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Figure 1: Comparison of simulations using default [(a), (c)] and optimized [(b), (d)] parameters. Left: Agents are initially in a circle
with anti-diametric goals. The ORCA algorithm, optimized to reduce time-to-completion, completes the task twice as fast as its default
configuration and exhibits a less turbulent pattern. Right: The SF algorithm, optimized to minimize effort, requires a third of the energy
spent by its default configuration, and produces a faster room evacuation with tighter packing and smoother motion.

Abstract

In the context of crowd simulation, there are a diverse set of al-
gorithms that model steering, the ability of an agent to navigate
between spatial locations, while avoiding static and dynamic ob-
stacles. The performance of steering approaches, both in terms of
quality of results and computational efficiency, depends on internal
parameters that are manually tuned to satisfy application-specific
requirements. This paper investigates the effect that these param-
eters have on an algorithm’s performance. Using three represen-
tative crowd simulators and a set of established performance crite-
ria, we perform a number of large scale optimization experiments
that optimize an algorithm’s parameters for a range of objectives.
Our experiments show that parameter fitting has a significant im-
pact on the visual fidelity of the simulations produced, the crowd’s
localized and macroscopic behaviours, as well as the computational
efficiency of the steering algorithm. For example, our method au-
tomatically finds optimal parameters to minimize turbulence at bot-
tlenecks, reduce building evacuation times, produce emergent pat-
terns, and increase the computational efficiency of an algorithm, in
one case by a factor of two. Our study includes an in-depth statisti-
cal analysis of the correlations between algorithmic parameters, and
performance criteria. The proposed methodology can be applied to
any steering algorithm using any set of performance criteria. To our
knowledge, this is the first attempt at studying the relationship be-
tween a steering algorithm’s parameters and its performance, based
on parameter fitting.
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1 Introduction

Simulating groups of autonomous virtual humans (agents) in com-
plex, dynamic environments is an important issue for many practi-
cal applications. A key aspect of autonomous agents is their abil-
ity to navigate (steer) from one location to another in their envi-
ronment, while avoiding collisions with static as well as dynamic
obstacles. The requirements of a steering approach differ signifi-

cantly between applications and application domains. For example,
computer games are generally concerned with minimizing compu-
tational overhead, and often trade off quality for efficiency, while
evacuation studies often aim to generate plausible crowd behaviour
that minimizes evacuation times while maintaining order.

There is no definitive solution to the steering problem. Most of
the established methods are designed for specific classes of situa-
tions (scenarios), and make different trade-offs between quality and
efficiency. The fine balance between these often competing perfor-
mance criteria is governed by algorithm specific parameters that are
exposed to the user. Some of these parameters have intuitive direct
effects. For example, the radius of a comfort zone affects how close
agents may come to each other, while the neighbour horizon limits
the distance from an agent within which other agents are consid-
ered during steering, which significantly influences both the predic-
tive power and computational efficiency of the associated method.
However, even when the parameters are fairly intuitive, their com-
bined effect, or their effect on the macroscopic behaviour of a large
crowd is not always easy to predict. For this reason, the inverse
question is particularly interesting. That is, given a performance
criterion (metric), or a trade-off between performance metrics, or
pattern of behaviour, can we automatically select the parameter val-
ues of a steering algorithm that will produce the desired effect? This
is a timely and important question, and the main focus of our work.

We present a methodology for automatically fitting the parame-
ters of a steering algorithm to minimize any combination of per-
formance metrics, across any set of environment benchmarks in a
general, model-independent fashion. Using our approach, a steer-
ing algorithm can be optimized for success, quality with respect
to distance, time, or energy consumption of an agent, its computa-
tional performance, similarity to ground truth, user-defined custom
metrics, or a weighted combination of any of the above. Optimizing
an algorithm’s parameters across a representative set of challenging
scenarios provides a parameter set that generalizes to many situa-
tions. A steering approach may also be fitted to a specific bench-
mark (e.g., a game level), or a benchmark category (e.g., evacu-
ations) to hone its performance for a particular application. Our
method is model-independent and can be applied to any steering al-
gorithm using any set of performance criteria. To our knowledge,
this is the first study of the relationship between a steering algo-



rithm’s parameters and its performance, based on parameter fitting.

We demonstrate our proposed methodology using three established
agent-based algorithms: (1) ORCA: a predictive technique that
uses reciprocal velocity obstacles for collision avoidance [van den
Berg et al. 2008a], (2) PPR: a hybrid approach that uses rules to
combine reactions, predictions, and planning [Singh et al. 2011],
and (3) SF: a variant of the social forces method for crowd simu-
lation [Helbing et al. 2000]. We thoroughly study these algorithms
and compute their optimal parameter configurations for different
metric combinations on a representative scenario set of local agent
interactions and large-scale benchmarks. For example, our method
automatically finds optimal parameters to minimize turbulence at
bottlenecks, reduce building evacuation times, produce emergent
patterns, and increase the computational efficiency of an algorithm,
in one case by a factor of two. Cross-validation shows that optimal
parameter values generalize on average across scenarios that were
not part of the test set. Our study includes an in-depth statistical
analysis of correlations between algorithmic parameters, and per-
formance criteria, however, because of space limitations most of it
can be found in the supplemental material.

The main contributions of this paper are twofold. First, we pro-
pose a model-independent solution that automatically fits a steer-
ing algorithm’s parameters to maximize its performance, and we
demonstrate its effectiveness with a use-case analysis of three pop-
ular crowd simulation techniques. Second, we show that parameter
fitting over appropriate test sets can be an effective tool for study-
ing and analyzing a steering algorithm, and in particular for gaining
insights on the effect its internal parameters on the algorithm’s per-
formance.

2 Related Work

Since the seminal work of [Reynolds 1987; Reynolds 1999], crowd
simulation has been studied from many different perspectives. We
refer the readers to comprehensive surveys [Pelechano et al. 2008;
Huerre et al. 2010; Thalmann and Musse 2013] and present a broad
review below.

Continuum-based techniques [Treuille et al. 2006; Narain
et al. 2009] model the characteristics of the crowd flow to
simulate macroscopic crowd phenomena. Particle-based ap-
proaches [Reynolds 1987; Reynolds 1999] model agents as parti-
cles and simulate crowds using basic particle dynamics. The so-
cial force model [Helbing et al. 2005; Brogan and Hodgins 1997]
simulates forces such as repulsion, attraction, friction and dissi-
pation for each agent to simulate pedestrians. Rule-based ap-
proaches [Lamarche and Donikian 2004; Pelechano et al. 2007; Sud
et al. 2007; van den Berg et al. 2008b] use various conditions and
heuristics to identify the exact situation of an agent. Data-driven
methods [Lee et al. 2007; Lerner et al. 2007; Ju et al. 2010; Metoyer
and Hodgins 2003; Musse et al. 2007; Patil et al. 2011] use existing
video or motion capture data to derive steering choices that are then
used in virtual worlds, and recent work [Ondřej et al. 2010] demon-
strates a synthetic vision-based approach to steering. The works
of [Paris et al. 2007; van den Berg et al. 2011] use predictions to
perform steering in environments populated with dynamic threats.
Predicting potential threats ahead of time results in more realistic
steering behaviours.

Crowd Evaluation. There has been a growing recent trend to use
statistical analysis in the evaluation and analysis of crowd simu-
lations. The work in [Lerner et al. 2010] adopts a data-driven
approach to evaluating crowds by measuring its similarity to real
world data. Singh et al. [2009] proposes a compact suite of man-
ually defined test cases that represent different steering challenges
and a rich set of derived metrics that provide an empirical measure

of the performance of an algorithm. Recent extensions [Kapadia
et al. 2011] propose a representative sampling of challenging sce-
narios that agents encounter in crowds to compute the coverage of
the algorithm, and the quality of the simulations produced. Den-
sity measures [Lerner et al. 2010] and fundamental diagram-based
comparisons [Seyfried et al. 2010] use aggregate metrics for quan-
tifying similarity. The work in [Guy et al. 2012; Pettré et al. 2009]
measures the ability of a crowd simulator to emulate the behavior
of a real crowd dataset by measuring its divergence from ground
truth. [Musse et al. 2012] presents a histogram-based technique to
quantify the global flow characteristics of crowds.

Perceptual experiments rely on real people to quantify the plausi-
bility of simulated crowds. The work in [Ennis et al. 2011] mea-
sures the effects of external factors such as camera position on
the perceived fidelity of crowds. The work in [McDonnell et al.
2008] explores the perception of variety in appearance and motion
in crowds. Kulpa et al. [2011] measures the perceptual fidelity of
relaxing collisions in crowds.

Parameter Optimization. Parameter fitting is widely used in vi-
sual effects [Bruckner and Moller 2010] to automate the tuning of
model parameters to meet certain user-defined criteria. The result-
ing optimization problems tend to involve non-convex, and highly-
dimensional spaces. For these problems evolutionary strategies are
preferred because they generally have less parameters to tune and
do not require the computation of derivatives. Such techniques have
been successfully demonstrated on a diverse set of application do-
mains [Ha et al. 2013; Wang et al. 2010]. By selecting the right set
of parameters, researchers have shown improvements in a crowd
simulator’s ability to match recorded crowd data [Pettré et al. 2009;
Lemercier et al. 2012; Pellegrini et al. 2009; Davidich and Koester
2011].

Although prior work has entertained the notion of parameter tuning
in certain specific cases, a comprehensive study and a methodology
to identify the relation between a steering algorithm’s parameters
and performance objectives has not been performed yet. Such a
study is an important and timely next step, and it is the main focus
of this paper.

3 Parameter Fitting Methodology

We present an optimization based framework for automatically fit-
ting the parameters v ∈ V of an algorithm, Av. Our framework au-
tomatically selects optimal parameter values v∗ ∈ V such that the
performance of Av∗ minimizes certain performance criteria, over
a set of benchmarks (test set). The next sections describe the ele-
ments involved in this problem and our approach to solving it.

3.1 Steering Algorithms

Our approach can be applied to any steering algorithm. For demon-
stration reasons, we use the following established algorithms that
model different steering approaches.

1. PPR. [Singh et al. 2011] presents a hybrid framework that
combines reaction, prediction and planning. It is an example
of a rule based method for agent based steering and has 38
independent parameters. For example, avoidance-turn-rate
defines the turning rate adjustment speed in proportion to the
typical speed and query-radius controls the radius around an
agent that PPR uses to predict collisions with other objects
and agents.

2. ORCA. [van den Berg et al. 2011] is a very popular method
that uses optimal reciprocal collision avoidance to efficiently



steer agents in large-scale crowds. A subset of its indepen-
dent parameters are: max-neighbors, the maximum number of
nearby agents that an agent will take into consideration when
making steering choices, max-speed, the maximum speed that
an agent may travel with, and time-horizon, the minimal time
for which an agent’s computed velocity is safe with respect to
other agents.

3. SF. [Helbing et al. 2000] uses hypothetical social forces
for resolving collisions between interacting agents in dense
crowds. In addition to general parameters similar with the
other methods, each social force model has associated param-
eters that govern its relative influence. The effect of some of
these parameters on the emergent dynamics of a crowd simu-
lation has been studied before.

The complete set of parameters and their default values for ORCA
are shown in Table 4. The other two algorithms have much larger
parameters sets which can be found in the supplemental material.

3.2 Test Sets

In the context of parameter fitting, we can employ a general test
set that tries to cover a wide range of situations, for example the
one proposed in [Kapadia et al. 2011], or a specific test set with
situations that appear in a particular application domain, for exam-
ple building evacuations. It is also worth noting that certain per-
formance metrics may have more meaning for specific test sets.
For example, computational efficiency is more meaningful for situ-
ations that involve sufficiently large numbers of agents.

For demonstration reasons, we focus our study on the following test
sets.

Large Scale Sets. S contains most of the large-scale benchmarks
in Table 1 that define large environments with many agents. Sv

is a set of similar but different large-scale benchmarks that will be
used to validate the results of parameter optimization on previously
unseen cases (cross validation).

Benchmark # Agents Description
Random 1000 Random agents in open space.
Forest 500 Random agents in a forest.
Urban 500 Random agents in an urban environment.
Hallway 200 Bi-directional traffic in a hallway.
Free Tickets 200 Random agents to same goal, then disperse.
Bottleneck 1000 Tight bottleneck.
Bottleneck evac 200 Evacuation through a narrow door.
Concentric circle 250 circle with target on opposite side.
Concentric circle 500 circle with target on opposite side.
Hallway 400 4-way directional traffic.

Table 1: Large scale benchmarks.

Representative Set. The representative scenario set, R, includes
5000 samples of a wide range of local interactions. It is designed
to include challenging local scenarios and to exclude trivial or in-
valid cases. We construct it in a fashion similar to [Kapadia et al.
2011], following these general guidelines: (a) The reference agent
is placed near the center of the scenario, (b) agent targets are placed
at the environment boundary, and (c) non-reference agents are dis-
tributed at locations that maximize the likelihood that their static
paths will intersect the reference agent’s static path to its target. We
use the same method to generate another set of the same size, Rv ,
for cross-validation.

Combined Test Set. The union of the large scale set, S, and the
representative set,R, T = S∪R is the main test set that we use for
algorithm analysis and parameter fitting in a statistically significant
general fashion.

Combined Validation Set. Similarly, the combined cross-
validation set is T v = Sv ∪Rv .

Custom Scenario Set. A user can specify a subset of scenarios
in T or even design custom benchmarks to focus the parameter
fitting on application-specific requirements. Random permutations
in the environment configuration and agent placement can generate
multiple samples of a custom benchmark category. For example,
one can create a set of test cases that capture two-way traffic in
orthogonally crossing hallways as is common in large buildings.

Ground Truth Test Set. The are a few publicly available data sets
of recorded crowd motion, which can be used to test the ability of
steering algorithms to match real world data. We use a ground truth
test set G, published by [Seyfried et al. 2010] for our experiments.

3.3 Normalized Performance Measures

Given an appropriate test set, we want to compute normalized quan-
tities (metrics) that characterize important aspects of a steering
algorithm’s performance. Recently a number of intuitive perfor-
mance metrics have been proposed that include: (a) the fraction of
scenarios that an algorithm is unable to solve in a representative set
of scenarios, (b) quality measures with respect to distance travelled,
total time taken, or energy consumption of an agent, (c) computa-
tional performance of the algorithm, and (d) statistical similarity
with respect to ground truth. The specific metrics that we use in our
experiments are briefly described below. For more details see [Ka-
padia et al. 2011; Guy et al. 2010; Guy et al. 2012]. One can also
define custom metrics to meet application-specific requirements.

Failure rate. The coverage c(Av) of a steering algorithm Av over
a test set, T , is the ratio of scenarios that a steering algorithm suc-
cessfully completes in T . An algorithm successfully completes a
particular scenario if the reference agent reaches its goal within a
conservative time limit without any collisions, and the total number
of collisions among non-reference agents is less than the number of
agents in the scenario. We define the failure rate as the complement
of coverage d(Av) = 1− c(Av). It captures the ratio between the
number of scenarios not successfully solved and the total number
of scenarios in T , and it has obvious bounds in T .

Distance Quality. For a single small scale scenario, s, we define
the distance quality metric, qd(Av) of an algorithm Av as the com-
plement of the ratio between the length of an ideal optimal path, ods ,
and the length of the path that the reference agent followed, ad

s :

qd(Av) = 1− ods
ad
s

. (1)

The ideal optimal path is the shortest static path from the agent’s
initial position to its goal after line-of-sight smoothing [Pinter
2001]. If the algorithm does not successfully complete the scenario
then the associated distance quality metric is set to the worst-case
value of 1. For a large-scale scenario we compute qd(Av) as the
average over all agents, and for a set of scenarios, we computed it
as the average over the set.

Time Quality. It characterizes how much longer the reference
agent took to reach its goal compared to an ideal optimal time. The
ideal optimal time for a single scenario,ots, corresponds to the agent
reaching its goal when moving with its desired velocity along the
ideal optimal path. Similarly to the distance quality metric, time
quality is defined as:

qt(Av) = 1− ots
at
s

, (2)



where at
s is the time it took the agent to reach its goal in the scenario

s. If the algorithm does not successfully complete the scenario then
the metric is set to the worst-case value of 1. For large scale scenar-
ios this metric represents the average over all agents, and for a set
of test cases the average over the set.

PLE Quality. The principal of least effort characterizes the energy
expenditure of a reference agent over a path traveled [Guy et al.
2010] as follows:

pe = m

∫ tend

tstart

(es + ew)|v|2dt, (3)

where es and ew are commonly used energy terms for the average
person [Whittle 2007], and the mass, m is set to 1 in our experi-
ments. The PLE quality metric, qe(Av), is computed similar to the
other metrics as follows:

qe(Av) = 1− oe

ae
, (4)

where oes = optimal-path-length × (es + ew) is the ideal optimal
effort and ae the actual effort of the agent. If the algorithm does
not successfully complete the scenario the metric is set to the worst
case value of 1. For many agents and/or test cases the metric is
computed in the average sense.

Computational Efficiency. The computational efficiency e(Av)
metric is the average CPU time consumed by all agents in all sce-
narios in a test set S. Unlike the above normalized metrics, it is not
straightforward to provide an ideal upper bound for e. To provide a
basis for normalization, we assume that 10% of all computational
resources are allocated to the steering algorithm. Hence, the maxi-
mum time allocated to a steering algorithm every frame is n−1

des sec-
onds for a desired framerate of ndes fps. For every scenario s, the
maximum time tsmax allocated to every steering agent per frame is
(N · ndes)

−1 seconds, where N is the number of agents in s. Let
tsavg be the average time spent per frame for all agents to reach a
steering decision. The average computational efficiency e over a
test set S is computed as follows:

e(Av) = 1−

∑
s∈S

es(Av)

|S| , es(Av) =
ts

max

ts
avg

(5)

where es(Av) is the efficiency of Av for a particular scenario s, and
|S| is the cardinality of the test set S.

The desired framerate, ndes, provides an ideal upper bound for ef-
ficiency, analogous to the ideal upper bounds of the other metrics,
and allows us to define a normalized efficiency metric. Normalized
metrics can be combined more intuitively into optimization objec-
tives in the forthcoming analysis. Alternatively, we could set the
desired framerate to a very high value for all algorithms and deal
with scaling issues later.

Similarity to Ground Truth. In addition to quantitatively charac-
terizing the performance of a steering algorithm, we can also mea-
sure its ability to match ground truth. We compute a simulation-to-
data similarity measure g(Av,G) [Guy et al. 2012] which computes
the entropy measurement of the prediction errors of algorithm Av

relative to a given example dataset, such as the test set G defined in
Section 3.2.

3.4 Parameter Optimization

Given a set of performance metrics such as the ones defined in Sec-
tion 3.3, M = 〈d, qd, qt, qe, e〉, we can define an objective function

as a weighted combination of these metrics:

f(Av,w) =
∑

mi∈M

wi ·mi, (6)

where w = {wi} contains the weights which determine the rela-
tive influence of each individual metric. By choosing different sets
of metrics and associated relative weights, we can define custom
objectives.

For a steering algorithm Av with internal parameters v ∈ V, a set
of test set, and a desired objective f(Av,w), our goal is to find the
optimal parameter values v∗w that minimize the objective over the
test set. Mathematically this can be formulated as a minimization
problem:

v∗w = argmin
v∈V

f(Av,w). (7)

This is generally a non-linear and non-convex optimization problem
for the independent parameters, v ∈ V. The Covariance Matrix
Adaptation Evolution Strategy technique (CMA-ES) [Hansen and
Ostermeier 1996; Hansen 2011] is one of the many methods that
can solve such problems. We chose CMA-ES because it is straight-
forward to implement, it can handle ill-conditioned objectives and
noise, but, more importantly, it has support for mixed integer op-
timization. It is very common for steering algorithms to involve
integer parameters that are discontinuous.

The CMA-ES algorithm terminates when the objective converges
to a minimum, when very little improvement is made between iter-
ations or after a fixed number of iterations. Each iteration evaluates
the objective for 8 parameter samples. In most of our experiments
the algorithm converged within 1000 evaluations.

For practical reasons we have to limit the range of the algorithm’s
parameters. The bounds are chosen separately for each parame-
ter based on intuition, physical interpretation of the parameter, or
default values provided by the algorithm’s creators. Limiting the
values of an algorithm’s parameters transforms the problem of op-
timizing over a unbounded domain to a bounded one, which gener-
ally decreases the number of iterations needed for the optimization
to converge. The supplementary document reports the chosen min-
imum and maximum bounds for each parameter of PPR, ORCA
and SF for reference.

Example: Figure 2 illustrates an optimization process. The param-
eters of ORCA v = {max speed, neighbour distance, time horizon,
time horizon obstacles, max neighbours} are optimally fitted to an
equally weighted combination of metrics over the test set T . After
45 iterations the optimization converges to approximately 10% bet-
ter objective value. A quick observation shows that the optimization
has reduced the number of neighbours that the algorithm considers
for each agent, max neighbours, from 10 to 2.

4 Large Scale Study

In this section, we study the effects of parameter fitting using the
combined test sets, T , T v . Our goal is to identify whether param-
eter fitting has a significant effect in a statistical sense, and to gain
some understanding on the relation between algorithmic parame-
ters and performance. The next section focuses on specific cases
and examples.

For each of the three algorithms, PPR, ORCA and SF, we compute
the optimal parameter values for each of the five metrics, failure rate
d(Av), distance quality qd(Av), time quality qt(Av), PLE qe(Av),
efficiency e(Av), as well as a uniform combination of these met-
rics, u, over the entire combined set, T . For comparison, we also
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Figure 2: Optimizing ORCA parameters to minimize the uniformly
weighted combination of metrics over the test set T . Each iteration
is equal to 8 metric evaluations. As can be seen convergence occurs
around 45 iterations.

compute the same metrics for all algorithms with their parameters
set to default values. The results are shown in Table 2.

f

Looking at the table, we notice that with the default parameters
PPR, ORCA and SF cannot solve respectively 39%, 56%, and
26% of the sampled scenarios. Using the optimal parameter se-
lection for PPR, the algorithm only fails in 9% of the scenarios, an
improvement of 30% over the default settings. The significant opti-
mization in time quality, qt(Av), for the PPR algorithm is impres-
sive as well. ORCA does not show significant results over the met-
rics with the exception of qt. On the other hand SF shows impres-
sive improvement over most metrics, achieving the smallest failure
rate d and the minimum energy expenditure, qe. The supplementary
document provides the corresponding optimal parameter values for
these experiments.

Validation. We verify the statistical significance of the results
shown in Table 2 in two ways. First, we observe that for all three al-
gorithms and for all the scenarios in the test set, T , which are more
than 5000, the optimization did not time out but actually converged
to at least a local minimum. In the context of numerical optimiza-
tion that is a sufficiently strong indication that the results are not
random. Second, we perform a cross validation study on an equally
large test set of similar, but previously unseen scenarios, T v . Com-
paring the values of the objectives for the default parameters of the
algorithms, and for the optimized ones, we see that the optimized
parameters on average perform better even on scenarios that were
not used during the optimization. The full cross-validation study
can be found in the supplementary document.

Having established the validity of the results we can now identify
potential relationships, correlations and insights related to the pa-

rameters, the performance metrics and the behaviour of an algo-
rithm.

Av v d qd qt qe e u

PPR DEF 0.39 0.49 0.56 0.53 0.96 0.58
OPT 0.09 0.20 0.07 0.28 0.89 0.34

ORCA DEF 0.56 0.61 0.56 0.67 0.75 0.62
OPT 0.47 0.56 0.30 0.63 0.67 0.55

SF DEF 0.26 0.41 0.50 0.45 0.87 0.50
OPT 0.04 0.20 0.29 0.23 0.78 0.32

Table 2: Comparison of failure rate d, distance quality qd, time
quality qt, effort quality qe, computational efficiency e, and a uni-
form combination of all metrics u for the three steering algorithms
using: (a) DEF: default parameter values and (b) OPT: optimal
parameter values.

Relationship between performance metrics. It is interesting to
investigate whether relationships exist between performance met-
rics. For example, does optimizing for distance quality, qd, also
optimizes time quality, qt? To answer such questions, we compute
the value of each metric obtained with parameter values that are
optimized for the other metrics, Table 3.

We observe that the optimal parameters for distance quality,
qd(Av), produce near-optimal results for failure rate, d(Av) in the
case of both PPR and ORCA. However, the opposite does not hold
true. Optimizing for failure rate, d(Av), does not yield optimal
results for distance quality,qd(Av).

A correlation analysis produces a clearer picture of the dependen-
cies across metrics for a given algorithm. Because of space limi-
tations we only discuss the correlation between metrics in the case
of ORCA. We generate 1000 samples in the parameter space of
ORCA, and use them to compute each metric over the 5008 cases in
T . We then compute the Spearman correlation coefficients between
pairs of metrics, shown in Table 6. We can identify the following
correlations:

1. A weak negative correlation between computational effi-
ciency, es(Av), and the other metrics.

2. A strong negative correlation between time quality, qt(Av),
and effort quality, qe(Av), which in general can be expected,
as faster motion requires more energy to achieve.

3. A weak positive correlation between time quality, qt(Av), and
distance quality, qd(Av). This is also expected since a shortest
path on average results in shorter completion time.

Relationship between parameters and metrics. It is interesting
to identify which parameters change in relation to the objectives,
and study the trade-offs that the algorithms essentially make with
these changes. Because of space limitations we present the relevant
data for ORCA in Tables 4and 5, and refer the user to the supple-
mental material for the supporting data on the other two algorithms.
However, we present a few observations for all three algorithms to
demonstrate that our methodology reveals interesting introspective
insights for more than one algorithm.

To optimize failure rate, d(Av), PPR chooses very high values
for predictive avoidance parameters and minimal values for speed
thresholds, and trades off performance by selecting higher spatial
querying distances. This results in slow moving agents that can ma-
noeuvre in tight spaces.When optimizing distance quality qd(Av)
PPR changes different speed multipliers in an attempt to minimize
any extra distance covered around corners. To improve computa-
tional efficiency,e, PPR minimizes parameters that would trigger



ORCA PPR SF
d qd qt qe e u d qd qt qe e u d qd qt qe e u

d 0.47 0.46 0.49 0.48 0.65 0.48 0.09 0.09 0.15 0.12 0.32 0.13 0.04 0.05 0.05 0.05 1.00 0.05

qd 0.59 0.56 0.58 0.57 0.71 0.57 0.23 0.20 0.26 0.23 0.44 0.26 0.20 0.20 0.20 0.20 1.00 0.20
qt 0.39 0.52 0.30 0.63 0.43 0.32 0.61 0.64 0.07 0.30 0.73 0.06 0.30 0.28 0.29 0.28 1.00 0.29
qe 0.73 0.66 0.71 0.63 0.79 0.71 0.41 0.42 0.34 0.28 0.57 0.34 0.24 0.23 0.24 0.23 1.00 0.23
e 0.72 0.74 0.71 0.74 0.67 0.74 0.98 0.96 0.97 0.94 0.89 0.90 0.83 0.83 0.83 0.83 0.80 0.83
u 0.59 0.59 0.56 0.61 0.65 0.55 0.46 0.46 0.36 0.38 0.59 0.34 0.32 0.32 0.32 0.32 0.96 0.32

Table 3: Comparison of failure rate d, distance quality qd, time quality qt, effort quality qe, computational efficiency e, and a uniform
combination of all metrics u for the three steering algorithms. Each column holds the values of all metrics that are computed with the
parameters that optimize only for the metric corresponding to the column.

Parameter DEF Min Max d qd qt qe e u
max speed 2 1 3.20 3.20 2.15 3.20 1.52 3.14 3.14

neighbor distance 15 2 22 17.39 13.37 14.75 12.08 8.18 8.99
time horizon 10 2 16 16 3.71 2 2.72 8.44 2.92

time horizon obstacles 7 2 16 12.30 16 9.60 11.81 2 10.92
max neighbors 10 2 22 8 11 2 15.03 2 2

Table 4: The parameters of ORCA: default values (DEF), bounds (Min, Max), and optimal values obtained for each metric separately, and
a uniform combination of the metrics.

changes in its planned path, which would require an expensive path
replanning operation.

To minimize failure rate and meet the time limit, ORCA raises its
time horizon to increase the number of agents it considers in its
velocity calculations, and increases its max speed so that agents
cover as much distance as possible. For distance quality, qd(Av),
ORCA reduces max speed just like PPR.

In general, SF reduces acceleration parameters to minimum values
for all quality metrics to prevent agents from overreacting.

Looking directly at the correlation coefficients, for ORCA in Ta-
ble 5, we can make the following observations:

1. For ORCA, the maximum number of neighbours considered
has the highest correlation with most metrics. The max speed
seems to be the second most important parameter. It affects
effort quality, qe(Av), negatively, and time quality qt(Av)
positively.

2. For PPR, the max speed factor, which is a multiplier that in-
creases the speed of an agent, is strongly correlated with the
efficiency metric, e, and has a negative effect on all quality
metrics.

3. For PPR, the size of the neighbourhood area, and the distance
to the furthest local target seem to be the parameters most
strongly correlated with efficiency, e.

4. For SF, the parameters with the highest correlation to compu-
tational efficiency, e, have to do with proximity forces. When
these are increased, agents push each other away forcefully,
decreasing the likelihood that they will interact again in the
the next frame.

5. The parameters of SF that affect the quality measures the most
are the wall repulsion coefficients.

The above analysis is not meant to be definite or complete, but
rather to demonstrate that the proposed methodology is an effec-
tive way to optimize, probe and analyze the behaviour of a steering
algorithm in relation to its parameters, over a small or large set of
test cases. The next section presents a number of more focused
examples and other practical applications of our methodology.

ORCA d qd qt qe e
d 1 1.00 0.20 0.35 −0.18
qd 1.00 1 0.21 0.36 −0.16
qt 0.20 0.21 1 −0.63 −0.02
qe 0.35 0.36 −0.63 1 −0.01
e −0.18 −0.16 −0.02 −0.01 1

Table 6: Spearman correlation coefficients between performance
metrics for a set of 1000 parameter samples with ORCA.

5 Applications and Results

The previous section demonstrates that it is both beneficial and re-
vealing to fit the parameters of a steering algorithm to performance
objectives over a large set of test cases. This section presents a se-
ries of experiments that demonstrate the potential applications of
parameter fitting for more specific cases. We refer the reader to the
accompanying video for a visual demonstration of the results, and
additional experiments.

Circlular benchmark. A popular and challenging scenario, that
is often used to test the effectiveness of a steering algorithm, dis-
tributes the agents on a circular fashion with diametrically opposite
goals. Such a configuration forces dense simultaneous interactions
in the middle of the circle. Using a group of 500 agents, we com-
pare the results of ORCA with the default, and optimized parameter
values that aim to minimize time quality, qt(Av). With the optimal
parameter set, ORCA takes 50% less time to complete the bench-
mark, and exhibits a more organized emerging behaviour. Agents
seem to form groups that follow a smooth curved trajectory, Fig-
ure 1 (left). For reference, the optimal parameter set in this case is:
{max speed: 3.2, neighbour distance: 13.63, time horizon: 2.32,
time horizon obstacles: 5.30, max neighbours: 7}.

Room evacuation. Evacuation benchmarks are important for a
range of application domains. In this benchmark a group of 500
agents must exit a room. For this experiment we use the social
forces, SF, method with the default, and optimized parameter val-
ues that minimize the effort quality metric, qe(Av). SF with op-
timal parameters spends 66% less energy on average per agent,
exhibits tighter packing, and visibly reduces the turbulence of the
crowd’s behaviour, Figure 1 (right).



Parameter d qd qt qe e
max speed 0.02 0.03 −0.34 0.58 0.14

neighbour distance −0.09 −0.07 −0.13 −0.03 0.03
time horizon −0.12 −0.08 0.10 0.04 0.07

time horizon obstacles −0.09 −0.09 0.17 0.04 0.11
max neighbors 0.42 0.47 0.54 0.29 0.37

Table 5: Spearman correlation coefficients between five metrics and the parameters of ORCA. The maximum amount of neighbours consid-
ered seems to have a significant effect on all metrics. For the effort metric, qe, the maximum speed parameter has a great negative effect.

Figure 3: Office evacuation with ORCA. Default parameters (left),
parameters optimized for time quality (right).

Office evacuation. A more challenging evacuation scenario that
involves 1000 agents in a more complex, office-like ground floor.
Optimizing ORCA for time quality, qt(Av), reduces the average
time it takes to exit the building by almost 60%. In addition, it
exhibits higher crowd density, and higher throughput at the doors,
Figure 3.

Optimizing for Ground Truth. There are a few methods that use
recorded crowd motion to influence and direct virtual crowds. In
this experiment, we simply show that our methodology can support
this approach. We optimize the behaviour of the three test algo-
rithms to match real world data contained in the ground truth test
set, G, Section 3.2. Our experiments showed that in most cases, the
optimization was able to significantly alter the resulting steering
behaviour, and increase the similarity to the recorded data. Table 7
reports the reduction in the entropy metric, g, (increase in similar-
ity) as a result of parameter optimization for all three algorithms,
and two different benchmarks. Figure 4, shows a comparison be-
tween default (left), ground truth (middle), and optimized (right)
results for the bi-directional hallway benchmark using ORCA.

Figure 4: Parameters optimized for similarity to ground truth
(middle) produce better results (right) than default parameters
(left).

Dynamically Adapting Steering Parameters. Our methodology
can create a large number of samples that relate parameter values to
performance metrics. It is an obvious next step to model that land-
scape, and learn the relation between parameters and performance

Av v 2-agent-crossing bi-directional hallway

PPR DEF 3.42 3.40
OPT 1.92 2.27

ORCA DEF 2.12 2.95
OPT 0.63 2.20

SF DEF 3.74 3.62
OPT 3.10 2.76

Table 7: Comparison of entropy metric values before and after op-
timization to match real world data. DEF: default parameter val-
ues, OPT: optimal parameter values.

metrics, using, perhaps, non-linear, manifold learning techniques.
We leave this task for future work. In the mean time, we explore a
couple of simple interactive examples. Figure 5 shows a snapshot
from an interactive demo that allows the user to switch dynami-
cally between optimal parameter values that correspond to different
objectives.

Figure 5: A prototype system for interactively setting the relative
weights of the metrics in the objective. When the weights change,
the algorithm’s parameters are set automatically to the correspond-
ing optimal values.

The accompanying video demonstrates additional examples, in-
cluding multi-objective optimizations, and optimizations that im-
prove computational efficiency.

5.1 Implementation details

The primary factors that affect the computational performance of
the optimization are the size of the test set, the number and range
of parameters that are fitted, and the number of agents in the test
cases. Although CMA-ES is an efficient optimization method, fit-
ting a large number of parameters over a sizeable test set is com-
putationally expensive. For reference, a 12 core, 2.4 GHz, 12 GB,
computer, using 10 parallel threads, takes in the order of 20 hours
to optimize an algorithm over the 5008 scenarios in the test set, T .



6 Conclusion

We have presented a methodology to fit a steering algorithm’s pa-
rameters to user defined objectives over arbitrary test sets. Our
framework and methodology are general. Most elements can be
tailored to the needs of a particular application. For example, one
can use different performance metrics, objectives, test sets, and op-
timization methods.

More importantly, we also show that parameter fitting not only can
be used to improve the performance of an algorithm, but it can also
serve as an analysis tool to produce a detailed view of an algo-
rithm’s behaviour relative to its internal parameters. This detailed
view can be the basis of a thorough introspective analysis that al-
lows both developers and end-users to gain insights on the perfor-
mance and behaviour of an algorithm.
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