
TTM/PAT: A Tool for Modelling and Verifying Timed Transition
Models

Jonathan S. Ostroff, Chen-Wei Wang and Simon Hudon

Technical Report CSE-2013-05

June 3 2013

Department of Computer Science and Engineering
4700 Keele Street, Toronto, Ontario M3J 1P3 Canada

TTM/PAT: a Tool for Modelling and Verifying

Timed Transition Models

Jonathan Ostroff, Chen-Wei Wang, Simon Hudon
EECS, York University

June 4, 2013

Abstract

Timed Transition Models (TTMs) are event based descriptions for
specifying and verifying real-time systems in a discrete setting. While
the verification of TTMs has been supported in tools such as Uppaal and
SAL, the manual encoding requires substantial effort before a TTM can be
checked. We propose a convenient and expressive textual syntax for TTMs
and a corresponding one-step operational semantics. Modules allow for
compositional reasoning and include an interface in which monitored and
controlled variables are declared. Events in a module can be specified,
individually, as spontaneous, fair or real-time. An event action specifies a
before-after predicate by a set of (possibly non-deterministic) assignments
and (possibly nested) conditionals. The TTM assertion language, LTL,
allows references to event occurrences, including clock ticks (thus allowing
for a check that the behaviour is non-zeno). We describe a tool that
includes an editor with static type checking, a graphical simulator and a
LTL verifier (as a plug-in for the PAT toolset). The tool automatically
derives the tick transition and implicit event clocks so that the burden
of manual encoding is removed. The TTM tool performs significantly
better on a nuclear shutdown system than the manually encoded version
in Uppaal and SAL.

1

Contents

1 Introduction 2

2 TTMs: an Introductory Example 3

3 A Small Pacemaker Example 6

4 Operational Semantics 11
4.1 Taking e# . 14
4.2 Taking e . 14
4.3 Taking tick . 15
4.4 Scheduling . 15

5 Performance 16
5.1 Delayed Reactor Trip System . 17
5.2 Fischer’s Mutual Exclusion Algorithm 19

6 Conclusion 21

A Appendix 23

1 Introduction

Checking the correctness of real-time systems is both challenging and important
for industrial applications. A variety of theories and tools have been suggested
to support the design of correct real-time systems. Modelling languages should
be able to specify requirements precisely, concisely and in intuitively appealing
ways. A variety of methods have been suggested in the model checking context,
as surveyed in [SLD+13]. Uppaal and RTS (also called stateful timed CSP) are
representative examples of state-of-the-art tools compared in the survey.

Uppaal provides a graphical description language and simulation facility.
Uppaal models systems as a collection of timed automata with real-valued
clocks, communicating through channels and shared variables. The assertion
language TCTL is a subset of CTL (branching time logic), but fairness con-
straints are not supported.

By contrast, in RTS, systems are described using a timed process algebra
allowing for hierarchical descriptions. There are no explicit clocks. Instead,
real-time requirements are stated in terms of deadlines and timed interrupts.
Also, processes may communicate via shared variables. The assertion language
includes process refinement checking and linear time temporal logic (LTL). A
single fairness assumption can be adopted on all events (or processes). RTS is
a plug-in developed within the PAT toolset.

In this paper, we describe the TTM language and tool which is developed
as a plug-in of the PAT toolset. In contrast to Uppaal and RTS, the TTM
language is an event-based method along the lines of Event-B [Abr10], but with

2

real-time features including event lower and upper time bounds and the ability
to use explicit timers. In the past, TTMs have been manually encoded into
the Uppaal or SAL model checkers [LPZ06]. Our paper makes the following
technical contributions:

• We propose a convenient and expressive textual syntax for TTMs and a
corresponding one-step operational semantics.

• The TTM language addresses a variety of needs. (1) Modules allow for
compositional reasoning and include an interface in which in, out and
share variables are declared. (2) Events in a module can be specified, in-
dividually, as spontaneous, fair or real-time. (3) An event action specifies
a before-after predicate with a set of simultaneous and possibly nondeter-
ministic assignments structured in nested conditionals. (4) The specifica-
tion language is LTL and includes the ability to refer to the occurrence of
an event, including a tick of the clock; this also allows for a check that the
behaviour is non-zeno. (5) Where explicit timers are used in verifying a
property, the timers can be checked for monotonicity, thus checking that
the timers remain in synch with the global clock and that the properties
express real-time constraints accurately.

• Tool support for the TTM language is provided as a plug-in to the PAT
toolset. The TTM tool has an editor that does static type checking, an
integrated simulator and a verifier for LTL model-checking. The tool au-
tomatically derives the tick transition and implicit event clocks so that the
burden of manual encoding is removed. The TTM tool performs signifi-
cantly better on a nuclear shutdown system than the manually encoded
version in Uppaal and SAL.

The rest of the paper is organized as follows. Section 2 introduces the syntax
of the TTM language and discusses the use of fairness assumptions and modular
reasoning. Section 3 uses a small pacemaker example to illustrate modelling and
reasoning about real-time properties. Section 4 provides a one-step operational
semantics for TTMs, used in the development of the tool as a PAT plug-in.
Section 5 uses two examples to compare the performance of the TTM tool to
that of the Uppaal and RTS tools. In Section 6, we conclude with a discussion
of future developments to the tool, based on the performance results.

2 TTMs: an Introductory Example

The original tool for describing TTMs and model-checking was graphical [Ost99,
MP92]. To introduce the new textual syntax in the TTM/PAT tool, we use
example Ping-Pong in Fig. 1; this example also allows us to describe fairness
constraints, and to illustrate modular descriptions and reasoning.

Keyword module introduces a module template (e.g. template M1 in
Fig. 1). Module templates have an interface, local variables, and a set of events
in the style of Event-B ([Abr10]). Keyword instances list the modules which
are instances of the templates. For example, module m1 (in Fig. 1) is an instance

3

type BIT = 0..1 end

module M1
interface

y: in BIT;
x: out BIT = 0;
z: out BIT = 0

local pc : INT = 0//program counter
events

e1a[0,∗] just
when pc==0
do x := 1, pc:=1 end

e1b just
when y==1 && pc==1
do z := 1, pc := 2 end

end

module M2
interface

y: out BIT = 0; x: in BIT
events

e2 just
when x==1
do y:= 1
end

end

module ENV1//arbitrary environment
interface

y: out BIT = 0
events

demonic do y::BIT end
end

module ENV2
interface

x: out BIT = 0
events

demonic do x:: BIT end
end

instances
m1 = M1 (in y, out x, out z)
m2 = M2(out y, in x)
env1 = ENV1(out y)
env2 = ENV2(out x)

end

composition
system = m1 || m2

// modular validity
m1 env = m1 || env1
m2 env = m2 || env2

end

#assert system typecorrect;

//check global property
#define z1 z==1;
#assert system |= <>z1;

//check via modular validity
#define x1 x==1;
#define y1 y==1;
#assert m1 env |= <>[]x1;
#assert m1 env |= <>[]y1 −> <>z1;
#assert m2 env |= <>[]x1 −> <>[]y1;

Display of system simulation in the

tool:

Figure 1: Modular reasoning for TTM Ping-Pong

of a template M1. Keyword composition provides the systems (composed of
modules that execute in parallel with each other) that will be modelchecked.
For example, for Ping-Pong we have system = m1||m2. Keyword assert intro-
duces linear time temporal logic properties that will be checked. For example,
we can check that: system |= ♦(z == 1).

A module interface declares a list of variables, their types and their mode
(either in, out, or share). The variable types may be enumerated sets, BOOL,

4

INT, integer intervals and arrays of these basic types. Some static type checking
is supported. Also, in model checking, all variables of finite types may be checked
for type correctness as one of the supported verification conditions (see the use
of keyword typecorrect in the figure for an example). We may also compose
an array of modules from the same template (see the Fischer example in the
sequel).

All modules in a composition must be interface compatible, which we now
briefly define. If a variable v is declared in a composition of modules m1 and
m2, then the types must be identical, and if one module specifies an out mode
for v, then the other module must specify an in mode for v. Also, both modules
may declare variable v as share, in which case they can both read and write to
v. Only one module in a composition can declare v as out (that module is also
responsible for initializing v).

Events can be spontaneous, fair (just or compassionate), or have lower and
upper time bounds (illustrated in the pacemaker example). For example, event
env1.demonic[0, ∗] is a spontaneous event, i.e., it may be taken (or not) in any
state. It has no fairness scheduling constraints. Its lower time bound is zero
and it has no upper time bound; hence it has no timing constraints. Its action
(or body) is the demonic assignment y :: BIT—meaning, that an element of
BIT is assigned, non-deterministically to variable y.

The events in modules m1 and m2 are declared just to ensure progress; this
achieves the goal that eventually z == 1 (i.e. system |= ♦(z == 1)). Justice
and compassion have the standard meanings in [MP92]. An event (e.g. m1.e1b)
has a guard (e.g. y == 1&&pc == 1) and an action (e.g. the simultaneous
assignment z := 1, pc := 2). Timed events may also start and stop local or
global timers.

The model checker supports linear time temporal logic. We can thus directly
check that the system m1||m2 satisfies the global property ♦(z == 1), or we
can follow a modular approach. Both approaches are shown in Fig. 1 (see the
“asserts”).

In the the modular approach, a temporal logic formula ϕ1 is modularly valid
for a module m1 (written m1 |=m ϕ1) if the composition m1||m |= ϕ1, for
every module m that is interface compatible with m1. We check for modular
validity of ϕ1 by running module m1 in parallel with an interface-compatible
module representing an arbitrary environment that does demonic assignments
on all the in and share variables of m1 (see module m1 env in Fig. 1). For
example, ♦(z == 1) is not modularly valid for module m1 because there is no
guarantee that eventually y == 1 (thus allowing event m1.e1b to be taken).
However, ♦�(y == 1) → ♦(z == 1) is modularly valid, i.e., if we can rely on
the environment to eventually establish y == 1 permanently, then module m1
guarantees to establish ♦(z == 1). In the Ping-Pong example, we modelcheck
the two modular specifications ϕ1 and ϕ2 (for modulesm1 andm2, respectively):

5

inv: x ≤ maxwait

ready

inv: x ≤ maxwait

ready

vsense![x ≥ minwait]/x := 0

vpace?[true]/x := 0

(a) Model of Heart

inv: x ≤ ri
waitRI

inv: x ≤ ri
waitRI

inv: x ≤ V RP
waitVRP

inv: x ≤ V RP
waitVRP

vpace![x ≥ ri]/x := 0, ri := LRI, hp := false

vsense?[true]/x := 0, ri := HRI, hp := true

[x ≥ V RP]/hpenable := hp, started := true

(b) Model of Ventricle Controller

Figure 2: Uppaal/timed-automata model for a pacemaker in VVI mode

m1 |=m ϕ1 m2 |=m ϕ2

|= ϕ1 ∧ ϕ2 → ♦(z == 1)

m1||m2 |= ♦(z == 1)

ϕ1 : ♦�(x == 1) ∧ [♦�(y == 1)→ ♦(z == 1)]
ϕ2 : ♦�(x == 1)→ ♦�(y == 1)

The global property ♦(z == 1) follows from the temporal logic theorem ϕ1 ∧
ϕ2 → ♦(z == 1), and the modular checks. This approach was used to check
the DRT example in [Ost99].

TTM/PAT provides static checking of the textual descriptions, simulations
of the composed systems, and modelchecking of the LTL properties. Fig. 1
provides an example of a legal execution of the Ping-Pong system in the tool’s
simulator. A counter-example to an LTL property may be examined in the
simulator, which is helpful in debugging modelling errors.

3 A Small Pacemaker Example

In this section, we use a small pacemaker example to illustrate the real-time
features of TTMs. A cardiac pacemaker is an electronic device implanted into
the body to regulate the heart beat by delivering electrical stimuli (called paces)
over leads with electrodes that are in contact with the heart. The pacemaker
may also detect natural cardiac stimulations, called senses.

Uppaal model. Uppaal is a state-of-the-art integrated environment for spec-
ification and verification of real-time systems modelled as networks of timed
automata, extended with data types (such as bounded integers and arrays)
[ABB+01]. An Uppaal model of the VVI mode of a pacemaker (developed in
[JLS10]) is shown in Fig. 2 with a model of the heart (on the left) and with a
timed automaton for the ventricle controller (on the right). Each timed automa-
ton in Fig. 2 is a template that may be instantiated (e.g. V C = V entricle()).
A system may be represented a parallel composition of such instances.

The Uppaal heart model is ready to accept a pacing signal (over synchronous
channel vpace) whenever it is sent by the controller, and it can choose to deliver
a sensing signal (over channel vsense) at any time. Time bounds of events are
expressed via state invariants and clock guards, i.e., transition guards referring
to clocks. The invariant in the ready state is x ≤ maxwait where x is a local
clock variable (and maxwait = 1200ms). The invariant imposes an upper time

6

bound by which some transition out of the state must be taken. The guard
x ≥ minwait (where minwait = 200ms) imposes a lower time bound on when
a sense event is generated.

A pacemaker in the VVI mode operates in a timing cycle that begins with
a paced or sensed ventricular event. The basis of the timing cycle is the lower
rate interval (LRI=1000ms), which is the maximum amount of time between
two consecutive events in the ventricle. If the LRI elapses and no sensed event
occurred since the beginning of the cycle, a pace is delivered and the cycle is
reset. On the other hand, if a heart beat is sensed, the cycle is reset without
delivering a pace.

At the beginning of each cycle, there is a ventricular refractory period
(VRP=400ms): chaotic electrical activity in the heart immediately following
a heart beat that may lead to spurious detection of sensed events and can thus
interfere with future pacing. For this reason, sensing is disabled during the VRP
period. Once the VRP period is over, a sensed ventricular event inhibits the
pacing and resets the LRI, starting the new timing cycle.

Hysteresis pacing can be enabled in the VVI mode, when the pacemaker
will delay pacing beyond the LRI to give the heart a chance of resuming normal
operation. In that case, the timing cycle is set to a larger value, namely the
hysteresis rate interval (HRI=1200ms). It becomes enabled after a natural heart
beat has been sensed. In [JLS10], hysteresis pacing is applied after a ventricular
sense is received, and disabled after a pacing signal is sent.

The ventricle controller has two states: waitRI and waitV RP . The con-
troller starts from waitRI and waits for a ventricular sensing or pacing event.
If sensing does not occur before the ri (rate interval) period ends, the ventricle
controller sends a pacing signal to the heart, resets clock x to zero, resets ri
to LRI, and sets hp (hysteresis pulsing flag) to false, indicating that hysteresis
pacing is not used in this case. On the other hand, if a ventricular sense event
occurs before the current LRI cycle ends, ri is reset to HRI instead, allowing a
longer period to elapse before pacing. In state waitV RP , the controller waits
for a VRP period to elapse. It returns to the waitRI state after a VRP pe-
riod. Other auxiliary controller variables hpenable and started are used in the
specification.

The requirements are that the heart must pace somewhere between VRP
and either LRI or HRI (depending on whether hysteresis pacing is off or on).
We could translate the Uppaal model into a corresponding TTM. Instead, we
present below a more realistic model than the Uppaal version in Fig. 2. We have
developed an even more realistic model that separates monitored and controlled
variables properly, and considers electrical noise that could be confused with
heart beats during the refactory period. Space considerations prevent us from
presenting it.

Issues in the Uppaal model. The heart in the Uppaal model in Fig. 2 is
tightly coupled with the controller via synchronous channels. A simulation of
the Uppaal model thus shows that the heart acting on its own deadlocks immedi-
ately due to this tight coupling. It is also unrealistic for the computer controller

7

to respond precisely in sync with a sensing event. In the TTM model, we thus
decouple the heart from the computer controller so that there are states inter-
vening between the heart generating a sense signal and the computer responding
to that signal (this could also be done in Uppaal). The TTM heart model can
thus beat naturally (or not at all) and may also be paced (if a pace signal is
received from the computer controller). The heart can thus be simulated on
its own in the absence of a controller. It is possible for bad things to happen,
non-deterministically, such as missing a beat (or not beating at all). This is
done via the use of a spontaneous event, i.e., an event that has no upper time
bound (i.e. deadline) and no fairness assumptions (i.e. justice or compassion).
For example, see the natural heart beat event hbn[VRP, ∗] below.

Also, in the Uppaal model, the requirements are written in terms of the
phenomena of the computer controller, not in terms of the phenomena of the
heart. For example the Uppaal property A�(¬V C.hpenable → V C.x ≤ LRI)
states that the heart beats within LRI ticks of the clock in non-hysteresis pacing.
That is, whenever the controller auxiliary variable V C.hpeanble holds, then the
computer clock must be at most LRI. Uppaal properties are written in a
subset of branching time logic CTL (called TCTL). The sub-formulas can refer
to states but not to the occurrence of events. On the other hand, in TTMs,
the requirements will be written directly in terms of natural or paced events
in the heart (in linear time temporal logic LTL). In Uppaal, lower (and upper)
time bounds are written as clock guards (and invariants on states). Whereas,
in TTMs, events are directly annotated with lower and upper time bounds (and
the necessary clocks are implicitly included).

TTM model. Using the TTM syntax, we define constants and a timer t for
the cardiac cycle as follows:

#define VRP 400;
#define LRI 1000;
#define HRI 1200;

timers
t: 0..(HRI+1)

enabledinit
end

share initialization
sense: BOOL = false
pace: BOOL = false

end

Timer t has a range from zero to HRI+1, and it is initially zero and enabled.
When the timer reaches one beyond HRI + 1, it stops counting up and the
monotonicity status mono(t) predicate becomes false. This predicate hold so
long as timer t is not stopped or restarted and that it is ticking in sync with
a global tick of the clock (see Section 4). The tick transition is an implicit
transition (i.e. it is not given by the text of the TTM) representing the ticking
of a global clock. The tick transition increments timers and implicit clocks
associated with events. We have also defined two shared variables sense and
pace. The heart module template is described as follows:

8

module HEART
interface

pace: share BOOL; sense: share BOOL
local

ri : INT = HRI ; last ri: INT = HRI; pc:
INT = 0

events
hbn[VRP, ∗] // natural heart beat

when !pace && pc==0
do sense := true, ri := HRI, last ri:=

ri, pc := 1
end

hbp[0,0] // paced heart beat
when pace && VRP <= t && pc==0
do pace := false, ri := LRI , last ri := ri,

pc := 1
end

new cycle[0,0]
when pc==1
start t
do pc := 0
end

The interface of module template HEART declares the access to shared variables
sense and pace. The local variable ri (rate interval) is either HRI or LRI
depending on whether hysteresis pacing is enabled. Likewise last ri records the
last value of the rate interval. These two are auxiliary variables: they annotate
the system state without affecting the behaviour (they are not used in event
guards), and are used in the temporal logic specifications. The local variable pc
(program counter) is used as a sequencing mechanism for events.

The heart module has a natural heartbeat (event hbn) and a paced heartbeat
(event hbp). If there is a natural heart beat, then the sense flag is set, ri is
set to HRI and the last rate interval is also recorded in last ri. After the VRP
period, it is also possible for a paced heart beat to be taken if the pace flag is set.
Thus pace ∧ VRP ≤ t is part of the guard of the urgent event hbp[0, 0]. After
either a natural or paced heart beat, the timer t is restarted by the new cycle
event and the cardiac cycle begins again.

A natural heart beat might occur at any time after the ventricle refractory
delay VRP, or it might never occur. Thus the lower time bound of hbn is
VRP and the upper time bound is ∗ (i.e ∞). If the upper time bound is ∗
then we have a spontaneous event (i.e. an event that is not urgent or forced to
occur). We can thus accommodate a variety of fairness assumptions, including
spontaneous events, just or compassionate events and real-time events that must
occur between their lower and upper time bound. An urgent event e[0, 0] is one
that must occur before the next tick of the global clock (provided its guard
continuously remains true).

The requirements can now be formulated using linear time temporal logic in
terms of the phenomena of the environment (i.e. the heart) as follows:

• R1: �♦((H.hbn∨H.hbp) ∧ V RP ≤ t ≤ HRI).1 Infinitely often, a natural
or paced heart beat occurs and they occur between VRP and HRI time
units from each other.

• R2: �(H.hbn⇒ VRP ≤ t ≤ H.last ri). A natural heartbeat occurs only
in the interval [VRP, H.last ri] in the cardiac cycle. H.last ri records
the required rate interval in the heart for the last complete cycle, either

1H.hbn designates the event hbn in module instance H. The same works for local variables
as well.

9

LRI or HRI, depending on whether hysteresis pacing has been properly
enabled. Thus, �(H.last ri=LRI ∨ H.last ri=HRI) also holds.

• R3: �(H.hbp ⇒ t = H.last ri). A paced heart beat occurs only if the
timer t is at the relevant rate interval.

The ventricle controller will have to estimateH.ri (which, as opposed toH.last ri,
relates to the current cycle) in order to ensure that the heart paces according
to this requirement.

In the Uppaal model there may be a concern that some event (either in the
heart module or elsewhere) might illegally set the timer t to a value making
the specification trivially true. Of course, in a small system, inspection of the
timed automata might re-assure us that all is well. Nevertheless, it would be
nice to be able to check that timers tick monotonically and uninterruptedly
without any outside interference. Thus each TTM timer must be equipped with
a corresponding monotonicity predicate mono(t) that holds so long as timer t is
not stopped or restarted (see section 4). We may thus check (�♦H.new cycle)∧
�(H.new cycle → t = 0) and �(H.new cycle ⇒ mono(t)U((H.hbn ∨H.hbp) ∧
(V RP ≤ t ≤ HRI)), which guarantees that there is an appropriate heart beat
in each cardiac cycle.

Uppaal does not provide a direct way of checking for zeno behaviour (which
we must do given that we are using events with upper time bound 0). We can
check that time always progresses with the LTL formula �♦tick. The tick event
is implicit. That is, it is automatically constructed by the tool with the precise
semantics described in Section 4. The ability to refer to the occurrence of events
in the TTM assertions makes it possible to specify the required behaviour more
directly than in Uppaal. The next step is to devise a ventricle controller that
will satisfy the requirements.

module VENTRICLE CONTROLLER
interface

pace : share BOOL; sense: share BOOL
local

ri : INT = HRI; pc: INT = 0
events

vpace[0,0]
when pc==0 && !sense && t==ri
do ri := LRI, pace := true, pc:= 1
end

vsense[0,0]
when pc==0 && sense
do ri := HRI, sense := false, pc :=1
end

compute delay[1,1]
when pc==1
do pc:= 0
end

end

The controller constructs its own estimate VC.ri of the heart’s rate interval
H.ri. We may now compose the heart together with the controller as follows:

instances
H = HEART(share pace, share sense)
VC = VENTRICLE CONTROLLER (

share pace, share sense)
end

composition
System = H || VC
Heart = H

end

The above syntax is accepted by the tool discussed in the sequel and all the re-
quirements check in a few seconds.

10

Concrete syntax of event e:

event id [l,u] just
when grd
start t1, t2
stop t3, t4
do v1 := exp1,

if condition then v2 := exp2 else
skip fi,

v3 :: 1..4
end

Abstract syntax of the event e:

• e.id ∈ ID;
• e.l ∈ N;
• e.u ∈ N ∪ {∞}
• e.fair ∈
{spontaneous, just, compassionate}

• e.grd ∈ STATE× TIME→ BOOL;
• e.start ⊆ T ;
• e.stop ⊆ T ;
• e.action ∈ STATE × TIME ↔

STATE;

Figure 3: Concrete and Abstract syntax of TTM events

4 Operational Semantics

Sections 2 and 3 provide some examples of the new concrete textual syntax
for TTMs. In this section, we provide a one-step operational semantics for a
composition m1||m2|| · · · ||mn of module instances. Following [Ost99] and using
the mathematical conventions of Event-B [Abr10], let the abstract syntax of a
TTM M be given by a 5-tuple, i.e., M = (V, s0, T, t0, E) where 1) V is a set
variable identifiers whether local or declared in a module interface, 2) T is a set
of timer identifiers and 3) E is a set of events, 4) s0 ∈ STATE is the TTM’s
initial variable assignment, with STATE , V → VALUE and 5) t0 ∈ TIME
is the TTM’s initial timer assignment, with TIME , T → N. Set E contain
events that may change the state. The abstract syntax of each event e ∈ E is
specified by a record as shown on the right of the Fig. 3 (where we use the dot
notation “.” to access the records’ fields).

The event guard grd is any boolean expression in V and T . In the above ex-
ample, V = {v1, v2, v3, · · · } and T = {t1, t2, t3, t4, · · · }. The function boundt ∈
T → N and type ∈ T → P(N) provide, respectively, the upper bound and type
of each timer. For example, if timer t1 is declared in the TTM as t1 : 0..5, then
boundt(t1) = 5 and type(t1) = {0..6}. As will be detailed below, timers count
up to one beyond the specified bound at which point they remain fixed until
they are restarted.

The event must be taken between its lower time bound l and upper time
bound u, provided that its guard remains true. The event action involves si-
multaneous assignments to v1, v2, · · · . The notation v3 :: 1..4 is an example of a
demonic assignment in which v3 takes any value from 1 to 4. All the assignments
in the event action are applied simultaneously in one step.

In an assignment y := exp, the expression on the right may use primed
(e.g. x′) and unprimed (e.g. x) state variables as well as the initial value of
timers. A variable with a prime refers to the variable’s value in the next state
and a variable without prime refers to its value in the current state. The use of
primed variables in expressions allows for simpler and more expressive descrip-
tions of state changes. The state changes effected by an event e is described
in the abstract syntax by a before-after predicate e.action. The concrete syn-

11

tax also allows for assignments to be embedded in (possibly nested) conditional
statements.2

In order to build a TTM tool with the PAT framework, we provide a one-step
operational semantics in labelled transition systems (LTS).

Definition: (Labelled Transition System (LTS)) An LTS is a 4-tuple L =
(Π, π0,T,→) where 1) Π is a set of system configurations; 2) π0 ∈ Π is an
initial configuration; 3) T is a set of transitions names; and 4) → ⊆ Π×T×Π
is a transition relation.

We now describe the LTS semantics of TTMs. Let Eid , {e ∈ E • e.id}
be the set of event names (identifiers). A configuration π ∈ Π is defined by a
6-tuple (s, t,m, c, x, p), where:

• s ∈ STATE is a value assignment for all the variables of the system. The
state can be read and changed by any transition corresponding to an event
in E.

• t ∈ TIME is a value assignment for the timers of the system. Events
(and hence their corresponding transitions) may only start, stop and read
timers. As will be discussed below, we introduce a special transition,
called tick, which also changes the timers. Timers ti that are stopped
have values boundt(ti) + 1.

• m ∈ T→BOOL records the status of monotonicity of each timer. Suppose
event e1 in a TTM starts t1. In LTL we might write�(e1∧t1 = 0 → ♦(q∧
t1 ≤ 4)) (note that t1 = 0 is redundant) to specify that q becomes true
within 4 time units of event e1 occurring. However, other events might
stop or restart t1 before q is satisfied hence breaking the synchronicity
between t1 and a global clock.3 Instead, we express the intended property
as �(e1∧t1 = 0 ⇒ m(t1) U (q∧t1 ≤ 4)). The expression m(t1) (standing
for monotonicity of t1) holds in any state where t1 is not stopped or being
reset. We explain monotonicity further below.

• c ∈ Eid→N ∪ {−1} is a value assignment for a clock implicitly associated
with each event. These clocks are used to decide whether an event has
been enabled for long enough and whether it is urgent. An event e ∈ E
is enabled when its clock’s value is between the event’s lower time bound
(e.l) and its upper time bound (e.u). Furthermore, the type of c(e.id)
is {−1, 0, ...e.u}. When an event’s clock is disabled, as opposed to the
convention used with timers, the clock’s value is −1.

• x ∈ Eid∪{⊥} is used as a sequencing mechanism to ensure that each tran-
sition e is immediately preceded by an e# transition whose only function

2With all the complexity of structures allowed by the syntax of actions, sequential com-
position is not allowed. This is in an effort to make actions into specifications rather than
implementations. This would allow us to generalize TTMs to allow an Event-B style of sym-
bolic reasoning.

3Suppose that event e2 also starts t1, that e3 establishes q and that the events occur in

the following order: π0
e1→ π1

t1=0

tick3

→ π4
t1=3

e2→ π5
t1=0

tick2

→ π7
t1=2

e3→ π8
t1=2 ∧ q

· · · . This execution

satisfies the first LTL formula but does not satisfy the intended specification: when q becomes
true, t1 = 2 but it is 5 ticks away from the last occurrence of e1.

12

is to update the monotonicity record m. For example, in the following

execution · · · e1→ π1
x=⊥

e2#→ π2
x=e2

e2→ π3
x=⊥
→ · · · , suppose in π1 the value of

timer t2 is 3 and that e2 restarts t2. Then, in π2, we have x = e2 ∧ t2 =
3 ∧ m(t2) = false. In π3, we have x = ⊥ ∧ t2 = 0 ∧ m(t2) = true.
In order to record the breaking of monotonicity, the e2# transition sets
m(t2) to false, which gets set back to true in the following configuration.
The precise effect of these transitions will be described below.

• p ∈ Eid ∪ {tick,⊥} holds the name of the last event to be taken at
each configuration. It is ⊥ in the initial configuration as no event has
yet occurred. It allows us to refer to events in LTL formula in order to
state that they have just occurred. For instance, in the formula above,
(s, t,m, p) |= e1 ∧ t1 = 0 (which reads: the configuration satisfies the
formula) evaluates to p = e1 ∧ t(t1) = 0.

Given a timed transition modelM, the transitions of its corresponding LTS
is given as T = Eid ∪ E# ∪ {tick}. As explained above, for each event e ∈
E, we introduce a monotonicity breaking transition e.id#. We thus define
E# , {e ∈ E • e.id#}. The tick transition represents one tick of a global
clock. Explicit timers and event lower and upper time bounds are described
with respect to this tick transition. We define the enabling condition of event
e ∈ E as e.en , e.grd ∧ e.l ≤ e.c ≤ e.u, where e.c evaluates to c(e.id)
in a configuration whose clock component is c. Thus an event is enabled in
a configuration that satisfies its guard and where the event’s implicit clock is
between its lower and upper time bound.

The initial configuration is defined as π0 = (s0, t0,m0, c0,⊥,⊥), where s0
and t0 come from the abstract syntax of the TTM. m0 and c0 are given by:

m0(ti) ≡ t0(ti) = 0

c0(ei.id) =

{
0 (s0, t0) |= ei.grd

−1 (s0, t0) 6|= ei.grd

for each ti ∈ T and ei ∈ E. It is implicit in the above formula that m0(ti)
depends only on whether or not ti is initially enabled (specified by the key-
words enabledinit and disabledinit). If enabledinit, t0(ti) = 0; otherwise,
if disabledinit, t0(ti) = boundt(ti) + 1.

An execution σ of the LTS is an infinite sequence, alternating between con-
figurations and transitions, written as π0

τ1→ π1
τ2→ π2→ · · · where τi ∈ T and

πi ∈ Π.
Below, we provide constraints on each one-step relation (π

e→ π′) in an
execution. If an execution σ satisfies all these constraints then we call σ a
legal execution. We let ΣL denote the set of all legal executions of the labelled
transition system L. The set ΣL provides a precise and complete definition of
the behaviour of L.

If a state-formula q holds in a configuration π, then we write π � q. In
some formulas, such as guards, all the components of a configuration are not
necessary. We express this by dropping some components of the configuration
on the left of the double turnstile (|=), as in (s0, t0) |= e.grd. Given a temporal

13

logic property ϕ and an LTS L, we write L � ϕ iff ∀σ ∈ ΣL • σ � ϕ. The three
possible transition steps are:

(s, t,m, c,⊥, p) e#→ (s, t,m′, c, e, p) (4.1)

(s, t,m, c, e, p)
e→ (s′, t′,m′, c′,⊥, e) (4.2)

(s, t,m, c,⊥, p) tick→ (s, t′,m′, c′,⊥, tick) (4.3)
Each of the above transitions have side conditions which we now enumerate.

4.1 Taking e#

The monotonicity breaking transition e#, specified in (4.1), is taken only if
(s, t, c) � e.en and the x-component of the configuration is ⊥. For each t ∈ T ,
m′(t) ≡ t /∈ e.start ∧ m(t). This ensures that, for timer t, just before it is
(re)started, m(t) = false. It is set back to true by the immediately following
event, e, and it remains true as long as t is not restarted and has not reached its
upper bound. Transition e# modifies only m and x in the configuration, and
thus maintains the truth of (s, t, c) � e.en.

4.2 Taking e

The transition e, specified in (4.2), is taken only if (s, t, c) � e.en and the x-
component of the configuration is e. The component s′ of the next configuration
in an execution is determined nondeterministically by e.action, which is a re-
lation rather than a function. This means that any next configuration that
satisfies the relation can be part of a valid execution, i.e., s′ is only constrained
by (s, t, s′) ∈ e.action. The other components are constrained deterministically.
The following function tables specify the updates to m, t and c upon occurrence
of transition e:

For each timer ti ∈ T m′(ti) t′(ti)

ti ∈ e.start
ti ∈ e.stop impossible
ti /∈ e.stop true 0

ti /∈ e.start
ti ∈ e.stop false boundt(ti) + 1
ti /∈ e.stop m(ti) t(ti)

For each event ei ∈ E c′(ei.id)

(s′, t′) 6|= ei.grd -1

(s′, t′) |= ei.grd
(s, t) |= ei.grd ∧ ¬ei = e c(ei.id)
(s, t) 6|= ei.grd ∨ ei = e 0

In the above, we start and stop the implicit clock of ei as a consequence of
executing e, according to whether ei.grd becomes true, is false (i.e. becomes or
remains false) or remains true. Since event ei becomes enabled ei.l units after
its guard becomes true, this allows us to know when to consider ei as enabled,

14

i.e., ready to be taken. As a special case, the implicit clock of event e (under
consideration) is restarted when e.grd remains true.

4.3 Taking tick

The tick transition, specified in (4.3), is taken only if ∀e ∈ E • c(e.id) < e.u and
the x-component of the configuration is ⊥ (thus preventing tick from intervening
between any e# and e pair). For any timer ti ∈ T , the updates to t′, m′ and c′

are:

t′(ti) = (t(ti) ↓ boundt(ti)) + 1

m′(ti) ≡ ¬ (t(ti) = boundt(ti)+1)

For each event e ∈ E c′(e.id)

(s′, t′) 6|= e.grd -1

(s′, t′) |= e.grd
(s, t) 6|= e.grd 0
(s, t) |= e.grd c(e.id) + 1

Thus, tick increments timers and implicit clocks to their upper bounds. Tran-
sition tick also marks timers as non-monotonic when they reach their upper
bound and reset clocks when the corresponding events are disabled.

4.4 Scheduling

So far, we constrained executions so that the state can change only in controlled
ways but it is still possible that a given execution would make no progress.
To make progress, we need to assume fairness. Up to now, we have kept the
fairness and real-time constraints decoupled. In the current implementation of
TTM/PAT, the possible scheduling constraints on TTM events are restricted
to the following four:

• Spontaneous event. Even when it is enabled, the event might never be
taken. This is assumed when no fairness keyword is given and the upper
time bound is * or unspecified.

• Just event scheduling (also known as weak fairness). For any execution
σ ∈ ΣL, if the event eventually becomes continuously enabled, it has
to occur infinitely many times, that is σ � ♦�e.en → �♦e. This is
assumed when the keyword just is given next to the event and the upper
time bound is * or unspecified. We use e.en and not e.grd in the fairness
formula as the event can only be taken e.l units after its guard became
true.

• Compassionate event scheduling (also known as strong fairness). For any
execution σ ∈ ΣL, if the event becomes enabled infinitely many times, it
has to occur infinitely many times, that is σ � �♦e.en → �♦e. This
is assumed when the keyword compassionate is given next to the event
and the upper time bound is * or unspecified.

15

• Real-time event scheduling. The (finite) upper time bound (u) of the event
e is taken as a deadline: if the event’s guard is true for u units of time, it
has to occur within u units of after the guard becomes true or after the
last occurrence of e. To achieve this effect, the event e is treated as just.
Since tick won’t occur as long as e is urgent (i.e. e.c = e.u), transition e
will be forced to occur (unless some other event occurs and disables it).

To accurately model time, the tick transition is treated as compassionate
in the LTS. This ensures that time progresses except in cases of zeno-behaviors
(discussed below).

Spontaneous events cannot be used to establish liveness properties. Justice
and compassion are strong enough assumptions to establish liveness properties
but not real-time properties. Finally, real-time events can establish both liveness
and real-time properties.

The above semantics allows for zeno behaviours, i.e., it is possible to have
executions in which the tick transition does not occur infinitely often (at some
point, time stops). Zeno behaviour occurs only where there are loops involving
events with zero upper time bound (i.e. e[0,0]). We could ban e[0,0] events
altogether, but that would eliminate behaviours that are feasible and useful,
e.g., where we describe a finite sequence of immediately urgent events (not in a
loop). We can check that the system is non-zeno by checking that the system
satisfies �♦tick.

The abstract TTM semantics provided above can be implemented efficiently.
For example, in the abstract semantics every event e is preceded by a breaker
of monotonicity e#. Most of the e# events do not change the configuration
monotonicity component m and can thus be safely omitted from the reachability
graph thereby shrinking it.

5 Performance

We have implemented the TTM textual language and semantics as a plug-in
of the PAT toolset. In this section we report on two performance experiments
on the plug-in. All experiments were conducted on a 64-bit Windows 7 PC
with Intel(R) Core(TM) i7 CPU 860 @ 2.80 GHz (16.0 GB RAM). The tool
(and experimental data) may be downloaded at https://wiki.cse.yorku.ca/
project/ttm/.

In section 5.1, we use the DRT (delayed trip reactor) nuclear shutdown ex-
ample for the performance comparison. In [LPZ06], the DRT was manually
encoded and checked in the Uppaal and SAL model-checkers. In that exper-
iment, Uppaal performed better than SAL. We compare the performance of
the TTM/PAT plug-in with these manual encodings and find that TTM/PAT
performs significantly better. As reported in [LPZ06], the need to manually
encode the TTM was a time consuming task. Thus the TTM plug-in has two
advantages. The TTM encoding to the modelchecker is done automatically and
its performance is significantly better.

16

Assertion TCTL of Uppaal LTL of TTM/PAT

Invariantly p S |= A� p S |= � p
Eventually p S |= A♦ p S |= ♦ p
Whenever p, eventually q S |= p −→ q S |= � (p⇒ (♦ q))
Infinitely often p S |= true −→ p S |= �♦ p
Referring to transition state M.state pc = state
Non-zenoness × S |= �♦ tick
p until q, assuming eventually q × S |= p U q
p until q × S |= q R p
Nesting of temporal operators × e.g., � (♦ p⇒ (pUq))
Referring to occurrences of event e × e
Timer t has increased monotonically × mono (t)
Eventually henceforth p × S |= ♦� p
S possibly maintains p S |= E� p inverse of S |= ♦ (¬p)
S possibly reaches p S |= E♦ p S reaches p
Nesting of path quantifiers × ×
∀♦ ∀� p × ×

Table 1: TTM vs. Uppaal: Language of Assertions

We also use Fischer’s mutual exclusion algorithm to compare the native veri-
fication performance of the TTM/PAT plug-in versus Uppaal and the RTS/PAT
plug-in (see Section 5.2 and Table 3). The RTS plug-in has an explicit clock dig-
itization mode and an efficient clock zone mode. The performance of the TTM
plug-in is within a linear factor of the RTS digital mode. However, as expected,
the Uppaal and RTS clock zone mode performed significantly better than the
TTM plug-in. We are currently examining how to extend the TTM plug-in
with these more efficient modes. In each case, the extra performance comes at
some expressive cost. For example, in TTMs we have just and fair events not
supported by Uppaal. Uppaal’s subset of the CTL specification language is less
expressive than the LTL supported by TTMs.

Table 1 shows that Uppaal’s TCTL specification language is less expressive
than that of TTM/PAT. There are temporal properties such as ♦�p that can be
specified and verified in the TTM plug-in but not in Uppaal. Also, non-zenoness
and timer monotinicty can be checked directly in the specification language.

5.1 Delayed Reactor Trip System

The DRT (delayed trip reactor) shutdown system is illustrated in Fig. 4. The old
implementation of the DRT used timers, comparators and logic gates as shown
in the figure. The new DRT system is to be implemented on a microprocessor
system with a cycle time of 100ms. The system samples the inputs and passes
through a block of control code every 0.1 seconds. A high-level state/event
description (SPEC) of the code that replaces the analogue system is shown to
the right of Fig. 4 ([LPZ06]). When the reactor pressure and power exceed
acceptable safety limits in a specified way, we want the DRT control system to

17

Nuclear Reactor
Pressure
Power Trip Relay

3s

2s Relay

Pressure

Power

DRT Shutdown Computer both_hi[1,1] delay[29,29]

power_low[1,1] power_hi[1,1]
relay:=open

delay[19,19]

power_hi[1,1]

power_low[1,1]
relay:=close

State based model of controller

Figure 4: DRT System: Context Diagram and Transition Diagram of Controller

shut down the reactor. Otherwise, we want the control system to be reset to its
initial monitoring state.

In [LPZ06], the SPEC level TTM description of the controller is refined into
a lower level PROG description that is closer to code used in a cyclic executive.
Translations to PVS are used to show that PROG refines SPEC. The reactor
itself is represented by a TTM that can change the power and pressure levels
arbitrarily every .1 seconds (1 tick of the clock), by using a demonic assignment
setting them to either low or high. The system thus consists of the controller
(either SPEC or PROG) executing in parallel with plant (the reactor). The two
essential properties that the system must satisfy are:

Response Formula Fres: Henceforth, if Power and Pressure simultaneously
exceed their threshold values for at least 2 clock ticks, and 30 ticks later
Power exceeds its threshold for another 2 ticks, then within 30 to 32 ticks,
open the reactor relay for at least 20 ticks.

Recovery Formula Frec: Henceforth, if the relay is open for 20 ticks, and
after the 20th tick the power is low for at least 2 ticks, then the relay is
closed before the 22nd tick.

With the help of an observer and timers, the response formula Fres is rep-
resented in LTL by a liveness property �p → ♦q where p and q use timers to
capture the timed response (see [LPZ06] for the details). Likewise, the recovery
formula Frec can be reduced to a safety property �¬(Tw = 2 ∧ relay = open)
where Tw is a timer describing a state in which the power has returned to normal
for 2 ticks of the clock, but the relay is still open.

Both SPEC and PROG did not satisfy Fres due to an error in the observer.
Thus, verification of Fres should produce counter-examples in any modelchecker.
Also, it was discovered that there was an error in the controller (in both SPEC
and PROG) as the recovery property was not satisfied. The revised and cor-
rected descriptions of the controller are SPECr and PROGr, respectively.

To generate large reachability graphs, multiple controllers were run in paral-
lel with each other. In one such response example, the number of states checked

18

Property Controller Model
TTM:
�♦ tick Result TTM/PAT Uppaal SAL

Fres:

System
Response

SPEC 11 × 11 13 25
PROG 31 × 32 24 407
SPECr 5 × 3 12 15
PROGr 14 × 9 21 330

Fires:

Initialized
System
Response

SPEC .5 X .4 .9 11
PROG 1 X 1 1 20
SPECr .3 X .2 .4 7
PROGr .8 X .6 1 13

SPECr1||SPECr2 16 X 11 62 235
PROGr1||PROGr2 109 X 70 76 >1h

Frec:

System
Recovery

SPEC .3 × .08 .1 6
PROG .8 × .2 .3 7
SPECr .1 X .07 .2 4
PROGr .3 X .07 .6 5

SPECr1||SPECr2 22 × .06 145 18
PROGr1||PROGr2 142 × .1 11 >1h

Table 2: TTM/PAT vs. Uppaalvs. SAL: Delayed Reactor Trip System

was 421,442 states and 821,121 transitions (in 70 seconds). These systems and
their LTL specifications (some valid and some invalid) provide a rich set of ex-
amples to test the performance of the various model-checkers. In [LPZ06], the
TTMs were manually encoded into the Uppaal and SAL model-checkers. The
authors of [LPZ06] show that, in general, Uppaal performed better than SAL
given its real-time features.

The encoding of TTMs into Uppaal and SAL is itself a time-consuming
process, as it has to be done manually. This is where the new TTM/PAT tool
is useful as the encoding is automatic. What about performance? In Table 2,
we compare TTM/PAT to the encodings in SAL and Uppaal for response and
recovery, and for the various versions of the controller. The 4th column labelled
“Result” has a checkmark where the LTL property is valid; else, the model-
checker produces a counter-example.

In general, TTM/PAT significantly out-performs both SAL and Uppaal.
There is only one exception in the second row for Fres. TTM/PAT finds the
formula invalid in 9 seconds versus 18 seconds for Uppaal (this is not shown in
the table). However, it takes TTM/PAT 32 seconds to find the counter-example
versus 24 seconds for Uppaal.

5.2 Fischer’s Mutual Exclusion Algorithm

In [SLD+13], a comparison was performed between RTS (a PAT plugin) and Up-
paal using the Fischer mutual exclusion algorithm. In this section, we compare
the performance of the TTM plugin to RTS and Uppaal on the Fischer example.
This is only one sample point and many more examples would be needed for a
proper comparison of the three tools. See appendix A for the experiment’s site

19

where the Uppaal and RTS details are made available.
The PAT toolset provides both digitization (using BDDs) and more efficient

symbolic clock zone algorithms (using difference bound matrices) for checking
RTS models. The TTM plugin uses the explicit state algorithms of the toolset.
We thus expect that the TTM performance will be similar to digitization but
slower than clock zones. To obtain better performance, we have the choice of
either using Uppaal or the difference bound matrix techniques. The experiment
in this section was performed to help us with that choice.

We build the TTM model (see Appendix A) to be as close as possible to the
RTS model at the experiment’s site. The system under verification consists of
n copies of processes running in parallel, using the indexed parallel composition
syntax:

composition fischer = || i: 1..n @ PROCESS(share x, share c, in i) end

All processes, each identified by an integer i, share two global variables: mutex
x and counter c. The mutex may hold the identifier of any process or −1 to
denote system idleness. The counter records the number of processes that have
entered their critical section. Process instances execute as follows: 1) await the
system being idle; 2) signal that it intends to enter its critical section (CS) by
updating x to its identifier i within δ ticks of the clock; 3) delay for exactly ε
ticks of the clock. 1,2 and 3 are repeated as long as the process gets overtaken.
4) enter its CS, incrementing counter c; and 5) exit from its its CS, decrementing
counter c, if applicable. We name the state between 2) and 3) request, that
between 3) and 4) wait and that between 4) and 5) cs. The following properties
are commonly relevant for mutual exclusion algorithms.

P1: Mutual Exclusion. At most one process is in its CS at any time: � (c ≤
1).

P2: Liveness A process successfully signalling its intent of entering the CS
will get to wait in the appropriate state for access: �(request→ ♦wait).

P3: Starvation freedom A process successfully signalling its intent of enter-
ing the CS eventually does enter its CS: �(request→ ♦cs).

When checking liveness properties in RTS, we can specify whether to check:
all, event level weak and strong fairness, process level weak and strong fairness
and global fairness. Only global fairness (a very strong assumption) successfully
established the starvation freedom property. The same situation applies to the
TTM model. Uppaal does not have the facilities to check properties under any
fairness assumptions. TTMs provide the option to choose fairness on an event
by event basis. In Table 3, we compare the performance of the three tools
without any fairness assumptions. TTM/PAT also provides the ability to check
for non-zeno behavior, a facility not provided by the other tools. Results for
this property are also reported by the table.

Our experiment shows that, in determining that properties P1 and P2 are
valid, the clock zone mode of RTS is faster than Uppaal (see Table 3). The
speed of TTM/PAT is within a factor between 3 and 4 of the digitization mode
of RTS. TTM/PAT is almost as fast as Uppaal in producing counter examples

20

Property Result n Uppaal
PAT/RTS

TTM/PAT
clock zone digitization

non-zenoness:
�♦ tick X

4

not directly supported

.5
5 4
6 31
7 230
8 >1h

P1 mutual exclusion:
� (c ≤ 1)

X

4 .04 .12 .08 .26
5 .1 .2 .4 1.9
6 .8 2 3 14
7 14 21 28 104
8 563 250 244 768
9 >1h 2918 >1h >1h

P2 liveness:
�(request⇒ ♦wait) X

4 .06 .07 .1 .3
5 .2 .3 .8 3
6 4 3 6 24
7 181 29 58 177
8 >1h 307 >1h >1h

P3 liveness:
�(request⇒ ♦cs) ×

4 .2 .06 .09 .01
5 .2 .3 .9 .01
6 .3 3 19 .03
7 .2 70 942 .04
8 .2 2277 >1h .03

Table 3: TTM/PAT vs. RTS/PAT vs. Uppaal: Fischer’s Algorithm

for property P3. The results in Table 3 suggest that both the techniques used
in clock zones of RTS and those of Uppaal would provide good enhancements
for the verification of TTMs. In both cases, this would come at the cost of some
expressivity. For the comparison with Uppaal see Table 1. RTS clock zones
do not cover the use of “P within [l, u]”, which forces process P to terminate
between l and u units of time; the lower time bound is the problematic part to
implement.

6 Conclusion

We have proposed a convenient and expressive textual syntax for TTMs. We
have also provided a corresponding operational semantics that is used to build
tool support as a plug-in of the PAT toolset. The TTM assertion language, LTL,
allows references to event occurrences, including clock ticks (thus allowing for
a check that the behaviour is non-zeno). Tool support includes an editor with
static type checking, a graphical simulator and a LTL verifier. The TTM tool
performs significantly better on a nuclear shutdown system than the manually
encoded version in Uppaal and SAL.

We can improve the performance of the tool either by using the clock zone
algorithms of RTS or the timed automata of Uppaal. In either case, this would
come at the cost of expressiveness. For the comparison with Uppaal see Table 1.

21

In RTS, the construct “P within [l, u]”, which forces process P to terminate
between l and u units of time, is not supported by the clock zone algorithms;
the lower time bound is the problematic part to implement. In future work, we
intend to explore the clock zone algorithms of RTS as these are already available
in the PAT toolset.

The TTM/PAT tool already supports an assume-guarantee style of compo-
sitional reasoning (see Section 2). The use of linear time temporal logic better
supports compositional reasoning than branching time logic [Var01]. Event
actions are specified as before-after predicates allowing us to enhance composi-
tional reasoning using methods developed in UNITY [CM89].

Acknowledgements: Our sincere thanks to Prof. Yang Liu (School of Com-
puter Engineering, Nanyang Technological University) and to Prof. Jun Sun
(Singapore University of Technology and Design) for their development of the
PAT toolset and for their help in developing the TTM plug-in.

References

[ABB+01] T. Amnell, G. Behrmann, J. Bengtsson, P. R. D’Argenio, A. David,
A. Fehnker, T. Hune, B. Jeannet, K. G. Larsen, M. O. Möller, P. Pet-
tersson, C. Weise, W. Yi. Uppaal - Now, Next, and Future. In
MOVEP. LNCS 2067, pp. 99–124. 2001.

[Abr10] J.-R. Abrial. Modeling in Event-B. Cambridge University Press,
2010.

[CM89] K. M. Chandy, J. Misra. Parallel program design - a foundation.
Addison-Wesley, 1989.

[JLS10] E. Jee, I. Lee, O. Sokolsky. Assurance Cases in Model-Driven Devel-
opment of the Pacemaker Software. In Margaria and Steffen (eds.),
ISoLA 2010: Part II. Volume LNCS 6416. 2010.

[LPZ06] M. Lawford, V. Pantelic, H. Zhang. Towards Integrated Verification
of Timed Transition Models. Fundamenta Informaticae 70(1,2):75–
110, 2006.

[MP92] Z. Manna, A. Pnueli. The Temporal Logic of ractive and Concurrent
Systems: Specification. Springer–Verlag, 1992.

[Ost99] J. S. Ostroff. Composition and Refinement of Discrete Real-Time
Systems. ACM Transaction on Software Engineering Methodology
8(1):1–48, 1999.

[SLD+13] J. Sun, Y. Liu, J. S. Dong, Y. Liu, L. Shi, E. André. Modeling and
verifying hierarchical real-time systems using stateful timed CSP.
ACM Transaction on Software Engineering Methodology 22(1):3:1–
3:29, 2013.

[Var01] M. Y. Vardi. Branching vs. Linear Time: Final Showdown. In
TACAS 2001. Volume LNCS 2031, Springer-Verlag, pp. 1–22. 2001.

22

// Fischer’s mutual exclusion algorithm

#define idle −1;
#define n 9;
#define delta 3;
#define epsilon 4;

share initialization
x: INT = idle //semaphore
c: INT = 0

end

module PROCESS
interface

x: share INT
c: share INT//no. of processes

//inside critical region
i: in INT

local
pc: INT = 0

events

await[0, 0]
when pc==0 && x==idle
do pc := 1
end

update[0, delta]
when pc == 1
do x := i, pc := 2
end

delay[epsilon, epsilon]
when pc==2
do if(x == i) then pc := 3

else pc := 0
fi

end

enter
when pc==3 && x==i
do c++, pc:=4
end

exit
when pc==4
do c−−, pc:=0, x:=idle
end

end

composition
fischer = ||i:1..n @

PROCESS(share x, share c, in i)
end

#define cgreater1 c>1;
#define pc1 fischer[0].pc==1;
#define pc2 fischer[0].pc==2;
#define pc4 fischer[0].pc==4;

#assert fischer |= []!cgreater1;//mutex
#assert fischer |= [](pc1 −> <> pc2);
#assert fischer |= [](pc1 −> <> pc4);
#assert fischer |= []<>tick;

Figure 5: TTM model of the Fischer mutual exclusion algorithm

A Appendix

Fig. 5 provides the TTM model of the Fischer algorithm. The TTM model
corresponds to the RTS and the Uppaal models provided at the experiment site
at http://www.comp.nus.edu.sg/˜pat/rts/. The urgent await[0, 0] event in
Fig. 5 matches an equivalent urgent transition in the RTS model. The Uppaal
model provided at the above site did not make that event urgent. However, we
used both the RTS and the Uppaal models as they appear at the experimental
site.

23

