforced to ensure that dependencies at the module, event, and action levels
are acyclic.

4.2 Example: Two Function Blocks from the IEC 61131 Standard

In this section, we use synchronous events to show that systems composed of func-
tion blocks from the IEC 61131 Standard [8] satisfy their intended specification. Pro-
grammable logic controllers (PLCs) are widely used for developing embedded systems.
Function blocks (FBs) are used to describe the components of PLCs. Part 3 of the
IEC 61131 Standard [8] was published by the International Electrotechnical Commit-
tee (IEC) to standardize the syntax of FBs for building PLCs, and to supply a library
(Annex F) of example FBs. For verification, we choose the HYSTERESIS and LIM-

ITS ALARM blocks, for which the standard supplies, respectively, a structured text (ST)
implementation and a function block diagram (FBD) implementation.

Figure 6a (p.17), from right to left, summarizes our three-step verification process for
the two chosen FBs. The construct of synchronous events is used in the second and third
steps. First, we verify that the ST implementation of the HYSTERESIS block supplied
by IEC 61131-3 (Figure 6c) exhibits the expected behaviour (Figure 6f) by satisfying
an input-output relation (its specification). When using hysteresis blocks in composi-
tions, we may use their specifications instead of their implementation. This simplifies
the verification of compositions. Second, using the specification of HYSTERESIS (Fig-
ure 6f), we verify that the FBD implementation of the LIMITS ALARM block supplied
by IEC 61131-3 (Figure 6e) exhibits the expected behaviour (Figure 6g). In the com-
posed limits alarm block, the various events in the composition synchronize with each
other and are thus taken simultaneously, as required by the semantics of function block
composition. Third, we show that a system composed of the LIMITS ALARM block and
an unconstrained environment satisfies an important safety property, viz. that the high
and low alarm will never trip at the same time.

Figure 6b shows the input-output declaration of the HYSTERESIS block. It takes
three real values as inputs: a sensor signal value XIN1 , a set-point value XIN2 , and a
hysteresis band (or dead band) size EPS . It outputs a Boolean alarm Q . Figure 6f shows
the expected input-output relation of the HYSTERESIS block. The output alarm Q is
tripped (i.e., set to true) if the sensor value is strictly above the hysteresis band (i.e.,
to the left of the closed interval [XIN2 − EPS, XIN2 + EPS]), and not tripped if it is
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strictly below the band. Otherwise, if the sensor value is within the hysteresis band2,
the alarm value Q remains unchanged. Figure 6c shows the (Pascal-like) structured text
(ST) implementation supplied by IEC 61131-33. The ST implementation trips the alarm
Q when the alarm is currently not tripped (i.e., ¬ Q), and when the input signal value is
above the hysteresis band (i.e., XIN1 > XIN2 + EPS); and similarly for when to un-trip
the alarm. The no-change case is covered by the two implicit “else” statements.

Figure 6d shows the input-output declaration of the LIMITS ALARM block. It takes
four real values as inputs: a sensor signal value X , a high limit H , a low limit L, and a
hysteresis band size EPS . It outputs three Boolean alarms: high alarm QH, low alarm QL,
and system Q . Figure 6g shows the expected input- output relation of the LIMITS ALARM

block. The LIMITS ALARM block works by running two instances of the HYSTERESIS

blocks: one for computing the high alarm QH , and the other for the low alarm QL.
The output high alarm QH (resp., QL) is tripped if the sensor value is strictly above
(resp., below) the hysteresis band [H− EPS, H] (resp., [L, L + EPS]), and not tripped if
it is strictly below (resp., above) the band. Otherwise, if the sensor value is within the
hysteresis band, the alarm value QH (resp., QL) remains unchanged. The system alarm
Q is tripped as long as either QH or QL is tripped. The FBD implementation supplied
by IEC 61131-3 (Figure 6e) invokes two instances HYSTERESIS (X, H− EPS

2 , EPS
2 ) and

HYSTERESIS (L + EPS
2 , X, EPS

2 ). The input EPS of the LIMITS ALARM is not the same
as that of the HYSTERESIS block. Consequently, the variable w1 is used to capture the
result of computing the half of EPS input to LIMITS ALARM , and variables w2 and w3

capture results of, respectively, the addition and subtraction.

Step 1: Verification of HYSTERESIS Implementation. The TTM model in Fig-
ure 7a conforms to the structure in Figure 7b: to separate the HYSTERESIS block and
its operating environment (or the plant). The input-output instantiation corresponds to
that of Figure 6b (p. 17).
Abstraction on Input Values. The TTM tool, like other model checking tools, cannot
handle the real-valued inputs XIN1 , XIN2 , and EPS . Instead, we choose partition the
infinite domain of XIN1 into five disjoint intervals: (1) XIN1 < XIN2− EPS; (2) XIN1 =
XIN2 − EPS; (3) XIN2 − EPS < XIN1 < XIN2 + EPS; (4) XIN1 = XIN2 + EPS; and (5)
XIN1 > XIN2 + EPS. We fix inputs EPS and XIN2 as integer constants, and accordingly,
construct a finite integer set SIGNAL RANGE that covers all the five intervals. We
perform reachability checks to ensure that the chosen SIGNAL RANGE is complete.

In module PLANT , we declare an event generate that updates the signal value X via
a demonic assignment (i.e., X :: SIGNAL RANGE)4. The specified lower and upper time

2In practice, considering the oscillation of the input signal value, the hysteresis region (of size 2×EPS)
is meant to prevent the output alarm value Q from alternating too often.

3In IEC 61131, integers 0 and 1 are used as Boolean values while our TTM model uses true and false
instead.

4When creating the instance env , this variable is renamed to XIN1 .
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LIMITS_ALARM
Implementation HIGH_ALARM

Implementation

LOW_ALARM 
Implementation

uses

uses

HYSTERESIS
Specification

uses

uses

HYSTERESIS
Implementation

LIMITS_ALARM
Specification

LIMITS_ALARM
Requirement

satisfiessatisfies satisfies

(a) Outline of Verification for the HYSTERESIS and LIMITS ALARM Function Blocks

+------------+

| HYSTERESIS |

| |

REAL --|XIN1 Q|-- BOOL

REAL --|XIN2 |

REAL --|EPS |

| |

+------------+

(b) HYSTERESIS Block: Declaration

FUNCTION_BLOCK HYSTERESIS

VAR_INPUT XIN1, XIN2, EPS : REAL; END_VAR

VAR_OUTPUT Q : BOOL := 0; END_VAR

IF Q THEN IF XIN1 < (XIN2 - EPS) THEN Q := 0; END_IF ;

ELSIF XIN1 > (XIN2 + EPS) THEN Q := 1 ;

END_IF ;

END_FUNCTION_BLOCK

(c) HYSTERESIS Block: ST Implementation

+--------------+

| LIMITS_ALARM |

| |

REAL--|H QH|--BOOL

REAL--|X Q|--BOOL

REAL--|L QL|--BOOL

REAL--|EPS |

+--------------+

(d) LIMITS ALARM Block: Declara-
tion

HIGH_ALARM

+------------+

| HYSTERESIS |

X------------------------+--|XIN1 Q|--+----------QH

+---+ w2| | | |

H----------------| - |------|XIN2 | |

+---| | | | | |

| +---+ | | | |

+--------------|EPS | | +-----+

+---+w1| | +------------+ +--| >=1 |

EPS --| / |--| | | |--Q

2.0 --| | | | LOW_ALARM +--| |

+---+ | | +------------+ | +-----+

| +---+ w3| | HYSTERESIS | |

L ---------------| + |------|XIN1 Q|--+-----------QL

| | | | | |

+---| | +--|XIN2 |

| +---+ | |

+--------------|EPS |

+------------+

(e) LIMITS ALARM Block: FBD Implementation

Time

XIN1

XIN2

XIN2 - EPS

XIN2 + EPS
Q = true

Q = false

No Change (NC)
2 ⇥ EPS

(f) HYSTERESIS Block: Behaviour

Time

x

H - EPS/2

H - EPS

H

No Change (NC)
EPS

L + EPS/2

l

L + EPS

QL = true

EPS
No Change (NC)

QL = false

QH = true

QH = false

(g) LIMITS ALARM Block: Behaviour

Figure 6: HYSTERESIS and LIMITS ALARM from IEC 61131-3 [8]
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module HYSTERESIS
interface

XIN1: in INT
XIN2: in INT
EPS : in INT
Q : out BOOL = false

local
q old : BOOL = false

events
respond[1, 1]
do q old := Q,

if Q then
if XIN1 < XIN2 − EPS
then Q := false

else skip fi
elseif XIN1 > XIN2 + EPS
then Q := true

else skip fi
end

end

module PLANT
interface

X : out INT = DEFAULT
events

generate[2, ∗]
do

X :: SIGNAL RANGE
end

end

instances
env = PLANT(out XIN1)
hys = HYSTERESIS(

in XIN1, in XIN2, in EPS, out Q)
end

composition
system = env || hys

end

(a) TTM

hys: HYSTERESIS
hys.respond

p: PLANT
p.generate

out XIN1 
out XIN2 
out EPS

out Q

(b) Structure

Figure 7: Modelling HYSTERESIS in TTM

bounds for event generate indicate that each signal change from the plant occurs at the
fastest rate of every two ticks, or it may never occur. On the other hand, to ensure
that the HYSTERESIS block responds fast enough to input changes from the plant, we
specify the upper time bound of the respond event being strictly smaller than the lower
time bound of the generate event. Also, in the HYSTERESIS module, we declare a local
variable q old , later used for defining its functional specification, to record value for the
output alarm Q that is last updated. Action of the respond is a straightforward translation
from the ST implementation (Figure 6c) using if-statements.

The specification for the composed system is based on the three partitions of input
signal XIN1 :

spec ,

 (XIN1 > XIN2 + EPS ⇒ Q)
∧ (XIN2− EPS ≤ XIN1 ≤ XIN2 + EPS ⇒ Q = hys.q old)
∧ (XIN1 < XIN2− EPS ⇒ ¬Q)

 (9)

However, the assertion system |= � spec fails as the specified time bounds [1, 1] for the
hys.respond event ensure that the response is, realistically, not instantaneous. Instead, we

18



assert that the hys.respond event is able to establish the above functional specification.

�( hys.respond⇒ spec ) (10)

�( spec⇒ (spec W env.generate ) (11)

�( env.generate⇒ (© ¬ env.generate) U hys.respond ) (12)

Equation 10 states that the ST implementation satisfies its intended specification spec.
Equation 115 states that only the spontaneous action of the environment can break spec.
Equation 12 states that the hysteresis block responds each environment change before
the next one occurs.

Step 2: Verification of LIMITS ALARM Implementation. The TTM model in
Figure 8a conforms to the structure of synchronization in Figure 8b. Following the same
rationale from the previous step, we partition the infinite domain of the monitored signal
X into disjoint intervals: (1) X < L; (2) X = L; (3) L < X < L + EPS; (4) X = L + EPS;
(5) L + EPS < X < H − EPS; (6) X = H − EPS; (7) H − EPS < X < H; (8) X = H; and
(9) X > H. We then fix inputs EPS , H , and L as integer constants, and accordingly,
construct a finite integer set SIGNAL RANGE that covers all the intervals.

Value of the system alarm Q depends on those of the low alarm QL and high alarm QH ,
each calculated using the HYSTERESIS block (Figure 6e, p. 17). As a result, synchronous
events are suitable for modelling such data dependancy. In module LIMITS ALARM , we
declare that: (1) it depends on two instances low and high of module HYSTERESIS ; (2)
its respond event synchronizes, as one atomic step, with the respond event from the two
instances; and (3) the new synchronous event is renamed as respond for use in assertions.
When creating the instance limits, its two dependent HYSTERESIS instances are bound
to low and high (via a with . . . end clause). We also rename the synchronization of
these three instances (via the ::= operator) so that the automatically-generated action of
event alarms.respond combines actions of updating Q , QL, and QH . As we can see from the
composition, the plant instance env is separated from the synchronous instance alarms.
Again, time bounds of the two events env.generate and alarms.respond are specified such
that the alarms can respond fast enough to signal changes from the plant.

The use of synchronous events allows us to decompose the updates (on Q , QL, and QH )
into three respond events in instance limits of module LIMITS ALARM and two instances
low and high of module HYSTERESIS . In the previous step of verification, we verified that
the action of event respond in module HYSTERESIS (Figure 7a) satisfies the high-level
specification of Equation 9. As far as the calculations of QL and QH are concerned, it
suffices to replace the verified action with a version that encodes, using if-statements,
Equation 9. On the other hand, the respond event in module LIMITS ALARM reference

5The textual TTM assertion language does not support the weak-until operator W. Instead, we
check an equivalent safety property using the next (©) and release (R) operators: �( spec ⇒
(© env.generate) R spec ).
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module LIMITS ALARM
depends

low : HYSTERESIS
high: HYSTERESIS

interface
QH: in BOOL
QL: in BOOL
Q : out BOOL = false

events
respond[1, 1]
sync

low.respond,
high.respond as respond

do
if QH’ || QL’ then

Q := true
elseif !QH’ && !QL’ then

Q := false
else

skip
fi

end
end

module PLANT
interface

X : out INT = SIGNAL
events

generate[2, ∗]
do

X :: SIGNAL RANGE
end

end
instances

env = PLANT (. . .)
high = HYSTERESIS (. . .)
low = HYSTERESIS (. . .)
limits = LIMITS ALARM (. . .)

with
high := high, low := low

end
alarms ::= low || high || limits

end
composition

system = env || alarms
end

(a) TTM with Synchronous Events

alarm: LIMITS_ALARM
alarm.respond

l_alarm: HYSTERESIS
l_alarm.respond

h_alarm: HYSTERESIS
h_alarm.respond

p: PLANT
p.generate

out X
out H
out L
out EPS

out QL out QH

out Q

(b) Sync Structure

Figure 8: Modelling LIMITS ALARM in TTM

primed values of the low and high alarms (i.e., QL’ and QH’), indicating that other parts
of the same synchronization should first update those variables. Moreover, the action of
the respond event in module LIMITS ALARM is structured to correspond to that of its
FBD implementation (Figure 6e, p. 17), except we eliminate the intermediate variables
w1 , w2 , and w3 by passing the correct value expressions in the instantiations.

Properties that we assert for the composed system of LIMITS ALARM are identical
to those for HYSTERESIS , except that Equation 9 is revised to reflect the new input
partitions.

spec ,


(H < X ⇒ QH ∧ ¬QL ∧ Q)

∧ (H− EPS ≤ X ≤ H ⇒ QH = high.q old = Q ∧ ¬QL)
∧ (L + EPS < X < H− EPS ⇒ ¬QH ∧ ¬QL ∧ ¬Q)
∧ (L ≤ X ≤ L + EPS ⇒ QL = low.q old = Q ∧ ¬QH)
∧ (X < L ⇒ ¬QH ∧ QL ∧ Q)


(13)
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Step 3: Validation of LIMITS ALARM Specification. Following the same rationale
from the previous step, as far as the calculations of Q , QL and QH are concerned, it
suffices to replace the verified synchronous event with a version whose action encodes,
using if-statements, Equation 13. We then validate the specification of LIMITS ALARM

with respect to invariant that is not immediately obvious from its specification. For
example, we assert that the high and low alarms are not tripped at the same time.

�( ¬ (QH ∧QL) ) (14)

To conclude this section, we note that our specifications for HYSTERESIS (Equation 9)
and LIMITS ALARM (Equation 13) assume that the hysteresis band size is positive (i.e.,
EPS > 0). Furthermore, Equation 13 assumes that the hysteresis bands for high and
low alarms are disjoint (i.e., H− EPS > L + EPS). When the chosen constants for EPS ,
H , and L do not meet these assumptions, the TTM tool is able to find the appropriate
counter-examples.

4.3 Example: Tabular Requirement of a Nuclear Shutdown System

We illustrate the use of synchronous events on a slice of the software requirements of
a shutdown system for the Darlington Nuclear Generating Station in Ontario, Canada.
We present two versions of the system. The first version presents a high-level require-
ments [18] where the controller responds instantaneously to environment changes. We
synchronize both the environment and controller events to model such instantaneity, and
check it via an invariant property. However, for such requirements model to be imple-
mentable, some specified allowance on the controller’s response is required [19]. The
second, refined version illustrates how we can incorporate the response allowance as time
bounds on the environment and controller events (i.e, that the controller responds fast
enough to environment changes). We also decouple the controller from the environment,
and check its response via a real-time liveness property.

Requirements of the shutdown system are described mathematically using tabular
expressions (a.k.a. function tables) [9]. Figure 9 exemplifies tabular requirements for
two units: Neutron OverPower (NOP) Parameter Trip (Figure 9a) and Sensor Trips
(Figure 9b). In the first column, rows are Boolean conditions on monitored variables
(i.e., input stimuli). In the second column, the first row names a controlled variable (i.e.,
output response); the remaining rows specify a value for that controlled variable. We
use the formalism of tabular expressions to check the completeness (i.e., no missing cases
from the row conditions) and the disjointness (i.e., no two row conditions are satisfied
simultaneously) of our requirements [9].

The NOP Parameter Trip unit (which we call the NOP controller) depends on 18
instances of the Sensor Trip units (which we call the NOP sensors). There are two mon-
itored variable for each NOP sensor i : (1) a floating-point calibrated NOP signal value
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Result

Condition c NOPparmtrip

∃i ∈ 0 .. 17 • f NOPsentrip[i] = e Trip e Trip

∀i ∈ 0 .. 17 • f NOPsentrip[i] = e NotTrip e NotTrip

(a) Function Table for NOP Controller

Result

Condition f NOPsentrip[i ]

calibrated nop signal [i ] ≥ f NOPsp e Trip

f NOPsp − k NOPhys < calibrated nop signal [i ] < f NOPsp (f NOPsentrip[i ])−1
calibrated nop signal [i ] ≤ f NOPsp − k NOPhys e NotTrip

(b) Function Table for NOP Sensors (sensor i monitors calibrated nop signal [i ], i ∈ 0 .. 17)

Figure 9: Tabular Requirement for the Neutron Overpower (NOP) Trip Unit

calibrated nop signal [i ]; and (2) a floating-point set point value f NOPsp. The monitored
signal is bounded by the two pre-set constants k NOPLoLimit and k NOPHILimit . The
monitored set point is typed to a set of four constants: k NOPLPsp (low-power mode),
k NOPAbn2sp (abnormal mode 2), k NOPAbn1sp (abnormal mode 1), and k NOPnormsp

(normal mode).
Each sensor i determines if the monitored signal goes above a safety range (i.e., ≥

f NOPsp), in which case it trips by setting the function variable f NOPsentrip[i ] to e Trip.
To prevent the value of f NOPsentrip from alternating too often due to signal oscillation,
a hysteresis region (or dead band) with constant size k NOPhys is created. That is,
the hysteresis region is an open interval (f NOPsp − k NOPhys, f NOPsp). When the
monitored signal falls within this region, then the new value of f NOPsentrip remains
as that in the previous state, denoted as f NOPsentrip−1. On the other hand, the NOP
controller is responsible for setting the controlled variable c NOPparmtrip, based on values
of f NOPsentrip[i ] from all its dependant sensors. If there is at least one sensor that trips,
then the NOP parameter trips by setting c NOPparmtrip to e Trip.

According to the requirements, the system is initialized in a conservative manner.
Each calibrated NOP signal is set to its low limit k NOPLoLimit , but each f NOPsentrip[i ]
for sensor i and the controlled variable c NOPparmtrip are all set to e Trip. As we will
see in our specification below (i.e., Equation 16), to ensure that the system satisfies the
tabular specification in Figure 9, the NOP controller must have completed its very first
response (denote as predicate ¬init response).

The requirements model in Figure 9 uses a finite state machine, with an arbitrarily
small clock tick, that describes an idealized behaviour. At each time tick t , monitored and
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controlled variables are updated instantaneously. State data such as f NOPsentrip−1 are
stored and used for the next state. However, to make such requirements implementable,
some allowance on the controller’s response must be provided [19]. As a result, we
present two versions of the NOP system in TTM: (1) an abstract version with plant
and controller taking synchronized actions; and (2) a refined version with the response
allowance incorporated as time bounds of the environment and controller events. The
refined version allows us to assert timed response properties (e.g., once the monitored
signal goes above the safety range, the controller trips within 2 ticks of the clock).

Abstraction of Input Signal Values. The TTM tool, like other model checking tools,
cannot handle the real-valued monitored variables f NOPsp and calibrated nop signal [i ].
Instead, based on the given constants mentioned above, we partition the infinite domains
of these two monitored variables into disjoint intervals. First, we know that the four
possible constant values for f NOPsp have a fixed order and are bounded by constant low
and high limits of the calibrated NOP signal. More precisely, we have 6 boundary cases
to consider:

k NOPLoLimit < k NOPLPsp < k NOPAbn2sp < k NOPAbn1sp < k NOPnormsp < k NOPHiLimit

Second, each of the four possible set points has an associated hysteresis band, whose lower
boundary is calculated by subtracting the constant band size k NOPhys, resulting in 4 ad-
ditional boundaries6 to consider: (a) k NOPLPsp−k NOPhys; (b) k NOPAbn2sp−k NOPhys;
(c) k NOPAbn1sp − k NOPhys; and (d) k NOPnormsp − k NOPhys. Consequently, we have
10 boundary cases and 9 in-between cases (e.g., k NOPLoLimit < signal < k NOPLPsp)
to consider. Accordingly, we construct a finite integer set cal nop that covers all the 19
intervals. We perform reachability checks to ensure that the chosen cal nop is complete.

For the purpose of modelling and verifying the NOP controller and sensors in TTM,
we parameterize the system by a positive integer N denoting the number of dependant
sensors.

Version 1: Synchronizing Plant and Controller. We first present an abstract
version of the model that couples the NOP controller and its plant by executing their
actions synchronously. Figure 10 illustrates the structure of synchronization. The dashed
box in Figure 10 indicates the set of synchronized modules instances: plant p, controller
nop, and 18 sensors sensor i (i ∈ 0 .. 17).

Figure 12 (p. 27) presents the complete7 TTM listing of the NOP unit as described
above. The generate event of the plant non-deterministically updates the value of a global
array that is shared with sensors attached to the NOP controller. The update is per-

6Value of (a) is still greater than k NOPLoLimit, and similarly value of (d) is still smaller than
k NOPHiLimit.

7For clarity, we present a version with one monitoring sensor. The full version with 18 sensors involves
just declaring and instantiating additional dependent sensors. We also exclude definitions of constants
and assertions.
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sensor_0: 
NOP_SENSOR
sensor_0.respond

p: PLANT
p.generate

out f_NOPsp

out c_NOPparmtrip

out f_NOPsentrip[0]
out calibrated_nop_signal[0]

sensor_17: 
NOP_SENSOR

sensor_17.respond
out calibrated_nop_signal[17]

...

out f_NOPsp

nop: NOP
nop.respond

out f_NOPsentrip[17]

......

Figure 10: Neutron Overpower (NOP): Abstract Version – Synchronized Plant and Con-
troller

formed via the demonic assignment calibrated nop signals :: ARRAY [cal nop](N ) (Lines 5
– 6). On the other hand, the NOP controller module (Lines 8 – 26) depends on two mod-
ule instances (Lines 9–11). First, the controller depends on a plant p that generates an
array of calibrated NOP signals (specified by the out array argument calibrated nop signal

at Lines 4 and 47). Second, the controller depends on a sensor sensor 0 that monitors a
particular signal value (specified by the in argument calibrated nop signal [0] at Lines 30
and 48) and provides feedback (specified by the share argument f NOPsentrip[0] at Line
31 and 48) for the central NOP controller to make a final decision (specified by the out
argument c NOPparmtrip at Lines 14 and 49).

Actions of the respond events of the NOP controller (Lines 19 – 24) and of its dependent
sensors (Lines 36 – 43) correspond to the tabular requirements (Figure 9a and Figure 9b,
respectively). We use primed variables in these actions to specify the intended flow of
actions. Actions of the NOP sensor reference f NOP’ and calibrated nop signal i’ (Lines
37, 39, and 41) to indicate, that only after the instance p (in the same synchronous
set) has written to these two variables can they be used to calculate the new value of
f NOPsentrip[i ]. Similarly, actions of the NOP controller reference f NOPsentrip’ [j ] (Lines
20 and 22) to indicate, that only after all sensor instances have written to this array can
it be used to calculate the new value of c NOPparmtrip.

We require that the respond event of the NOP controller, the respond events of its
dependent sensors, and the generate event of the plant, are always executed synchronously
(as a single transition). In declaring the controller event respond , we use a sync . . . as . . .

clause to specify the events to be included in the synchronous set. When instantiating
the NOP controller, we use a with . . . end clause to bind its dependent plant and sensor
instances (Line 49). Finally, we rename the synchronized plant, controller, and sensor
instances for references in assertions (Line 50).

We check two invariant properties on this abstract version of NOP. First, as all depen-
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dent sensors have written to the shared array f NOPsentrip, the NOP controller responds
instantaneously.

�

(
( ∃i : 0 ..N • f NOPsentrip[i] = e Trip )⇒ c NOPparmtrip = e Trip

∧ ( ∀i : 0 ..N • f NOPsentrip[i] = e NotTrip )⇒ c NOPparmtrip = e NotTrip

)
(15)

Second, since all actions of the plant, the NOP controller, and sensors are synchronized
together, we can assert that the controlled variable c NOPparmtrip is updated as soon as
the plant has updated the two monitored variables f NOPsp and f NOPsentrip.

�


 ¬ init response
∧ f NOPsp = k NOPLPsp
∧ k NOPLPsp ≤ calibrated nop signal[0] ≤ k CalNOPHiLimit


⇒ c NOPparmtrip = e Trip

 (16)

However, the satisfaction of Equation 16 is an idealized behaviour without the realistic
concern of some allowance on the controller’s response [19]. That is, we shall instead
allow the state predicate c NOPparmtrip = e Trip to be established within a bounded
delay.

Version 2: Separating Plant and Controller. We refine the TTM of NOP in
Figure 12 by decoupling actions of the controller8 and its plant. Figure 11 illustrates the
refined structure of synchronization: the plant instance p is no longer synchronized with
the controller. Consequently, the plant event generate and the synchronous controller
event respond are interleaved.

sensor_0: 
NOP_SENSOR
sensor_0.respond

p: PLANT
p.generate

out f_NOPsp

out c_NOPparmtrip

out f_NOPsentrip[0]
out calibrated_nop_signal[0]

sensor_17: 
NOP_SENSOR

sensor_17.respond
out calibrated_nop_signal[17]

...

out f_NOPsp

nop: NOP
nop.respond

out f_NOPsentrip[17]

......

Figure 11: Neutron Overpower (NOP): Refined Version – Separate Plant and Controller

The resulting system would fail to satisfy Equation 16, as we introduce some allowance
on the response time (termed response allowance in [19]) of the NOP controller to en-

8In the NOP controller, actions of the NOP parameter trip unit and sensor units remain synchronized.
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vironment changes. On the other hand, as we still consider the controller’s response
actions, once initiated, take effect instantaneously, the resulting system should still sat-
isfy Equation 15.

Minimal changes are required to produce the refined TTM from Figure 12. First, in
module NOP , we remove the declaration of p : PLANT as a dependent instance (Line
10). We also remove the declaration of p.generate as an event to be synchronized with the
respond event (Line 17). Second, in creating the instance nop of module NOP , as it no
longer depends on a PLANT instance, we remove the binding statement (Line 49), i.e.,
env := env . Third, in renaming the synchronous instance, we remove the plant instance
(Line 50), i.e., controller ::= sensor 0 || nop. Finally, we add the plant instance into the
composition (Line 52), i.e., system = env || controller .

By declaring a timer t and adding a start t clause to the generate event in module
PLANT (Line 6), we can satisfy the following real-time response property:

�


 f NOPsp = k NOPLPsp
∧ k NOPLPsp ≤ calibrated nop signal[0] ≤ k CalNOPHiLimit
∧ t = 0


⇒ mono(t) U ( c NOPparmtrip = e Trip ∧ t < 2 )

 (17)

As soon as the set point value and monitored signal value are updated by the plant,
the controller produces the proper response within two ticks of the clock. Before the
controller responds, timer t must not be interrupted (i.e., reset by other events), so as
not to provide an inaccurate estimate.

To conclude this section, we note that the demonic assignment performed by the
plant’s generate event (Line 6 in Figure 12, p. 27) imposes no constraints on the change
of NOP signal. With the assumption that signal values do not suddenly increase or
decrease dramatically, we are able to: (a) let the plant generate delta ∈ {−1, 0, 1} for
each monitored signal; and (b) let the sensor estimate what the actual signal value is
accordingly. This effectively reduces the number of possibilities to consider for array
calibrated nop signal .

5 Discussion

In this paper, we report how our new TTM notations facilitate the formal validation of
cyber-physical system requirements. In the mutual exclusion protocol (Section 3.2 and
train control system (Section 3.3), the indexing construct allows us to select a specific
actor (i.e., a process or a train) and specify a temporal property for that actor. The
synchronous construct, together with primed variables, allow us to check (real-time)
response properties of the function blocks from the IEC 61131-3 Standard (Section 4.2)
and tabular requirements of a nuclear shutdown system (Section 4.3).
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1 module PLANT /* Template for Nuclear Reactor */

2 interface
3 f NOPsp : out INT = k NOPLPsp
4 calibrated nop signal : out ARRAY[cal nop](NUM SENSORS) = [k CalNOPLoLimit (

NUM SENSORS)]
5 events generate[1, 1]
6 do calibrated nop signal :: ARRAY[cal nop](NUM SENSORS), f NOPsp := k NOPLPsp

end
7 end
8 module NOP /* Template for Neutron Overpower Controller */

9 depends
10 env : PLANT
11 sensor 0 : NOP SENSOR
12 interface
13 f NOPsentrip : share ARRAY[y trip](NUM SENSORS) /* shared, but read only */

14 c NOPparmtrip : out y trip = e Trip
15 local after init response : BOOL = false
16 events
17 respond[1, 1] sync env.generate, sensor 0.respond as respond
18 do
19 after init response := true,
20 if (|| j: 0..(NUM SENSORS−1) @ f NOPsentrip’[j] == e Trip) then
21 c NOPparmtrip := e Trip
22 elseif (&& k: 0..(NUM SENSORS−1) @ f NOPsentrip’[k] == e NotTrip) then
23 c NOPparmtrip := e NotTrip
24 else skip fi
25 end
26 end
27 module NOP SENSOR /* Template for Sensors */

28 interface
29 f NOPsp : in INT
30 calibrated nop signal i : in cal nop
31 f NOPsentrip i : share y trip /* shared, but write only */

32 local f NOPsentrip i old : y trip = e Trip
33 events
34 respond[1, 1]
35 do
36 f NOPsentrip i old’ = f NOPsentrip i,
37 if f NOPsp’ <= calibrated nop signal i’ then
38 f NOPsentrip i := e Trip
39 elseif (f NOPsp’ − k NOPhys < calibrated nop signal i’) && (calibrated nop signal i’ < f NOPsp

’) then
40 f NOPsentrip i := f NOPsentrip i old
41 elseif calibrated nop signal i’ <= f NOPsp’ − k NOPhys then
42 f NOPsentrip i := e NotTrip
43 else skip fi
44 end
45 end
46 instances
47 env = PLANT (out f NOPsp, out calibrated nop signal)
48 sensor 0 = NOP SENSOR(in f NOPsp, in calibrated nop signal[0], share f NOPsentrip[0])
49 nop = NOP(share f NOPsentrip, out c NOPparmtrip) with env := env, sensor 0 := sensor 0 end
50 sys ::= env || sensor 0 || nop /* named synchronous instance */

51 end
52 composition system = sys end

Figure 12: Requirement of NOP Trip Unit in TTM: Synchronized Plant and Controller
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To our knowledge, the introduced notations of indexed events and synchronous events
(and its combination with primed variables) are novel. For synchronous events, the
conventional Communicating Sequential Processes (CSP) [15] and its tool [5] support
multi-way synchronization by matching names of event in parallel compositions. How-
ever, the conventional CSP does not allow processes to modify a shared state. Instead,
the system state can only be managed as parameters of recursive processes, making it
impossible to synchronize events that denote different parts of simultaneous updates.
The notations of un-timed CSP# and the stateful timed CSP (extended with real-time
process operators such as time-out, deadline, etc.) [16] allow events to be attached with
state updates. However, their semantics and tool support do not allow events that are
attached with attached to be synchronized. The UPPAAL model checker and its lan-
guage of timed automata [10] support the notion of broadcast channel for synchronizing
multiple state-updating transitions (one sender and multiple receivers). However, the
RHS of assignments can only reference values evaluated at the pre-state. There is no
mechanism, such as the notion of primed variables supported in TTM, for specifying the
intended data flow.

Also relevant to our synchronous events is the recent work on using the PVS proof as-
sistant to verify the IEC 61131 function blocks [14]. Their notion of timed variables (i.e.,
variables parameterized by discretized time units) makes it straightforward for specifying
expressions at the pre- and post-states. However, their semantics results in idealized sys-
tems (where the controlled and monitored variables are updated simultaneously). The
lack of response allowance [19] in their approach makes it nonsensical to check real-time
response properties

For indexed events, the tool support for both conventional CSP [15] and UPPAAL [10]
do not allow the verification with fairness assumptions. In the case of UPAAL, it is likely
to manually construct an observer. However, such solution does not scale in large systems
and is prone to errors. On the other hand, the PAT tool allows users to choose fairness
assumptions at the event, process, or global level [17] for verifying the un-timed CSP#
and stateful timed CSP [16]. However, our extended notion of indexed events are of
finer-grained for imposing fairness assumptions, as we allow the declaration of a subset
of event indices as fair.

References

[1] J.-R. Abrial. Modeling in Event-B. Cambridge University Press, 2010.

[2] Darren Cofer and Steven Miller. Do-333 certification case studies. In NASA Formal
Methods, volume 8430 of Lecture Notes in Computer Science, pages 1–15. Springer,
2014.

28



[3] Patricia Derler, Edward A. Lee, and Alberto Sangiovanni-Vincentelli. Modeling
cyber-physical systems. Proceedings of the IEEE (special issue on CPS), 100(1):13
– 28, 2012.

[4] RTCA & EUROCAE. DO-333 – formal methods supplement to DO-178C and DO-
278A. Technical report, December 2011.

[5] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and AndrewW.
Roscoe. FDR3 – a modern refinement checker for CSP. In Tools and Algorithms for
the Construction and Analysis of Systems, volume 8413 of LNCS, pages 187–201.
Springer, 2014.

[6] Simon Hudon, Thai Son Hoang, and Jonathan Ostroff. The Unit-B method – refine-
ment guided by progress concerns. Software and Systems Modeling (SoSyM), 2014.
Accepted.

[7] Simon Hudon and ThaiSon Hoang. Systems design guided by progress concerns. In
Integrated Formal Methods, volume 7940 of LNCS, pages 16–30. Springer, 2013.

[8] IEC. 61131-3 Ed. 2.0 en:2003: Programmable Controllers — Part 3: Programming
Languages. International Electrotechnical Commission, 2003.

[9] Ryszard Janicki, DavidLorge Parnas, and Jeffery Zucker. Tabular representations
in relational documents. In Relational Methods in Computer Science, Advances in
Computing Sciences, pages 184–196. Springer Vienna, 1997.

[10] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a Nutshell. International
Journal on Software Tools for Technology Transfer, 1(1–2):134–152, 1997.

[11] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, New York, 1992.

[12] Jonathan S. Ostroff. Composition and refinement of discrete real-time systems.
ACM Transaction on Software Engineering Methodology, 8(1):1–48, 1999.

[13] JonathanS. Ostroff, Chen-Wei Wang, Simon Hudon, Yang Liu, and Jun Sun. Ttm/-
pat: Specifying and verifying timed transition models. In FTSCS, volume 419 of
Communications in Computer and Information Science, pages 107–124. Springer,
2014.

[14] Linna Pang, Chen-Wei Wang, Mark Lawford, and Alan Wassyng. Formalizing and
verifying function blocks using tabular expressions and pvs. In FTSCS, volume 419
of Communications in Computer and Information Science, pages 125–141. Springer,
2014.

29



[15] A.W. Roscoe. Understanding Concurrent Systems. Springer, 1st edition, 2010.

[16] Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi, and Étienne André. Modeling
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6 Appendix: Semantics of TTM
(extended for Indexed & Synchronous Events)

We provide a one-step operational semantics for TTMs.

6.1 Abstract Syntax.

Following [12] and using the mathematical conventions of Event-B [1], we define the
abstract syntax of a TTM module instance M as a 5-tuple, i.e., M = (V, s0, T, t0, E)
where 1) V is a set of variable identifiers, declared local or in a module interface; 2) T is a
set of timer identifiers; 3) E is a set of events that may change the state; 4) s0 ∈ STATE
is the initial variable assignment, with STATE , V → VALUE; and 5) t0 ∈ TIME is
the initial timer assignment, with TIME , T → N.

Concrete syntax of event e:

event id (x : fair Tx; y : Ty) [l,u] just
when grd
start t1, t2
stop t3, t4
do v1 := exp1,

if condition then v2 := v′1 + exp2
else skip fi,
v3 :: 1..4

end

Abstract syntax of the event e:

• e.id ∈ ID;

• e.f ind ⊆ ID ; e.d ind ⊆ ID ; e.ind , e.f ind ∪
d ind

• e.l ∈ N; e.u ∈ N ∪ {∞}
• e.fair ∈ {spontaneous, just, compassionate}
• e.grd ∈ STATE× TIME→ BOOL;

• e.start ⊆ T ;

• e.stop ⊆ T ;

• e.action ∈ STATE× TIME↔ STATE;

Figure 13: Concrete and Abstract syntax of TTM events

We use an 10-tuple (id, f ind, d ind, l, u, fair, grd, start, stop, action) to define the ab-
stract syntax of an event e, and we use the dot notation “.” to access the fields, as shown
on the right of Fig. 13. The string identifier of an event e is written as e.id. e.f ind
and e.d ind are sets of indices that can be referenced in the event. As explained below,
each index can be either fair (if it is in e.f ind) or demonic (if it is in e.d ind). The
guard of event e, i.e., e.grd, is any Boolean expression referencing state variables (from
V ), timers (from T ) or ; in the example on the left of Fig. 13, V = {v1, v2, v3, · · · } and
T = {t1, t2, t3, t4, · · · }. Functions boundt ∈ T → N and type ∈ T → P(N) 9 provide,
respectively, the upper bound and the type of each timer. For example, if timer t1 is

9 l and u could be arbitrary state expressions as long as grd =⇒ l ≤ u is invariant and grd ∧ l ≤
t =⇒ t ≤ u is only falsified by the tick event, with t the timer of the event. these side conditions
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declared in the TTM as t1 : 0..5, then boundt(t1) = 5 and type(t1) = {0..6}. As will be
detailed below, timers count up to one beyond the specified bound at which point they
remain fixed until they are restarted.

An event e must be taken between its lower time bound e.l and upper time bound
e.u, provided that its guard e.grd remains true. The event action involves simultaneous
assignments to v1, v2, · · · . The notation v3 :: 1..4 is an example of a demonic assignment
in which v3 takes any value from 1 to 4. All the assignments in the event action are
applied simultaneously in one step.

In an assignment y := exp, the expression on the right may use primed (e.g. x′) and
unprimed (e.g. x) state variables as well as the initial value of timers. A variable with a
prime refers to the variable’s value in the next state and a variable without prime refers
to its value in the current state. The use of primed variables in expressions allows for
simpler and more expressive descriptions of state changes. The state changes effected
by an event e is described in the abstract syntax by a before-after predicate e.action.
The concrete syntax also allows for assignments to be embedded in (possibly nested)
conditional statements.10

6.2 Formal Semantics.

We provide a one-step operational semantics of a TTM module instance M in LTS
(Labelled Transition Systems).

Definition: LTS: Given a TTM module instance M, an LTS (Labelled Transition
System) is a 4-tuple L = (Π, π0,T,→) where 1) Π is a set of system configurations; 2)
π0 ∈ Π is an initial configuration; 3) T is a set of transitions names (defined below); and
4) → ⊆ Π×T×Π is a transition relation.

We now describe the LTS semantics of TTMs. We define Eid as the set of names
of the transitions corresponding to events — as opposed to the monotonicity breaking
transitions and the tick transition — and Efair as the set of transition names prefixes,
removing the value of the demonic indices:

Eid , {e,m | e ∈ E ∧ m ∈ e.f ind→VALUE • (e.id,m)} .

In the following, we use e(x) to stand for the name of the transition corresponding to
e with x the values of e’s fair indices. When talking about the occurrence of e, in an

are mostly axiomatic and would be hard to check and use with a model checker. The latter constraint
can be formulated as stable grd ∧ l ≤ t =⇒ t ≤ u in M , with M standing for a TTM machine
without the tick event. Reasonable alternatives for it would be stable grd =⇒ l ≤ t ≤ u in M and
l = l0 ∧ u = u0 unless ¬grd.

10With all the complexity of structures allowed by the syntax of actions, sequential composition is not
allowed. This is in an effort to make actions into specifications rather than implementations. This would
allow us to generalize TTMs to allow an Event-B style of symbolic reasoning.
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LTL formula for instance, e(x, y) also specify the values of e’s demonic indices as y. The
demonic indices are otherwise treated as internal non-deterministic choice within the
event.

A configuration π ∈ Π is defined by a 6-tuple (s, t,m, c, x, p). We explain each of the
six components as follows:

• s ∈ STATE is a value assignment for all the variables of the system. The state can be
read and changed by any transition corresponding to an event in E.

• t ∈ TIME is a value assignment for the timers of the system. Events (and hence their
corresponding transitions) may only start, stop and read timers. As will be discussed
below, we introduce a special transition, called tick, which also changes the timers.
Timers ti that are stopped have values boundt(ti) + 1.

• m ∈ T → BOOL records the status of monotonicity of each timer. Suppose event
e1 in a TTM starts t1. In LTL we might write �( e1 ∧ t1 = 0 → ♦(q ∧ t1 ≤ 4) )
(note that t1 = 0 is redundant) to specify that q becomes true within 4 time units of
event e1 occurring. However, other events might stop or restart t1 before q is satisfied
hence breaking the synchronicity between t1 and a global clock.11 Instead, we express
the intended property as �( e1∧ t1 = 0 → m(t1) U (q∧ t1 ≤ 4) ). The expression m(t1)
(standing for monotonicity of t1) holds in any state where t1 is not stopped or being
reset. We explain monotonicity further below.

• c ∈ Eid→ N ∪ {−1} is a value assignment for a clock implicitly associated with each
event. These clocks are used to decide whether an event has been enabled for long enough
and whether it is urgent. An event e ∈ E is enabled when its clock’s value is between the
event’s lower time bound (i.e., e.l) and its upper time bound (i.e., e.u). Furthermore,
the type (or range) of c(e.id, x) is {−1, 0, ...e.u}. When an event’s clock is disabled, as
opposed to the convention used with timers, the clock’s value is −1.

• x ∈ Eid ∪ {⊥} is used as a sequencing mechanism to ensure that each transition
e is immediately preceded by an e# transition whose only function is to update the

monotonicity record m. For example, in the following execution · · · e1→ π1
x=⊥

e2#→ π2
x=e2

e2→
π3
x=⊥
→· · · , suppose in π1 the value of timer t2 is 3 and that e2 restarts t2. Then, in π2, we

have x = e2 ∧ t2 = 3 ∧ m(t2) = false. In π3, we have x = ⊥ ∧ t2 = 0 ∧ m(t2) = true. In
order to record the breaking of monotonicity, the e2# transition sets m(t2) to false, which
gets set back to true in the next execution step. The precise effect of these transitions
will be described below.

11Suppose that event e2 also starts t1, that e3 establishes q and that the events occur in the following

order: π0
e1→ π1

t1=0

tick3

→ π4
t1=3

e2→ π5
t1=0

tick2

→ π7
t1=2

e3→ π8
t1=2 ∧ q

· · · . This execution satisfies the first LTL formula

but does not satisfy the intended specification: when q becomes true, t1 = 2 but it is 5 ticks away from
the last occurrence of e1.
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• p ∈ Eid ∪ {tick,⊥} holds the name of the last event to be taken at each configuration.
It is ⊥ in the initial configuration as no event has yet occurred. It allows us to refer to
events in LTL formulas in order to state that they have just occurred. For instance, in
the formula above, (s, t,m, p) |= e1∧ t1 = 0 (which reads: the configuration satisfies the
formula) evaluates to p = e1 ∧ t(t1) = 0.

Given a flattened module instance M, the transitions of its corresponding LTS are
given as T = Eid ∪E#∪ {tick}. As explained above, for each event e ∈ E, we introduce
a monotonicity breaking transition e.id#. We thus define E# , {e ∈ Eid • e#}.
The tick transition represents one tick of a global clock. Explicit timers and event
lower and upper time bounds are described with respect to this tick transition. We
define the enabling condition of event e ∈ E with fair index x and demonic index y as
e.en(x) , (∃y • e.grd(x, y)) ∧ e.l ≤ e.c ≤ e.u, where e.c evaluates to c(e.id, x) in a
configuration whose clock component is c. Thus an event is enabled in a configuration
that satisfies its guard and where the event’s implicit clock is between its lower and upper
time bound.

The initial configuration is defined as π0 = (s0, t0,m0, c0,⊥,⊥), where s0 and t0 come
from the abstract syntax of the TTM. m0 and c0 are given by:

m0(ti) ≡ t0(ti) = 0

c0(ei.id, x) =

{
0 (s0, t0) |= (∃y • ei.grd(x, y))

−1 (s0, t0) 6|= (∃y • ei.grd(x, y))

for each ti ∈ T and ei ∈ E. It is implicit in the above formula that m0(ti) depends
only on whether or not ti is initially enabled (specified using the keyword enabledinit
or disabledinit). If the keyword enabledinit is specified, t0(ti) = 0; otherwise, if the
keyword disabledinit is specified, t0(ti) = boundt(ti) + 1.

An execution σ of the LTS is an infinite sequence, alternating between configurations
and transitions, written as π0

τ1→ π1
τ2→ π2 → · · · where τi ∈ T and πi ∈ Π. Below, we

provide constraints on each one-step relation (π
e→ π′) in an execution. If an execution σ

satisfies all these constraints then we call σ a legal execution. We let ΣL denote the set of
all legal executions of the labelled transition system L. The set ΣL provides a precise and
complete definition of the behaviour of L. If a state-formula q holds in a configuration
π, then we write π � q. In some formulas, such as guards, all the components of a
configuration are not necessary. We express this by dropping some components of the
configuration on the left of the double turnstile (|=), as in (s0, t0) |= e.grd(x, y). Given
a temporal logic property ϕ and an LTS L, we write L � ϕ iff ∀σ ∈ ΣL • σ � ϕ. The
three possible transition steps are:
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(s, t,m, c,⊥, p) (e,x)#→ (s, t,m′, c, (e, x), p) (18)

(s, t,m, c, (e, x), p)
(e,x)→ (s′, t′,m′, c′,⊥, (e, x)) (19)

(s, t,m, c,⊥, p) tick→ (s, t′,m′, c′,⊥, tick) (20)

Each of the above transitions has side conditions which we now enumerate.

6.2.1 Taking e#

The monotonicity breaking transition (e, x)#, specified in Equation 18 (p35), is taken
only if (s, t, c) � e.en and the x-component of the configuration is ⊥. For each t ∈ T ,
m′(t) ≡ t /∈ e.start ∧m(t). This ensures that, for timer t, just before it is (re)started,
m(t) ≡ false. It is set back to true by the immediately following event, e, and it remains
true as long as t is not restarted and has not reached its upper bound. Transition e#
modifies only m and x in the configuration, and thus maintains the truth of (s, t, c) �
e.en(x).

6.2.2 Taking e

The transition e(x), specified in Equation 19 (p35), is taken only if (s, t, c) � e.en(x) and
the x-component of the configuration is e. The component s′ of the next configuration
in an execution is determined nondeterministically by e.action(x, y), which is a relation
rather than a function. This means that any next configuration that satisfies the relation
can be part of a valid execution, i.e., s′ is only constrained by (s, t, s′) ∈ e.action(x, y).
The other components are constrained deterministically. The following function tables
specify the updates to m, t and c upon occurrence of transition e.

For each timer ti ∈ T m′(ti) t′(ti)

ti ∈ e.start ti ∈ e.stop impossible
ti /∈ e.stop true 0

ti /∈ e.start ti ∈ e.stop false boundt(ti) + 1
ti /∈ e.stop m(ti) t(ti)

For each event ei ∈ E, x ∈ ei.f ind→VALUE c′(ei.id)

(s′, t′) 6|= (∃y • ei.grd(x, y)) -1

(s′, t′) |= (∃y • ei.grd(x, y))
(s, t) |= (∃y • ei.grd(x, y)) ∧ ¬ei = e c(ei.id, x)
(s, t) 6|= (∃y • ei.grd(x, y)) ∨ ei = e 0

In the above, we start and stop the implicit clock of ei as a consequence of executing
e, according to whether ei.grd becomes true, is false (i.e., becomes or remains false) or
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remains true. Since event ei becomes enabled ei.l units after its guard becomes true, this
allows us to know when to consider ei as enabled, i.e., ready to be taken. As a special
case, the implicit clock of event e (under consideration) is restarted when e.grd remains
true.

6.2.3 Taking tick

The tick transition, specified in Equation 20 (p35), is taken only if ∀e ∈ E • c(e.id, x) <
e.u and the x-component of the configuration is ⊥ (thus preventing tick from intervening
between any e# and e pair). For any timer ti ∈ T , the updates to t′, m′ and c′ are:

t′(ti) = (t(ti) ↓ boundt(ti)) + 1

m′(ti) ≡ ¬ (t(ti) = boundt(ti)+1)

For each event e ∈ E, x ∈ e.f ind→VALUE c′(e.id, x)

(s′, t′) 6|= (∃y • e.grd(x, y)) -1

(s′, t′) |= (∃y • e.grd(x, y))
(s, t) 6|= (∃y • e.grd(x, y)) 0
(s, t) |= (∃y • e.grd(x, y)) c(e.id, x) + 1

Thus, tick increments timers and implicit clocks to their upper bounds. Transition tick
also marks timers as non-monotonic when they reach their upper bound and reset clocks
when the corresponding events are disabled.

6.2.4 Scheduling (including Indexed Events)

So far, we have made no mention of scheduling: we constrained executions so that the
state changes in controlled ways, but a given execution may still make no progress. To
make progress, we need to assume fairness. In the current implementation of TTM/PAT,
the possible scheduling assumptions12 on TTM events are restricted to the following four:

1. Spontaneous event. Even when it is enabled, the event might never be taken. This is
assumed when no fairness keyword is given and the upper time bound is * or unspecified.

2. Just event scheduling (also known as weak fairness [17]). For any execution σ ∈ ΣL,
if an event e eventually becomes continuously enabled, it has to occur infinitely many
times, that is

σ � (∀x • ♦�e.en(x) → �♦(∃y • e(x, y))) ,

where x ranges over the fair indices of e and y over its demonic indices. This is where
the distinction takes all its importance. The fairness assumption guarantees that e(x, )
is treated fairly for every single value of x. For example, if x was a process identifier,
making it a fair index means that as long as it’s active, each process is eventually given

12The scheduling assumptions are taken care of by the model-checking algorithms [17].
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CPU time. In contrast, if x (still a process identifier) is treated as demonic index, it
means that, as long as some process is ready, infinitely often a process (possibly always
the same) will be given CPU time.

This is assumed when the keyword just is given next to the event and the upper time
bound is * or unspecified. We use e.en and not e.grd in the fairness formula as the event
can only be taken e.l units after its guard became true.

3. Compassionate event scheduling (also known as strong fairness [17]). For any ex-
ecution σ ∈ ΣL, if an event e becomes enabled infinitely many times, it has to occur
infinitely many times, that is

σ � (∀x • �♦e.en(x) → �♦(∃y • e(x, y)) .

This is assumed when the keyword compassionate is given next to the event and the
upper time bound is * or unspecified.

4. Real-time event scheduling. The (finite) upper time bound (u) of the event e is taken
as a deadline: if the event’s guard is true for u units of time, it has to occur within u
units of after the guard becomes true or after the last occurrence of e. To achieve this
effect, the event e is treated as just. Since tick will not occur as long as e is urgent
(i.e., e.c = e.u), transition e will be forced to occur (unless some other event occurs and
disables it).

To accurately model time, the tick transition is treated as compassionate in the LTS.
This ensures that time progresses except in cases of Zeno-behaviors (discussed below).
Spontaneous events cannot be used to establish liveness properties. Justice and com-
passion are strong enough assumptions to establish liveness properties but not real-time
properties. Finally, real-time events can establish both liveness and real-time properties.

The above semantics allows for Zeno behaviours which occur when there are loops
involving events with zero upper time bound (i.e., e[0, 0]). We could ban e[0, 0] events
altogether, but that would eliminate behaviours that are feasible and useful, e.g., where
we describe a finite sequence of immediately urgent events (not in a loop). We can check
that the system is non-Zeno by checking that the system satisfies �♦tick.

The abstract TTM semantics provided above can be (and has been) implemented ef-
ficiently. For example, in the abstract semantics every event e is preceded by a breaker
of monotonicity e#. Most of the e# events do not change the configuration monotonic-
ity component m and can thus be safely omitted from the reachability graph thereby
shrinking it.

6.3 Semantics of Module Composition.

We have specified so far the semantics of individual TTM machines. However, the TTM
notation includes a composition operator which was not discussed so far. The semantics
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of systems comprising many machines is defined through flattening, i.e. by providing a
single machine which, by definition, has the same semantics as the whole system.

6.3.1 Instantiation

.
When integrating modules in a system, they first have to be instantiated. This means

that the interface variables of the module must be linked to variables of the system it
will be a part of. For example if we had a Phil module (for philosopher) with two shared
variables, left fork and right fork , and two global fork variables f1 and f2, we could
instantiate them as:

instances p1 = Phil(share f1, share f2) ; p2 = Phil(share f2, share f1) end

This makes f1 the left fork of p1 and the right fork of p1, and makes f2 the left fork of p2
and the right fork of p1. Philosopher p1 is therefore equivalent to the module Phil with
its references to left fork substituted by f1 and its references to right fork substituted
by f2.

6.3.2 Composition (including Synchronous Events).

The composition m1||m2 is an associative and commutative function of two module
instances. Before flattening the composition, we rename the local variables and the
events so that the name of each local variable will be unique across the whole system.
The renaming is done by prepending the name of the module instance to the name of
all the instance’s events and local variables. This is strictly a syntactic change and does
not affect the semantics of the instances.

m1 / m2 in out share

in in out share

out out – –

share share – share

Table 1: Mode of interface variables in compositions.

We then proceed to creating the composite machine. Its local variables will be the
(disjoint) union of the local variables of the two instances. Its interface variables will be
the (possibly non-disjoint) union of the interface variables of both instances with their
mode (in, out, share) adjusted as shown by Table 1.

In the simplest case of composition, the set of the events of the composition is the
union of the set of events of both machines. However, events from separate machines
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can executed synchronously with each other. This can be specified by adding: 1) a sync
section to one of the events; and 2) a depends clause to the enclosing module.

module M
depends

a : A ; b : B
...
events
evt0 (im : fair T ; jm : T ) [lm, um] just
sync a.evt1, b.evt2
when grdm
do x := expx
end

end

module A
depends

b : B
...
events
evt1 (ia : fair T ; ja : T ) [la, ua] just
sync b.evt2
when grda
do y := expy
end

end

module B
interface
...
events
evt2 (ib : fair T ; jb : T ) [lb, ub] just
when grdb
do z := expz
end

end

In the above illustration, we say module M depends on modules A and B , and the
three events (qualified by their containing modules) M.evt0 , A.evt1 , and B.evt2 form a
synchronous event set.

Specifying depends clauses (at the module level) and sync clauses (at the event) level
results in three dependency graphs (assuming that MOD denotes the set of declared
modules, EVT the set of declared events qualified by their containing modules, e.g.,
M.evt0 , and VAR the set of interface and local variables):

1. The Module Dependency Graph contains the set of vertices V = MOD, and the set
of edges consisting of (m1, m2), where module m1 depends on m2.

From the module dependency graph, we construct a number of synchronous event
sets. For each connected component of the module dependency graph, from each
event e declared in module m, where m ∈ MOD and e declares a sync clause, we
collect event e and all events under its sync clause (all collected events are qualified
by names of their containing modules).

2. Each Event Dependency Graph contains the set of vertices V = EVT, and the set
of edges consisting of (e1, e2), where e1 and e2 are in a synchronous event set and
e2 is declared under the sync clause of e2.

For each synchronous event set we construct an action graph. We denote all vari-
ables involved in actions of a synchronous event set s as VARs.

3. For each synchronous event set s, its corresponding action graph contains the set of
vertices V = VARs, and the set of edges consisting of (v1, v2), where the computation
of v1’s new value depends on that of v2. There are two cases: 1) v2 appears on the
RHS of an equation where v1’ is the LHS (i.e., v1’ = . . . v2 . . . ); and 2) v2 appears
on the RHS of an assignment where v1 is the LHS (i.e., v1 := . . . v2 . . . ).

We perform a topological sort on each action graph to calculate the order of vari-
able assignments. From the calculated order of variables, we calculate an order of
variable projections. The projection for each variable v is a pair (v, act), where act
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is either an unconditional assignment (i.e., v := exp), or an conditional assignment
(i.e., if b1 then v := exp1 elseif b2 then v := exp2 . . . else . . . ). The latter case is
resulted from the fact that changes on v (either through assignments or the primed
notation) occur inside nested if-statements.

The above three graphs must satisfy the following constraints (otherwise it is reported
by the TTM tool as an error):

• Acyclic

• Each synchronous event set (which will end up forming a flattened event) must
include at most one event from each module instance of the system.

• Each flattened (or compound) event has to assign at most one value to each variable.

The flattening of those events in the above example is done by

module COMPOUND
interface
...
events
sync evt (im, ia, ib : fair T ; jm, ja, jb : T ) [lm ↑ la ↑ lb, um ↓ ua ↓ ub] just
when grdm ∧ grda ∧ grdb
do x := expx, y := expy, z := expz
end

end

The flattened event has its lower time bound being the maximum of those of its source
events, its upper time bound their minimum, its guard the conjunction of theirs, and its
action constructed using the topological sort and calculations of variable projections as
described above.

In m, ua tells us that the event should be taken before ua ticks after grda became
true. However, in COMPOUND, the event should be taken before ua (and before ua
and before ub but that’s beside the point) after grdm ∧ grda ∧ grdb become true which
may be much later than when grda becomes true. For instance, let’s ignore grdb for
a moment (i.e. assume it remains true) and assume that grdm becomes true at time
5 and grda becomes true at time 1. Furthermore, assume ua is 3 and ub and um are
*. According to the information in module A (which has no access to module M), the
evt1 (or its counterpart in a flatten event) should occur before time 4. However, the
information in COMPOUND states that it should be between time 5 and 8. It makes it
hard to understand module A on its own. Therefore, sync events are non compositional.
We might remediate this by requiring each compound event to include only one event
with a timing assumption.
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6.3.3 Iterated Composition

. Iterated composition is the mechanism that allows us to compose a number of similar
instances without specifying each individually. For example, in the case of a network of
processes, we may want to specify the processes once and instantiate them many times
with a different process identifier.

system = || pid : PID @ Process(in pid)

where PID is the set of process identifiers. It allows us to change the number of processes
by just changing that set. In this case, if PID = 1..3, the above is equivalent to:

instances p1 = Process(in 1) ; p2 = Process(in 2) ; p3 = Process(in 3) end
composition system = p1 || p2 || p3 end
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