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Abstract

Online high utility itemset mining over data streams has been studied
recently. However, the existing methods are not designed for producing top-
k patterns. Since there could be a large number of high utility patterns,
finding only top-k patterns is more attractive than producing all the patterns
whose utility is above a threshold. A challenge with finding top-k high utility
itemsets over data streams is that it is not easy for users to determine a proper
minimum utility threshold in order for the method to work efficiently. In this
paper, we propose a new method for finding top-k high utility patterns over
sliding windows of a data stream. The method (named T-HUDS) is based on
a compressed tree structure, called HUDS-tree, that can be used to efficiently
find potential top-k high utility itemsets over sliding windows. T-HUDS
uses a new utility estimation model to more effectively prune the search
space. We also propose several strategies for initializing and dynamically
adjusting the minimum utility threshold. We prove that no top-k high utility
itemset is missed by the proposed method. Our experimental results on real
and synthetic datasets show that our strategies and new utility estimation
model work very effectively and that T-HUDS outperforms two state-of-the-
art high utility itemset algorithms substantially in terms of execution time
and memory storage.
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1. Introduction

Frequent pattern mining is an important task in data mining and has
been extensively studied by many researchers [1, 12, 11]. Given a data set of
transactions, each containing a set of items, frequent pattern mining is to find
a set of itemsets whose support (i.e., the number of transactions containing
the itemset) is no less than a minimum support count. However, in frequent
pattern mining, the number of occurrences of an item inside a transaction
is ignored in the problem setting, so is the importance (such as price or
weight) of an item in the data set. In practice, some items or itemsets with
low support in the data set may bring high profits due to their high prices
or high frequencies inside transactions. Obviously, identifying such itemsets
with high profits is important for business planning and operation. However,
such itemsets may be missed by frequent pattern mining.

In view of this, high utility itemset mining has been studied recently
[3, 4, 25, 18]. An itemset is a high utility itemset (HUI) if its utility (such
as the total profit that the itemset brings) in a data set is no less than a
minimum utility threshold. Finding high utility itemsets has been considered
to be important in various applications, such as retail marketing, web click
analysis, and biological gene analysis [16, 15, 2]. However, mining HUIs is
not as easy as mining frequent itemsets. This is due to the fact that the
utility of an itemset does not have the downward closure property, which
would allow effective pruning of search space during the HUI mining process.
To deal with such a challenge, most of the HUI mining methods use an over-
estimated utility, called transaction weighted utility (TWU) (to be defined in
section 2), to first find itemsets whose TWU is no less than the minimum
utility threshold (called high TWU itemsets) and then compute the exact
utilities of high TWU itemsets to identify those whose utility satisfies the
minimum utility threshold. The benefit of using TWU is that TWU has
the downward closure property, which allows the use of Apriori-like or FP-
growth-like algorithms in the first phase of HUI mining to efficiently find
high TWU itemsets.

Since data streams have become widespread in many fields, such as sensor
network monitoring, trade management, and medical data analysis, methods
for mining HUIs from data streams have been proposed [2, 16, 15, 24]. In
comparison to static data, data streams have some unique properties, such
as very fast data arrival rate, unknown or unbounded size of data and in-
ability to backtrack over previously arriving transactions. To deal with such
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challenges, a HUI mining method in [2] (named HUPMS) uses a compact
data structure similar to FP-tree [12] to compress the transactions in the
data set and uses a pattern growth method (similar to FP-growth) to effi-
ciently identify all the high TWU itemsets with respect to a minimum utility
threshold. HUIs are then identified from the set of high TWU itemsets after
scanning the recent data in a sliding window for the second time to compute
the exact utility of these itemsets. Although the use of TWU allows effective
pruning of the search space due to its downward closure property, it is a very
loose estimate of the true utility of an itemset. As a result, the number of
high TWU itemsets found in the first phase of the method can be high and
many of them do not satisfy the minimum utility threshold. Thus, the over-
all time for finding HUIs can be too long to satisfy the fast data processing
requirement for data streams.

Another problem with the method in [2] and many other HUI mining
methods is that the user needs to supply a minimum utility threshold. How-
ever, it is often difficult for the user to specify a minimum utility threshold,
especially if the user has no background knowledge in the application domain.
If the threshold is set too low, a large number of HUIs can be found, which
is not only time and space consuming but also makes it hard to analyze the
mining results. On the other hand, if the threshold is set too high, there may
be very few or even no HUIs being found, which means that some interesting
patterns are missed. Figure 1 illustrates the major impact of setting the
threshold on the run time and the number of obtained HUIs on BMS-POS
data set [9] by the state-of-the-art HUPMS algorithm [2]1. For example, de-
creasing the threshold from 1.1% into 1.0%, increases the run time and the
number of candidates significantly (i.e., by almost 5 times in the run time
and by 36 times in the number of candidates).

A solution to this threshold setting problem is to mine top-k high utility
itemsets, in which the user supplies k, the number of HUIs to be returned. A
benefit of mining top-k patterns is that it is easier and more intuitive for the
user to indicate how many patterns they would like to see than specifying a
utility threshold. In addition, the number of returned patterns will be under
control and the result will not overwhelm the user. A method for top-k HUI

1A similar example on a different data set was used in [27] to illustrate the threshold
setting impact. However, in our example, the problem is more obvious, and the data set
is treated as a data stream. The values in the graphs are the average over all the sliding
windows.
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Figure 1: Run time and number of obtained high utility itemsets in BMS-POS data set
for different minimum utility threshold values (Window size = 3 Batches)

mining was proposed very recently in [27]. The method is designed for static
data, not for data stream mining. A major challenge in top-k HUI mining is
that the number of itemsets is exponential and it is infeasible to compute the
utilities of all the itemsets and identify the top-k ones. A minimum utility
threshold is thus needed in the mining process to prune the search space. The
method proposed in [27] initializes the threshold to 0 or the kth highest value
of the lower bounds for the utility of certain 2-itemsets, and then gradually
raise the threshold during the mining process to prune the search space. The
authors proposed a few strategies for raising the threshold. However, their
initial threshold is too low and can lead to generation of a large number of
potential HUIs in the first phase of the method. In addition, their method
is not designed for data streams.

In this paper, we propose more effective strategies for automatically ini-
tializing and dynamically adjusting the minimum utility threshold for mining
top-k high utility itemsets over data streams. Three of our strategies can be
applied to both static and streaming data, and one of them is specially de-
signed for data streams. We use a sliding window based data stream mining
method, in which a set of recent data (called a sliding window) is the tar-
get of mining. A sliding window consists of a fixed number of most recent
batches, each batch containing a set of transactions. When a new batch ar-
rives, the sliding window moves forward to include the new batch and at the
same time remove the oldest batch if the maximum number of batches in the
window has been reached before the new batch comes. In addition to the
new strategies for setting and adjusting the threshold, we also propose to use
another over-estimated utility as the search heuristic for finding HUIs in the
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first phase of the top-k HUI mining process. This over-estimate (called prefix
utility) is more effective than the most commonly used TWU in pruning the
search space because it is a closer estimate of the true utility than TWU .
The contributions of the paper are as follows:

• We are the first to propose a method for mining top-k high utility
itemsets from data streams. To the best of our knowledge, existing
methods for mining HUIs over data streams do not address the issue
of mining top-k HUIs, and previous top-k HUI mining methods do not
work on data streams.

• We propose several strategies for initializing and dynamically adjusting
the minimum utility threshold during the top-k HUI mining process.
We prove that using these strategies will not miss any top-k HUIs.

• We propose an over-estimate of the itemset utility, which is closer to
the true utility than TWU. We prove that this estimate (i.e., prefix
utility) has a special type of downward closer property, which allows it
to be used in the pattern growth method to effectively prune the search
space. Using a closer over-estimate results in fewer candidates being
generated in the first phase of the method.

• We propose an FP-tree-like compact data structure (called HUDS-tree)
to store the information about the transactions in a sliding window.
The tree is used to compute the prefix utility and to initialize and
adjust the minimum utility threshold.

• We conduct an extensive experimental evaluation of the proposed method
on both real and synthetic data sets, which shows that our proposed
method is faster and less memory consuming than the state-of-the-art
methods.

The paper is organized as follows. Preliminary definitions and a problem
statement are given in Section 2. In Section 3, we describe the challenges
in solving our problem and define some concepts used in our methods. In
Section 4, we present the HUDS-tree structure and our algorithms for finding
top-k HUIs. The experimental results are presented in Section 5. Related
work is discussed in Section 6. In Section 7 we conclude the paper.

2. Preliminaries and Problem Statement

Let I = {i1, i2, ..., im} be a set of items and each item ij ∈ I is associated
with a positive number p(ij), called its external utility (which can be the price
or profit) of item ij. Let D be a set of N transactions: D = {T1, T2, ..., TN}
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Figure 2: Example of transaction data base and external utility of items

TID Transaction

T1 (a,1)(c,1)(d,2)

T2 (a,2)(c,6)(e,2)(f,5)

T3 (a,1)(b,2)(c,3)(d,3)(e,1)

T4 (b,4)(c,3)(d,3)(e,2)

T5 (b,2)(c,2)(e,1)(f,2)

T6 (a,2)(f,5)

Item Name a b c d e f

External utility 3 6 5 8 4 3

B1

B2

B3

SW1

SW2

such that for ∀Tj ∈ D,Tj = {(i, q(i, Tj))|i ∈ I, q(i, Tj) is the quantity of
item i in transaction Tj}. Figure 2 shows an example of a data set with six
transactions.

Definition 1. Utility of an item i in a transaction Tj is defined as:
u(i, Tj) = q(i, Tj)×p(i) where q(i, Tj) is the quantity of item i in transaction
Tj and p(i) is external utility of item i.

Definition 2. Utility of an itemset X in a transaction Tj is defined
by: u(X,Tj) =

∑
i∈X

u(i, Tj).

For example, u({bc}, T3) = 2 × 6 + 3 × 5 = 27 in Figure 2.

Definition 3. Utility of an itemset X in a data set D of transactions
is defined as: uD(X) =

∑
X⊆Tj∧Tj∈D

∑
i∈X

u(i, Tj).

We use u(X) to denote uD(X) when data set D is clear in the context.

Definition 4. Utility of a transaction Tj is denoted as TU(Tj) and com-
puted as u(Tj, Tj).

Definition 5. (High Utility Itemset (HUI)) An itemset X is called a
high utility itemset (HUI) on a data set D if and only if uD(X) ≥ min util
where min util is called a minimum utility threshold.
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A challenge in mining high utility itemsets (HUIs) is that the utility of
an itemset does not have the downward closure (i.e., anti-monotone) prop-
erty. That is, the utility of an itemset does not decrease monotonically when
adding items to the itemset. It changes irregularly. Thus, unlike in frequent
itemset mining, we cannot use the utility of an itemset to prune the search
space in high utility itemset mining because a superset of a low utility itemset
may be a high utility itemset.

To solve this problem, an over-estimated utility of an itemset (instead of
the exact utility) is commonly used in the HUI mining process to prune the
search space. Most of the recent methods use transaction-weighted utility
(TWU) as the over-estimated utility:

Definition 6. Transaction-Weighted Utility (TWU) of an itemset X
over a data set D is defined as: TWUD(X) =

∑
X⊆Tj

∧
Tj∈D

TU(Tj).

Clearly, TWUD(X) ≥ uD(X). In addition, TWU satisfies the downward
closure property, that is, for all Y ⊆ X, TWUD(Y ) ≥ TWUD(X). Thus,
most of the HUI mining methods (e.g., [16, 2]) uses the TWU values of the
itemsets to prune the search space. That is, they find all the itemsets whose
TWU is no less than the minimum utility threshold. Since TWUD(X) is an
overestimate of uD(X), the procedure does not miss any high utility itemset.
But the true utility of a generated itemset may be lower than the minimum
utility threshold. Thus, these methods use a second phase to compute the
exact utility of the generated itemsets and remove those whose utility is lower
than the threshold.

We are interested in mining top-k HUIs in data streams. In a data
stream environment, transactions come continually over time, and they are
usually processed in batches. A batch Bi consists of transactions arriv-
ing continuously in a time period, i.e., Bi = {Tj, Tj+1, ..., Tm}. For ex-
ample, assuming that the dataset in Figure 2 is a data stream and that
each batch contains 2 transactions, there are three batches in the stream:
B1 = {T1, T2}, B2 = {T3, T4}, and B3 = {T5, T6}.

A sliding window consists of m most recent batches, where m is called
the size of window, denoted as winSize. If the first batch in a sliding window is
Bi, the window can be represented as SWi = {Bi, Bi+1, ..., Bi+winSize−1}. As
a new batch forms up in a data stream, the sliding window removes its oldest
batch and adds the new batch to the window. For example, consider the data
stream in Figure 2. Assume that the winSize is 2. The first two batches form
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the first sliding window: SW1 = {B1, B2}. When the third batch B3 is filled
up with transactions, the second sliding window is formed: SW2 = {B2, B3}.
Data stream mining over sliding windows is to mine patterns from each new
window once a new batch is added into the new window and the oldest batch
is removed from the window. The problem tackled in the paper is defined as
follows.

Problem 1. For each sliding window SWi in a data stream, the problem is
to find the top-k high utility itemsets in SWi, ranked in descending order of
their utility, where k is a positive integer given by the user.

3. Challenges and New Definitions

There are inherent challenges in mining top-k HUIs in data streams.
First, since streaming data can come continuously in a high speed, they
need to be processed as fast as possible. As mentioned earlier, the utility of
an itemset does not have the downward closure property, and thus most of
the existing HUI mining methods use TWU (an over-estimate of the itemset
utility) as the search heuristic to prune itemsets whose TWU is below the
minimum utility threshold. To further speed up the HUI mining process, we
define another over-estimated utility of an itemset, which provides a closer
estimation of the true utility of an itemset than TWU . This over-estimated
utility, called Prefix Utility, is used in our HUI mining to more effectively
prune the search space.

Definition 7. Prefix Utility of an itemset X in a transaction T .
Assume the items in T are ranked in an order (such as the lexicographic or-
der) and that X ⊆ T . The prefix set of X in T , denoted as PrefixSet(X,T ),
consists of all the items in T that are not ranked after any item in X. The
prefix utility of X in T is defined as:

PrefixUtil(X,T ) =
∑

i∈PrefixSet(X,T )

u(i, T )

Example 1. In Figure 2, the prefix set of itemset {ac} in transaction T3 is
{abc}. Thus,

PrefixUtil({ac}, T3) = u(a, T3) + u(b, T3) + u(c, T3)

= 3 + 12 + 15 = 30
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Definition 8. Prefix Utility of an itemset X in a dataset D is defined
as:

PrefixUtilD(X) =
∑

X⊆Tj
∧

Tj∈D

PrefixUtil(X,Tj)

Here we assume that items in all the transactions are ranked in the same
order.

Example 2. Let D be the dataset in Figure 2. Since only T1, T2 and T3 in
D contain itemset {ac}, we have

PrefixUtilD({ac}) = PrefixUtil({ac}, T1) + PrefixUtil({ac}, T2) +

PrefixUtil({ac}, T3)

= 8 + 36 + 30 = 74

Property 1. For any itemset X in a dataset D, the following holds:

TWUD(X) ≥ PrefixUtilD(X) ≥ uD(X)

Lemma 1. Assume that items in all the transactions in a dataset D are
ranked in an order. Let X be an itemset and X = Y ∪{i} where i is the last
item in X in the ranked order. For all Z ⊆ Y ,

PrefixUtilD(Z ∪ {i}) ≥ PrefixUtilD(X)

.

Proof 1. Let SX be the set of transactions containing X in a data set D.
According to Definition 8, we have

PrefixUtilD(Z∪{i}) = PrefixUtilSX
(Z∪{i})+PrefixUtilD−SX

(Z∪{i}).
Since itemset Z ∪ {i} contains the last item in X and Z ∪ {i} ⊆ X, we have

PrefixUtilSX
(Z ∪ {i}) = PrefixUtilSX

(X).

Clearly, PrefixUtilSX
(X) = PrefixUtilD(X). Thus,

PrefixUtilD(Z ∪ {i}) = PrefixUtilD(X) + PrefixUtilD−SX
(Z ∪ {i}).

Since PrefixUtilD−SX
(Z ∪ {i}) ≥ 0,

PrefixUtilD(Z ∪ {i}) ≥ PrefixUtilD(X).
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This lemma means that the prefix utility of an itemset X has the download
closure property if we only concern the subsets of X that contain the last
item in X in the ranked order. Such a special kind of the downward closure
property allows us to use PrefixUtil to prune search space in our HUI mining
algorithm to be described later.

Example 3. Assume that a, b and c are items in a data set and that the
items in the data set are ranked in the lexicographic order. According to
Lemma 1, PrefixUtil({ac}) ≥ PrefixUtil({abc}) and PrefixUtil({bc}) ≥
PrefixUtil({abc}). Thus, if PrefixUtil({ac}) or PrefixUtil({bc}) is less
than a minimum utility threshold, PrefixUtil({abc}) must be less than the
threshold. Since PrefixUtil({abc}) ≥ u({abc}), u({abc}) must be less than
the threshold.

The second challenge of our problem is in finding top-k patterns. An
efficient method for finding top-k patterns is to first find potential patterns
whose (estimated) utility is above a threshold and then identify the top-k
patterns from the potential ones. Since the minimum utility threshold is not
given in the top-k problem, a challenge in top-k pattern mining is how to
set up the threshold so that the process generates fewer number of potential
patterns that include all the top-k patterns. To meet this challenge, we pro-
pose some strategies for initializing and dynamically raising the minimum
utility threshold during the stream mining process. Below we define mini-
mum transaction utility, which will be used in our strategy for initializing
the threshold.

Definition 9. Minimum Transaction Utility (mtu) of a transaction
T is defined as: mtu(T ) = mini∈T (u(i, T )).

For example, in Figure 2:

mtu(T4) = min(u(b, T4), u(c, T4), u(d, T4), u(e, T4))

= min(24, 15, 24, 8) = 8

Based on the mtu values of the transactions, we define an underestimate
utility of an itemset in a data set as follows.

Definition 10. Minimum Transaction Utility (MTU) of an itemset
X over a data set D is defined as: MTUD(X) =

∑
X⊆T

∧
T∈D

mtu(T ).
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Table 1: Summary of Notations
Concept Description
u(i, T ) Utility of item i in transaction T

u(X) Utility of itemset X in a data set
TWU(X) Transaction-Weighted Utility (an overestimated utility)

HUI High Utility Itemsets
PrefixUtil(X) Prefix Utility of itemset X

mtu(T ) Minimum Transaction Utility of transaction T

MTU(X) Minimum Transaction Utility of Itemset X (an underestimated utility)
LPI(X) Lowest Profit Item Utility of Itemset X (an underestimated utility)
miu(i) Minimum Item Utility of item i in any transaction of a data set

MIU(X) Minimum Itemset Utility of Itemset X (an underestimated utility)
maxUtilList List of maximum values of MTUs and LPIs for each level of HUDS-tree

MIUList List of top-k MIU values in potential HUIs
minTopKUtili Minimum Top-k Utility of the ith sliding window

PTKHUI Potential Top-k High Utility Itemset
PTKSet Set of Potential Top-k High Utility Itemsets

We use MTU(X) to denote MTUD(X) when the data set D is clear in the
text. For example, for the data set in Figure 2:

MTU({bc}) = mtu(T3) + mtu(T4) + mtu(T5)

= 3 + 8 + 4 = 15

Property 2. For any itemset X in a data set D, the following holds: MTUD(X) ≤
uD(X).

Lemma 2. The minimum transaction utility of an itemset satisfies the down-
ward closure property. That is, for all Y ⊆ X, MTU(Y ) ≥ MTU(X).

Proof 2. Since all the transactions containing an itemset X also contains
any subset Y of X, MTU(Y ) ≥ MTU(X).

The third challenge for mining top-k HUI in streaming data is that there
can be a huge amount of data in a data stream. Thus, use of compact memory
data structures is necessary in the mining process. To meet this challenge, a
compact data structure is used in our method, which can be built with one
scan of data. Finding potential patterns is based on the information in this
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data structure. This data structure and our method for finding top-k HUIs
are described in the next section. For convenience, Table 1 summarizes the
concepts and notations we define in this paper.

4. T-HUDS: Top-k High Utility Itemset Mining over Data Stream

In this section, we propose an efficient method (called T-HUDS) to find
top-k HUIs in data streams without specifying a minimum utility threshold.
T-HUDS works based on a prefix tree, called HUDS-tree (High Utility Data
Stream Tree), and two auxiliary lists of utility values. HUDS-tree dynami-
cally maintains a compressed version of the transactions in a sliding window.
The two auxiliary lists each maintain a utility list of length log2(k + 1) or
k, where k is the number of top-k itemsets to be returned, and are used to
dynamically adjust the minimum utility threshold during the mining process.

4.1. An Overview of T-HUDS Method

The T-HUDS method includes three main steps: (1) HUDS-tree construc-
tion: construct a HUDS-tree and two auxiliary lists on a batch of transac-
tions; (2) HUDS-tree mining: discover top-k HUIs from the current sliding
window; and (3) HUDS-tree update: once a new batch arrives, inserts the
transactions in the new batch into the tree, remove transactions in the oldest
batch from the tree if the sliding window had been filled up, and updates the
two auxiliary lists.

Algorithm 1 presents an overview of the proposed method. We assume
that the data stream comes in batches. Given a batch Bi of transactions,
k and the sliding window size (winSize), if a HUDS-tree does not exist yet
(i.e., the batch is the very first one), a HUDS-tree is constructed based on
the transactions in Bi, and two auxiliary lists, maxUtilList and MIUList,
are also computed or initialized. If a HUDS-tree already exists, the tree
and the two auxiliary lists are updated to reflect the addition or changes of
transactions in the sliding window. After that, T-HUDS calls Algorithm 3
to find top-k HUIs for the new sliding window.

Below we first describe how the HUDS-tree is structured and constructed.
Then we present our methods for estimating the minimum utility threshold,
our top-k HUI mining algorithm and finally our procedure for updating the
HUDS-tree.
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Algorithm 1 T-HUDS

Input: Bi, k, winSize, HUDS-tree
Output: Top-k HUIs

1: if HUDS-tree is empty (i.e., Bi is the very first batch B1) then
2: minTopKUtil0 ← 0
3: Construct a HUDS-tree based on Bi (i.e., B1)
4: Construct the auxiliary list maxUtilList based on the information in

the HUDS-tree
5: Initialize the auxiliary list MIUList using the top-k miu values of the

items (to be defined in later)
6: else
7: Call Algorithm 5 to update HUDS-tree, maxUtilList and MIUList

using Bi and winSize
8: Call Algorithm 3 to compute top-k HUIs on the current sliding window

with the HUDS-tree, maxUtilList, MIUList and minTopKUtili−1

9: return Top-k HUIs

4.2. HUDS-tree Structure and Construction

The structure of HUDS-tree is similar to that of FP-tree [12], UP-tree [25]
or HUS-tree [2]. These trees are used to compress a transaction database into
a tree. A non-root node in the trees represents an item in the transaction
database, and a path from the root to a node compresses the transactions that
contains the items on the path. Since the FP-tree is used to find frequent
itemsets, a node in an FP-tree mainly stores the frequency of an itemset
represented by the path from the root to the node. The UP-tree is for finding
high utility itemsets, and thus its node contains not only frequency but also
an estimated utility (i.e., TWU) of the itemset. The HUS-tree is used for
mining high utility patterns over data streams. Thus, its node stores the
TWU value of the itemset for each batch in a sliding window to facilitate
the update process. Since we are dealing with data streams as well, our
HUDS-tree is similar to a HUS-tree. But instead of storing TWU values, a
node in a HUDS-tree stores the PrefixUtil of the represented itemset for
each batch, which is, as discussed earlier, a closer estimate of the true utility
of the itemset than TWU . In addition, to effectively estimate the minimum
utility threshold, a node in HUDS-tree also stores the MTU value of the
itemset for each batch. The node structure of the HUDS-tree is described
below.
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A non-root node in a HUDS-tree contains the following fields: nodeName,
nodeCounts, nodePUtils, nodeMTUs and succ. nodeName is the name of the
item represented by the node. The nodeCounts field is an array with winSize
elements, where winSize is the number of batches in the sliding window.
Each element in nodeCounts corresponds to a batch in the current sliding
window and registers the number of the transactions in the batch falling
onto the path from the root to the node. Let X be the itemset represented
by the path. The nodePUtils field is an array of winSize elements, each
corresponding to a batch and storing the prefix utility of X in the transac-
tions of the batch falling onto the path. Similarly, nodeMTUs is an array
of the minimum transaction utilities (MTU) of X in the transactions falling
onto the path for all the batches of the sliding window. Keeping separate
information for each batch facilitates the update process, that is, when a
new batch Bi arrives, if the oldest batch needs to be removed, it is easy to
remove the information of the oldest batch and include the information for
the new batch. Finally, succ points to the next node of the tree having the
same nodeName.

Example 4. A HUDS-tree, built from the transactions in sliding window
SW1 = {B1, B2} in Figure 1, is illustrated in Figure 3, where the winSize is 2
and thus nodeCounts, nodePUtils and nodeMTUs each contains two values.
For example, in node 〈b : [0, 1], [0, 15], [0, 3]〉, nodeName is b, nodeCounts
holds [0,1], meaning the number of transactions matching path a → b is
0 in B1 and 1 in B2, respectively, and [0,15] and [0,3] are the contents of
nodePUtils and nodeMTUs, respectively. Since b appears only in the second
batch, its values for nodeCounts, nodeUtils and nodeMTUs in the first batch
are 0. The field succ is not illustrated for the clarity reason.

Each item has an entry in the header table of the HUDS-tree. An entry
in the header table contains the name of the item, the PrefixUtil value of
the item in the transactions represented by the tree and a link pointing to
the first node in the HUDS-tree carrying the item. The PrefixUtil value of
an item is computed by adding up all the nodePUtils values of the nodes
labeled with the item in the tree.

Given the first batch B1 of transactions, a HUDS-tree is constructed as
follows. For each transaction in B1, we first order the items in the transac-
tion in an order (such as the lexicographic order or the descending external
item utility order), and then insert the items into the HUDS-tree in the way
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Algorithm 2 Insert Transaction into HUDS-tree

Input: Transaction T , rootNode, idx, batchNumber
Output: Updated HUDS-tree, maxUtilList

1: let itemidx be the idxth item in T
2: if ∃ node ∈ the children of the rootNode & nodeName(node) = itemidx

then
3: node.nodeUtils[batchNumber]+ =

∑idx
j=1 u(itemj, T )

4: node.nodeCounts[batchNumber] + +
5: node.nodeMTUs[batchNumber]+ = MTU(T )
6: else
7: node.nodeName ← itemidx

8: node.nodeUtils[batchNumber] ← ∑idx
j=1 u(itemj, T )

9: node.nodeCounts[batchNumber] ← 1
10: node.nodeMTUs[batchNumber] ← MTU(T )
11: add node as a child node of rootNode
12: update the idxth element, maxUtilidx, in the maxUtilList
13: if idx 
= the length of T then
14: Algorithm2(T, node, idx + 1, batchNumber)
15: HUDS−Tree ← rootNode
16: return HUDS−Tree, maxUtilList
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Link Item PrefixUtil

a 12

b 39

c 113

d 141

e 173

f 59

root

a:[2,1],[9,3],[9,3]

b:[0,1],[0,15],[0,3]

c:[0,1],[0,30],[0,3]

c:[2,0],[44,0],[9,0]

d:[1,0],[24,0],[3,0]
e:[1,0],[44,0],[6,0]

f:[1,0],[59,0],[6,0]

Level maxUtil

1 12

2 9

3 8

maxUtilList:

d:[0,1],[0,54],[0,3]

e:[0,1],[0,58],[0,3]

b:[0,1],[0,24],[0,8]

c:[0,1],[0,39],[0,8]

d:[0,1],[0,63],[0,8]

e:[0,1],[0,71],[0,8]

Figure 3: HUDS-tree after inserting transaction in SW1 in Figure 1.

similar to building an FP-tree [12]. For example, for the first item item1

in a transaction T in B1, if a node with the same item name is not found
under the root, a new child is created and its fields are initialized as follows:
nodeName = item1, nodePUtils[1] = u(item1, T ), nodeCounts[1] = 1,
nodeMTUs[1] = MTU(T ). If the node with the item name already ex-
ists under the root, its fields for the current batch are updated. Details of
the procedure for inserting one transaction T in batch Bi into the HUDS-
tree are presented in Algorithm 2. In the algorithm, the input parameter
batchNumber should be given a value of i%winSize + 1, where i is the ID
of the current batch Bi in the data stream and % is the modulo operator
which returns the remainder of dividing i by winSize. For example, if i = 2
or winSize + 2, batchNumber is 2. The algorithm is a recursive algorithm.
Each call to the algorithm “inserts” one item of the input transaction T into
the tree. The input parameter idx indicates which item in T is being “in-
serted”. idx is initialized to 1 for each transaction. Clearly, the tree can be
built with one scan of the data in Bi.

Before we describe how to mine HUIs from a HUDS-tree and how to
update the tree with new batches, we first present our method for estimating
the minimum utility threshold.
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4.3. Estimation of Minimum Utility Threshold

Our objective is to find top-k high utility itemsets. Since the number of
itemsets is exponential with respect to the number of items in the data, it is
infeasible to enumerate all the itemsets, find their utilities in the sliding win-
dow and outputs the top-k highest utility itemsets. An efficient procedure
for finding top-k itemsets is to first use an efficient method to find potential
itemsets whose utility is above a threshold and then identify the top-k item-
sets from the potential ones. To do this, a proper minimum utility threshold
is needed in the first phase of the procedure. If the threshold is set too low,
many unwanted HUIs are produced, which is time-consuming. If it is set too
high, we may not be able to produce k itemsets. A good strategy for setting
the threshold should satisfy the following conditions: (1) it should not miss
any top-k HUIs; (2) the estimated threshold should be as close as possible
to the utility of the kth highest utility itemset.

In our method, we use four strategies to initialize and dynamically adjust
the threshold during the mining process. These strategies lead to significant
pruning of search space. Below we describe three strategies, which will be
used in the first phase of our mining method. The fourth strategy (to be
used in the second phase) will be described in Section 4.4.2.

4.3.1. Initializing the Threshold Using maxUtilList

In a HUDS-tree, the nodeMTUs field of a node n stores the MTU values
of the itemset represented by the path from the root to n in the set of
transactions falling onto the path in each batch separately. The MTU value
of the itemset in the transactions on the path in the sliding window can
be easily calculated by summing up all the values in nodeMTUs of node
n. We use nodeMTU(n) to denote this sum. Similarly, nodeCount(n) is
used to denote the count of the itemset in the set of the transactions falling
on the path in the whole sliding window. Now we are ready to define the
maxUtilList.

Definition 11. (Maximum Utility List (maxUtilList)) of a HUDS-
tree is a list of length d:

maxUtilList = {maxUtil1, ...,maxUtild}

where d is the depth of the HUDS-tree and maxUtili is computed based on
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the nodes on the ith level of the tree as follows:

maxUtili = max
j

{max(nodeMTU(nodei,j),

nodeCount(nodei,j) × minProfit(nodei,j))}
where nodei,j is the jth node in level i of the tree, nodeMTU(nodei,j) is sum
of the values in the nodeMTUs field of nodei,j (i.e., the total MTU value
in the sliding window), nodeCount(nodei,j) is the sum of the counts in the
nodeCounts field of nodei,j (i.e., the total count in the sliding window), and
minProfit(nodei,j) = min{p(item)|item ∈ X} where p(item) is the external
utility of the item and itemset X is formed by the path from the root to nodei,j

in the tree.

For example, assume that the root is at level 0 in Figure 3. The level 2 has
one b node and two c nodes. maxUtil2 is thus computed as:

maxUtil2 = max{max(nodeMTU(b), nodeCount(b) × 3),

max(nodeMTU(c), nodeCount(c) × 3),

max(nodeMTU(c), nodeCount(c) × 5)}
= max{max(3, 1 × 3), max(9, 2 × 3), max(8, 1 × 5)} = 9.

Lemma 3. Let utilk be the utility of the kth itemset in the top-k high utility
itemset list. utilk is no less than maxUtilL where L = �log2(k + 1)�.
Proof 3. Let’s call nodeCount(nodei,j)×minProfit(nodei,j) Lowest Profit
Item utility (LPI) of the itemset X formed by the path from the root to
nodei,j in the set S of transactions represented by the path. Clearly, LPI(X)
is another underestimate of the utility of X in S, i.e., LPI(X) ≤ u(X) on
S. Also, for all Y ⊆ X, LPI(Y ) ≥ LPI(X) on S.

Let nodeL,j be a node on level L of the tree, XL,j denote the itemset
formed by the path from the root to nodeL,j, and SL,j denote the set of trans-
actions falling onto the path. Assume that nodeL,j is the node with maxUtilL,
that is, maxUtilL is either nodeMTU(nodeL,j) (i.e., MTU(XL,j) on SL,j)
or LPI(XL,j) on SL,j.

Assume that Y is a subset XL,j. According to Lemma 2, MTU(Y ) ≥
MTU(XL,j) on set SL,j. According to Property 2, u(Y ) ≥ MTU(Y ) on SL,j.
Similarly, u(Y ) ≥ LPI(Y ) ≥ LPI(XL,j) on SL,j. Thus,

u(Y ) ≥ max(nodeMTU(nodeL,j), LPI(XL,j)) = maxUtilL.
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Since u(Y ) on the entire data set represented by the tree is no less than u(Y )
on SL,j. Thus, u(Y ) on the entire data set is no less than maxUtilL.

Since nodeL,j is at level L of the tree, XL,j contains L items (assuming
the root is at level 0). Thus, XL,j has 2L −1 subsets. Thus, there are at least
2L − 1 itemsets whose utility is no less than maxUtilL.

If L = �log2(k + 1)�, we have

L ≥ log2(k + 1) ⇒ 2L ≥ k + 1 ⇒ 2L − 1 ≥ k

Thus, there are at least k itemsets with utility higher than or equal to
maxUtilL. Thus, utilk is no less than maxUtilL.

Lemma 3 declares that maxUtilL can be used to set the minimum utility
threshold for finding top-k HUIs, where L = �log2(k + 1)�. No top-k HUIs
can be missed with such a threshold. Intuitively, maxUtilL is the maximum
value among the nodeMTU values and LPI values of the nodes on level L
of the tree.

The maxUtilList can be computed while constructing and updating the
HUDS-tree. If k is fixed, only maxUtilL needs to be computed in the list;
otherwise, the values of maxUtili for all the levels are maintained.

4.3.2. Adjusting the Threshold Using MIUList

MIUList is another list that we maintain to dynamically adjust the min-
imum utility threshold. It keeps the top-k minimum itemset utility (MIU)
values of current potential high utility itemsets. Below we first define the
concept of MIU [27]:

Definition 12. Minimum Item Utility of an item a in any trans-
action of a dataset D is defined as: miuD(a) = u(a, Tq) where Tq ∈ D
and ¬∃ Tp ∈ D such that u(a, Tp) < u(a, Tq)

Definition 13. Minimum Itemset Utility of an itemset X in a dataset
D is defined as:
MIUD(X) =

∑
ai∈X

miuD(ai)×SCD(X) where SCD(X) is support count of X

in D.

We use MIU(X) to denote MIUD(X) when the data set D is clear in the
context.
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Property 3. For any itemset X in dataset D, MIUD(X) ≤ uD(X).

The miu value of an item can be computed during the HUDS-tree con-
struction and update. It can be stored in the global header table of the
HUDS-tree. The MIU value of an itemset can be computed based on the
miu values of its elements and the support count of the itemset (maintained
in the nodeCounts fields). In [27], the MIU values of itemsets are used to
raise the minimum support threshold during the HUI mining process. But
they may not be used properly. We use them to adjust the minimum utility
threshold by maintaining a minimum itemset utility list defined as follows.

Definition 14. Minimum Itemset Utility List(MIUList) Given a set
of already-generated HUIs, MIUList contains the top-k list of the MIU val-
ues of these HUIs, ranked in MIU -descending order, denoted as MIUList =
{MIU1,MIU2, ....,MIUk}, where MIU1 ≥ MIU2 · · · ≥ MIUk.

Lemma 4. Let MIUk be the kth member of MIUList and utilk be the utility
of the kth highest utility itemset in the top-k HUI list. utilk is no less than
MIUk.

Proof 4. Assume that the MIUi values in MIUList are the MIU values of
itemsets X1, X2, . . .Xk, respectively. According to Property 3, we have:

∀Xi ∈ {X1, X2, . . . Xk},MIU(Xi) ≤ u(Xi).

According to the Definition 14, MIUk is the smallest value in the MIUlist.
Thus, there are at least k itemsets whose utility is no less than MIUk.

According to this lemma, if the minimum utility threshold is set to MIUk,
no top-k HUI will be missed. Thus, we have the following strategy for ad-
justing the threshold. Once the HUDS-tree is built or updated for a sliding
window SWi, MIUList is initialized to the top-k highest miu values of sin-
gle items. During the process of mining HUIs for window SWi, once a new
potential HUI is generated, its MIU is compared with the current MIUk.
If it is greater than the current MIUk, the new MIU value is inserted into
the MIUList. If the new MIUk is greater than the current minimum utility
threshold, then the threshold can be raised to the new MIUk.
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4.3.3. Adjusting the Threshold with minTopKUtil of Last Window

Our third strategy for adjusting the minimum utility threshold is to make
use of the utility values of the top-k HUIs in the last sliding window. For this,
we define the minimum top-k utility (minTopKUtil) of a sliding window as
follows.

Definition 15. Let SWi = {Bi, Bi+1, . . . , Bi+winSize−1} be the ith sliding
window and let TopkHUISeti denote the set of top-k HUIs in window SWi.
The minimum top-k utility of a sliding window SWi is defined as:

minTopKUtili = min
itemset∈TopkHUISeti

i+winSize−1∑

j=i+1

uBj
(itemset)

In other words, the minTopKUtil of sliding window SWi is the minimum of
the utilities of the itemsets in TopkHUISeti in the last winSize− 1 batches
of SWi.

Lemma 5. Let utilk be the utility of the kth highest utility itemset over
sliding window SWi+1, and minTopKUtili be the minimum top-k utility of
window SWi. We have utilk ≥ minTopKUtili.

Proof 5. Let B be the union of last winSize − 1 batches in window SWi.
Then the next sliding window SWi+1 = B∪Bnew where Bnew is the new batch
in SWi+1. Since B ⊂ SWi+1, for each itemset X in TopkHUISeti, uB(X) ≤
uSWi+1

(X). Since minTopKUtili ≤ uB(X) for all X ∈ TopkHUISeti and
there are k itemsets in TopkHUISeti, there are at least k itemsets whose
utility in SWi+1 is at least minTopKUtili.

According to this lemma, if the minimum utility threshold in window SWi+1

is set to minTopKUtili, no top-k high utility itemsets will be missed.
The minTopKUtili value is computed during the second phase of our

procedure for mining top-k HUIs from sliding window SWi, which is to be
described in Section 4.4.2.

4.4. Mining Top-k High Utility Itemsets

After a HUDS-tree is built or updated for a sliding window SWi, we use a
2-phase procedure to find top-k HUIs in SWi. In the first phase, the HUDS-
tree is mined to generate a set of potential top-k high utility itemsets (i.e.,
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Algorithm 3 Top-k HUI Mining

Input: HUDS-Tree, maxUtilList,MIUList, minTopKUtili−1, k, SWi

Output: TopkHUISet , minTopKUtili

1: L ← �log(k + 1)�
2: min util ← max{maxUtilL,MIUk,minTopKUtili−1}
3: Generate a set of potential top-k HUIs (PTKSet) by calling Algorithm 4

with min util. The min util is also dynamically updated in Algorithm
4

4: Scan the transactions in the current sliding window SWi to obtain
uSWi

(itemset) and uSWi−Bi
(itemset) for each itemset in PTKSet, where

Bi is the first batch in SWi.
5: TopkHUISet ← ∅
6: for each itemSet ∈ PTKSet do
7: if uSWi

(itemSet) ≥ min util then
8: Insert 〈itemSet, uSWi

(itemSet)〉 into TopkHUISet so that the ele-
ments in TopkHUISet are ranked in the utility-descending order

9: if the size of TopkHUISet > k then
10: Remove the last element from TopkHUISet
11: if uSWi

(lastItemSet) > min util where lastItemSet is the cur-
rent last itemset in TopkHUISet then

12: min util ← uSWi
(lastItemSet)

13: minTopKUtili ← min{uSWi−Bi
(itemset)|itemset ∈ TopkHUISet}

14: return TopkHUISet, minTopKUtili
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PTKHUIs) that satisfy a dynamically-changing minimum utility threshold.
In the second phase, the exact utilities of the PTKHUIs are computed and
the top-k high utility itemsets are returned.

This 2-phase procedure is shown in Algorithm 3. At the beginning of the
procedure, we initialize the minimum utility threshold, min util, according
to the strategies proposed in Section 4.3 as follows:

min util = max{minTopKUitli−1,maxUtilL,MIUk}.

where minTopKUitli−1 is the minimum top-k utility of the last sliding
window (initialized to 0 in Algorithm 1 if the new batch is the first one),
maxUtilL is the Lth element in maxUtilList (where L is computed in Line
1), and MIUk is the kth element of the MIUList that initially contains the
list of the top-k minimum item utilities (miu) of single items.

With this initial min util threshold, Algorithm 4 is called to find PTKHUIs
from the HUDS-tree (Line 3). This is the first phase of the top-k procedure.
The second phase (from Line 4 to the end) finds exact top-k HUIs from the
set of PTKHUIs. Below we describe each phase in detail.

4.4.1. Phase I: Discover PTKHUIs from HUDS-tree

In Phase I, a set of potential top-k HUIs (PTKHUIs) is found from
the HUDS-tree. Our objective in this phase is to find as few PTKHUIs
as possible (so that the second phase will be faster) while not missing any
top-k HUIs. Our procedure for this phase follows a pattern growth approach,
similar to FP-growth [12] and HUPMS [2]. The major differences between
our Phase I procedure and the others are as follows. First, we use both
PrefixUtil and local TWUs to prune the search space, while others for HUI
mining mainly use TWU . Second, we use effective strategies for initializing
and dynamically adjusting the min util threshold during the mining process.

The pseudocode of the HUDS-tree mining procedure is described in Al-
gorithm 4. Like FP-growth, the algorithm is a recursive algorithm. In the
first call to the procedure, the input HUDS-tree is the global tree, and the
itemset X in the input list is empty. In a recursive call, the input tree is the
X-conditional HUDS-tree where X is a non-empty itemset. The algorithm
works as follows. For each item t in the (conditional) header table, the al-
gorithm checks if the PrefixUtil of t satisfies the min util threshold (Line
2). If yes, a potential top-k HUI IS is generated by extending X with item
t. IS is then added into the potential top-k HUI set (i.e., PTKSet). Then,
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Algorithm 4 HUDS-tree Mining to Generate PTKHUIs (Phase I)

Input: HUDS-Tree, itemset X, min util, MIUList, k
Output: PTKSet, min util,MIUList

1: for each item t in the header table of HUDS-tree do
2: if PrefixUtil(t) ≥ min util then
3: Generate a potential top-k itemset: IS ← {t} ∪ X
4: Add IS into the PTKSet set
5: if MIUSWi

(IS) ≥ min util then
6: Insert MIUSWi

(IS) into the MIUList
7: min util ← MIUk

8: Pattern baseIS ← all prefix paths of the nodes for item t with their
utilities

9: Prune all items in the Pattern baseIS whose TWU in
Pattern baseIS is less than min util.

10: Construct conditional HUDS−TreeIS and its header table
11: if HUDS-TreeIS is not empty then
12: call Algorithm 4(HUDS-TreeIS,IS, min util, MIUList, k)
13: return PTKSet, min util,MIUList

the min util threshold is adjusted in lines 5 to 7. If MIU(IS) is more than
the current min util, the MIU value is inserted into MIUList and min util
is raised by the minimum value of MIUList. MIU(IS) can be computed
easily because SCSWi

(IS) can be computed using the nodeCounts fields of
the t nodes and the miu values of all the items have already been computed
when building the global HUDS-tree.

After IS is generated, to find longer PTKHUIs containing IS, IS-conditional
pattern base (Pattern baseIS) is built by enumerating all the prefix paths
of the t nodes in the tree. The utility of each prefix path is the sum of the
values in the nodePUtils field of the t node in that path. Each item’s local
TWU value can then be computed by adding up the utilities of the prefix
paths it is in. In Line 9, we eliminate items in the conditional pattern base
whose local TWU is less than the min util threshold. After that, the IS-
conditional HUDS-tree is constructed based on the conditional pattern base
with the remaining items. At the end of tree construction, all the nodePUtils
values of nodes with the same nodeName in the conditional tree are added
and the result is added to local header table as the PrefixUtil value of the
item. Once a conditional tree is built, Algorithm 4 is called recursively to
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discover longer PTKHUIs ending with IS.
In the performance evaluation section, we will show that this pattern-

growth procedure generates fewer potential top-k HUIs and has less overall
run time than the state-of-the-art algorithms for high utility itemset mining.
This is due to the use of the prefix utility in pruning the search space and
also the dynamical increase of min util during the mining process.

4.4.2. Phase II: Identifying Top-k HUIs from PTKHUIs

HUDS-tree is a compact representation of the transactions in a sliding
window. It allows the use of the pattern growth method to efficiently find
the potential top-k HUIs. However, since the quantity of an item inside
a transaction may vary among transactions, the exact utility of an itemset
cannot be obtained from the HUDS-tree. Thus, in this second phase, we scan
the transactions in the current sliding window to obtain the exact utility of
each potential top-k HUI, and then identify the top-k HUIs based on the
true utility of the PTKHUIs.

The second phase procedure is shown in Lines 4-12 of Algorithm 3. In
Line 4, it scans the transactions in the current sliding window SWi to obtain
the exact utility of each itemset in PTKSet in SWi and also the exact utility
of each itemset in the last winSize− 1 batches of SWi. From Line 6 to Line
12, top-k HUIs are identified using a selected insertion sort, in which only
the itemsets whose utility is no less than min utility are inserted to the
top-k list (denoted as TopkHUISet). TopkHUISet is maintained to have
no more than k elements, ranked in utility-descending order. In addition, if
TopkHUISet contains k elements, min util is adjusted dynamically to be
the utility of the kth itemset in TopkHUISet (Lines 11 and 12). We call
this adjustment our fourth strategy for increasing the min util threshold.

Finally, in Line 13 of the algorithm, the minimum top-k utility of the
current sliding window (SWi) is set to minimum utility value of the itemset
in TopkHUISet in the last winSize−1 batches of SWi. This is for adjusting
the min util threshold for mining tip-k HUIs in the next sliding window
SWi+1.

Theorem 1. Given a sliding window SWi, if X is among the top-k high
utility itemsets, it is returned by Algorithm 1.

Proof 6. We prove the theorem by showing that the min util in our algo-
rithm is never over the exact utility of the kth highest utility itemset in the

25



current sliding window, and also that our HUDS-tree mining procedure does
not prune out any itemset whose true utility is greater than min util.

Let utilk be the exact utility of the kth highest utility itemset for slid-
ing window SWi. In our algorithms, the min util is set or adjusted in the
following three places:

• In Line 2 of Algorithm 3:

min util = max{maxUtilL,MIUk,minTopKUtili−1}

where L = �log2(k+1)�. According to Lemmas 3, 4, and 5, maxUtilL ≤
utilk, MIUk ≤ utilk and minTopKUtili−1 ≤ utilk. Thus, min util is
no larger than utilk.

• In Lines 5-7 of Algorithm 4, min util is dynamically adjusted to MIUk,
which is the kth highest MIU value of the already generated potential
top-k HUIs. According to Lemma 4, MIUk ≤ utilk. Thus, min util ≤
utilk.

• In Lines 11-12 in Algorithm 3, min util is dynamically adjusted to the
lowest utility of the current top-k HUI set. Thus, min util is no larger
than utilk.

Below we show that our HUDS-tree mining procedure for generating po-
tential top-k HUIs (i.e., Algorithm 4) does not miss any top-k HUIs. There
are two places where we prune the search space in Algorithm 4.

• In Line 2, if the PrefixUtil of an item t is less than min util, item t
will not be added to itemset X to form longer HUI containing {t} ∪
X. The PrefixUtil of t in the (conditional) header table is actually
PrefixUtil({t} ∪ X) (according to how it is computed). Assume X =
Y ∪ {i} where i is the last item in X in the item order for building the
HUDS-tree. Then {t} ∪ X = {t} ∪ Y ∪ {i}. According to Lemma 1,
PrefixUtil({t} ∪ Y ∪ {i}) ≥ PrefixUtil(S ∪ {t} ∪ Y ∪ {i}) where S
is a set of items containing the items ranked before t in the item order
for building the tree. Thus, if PrefixUtil({t} ∪ Y ∪ {i}) < min util,
PrefixUtil(S ∪ {t} ∪ Y ∪ {i}) < min util. This means that if the
PrefixUtil of t in the header table is less than min util, there is no
need to check any itemsets whose ”suffix” is {t} ∪ X.

• In Line 9 of the algorithm, we prune out all the items whose local TWU
is less than min util. Since TWU has the downward closure property,
the pruning does not miss any itemsets whose TWU is no less than
min util
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Both PrefixUtil and TWU are over-estimates of the true utility of an
itemset. If an over-estimate is less than min util, the true utility must be
less than min util. Thus, if an itemset is pruned by PrefixUtil or TWU ,
its true utility must be less than min util. Thus, no itemsets whose utility
≥ min util is pruned by the algorithm. Since min util is never over utilk,
no top-k HUI is missed by our algorithms.

4.5. HUDS-tree Update

Algorithm 5 HUDS-tree-Update

Input: HUDS-Tree, new batch Bi, k
Output: HUDS-Tree, maxUtilList,MIUList

1: batchNumber ← i%winSize + 1
2: if the batch ID i > winSize then
3: for each node in HUDS-tree do
4: nodeCounts[batchNumber] ← 0
5: nodePUtils[batchNumber] ← 0
6: nodeMTUs[batchNumber] ← 0
7: if ∀i (1 ≤ i ≤ winSize) nodePUtils[i] = 0 then
8: remove the node and its subtree from the tree
9: for every T ∈ Bi do

10: {HUDS-Tree,maxUtilList} ← Algorithm2(T , HUDS-Tree, root of
HUDS-Tree, 1, batchNumber)

11: update the miu value of each item in T
12: Update the PrefixUtil value of each item in the header table by sum-

ming up all the values in the nodePUtils fields of all the nodes for the
item in the tree.

13: Update MIUList by (1) computing the MIU value of each item in the
header table using the miu value of the item and the nodeCounts values
in all the nodes for the item and (2) select the top-k MIU values.

14: return HUDS-Tree, maxUtilList,MIUList

When a new batch of transactions arrives, the HUDS-tree needs to be
updated to represent the transactions in the new sliding window. This in-
volves removing from the tree the information of the oldest batch in the last
window (if the last window was full) and adding to the tree the transactions
in the new batch. Algorithm 5 describes this update process.
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In Line 1, the index of the batch in the tree node fields is computed as
batchNumber = i%winSize + 1, where i is the new batch ID (assuming
the very first batch in the data stream is B1), and winSize is the maxi-
mum number of batches in a sliding window. The information about the
new batch will be put into the batchNumberth slots in the nodeCounts,
nodePUtils and nodeMTUs fields of the tree nodes. In Lines 2 to 8, if the
new batch ID (i.e., i in Bi) is greater than the size of the sliding window
(which means that the last sliding window was full), then the information
about the oldest batch is removed by changing nodeCounts[batchNumber],
nodePUtils[batchNumber] and nodeMTUs[batchNumber] in each node to
zero. If the sum of the values in nodePUtils for all the remaining batches
is zero in a node, the node and the subtree rooted at the node are removed
(Line 7). Then, the transactions in the new batch are inserted into the tree
one by one by calling Algorithm 2. batchNumber is passed to Algorithm 2 so
that the information about the new batch will be stored the batchNumberth
slots in the node fields. In Algorithm 2, maxUtilList is also updated. After
all the transactions are inserted into the tree, the prefix utilities of each item
is updated in Line 12. Finally, the MIUList is updated as described in Line
13.

5. Performance Evaluation

In this section, the proposed method for finding top-k high utility item-
sets over data stream is evaluated. All the algorithms are implemented in
Java. The experiments are conducted on an Intel(R) Core(TM) i7 2.80 GHz
computer with 4 GB of RAM.

5.1. Datasets and Performance Measures

Three datasets are used in our experiments. The first one is IBM synthetic
dataset T10I4D100K [9] where the numbers after T , I, and D represent the
average transaction size, average size of maximal potentially frequent pat-
terns, and the number of transactions, respectively. The other two datasets
are real life datasets BMS-POS and ChainStore. BMS-POS contains several
years worth of point-of-sale data from a large electronics retailer [9]. Chain-
Store is a dataset with over a million transactions, obtained from [22]. Table
2 shows details of the datasets. The ChainStore dataset already contains ex-
ternal utilities of the items and the frequency of each item in a transaction.
But the two other datasets do not provide external utility or the quantity of
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Table 2: Details of the datasets
Dataset # Trans. # Items Avg.Length batchSize winSize

IBM 100,000 870 10.1 10,000 5
BMS-POS 515,597 1,657 6.53 50,000 4
ChainStore 1,112,949 46,086 7.2 100,000 6

each item in each transaction. Hence, we randomly generated these numbers
using a method described in [2] as follows. The external utility of each item
is generated between 1 and 10 by using a log-normal distribution and the
quantity of each item in a transaction is generated randomly between 1 and
10. batchSize in the Table 2 shows how many transactions are in a batch. It
is set in the same way as in [2] so that each data set has around 10 batches.
The last column, winSize, shows the number of batches in a sliding window.
We will later change the winSize setting to show the effect of winSize on
performance measures.

We use the following performance measures in our experiments: (1) num-
ber of generated candidates: the total number of generated PTKHUIs at the
end of phase I among all the sliding windows, (2) Threshold: the threshold
value obtained at the end of method execution, (3) Run Time (seconds): the
total execution time of the method over all the sliding windows, (4) First
Phase Time (seconds): the total run time of the algorithm for phase I (gen-
erating PTKHUIs) over all the windows, (5)Second Phase Time (seconds):
the total run time of each algorithm for phase II (finding Top-HUI set) over
all the windows, (6) Memory Usage(Mega Bytes): the memory consumption
of the algorithm, average over all the sliding windows.

5.2. Methods in Comparison

To the best of our knowledge, there does not exist a top-k high utility
itemset mining method over data streams. Hence, two modified approaches
are implemented as comparison methods. The first one is the method pro-
posed in [27] which discovers top-k high utility itemsets from a static data set
based on the UP-Growth method [25]. Since this method is not applicable to
data streams, we run this method on each sliding window individually, and
collect the aggregated values for the performance measures. This method is
named TKU . TKU has different versions, each employing a different set of
threshold-raising strategies [27]. Here we use their base method plus those
threshold-raising strategies whose computation requires only one scan of data
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and can be done based on the information from our HUDS-tree. TKU sets
up its initial threshold to either 0 or the kth highest value of the lower bounds
for the utility of certain 2-itemsets. But to get these lower bounds, we need
to scan the data set twice to compute them, which is not acceptable for data
streams. Thus, we initialize the minimum utility threshold to small value
(0.01%) at the beginning of TKU [27].

The second method that we compare our method with is the HUPMS
algorithm [2], which discovers all the high utility itemsets over data streams
given a user-input minimum utility threshold. To compare with the top-
k mining methods, we run the HUPMS algorithm with a minimum utility
threshold being the threshold raised at the end of the Phase I execution of
TKU. This is a fair choice of the threshold because a too low threshold would
certainly make HUPMS very time-consuming, and a too high threshold would
unfairly favor HUPMS in terms of run time. We denote this HUPMS method
that uses a threshold from TKU as HUPMST in our results.

We also compare our method T-HUDS with HUPMS in terms of HUI
mining with different user-specified minimum utility thresholds. In such a
comparison, we do not use any threshold-raising strategies in T-HUDS, but
let it return all the HUIs satisfying the input utility threshold. The purpose
of such a comparison is to see the effect of using PrefixUtil to prune the
search space in comparison to the use of TWU as in HUPMS.

To see how effective our threshold-setting/raising strategies is in the first
phase of the method, we use two versions of our T-HUDS method to compare
with TKU and HUPMS. The first one, denoted as T-HUDSI , uses only
the 3 strategies that apply to the first phase of our method. The second
one, denoted as T-HUDS is the full version of our method that uses all the
4 strategies, including the one in the second phase.

5.3. Effectiveness of the Obtained Threshold

Figure 4 shows the threshold values obtained at the end of different meth-
ods on three datasets. Since HUPMS does not raise the threshold during the
mining process, we just compare the results of TKU with the proposed meth-
ods. This figure shows that T-HUDSI and T-HUDS have similar performance
and their final thresholds are much higher than TKU. Since none of these
three methods miss any top-k HUIs, the higher the final threshold, the bet-
ter the method. Thus, both T-HUDSI and T-HUDS significantly outperform
TKU. Between T-HUDSI and T-HUDS, T-HUDS is bit better, but not sig-
nificantly. This means that the 3 strategies used in Phase I of T-HUDS are
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Figure 4: Reached threshold on (a) IBM, (b) BMS-POS,(c) ChainStore Datasets
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very effective, raising the threshold close to the exact utility of the kth high-
est utility itemset. Recall that the threshold value at the end of Phase II is
the exact utility of the kth itemset in the top-k list.

The figure also shows that the threshold value decreases when k increases.
It is because the larger the k value is, the lower the threshold value needs to
be to return more itemsets. In addition, the figure shows that the difference
between TKU and our methods is more significant when the size of the data
set becomes larger. For example, the difference on ChainStore is much bigger
than the one on the IBM dataset.

5.4. Number of generated candidates

In addition to the obtained threshold, the number of generated candidates
(i.e., PTKHUIs) at the end of the first phase is another metric to assess the
effectiveness of HUI mining methods. Table 3 presents the numbers of gen-
erated candidates on different datasets from different methods for different
k values. The numbers show that T-HUDS significantly outperforms TKU.
The results for T-HUDSI are not shown here because they are the same as
the ones for T-HUDS. The table also shows that HUPMST method generates
fewer candidates in smaller datasets than T-HUDS, but much more candi-
dates on larger data sets. The number of candidates generated by HUPMST

is determined by the minimum utility threshold given to the method, which
is the threshold reached at the end of Phase I of TKU . Even though the
final Phase I threshold of T-HUDS is much higher than that of TKU , the
number of candidates generated by HUPMST can still be smaller than that
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Table 3: Number of candidates generated in phase I
Dataset K TKU T-HUDS HUPMST

IBM

100 2852013 69959 22038
300 4939423 84898 26668
600 8177111 94850 54969
900 10183472 100875 217874

BMS-POS

100 57315 35697 31407
500 92684 44320 42467
1000 113842 52195 62512

ChainStore

100 222037 19751 101435
300 275249 32213 152451
500 305301 77635 201531
700 326041 132759 242027
900 371008 227826 282074

Figure 5: Run time on (a) IBM, (b) BMS-POS, (c) ChainStore Datasets
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from T-HUDS. This is because the initial threshold of T-HUDS can be lower
than the final Phase I threshold of TKU . But on very large data set (such as
ChainStore), the initial threshold of T-HUDS can be higher than or close to
the final Phase I threshold of TKU since the number of candidates generated
by HUPMST is much higher than the one by T-HUDS.

5.5. Efficiency of T-HUDS: Run Time

Figure 5 shows the total run time of each method, including the run time
for both Phase I and Phase II. On the IBM and BMS-POS datasets, the
execution time of TKU algorithm is much worse than others, and HUPMST

is a bit worse than T-HUDSI and T-HUDS. But on ChainStore, T-HUDSI

and T-HUDS are significantly faster than both HUPMST and TKU. On this
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Figure 6: Run Time for Phase I: (a) BMS-POS, (b) ChainStore
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largest data set, HUPMST is the worst, even much worse than TKU. The
run time for T-HUDSI and T-HUDS are very similar, although T-HUDS
is slightly faster due to its raising min util dynamically for pruning out
unpromising itemsets in Phase II. Also, it can be observed that the run time
of the proposed methods are not affected significantly by the k values, and
it increase slightly or slowly when k increases.

To see how each method works in different phases, Figures 6 and 7 present
the execution time for Phases I and II, respectively. In Phase I, two proposed
methods have the same performance. But in the second phase, T-HUDS is
more efficient. This is because it dynamically increases the min util thresh-
old in Phase II and consequently the number of candidates compared with
the running top-k list is fewer than that in T-HUDSI .

5.6. Memory Usage

Since all the algorithms under our comparison need to store the trans-
actions in the current window, we only report the memory usage taken by
the trees, their header tables and auxiliary data structures. Table 4 reports
the memory consumption on the three datasets. TKU consumes the most
memory, even though the structure of its tree node is the smallest among
the three methods. This is due to the larger number of conditional UP-trees
recursively generated during the mining process. It is caused by the fact
that TKU starts by a low threshold value and its strategies for raising the
threshold are not very effective. Also, as TKU is not designed for mining
over data streams, it cannot utilize the information from the past windows
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Figure 7: Run Time for Phase II: (a) BMS-POS ( Run time for TKU is more than 201
seconds), (b) ChainStore
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Table 4: Memory comparison (MB)
Dataset k TKU T-HUDS HUPMST

IBM 300 12.9 1.9 4.3
BMS-POS 500 37 7.5 25.2
ChainStore 300 473 75 265

to raise the threshold. In all cases, the proposed method T-HUDS consumes
less memory than both TKU and HUPMST . Note that the node structure
in HUPMST is also smaller than that in T-HUDS. But again the effective
pruning strategies used in T-HUDS lead to generation of a smaller stack of
trees in the recursive execution of the tree mining algorithm.

5.7. Effectiveness of the Individual Strategies

In this subsection, we investigate the impact of each of the three threshold-
setting strategies used in Phase I of our method. Table 5 describes three
different versions of the proposed method. The first method does not use

Table 5: Methods with different strategies
Method maxUtilList MIUList minTopKUtil

T -HUDS1 × � �
T -HUDS2 � × �
T -HUDS3 � � ×
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Figure 8: Number of candidates at the end of first phase for different versions of T-HUDS:
(a)IBM, (b) BMS-POS datasets
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maxUtillist values to set the threshold but uses MIUList and the mini-
mum top-k utility from the last window (i.e., minTopKUtil). T-HUDS2

increases the threshold by means of maxUtilList and minTopKUtil, but
not by MIUList. T-HUDS3 applies the first and second strategies only.

Figures 8 and 9 show the number of generated candidates and run time
of these three methods on the IBM and BMS-POS datasets, respectively.
In general,T-HUDS3 (the method without the third strategy) is the worst
among the three methods. It means that third strategy ( i.e., using the last
window’s minTopKUtil) is the most effective strategy. T-HUDS2 has better
performance than T-HUDS1, meaning that the first strategy (i.e., the use of
maxUtilList) works better than the second one (i.e., using MIUList). Since
in our implementation of TKU , MIUList is used as one of the threshold-
raising strategies, this results explain in part why T-HUDS outperforms
TKU .

5.8. Effectiveness of PrefixUtil vs TWU

Below we evaluate the use of PrefixUtil (in comparison to the use of
TWU) for pruning the search space during the recursive tree mining process.
For such a purpose, we run T-HUDS in the problem setting of HUPMS. That
is, we do not use any of the threshold raising strategies in T-HUDS and use
it as a method for finding all the high utility itemsets that satisfy an input
min util threshold. This is to make T-HUDS the same as HUPMS except
that T-HUDS uses PrefixUtil while HUPMS uses TWU to prune the search
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Figure 9: Run time for different versions of T-HUDS: (a) IBM, (b) BMS-POS datasets
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Figure 10: Impact of PrefixUtil on the number of generated candidates on (a) IBM, (b)
BMS-POS datasets
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Figure 11: Impact of PrefixUtil on run time on (a) IBM, (b) BMS-POS datasets
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Figure 12: Impact of PrefixUtil on memory comsuption on (a) IBM, (b) BMS-POS
dataset
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space. Hence, a comparison between these two methods will illustrate the
impact of PrefixUtil.

Figures 10 and 11 present the number of generated candidates in Phase
one of the two methods and their total run time with different threshold val-
ues. These figures show that our algorithm significantly outperforms HUPMS
method in terms of both the number of generated candidates and the run
time. Moreover, these figures also demonstrate that the number of candi-
dates and runtime differences increase when the minimum utility threshold
decreases. As discussed earlier, the reason for PrefixUtil to be more effec-
tive in pruning the search space is that it is a closer over-estimate of the true
utility of an itemset than TWU .

Figure 12 shows the amount of memory consumed by two methods for
mining high utility itemsets from the IBM and BMS-POS datasets, respec-
tively.

5.9. T-HUDS performance with different window sizes

Because T-HUDS dynamically updates the tree and the set of top-k pat-
terns once the window slides, its performance may vary depending on the
window size parameter, winSize. In general, for a sliding window-based
data stream mining algorithm, winSize is an important factor on efficiency.
Therefore, in order to determine the effect of changes in winSize on the run
time of T-HUDS, we analyze its performance by changing the value of this
parameter. Below we present the results on the BMS-POS and ChainStore
datasets, keeping the k value fixed, but changing the number of batches in
the sliding window. We compare the performance of our algorithms with the
HUPMST in this experiment. Figure 13 shows the results for k = 300. The
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Figure 13: Effect of the window size on the run time: (a) IBM, (b) BMS-POS datasets
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y-axes in the graphs represent the overall run time (including tree construc-
tion time, update time, and mining time) for all the windows. The x-axes
represent the window size in the number of batches. Each graph shows the
trend in execution time with the variation of window size on each dataset. On
all the winSize values, the proposed method is much faster than HUPMST ,
and its run time increases slowly as the window size increases.

6. Related work

The MEU (Mining with Expected Utility) model [30] is the first high
utility itemset mining method. MEU checks the candidate itemsets using a
prediction method with a high computational cost. The UMining algorithm
[29] improved its performance. They defined an upper bound utility for
each itemset. Using this upper bound low utility itemsets are pruned during
the mining process. The Two-Phase method presented in [19, 20] used an
over estimated utility (i.e., TWU) model for mining high utility itemsets.
The main advantage of TWU is its downward closure property. In the first
phase, Two-Phase discovers all of the high TWU itemsets (HTWU). Then
in the second phase, it scans the database one more time to extract the true
high utility itemsets from the HTWU itemsets. Base on the TWU model,
CTU-Mine [8] was proposed that is more efficient than Two-phase in dense
databases when the minimum utility threshold is very low. This method
constructs a memory-based CUP-tree for mining. To reduce the number of
candidates in each data base scan, the isolated items discarding strategy
(IIDS) was proposed in [17]. Applying IIDS, the authors proposed two
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efficient algorithms FUM and DCG+. In [3], efficient tree structures were
proposed to discover high utility itemset in incremental databases. This
method is based on the TWU model as well. However, these algorithms are
neither applicable to high utility itemset mining over data streams nor are
able to discover top-k high utility itemsets directly.

Although several algorithms have been proposed for mining frequent pat-
terns over data streams[5, 14, 31], these algorithms are not applicable to HUI
mining over data streams. THUI-Mine [24] was the first algorithm for min-
ing high utility itemsets from data streams. It is based on a non-stream HUI
mining algorithm proposed in [19]. Later, two algorithms, called MHUI-BIT
and MHUI-TID, were proposed in [15] for mining high utility itemsets from
data streams. However, these methods use the Apriori-like level-wise candi-
date generation and thus need to scan the data in the window several times
to find high utility itemsets. GUIDE is an algorithm proposed in [23] that
mines a compact form of high utility patterns from data streams. It discov-
ers maximal high utility itemsets. HUPMS [2] is the most recent method for
HUI mining from data streams, which is based on the TWU model. It uses a
similar data structure as we do in T-HUDS. However, the above mentioned
methods were not designed for finding top-k high utility itemsets over data
stream.

The top-k high utility itemset mining was first introduced in [4]. However,
its high utility itemset definition differs from the ones used in the recently
proposed methods and in ours. Recently, the TKU method was proposed in
[27] to find top-k high utility itemsets over a static data set. The proposed
approach mines top-k high utility itemset without setting the minimum util-
ity threshold. It works based on Up-Growth [25]. Although it can find top-k
HUIs effectively, it is not designed for data streams. Not only it is not able
to adapt itself dynamically over different windows, but also do the proposed
strategies for raising the threshold have much room to be improved so that it
could generate few candidates and run faster in a data stream environment.
In this paper, we designed better strategies for initializing and dynamically
adjusting the minimum utility threshold over data streams.

In frequent itemset mining, several methods were proposed to find top-k
frequent itemsets in static data sets [6, 7, 13, 21]. Although these algorithms
are efficient, it is difficulty (if not impossible) to simply adapt them to HUI
mining. There are several methods for finding top-k frequent itemsets over
data streams. Golab et al. [10] proposed an algorithm, called FREQUENT,
for the top-k frequent item discovery in sliding windows. It performs well
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with bursty TPC/IP streams containing a small set of popular item types.
Wong and Fu [26] present two algorithms to address the problem of top-k
frequent l-itemsets (1 ≤ l ≤ L) mining over data streams. TOPSIL-Miner
[28] is another recent algorithm for mining top-k significant itemsets over
data streams, which works based on a prefix tree structure. This method is
an approximation method and does not guarantee that the exact set of top-k
frequent itemsets is found. A major difficulty in top-k HUI mining is that
the utility of an itemset does not have the downward closure property. Thus,
HUI mining has to work with estimated utilities. The strategies proposed
for raising the frequency threshold in top-k frequent itemset mining do not
apply to estimated utilities.

7. Conclusion

In this paper, we proposed an efficient algorithm, T-HUDS, for mining
top-k high utility itemsets in sliding windows over streaming data. T-HUDS
uses a novel over-estimated utility model, i.e., the PrefixUtil model, to effec-
tively prune the search space for finding top-k HUIs. We prove that PrefixUtil
satisfies a special type of the downward closure property, which allows it to
be effectively used to prune the search space in a pattern growth process.
We also addressed a major challenge in top-k pattern mining by devising
several strategies for initializing and raising the minimum utility threshold
during the mining process. A FP-tree-like data structure, HUDS-tree, and
two auxiliary lists, maxUtilList and MIUList, are designed to store store the
information that is needed for computing PrefixUtil and for initializing and
dynamically adjusting the threshold. We also designed a strategy that uses
the information from the top-k patterns in the previous window to help ini-
tialize the threshold for the new window. In addition, in the second phase
of top-k HUI mining, the min util threshold is also raised to help fast find
the top-k patterns from the candidates. We proved that using these strate-
gies to raise the threshold and using PrefixUtil to prune the search space
do not miss any top-k HUIs. These strategies can not only help find top-k
high utility itemsets effectively, they also reduce the run time and memory
consumption of the algorithm significantly. Extensive experiments were con-
ducted to confirm the effectiveness and the high efficiency of the algorithm
in finding top-k HUIs over data streams.

While our method proves to be efficient in both run time and memory
consumption, there is room for further research and improvement. Similar
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to the tree structures used in HUPMS [2] and TKU [27], the HUDS-tree is
a lossy compression of the transactions in the sliding window. The conse-
quence of this is that a second scan of data in the sliding window is needed in
the second phase of the method to obtain the exact utilities of the potential
top-k HUIs. Although a sliding window is generally small enough to fit into
the main memory, reducing the number of data scans can further improve
the run time performance of HUI mining. We will look into two directions:
one is to design a lossless compression data structure to store the information
needed to compute the exact utility, and the other is to design an approx-
imation method that returns an approximate list of top-k patterns from a
lossy compression of the data.
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