
Meaningful Keyword Search in RDBMS

Mehdi Kargar, Aijun An, Parke Godfrey, Jaroslaw Szlichta and Xiaohui Yu

Technical Report CSE-2013-03

February 4 2013

Department of Computer Science and Engineering
4700 Keele Street, Toronto, Ontario M3J 1P3 Canada

Meaningful Keyword Search in RDBMS

Mehdi Kargar, Aijun An, Parke Godfrey, Jaroslaw Szlichta and Xiaohui Yu
Department of Computer Science and Engineering

York University, Toronto, Canada
{kargar,aan,godfrey,jszlicht}@cse.yorku.ca and xhyu@yorku.ca

ABSTRACT
Keyword search over relational databases offers an alterna-
tive way to SQL to query and explore databases that is
effective for lay users who may not be well versed in SQL
or the database schema. This becomes more pertinent for
databases with large and complex schemas. An answer in
this context is a join tree spanning tuples containing the
query’s keywords. As there are potentially many answers
to the query, and the user is often only interested in seeing
the top-k answers, how to rank the answers based on their
relevance is of paramount importance.

We focus on the relevance of join as the fundamental
means to rank answers. We devise means to measure rel-
evance of relations and foreign keys in the schema over the
information content of the database. This can be done of-
fline with no need for external models. We compare the
proposed measures against a gold standard we derive from a
real workload over TPC-E and evaluate the effectiveness of
our methods. Finally, we test the performance of our mea-
sures against existing techniques to demonstrate a marked
improvement, and perform a user study to establish natu-
ralness of the ranking of the answers.

1. INTRODUCTION

1.1 Motivation
Much of the world’s high-quality data remains under lock

and key in relational databases. Access is gained through
relational query languages such as SQL. This can suffice for
people who are well versed in both SQL and in the schemas
of the databases in which they have an interest. However,
a lay user—anyone who does not know SQL or who is not
well versed in the given schema—is effectively locked out. As
the schemas of the databases that organizations field become
more complex, we all effectively become lay users. Keyword
search over relational databases was proposed a decade ago
[1, 9] to offer an alternative way to query a database that
neither requires mastery of a query language such as SQL,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

TRADETRADE
Date: 2005-01-11, Price: $ 20.95, Quantity: 400

CUSTOMER ACCOUNT
Name: Cynthia Witherspoon

SECURITY
Name: Common of Arden y p

Vacation Account Group, Inc.

CUSTOMER
First Name: Cynthia

Last Name: Witherspoon
Email: C itherspoon@attbi com

COMPANY
Name: Arden Group, Inc.

CEO: Marry Moffet
Open Date: 1949 04 03Email: Cwitherspoon@attbi.com Open Date: 1949-04-03

Figure 1: An answer considered non-minimal by
DISCOVER.

nor deep knowledge of the database’s schema. While the
general approach has merit, many refinements have been
needed, and are needed still, before it can be truly effective.
As such, this remains a relevant, active research area. [3, 4,
17].

For keyword search over databases, the database schema
is thought of as a graph: the relations are the nodes, and
the foreign key relationships between them are the directed
edges. A query is simply a set of words (keywords). The
concept of what constitutes an answer, however, is more in-
volved. For an answer, we want to convey elements from the
database—namely tuples—that cover the keywords of the
query, and a natural structure—a sub-graph of the database’s
schema—that spans those elements. This sub-graph is com-
monly called a network in the literature [9, 8], but is effec-
tively a tree, called a join tree in [1].

What is an admissible answer is usually further restricted.
We are not interested in any tree; some may only very loosely
connect the tuples containing our keywords. Previous work
restricts answers over minimal trees [9, 8], meaning there is
no answer over a sub-tree of the tree in question. However,
there is another aspect of an answer: relevance to the query.
By restricting answers to a minimal structure, some relevant
answers may be missed.

Consider the keyword query “Cynthia Arden” over the
TPC-E1 schema. The TPC-E benchmark simulates the on-
line transaction processing (OLTP) workload of a brokerage
firm.2 The keywords Cynthia and Arden may appear in dif-

1http://www.tpc.org/tpce/
2The TPC-E schema contains 33 tables and is shown in
Fig. 5. The database models information about financial
transactions such as traded companies, fees of brokers, cus-
tomer accounts and their related holdings, and the type of

ferent relations. Each could refer to the name of a customer,
broker, company, or CEO of a company, or be in the title of
a news item. Of course, each of these different relations
for Cynthia and for Arden potentially lead to rather differ-
ent answers. For example, Fig. 1 shows an answer for the
keyword query “Cynthia Arden” on TPC-E, which says that
a customer Cynthia buys the stocks of a company named
Arden Group. This is an interesting and relevant relation-
ship between Cynthia and Arden assuming the user wants
to find out the relationship between customer Cynthia and
company Arden Group. However, such an answer may be
missed if we restrict the answer to be structurally minimal
while covering all the query keywards. This is because word
Cythia also appears in an intermediate node of the tree and
thus the customer node is pruned. The same problem arises
for word Arden.

Another issue in keyword search is to score answers for
relevance. Some answers are more relevant than others, and
thus the answers should be presented in order of descending
relevance. The relevance of an answer depends on many fac-
tors: the tuples in the answer and how the keywords appear
in them; the bridging tuples that do not contain keywords;
and the join tree. How to measure the value of each of these
is open to question. How then to combine these measures
into a single relevance score is also open to debate.

Prior work has addressed relevance. In [9], they offer the
simplistic solution of scoring relevance as the reciprocal of
the number of edges in an answer’s tree. This heuristic as-
sumes that fewer joins involved mean the tuples are related
more closely. This approach might work for a small and
simple schema, but it fails to return relevant answers when
the schema is large and complex. Consider the query {An-
derson Joseph} over the TPC-E schema. Also, assume that
Anderson refers to a company name (e.g., Andersen Group,
Inc.) and Joseph refers to a customer name (e.g., Joseph
Coronado). Fig. 2 shows four possible join trees of differ-
ent sizes that could produce answers that connect company
Anderson and customer Joseph.

If we rank the trees according to their size (i.e., the num-
ber of edges or nodes), the first tree (a) which connects a
customer and a company when they have the same status
gets the highest rank. However, based on the TPC-E schema
description, this is not a strong relationship; status type is
a dimension table which is connected to six tables in the
schema and stores the status value for other entities (such
as companies, customers and trades). An answer derived
from this tree would say that both Anderson and Joseph
are active. Looking at the customer and a company tables
in TPC-E, it turns out that all the customers and compa-
nies have the Active status. Therefore, any given customer
and any given company in the TPC-E database share the
same status through the status type table. Thus, the first
found relationship (a) between Anderson and Joseph is, in
fact, not that interesting or relevant. The second tree (b)
does not reveal a strong relationship between Anderson and
Joseph either. It states that the security traded on the com-
pany (in this case, Anderson) has the same status as the
queried customer (i.e. Joseph). This is similar to the first
tree (a). The third tree (c) states that company Ander-
sen’s stock is traded by customer Joseph. This is one of the
strongest relations between a customer and a company and
is related to the purpose of the TPC-E schema. In addition,

traded securities.

it usually produces few results since trading the stocks of
one specific company by one specific customer is not com-
mon. The fourth tree (d) is the largest and therefore it is not
straightforward to be interpreted easily. The purpose of the
keyword search is to help users to understand and explore
the database more conveniently. This tree states that the
company Anderson has the same status as a security which
is related to a company that has the same address as cus-
tomer Joseph. Two relations, address and status type, that
are involved in this tree makes it less meaningful and more
difficult to interpret for the user.

In [8], the authors take a different tact: they apply in-
formation retrieval (IR) measures to the answers to deter-
mine an individual measure per answer. This leverages ap-
proaches from IR that work well in other domains of keyword
search (e.g., keyword search on the web). An answer in this
case, however, need not cover all the query’s keywords to
score well and the approach de-emphasizes the importance
of the tree. We believe that for keyword search in relational
databases the relevance of the tree from which answers de-
rive is paramount. We hypothesize that relevance as mea-
sured by adapted IR techniques is much less effective. For
example, for the trees in Fig. 2, assume that the IR scores of
the tuples that contain keywords are the same (e.g., Joseph
is the first name of a customer and the related column con-
tains only “Joseph”). Then, applying the ranking technique
of [8], the first tree (a) gets the highest score. As we discuss
previously, this is not a relevant answer for the given query.

Previous work on relevance has been tested over simple
schemas. For application over more complex schemas, the
importance of the schema (thus, answers’s trees) becomes
more pronounced. It is how the tuples are related (via the
joins) that is meaningful for search in the relational domain.

1.2 Objectives and Contributions
In this work, we address the above problems by (1) defin-

ing answers that incorporate the user’s interest and (2) de-
vising meaningful relevance scores for answers.

We address the first issue by identifying the meaning of
each query keyword (such as whether keyword Joselph is a
customer’s name or a company’s CEO’s name) either through
user interactions or using an automatic method for catching
the meaning of a keyword query. A first step to keyword
query evaluation in a relational database is to determine the
relations in the database that contain the query keywords.
We call a relation that contains a keyword a potential role
for that keyword. Finding the potential roles for the query’s
keywords can be done efficiently, by using an inverted index
structure or existing built-in support for full-text keyword
search in the RDBMS [17].

Identifying the most relevant role of a query keyword from
its potential roles is beneficial to keyword search. First, the
query is focused on roles of interest. Second, this will admit
meaningful answers that would not otherwise be found. The
answer in Fig. 1 is not found by DISCOVER [9] because
of the minimality constraint they add to their definition of
“answer“, and that roles are not part of the definition. This
minimality issue is addressed in depth in Section 2.

To address the second problem, to devise meaningful rel-
evance scores for answers, we seek to measure importance
of edges and nodes (foreign keys and relations, respectively)
in the graph (the database schema). The relevance of an
answer’s tree can be then determined based on the impor-

CUSTOMER
Joseph

STATUS TYPE

COMPANY
Anderson

CUSTOMER
ACCOUNT

CUSTOMER
Joseph

STATUS TYPE
COMPANY

Anderson

SECURITY

CUSTOMER
Joseph

COMPANY
Anderson

SECURITY

TRADE

CUSTOMER
Joseph

COMPANY
Anderson

ADDRESS

COMPANY

STATUS TYPE

SECURITY

(a) (b) (c) (d)

Figure 2: Four possible trees for the query “Andersen:company Joseph:customer”.

tance value of its nodes and edges. Our relevance measures
only rely on the database’s schema and data. We do not
rely on other models, workloads and logs, or other external
information. Our node and edge relevance can be computed
offline and efficiently.

Our contributions are as follows.

1. Model for keyword queries in relational databases.

Use schema-based ranking and keyword roles to solve
the problem of keyword search over relational databases.

Redefine answer via roles (as discussed above and de-
fined in Section 2) that captures important answers
missed by previous techniques.

2. Schema-based ranking.

(a) Devise importance measures for nodes, importance
measures for edges, and a hybrid measure of the
two.

(b) Devise relevance measures for join trees derived
from the schema relevance. Consider the effect of
penalizing larger trees.

(c) Construct a gold standard for relevance of answers
from an extensive workload of real SQL queries.
This is used to evaluate the effectiveness of our
measures which do not require such external in-
formation.

3. Evaluation.

Establish the efficacy of our approach by evaluation.

(a) Perform a comprehensive evaluation based on TPC-
E to demonstrate the viability of our methods and
to compare against existing methods. The experi-
ments are over a larger and more complex schema
(TPC-E) than the experiments in previous work.3

(b) Run a user study to establish the meaningfulness
of answers and ranking generated by our system.

The paper is organized as follows. In Section 2, we present
our framework. In Section 3, we devise our measures for rele-
vance of nodes and edges, and for join trees. We show how to
compute these efficiently. In Section 4, we discuss the com-
parison of the methods against a gold standard, we evaluate
our methods against existing methods, and we present the
results of the user study. In Section 5, we discuss related
work. In Section 6, we conclude.

2. FRAMEWORK
3In [4], keyword search over the Credit Suisse data-
warehouse is considered, which has a complex schema. How-
ever, the authors use meta-data and patterns to build a
model. We assume no extra information.

2.1 Formal Problem Definitions
A relational database schema consists of a set of n relation

schemas, denoted as {R1, R2, . . . , Rn}, where each Ri is de-
scribed by a set of attributes. Two relation schemas, Ri and
Rj , may be related by a foreign key relationship, denoted as
Ri ← Rj , where the primary key of Ri is referenced by the
foreign key of Rj . Thus, a relational database schema can be
considered as a graph G = 〈V, E〉, where nodes are relation
schemas and edges represent the foreign key relationships.

A relational database is an instance of a relational database
schema G. It consists of a set of relations, where each rela-
tion r(Ri) is a set of tuples conforming to the relation schema
Ri in G. Given a relational database D and a set of l (≥ 2)
keywords (Q = {k1, k2, . . . , kl}), the problem of keyword
search over D is to find a set of tuples that are connected
via foreign key relationships and cover all the keywords in
Q. The most representative algorithm for this problem is
DISCOVER [9], which finds minimal total joining networks
of tuples defined as follows.

Definition 1. Minimal Total Joining Network of Tu-
ples (MTJNT): Given a database with schema graph G
and a query Q containing a set of keywords, a minimal total
joining network of tuples is a tree T of tuples that satisfy the
following conditions.

• Joinable. For each edge (ti, tj) in T , where ti ∈ r(Ri)
and tj ∈ r(Rj), there is an edge Ri ← Rj or Ri → Rj

in G and ti �� tj ∈ r(Ri) �� r(Rj).

• Total. Each keyword in Q is contained in at least one
tuple in T .

• Minimal. If a tuple in T is removed, T is either not
joinable or not total.

The DISCOVER algorithm generates all the MTJNTs
given a database and a query. It does not specify the role
of a query keyword (i.e., it does not care in which relation
a query keyword appears). Thus, an answer that contains
a tuple with a keyword in an interesting relation may not
be found if the answer is not minimal. This occurs when an
intermediate tuple connecting the tuples in the interesting
relations with the query keywords also contains a query key-
word, which leads to a tuple in an interesting relation being
pruned to make the network minimal. This was illustrated
in Fig. 1.

In our framework, the role of a query keyword is identified
through user interactions or detected automatically using a
method such as the one in [3]. For each query keyword, our
algorithm first finds the list of columns (and relations) that
contain the keyword using an inverted index or the built-in
support for full-text keyword search in RDBMS [17], and

then a relation is chosen (either through interaction with
the user or automatically) from the list as the role of the
keyword. Role selection is discussed in Section 2.3. With
specified keyword roles, our algorithm searches for answers
that are defined as follows.

Definition 2. Minimal Joining Network of Tuples
Covering Roles. Given a database D with schema graph G
and a query Q containing a set of keywords {k1, k2, . . . , kl}
and their respective roles {r1, r2, . . . , rl} (where ri’s are re-
lations in D), a minimal joining network of tuples for query
Q is a tree T of tuples that satisfy the following conditions:

• Joinable. For each edge (ti, tj) in T , where ti ∈ r(Ri)
and tj ∈ r(Rj), there is an edge Ri ← Rj or Ri → Rj

in G and ti �� tj ∈ r(Ri) �� r(Rj).

• Role and keyword covering. For each query keyword
role ri, there exists a node tj in T such that tj ∈ ri

and tj contains keyword ki.

• Minimal. If a tuple in T is removed, T is either not
joinable or does not cover all the roles or all the key-
words.

For brevity, we refer to answer as defined in Definition
2 as final answer in this paper. Given a database, there
may be many final answers to a query. Instead of producing
all the answers which may overwhelm the user, the goal of
our algorithm is to produce the top-k most meaningful final
answers.

2.2 Methodology
The final answers defined above can be generated through

a sequence of join operations on the database. To generate
such answers, we first generate the minimal joining networks
of schemas (MJNSs) that represent the join operations for
producing the final answers. First, we define MJNS, and
then present our method for generating them.

Definition 3. Minimal Joining Network of Schemas
(MJNS): Given a database D with schema graph G and a
set r of query keyword roles {r1, r2, . . . , rl} (where ri’s are
relations in D), a minimal joining network of schemas that
cover r is a tree T of relation schemas in G that satisfy the
following conditions.

• Joinable. Each edge in T is an edge in G. That is,
each edge in T represents a foreign key relationship.

• Role covering. For each query keyword role ri, its
schema is in T .

• Minimal. If a relation schema in T is removed, T is
either not joinable or does not cover all the roles in r.

Note that our MJNSs bear similarity to the candidate net-
works (CN) used in the DISCOVER algorithm [9], but with
the following differences. First, a CN is defined as a network
of tuple sets, while our MJNS is defined at the schema level.
Second, our MJNS must cover a set of specified roles (i.e.,
it must contain the schemas of a set of specified relations),
while a CN does not need to. This second difference allows
us to find interesting final answers that DISCOVER misses
as discussed earlier.

To generate MJNSs, we use a breadth-first search algo-
rithm similar to the CN generator of DISCOVER. Our al-
gorithm starts with a role schema as an initial tree T and
extends T with a relation schema in G that has a foreign
key relationship with a node in T . The expansion of T stops
once the schemas of all the roles are covered in T . To avoid
generating duplicate trees, each generated tree is assigned an
ID based on tree isomorphism during the execution of the
algorithm. The ID of a tree is checked with the existing IDs
that are generated so far and the current tree is accepted if it
is not generated previously. Fig. 2 shows four MJNSs gen-
erated for query {Andersen, Joseph} and their respective
roles {Company, Customer} over the TPC-E database.

After MJNSs are generated, final answers can be produced
by creating an execution plan to evaluate the MJNSs. Note
that an MJNS may or may not produce a final answer4. But
a final answer can be produced by one and only one MJNS.
The union of the final answers produced by all the MJNSs
is the set of all possible final answers.

Since many final answers can be generated for a query but
some answers may not be interesting, we aim at producing
top-k most interesting final answers. To achieve this, we first
limit the number of nodes in an MJNS (which is a strategy
taken by DISCOVER as well). This limits the size of final
answers too. The rationale is two-fold. First, if two tuples
in a final answer are far away from each other, it is not easy
to interpret the answer. Second, executing the query asso-
ciated with a large MJNS is time consuming. Thus, a size
control parameter, Dmax, is used to specify the maximum
number of allowed nodes in an MJNS. In addition and more
importantly, we rank the generated MJNSs according to
an interestingness measure so that final answers from the
top-ranking MJNS are produced first. If the number of final
answers produced so far is less than k, the next MJNS is
used to produce more final answers until k final answers are
produced.

The overall procedure of our search method is as fol-
lows. Given a database D, a query containing keywords
{k1, . . . , kl}, an answer size control parameter Dmax, and a
maximum number k of final answers to be returned.

1. For each keyword ki, find the relations in D containing
ki using an inverted index or the built-in support for
full-text keyword search in RDBMS [17].

2. Select a relation containing ki as the role of ki either
through user interaction or automatically using a role-
ranking method in [3].

3. Generate the MJNSs that cover all the selected roles
and whose size is no more than Dmax.

4. Rank the generated MJNSs according to an interest-
ingness measure.

5. For each MJNS mi in the ranked list, evaluate mi to
generate a set si of final answers, rank the answers in
si according to a content-based IR-style ranking mea-
sure, and add the answers in the ranked order into the

4In [9] it is claimed that all the candidate networks (CN)
generated by DISCOVER lead to generation of an MTJNT
(the final answer of DISCOVER). But its CN generation al-
gorithm works at the schema level without checking whether
a join in CN can produce an answer. Thus, there is no guar-
antee that a CN can produce at least one final answer.

Figure 3: Role selection by the user for query
”Joseph Retail Andersen”.

final answer set A. This procedure stops until either
A contains k answers or all mi’s have been evaluated.

The main focus of this paper is on Step 4: how to rank
MJNSs so that the most interesting answers will be pre-
sented to the user first and less interesting ones can be
pruned. Note that the IR-style ranking measure in Step
5 is a secondary ranking measure for locally ranking the fi-
nal answers generated from each MJNS, which is exactly
the same as the method in [8]. The role selection (Step 2) is
presented in the next subsection. In Section 3, we present a
number of measures for ranking MJNSs in Step 4.

2.3 Role Selection
A keyword may appear in multiple relations and columns.

The role of a keyword is a relation with a column that con-
tains the keyword and also matches the user’s intention for
the keyword. As discussed before, identifying the role of
each query keyword and requiring the final answer to cover
the roles of all the query keywords can avoid missing in-
teresting answers and can also cut down the search space.
Below we briefly describe two role selection approaches that
can be used in our framework.

In the first approach, a user-interface is designed to al-
low the user to specify the role of each keyword without
needing to know the database schema. A short natural lan-
guage description of each attribute (i.e., table column) in the
database is stored in the keyword search system. Such de-
scriptions tell the meanings of the attributes and can be pro-
vided by people (such as DBAs) familiar with the database
schema5. During keyword search, once the columns that
contain a keyword in their values are found using the in-
verted index or the built-in DBMS keyword search function,
the short descriptions of such matched columns are shown to
the user in the user interface [13]. The user can then choose
from them the most relevant description for each query key-
word. For example, Fig. 3 shows the user-interface that lists
the descriptions of the matched columns for query “Joseph
Retail Andersen“ over the TPC-E database. In this exam-
ple, five columns contain Joseph, one contains Retail and
three contain Andersen. For each keyword, the user can
select the description that best matches his/her intention.

5In our experiments on the TPC-E database, the short at-
tribute descriptions are taken from the TPC-E document.

Figure 4: Role selection from the top-2 results from
the automatic method in [3] for query ”Joseph Retail
Andersen”.

Based on the user’s selection, the most relevant column (and
hence its relation, i.e., the role) of each keyword is identified.

The second approach assumes that the meaning/role of
each keyword depends on the meaning/role of other key-
words in the query. It evaluates combinations of columns,
each containing one matched column for each keyword. Such
an evaluation can be done automatically using a method in-
troduced in [3], which ranks the combinations based on the
likelihood that the role of each keyword represents the in-
tended semantics of the keyword. In [3] the authors study
the inter-dependencies across the ways that different key-
words are mapped into the database values and schema
components. They extend the Hungarian algorithm [5] for
generating and ranking different interpretations of keyword
queries. Based on the rankings from [3], we can either take
the top-ranking combination of roles (if fully automatic role
selection is preferred) or let the user select one from the top-
k combinations (if user interaction is desired). Fig. 4 shows
the user interface that allows the user to select a combina-
tion of roles from the top-2 results returned from the method
in [3]. Since role selection is not the focus of this paper, we
omit the details of the method in [3] and further discussion
on role selection due to the space limit.

3. RANKING MODELS
We propose several methods for ranking minimal join-

ing networks of schemas (MJNSs). The proposed methods
work just based on the database schema and its given in-
stance, assuming that no extra information (e.g., query logs
or inheritance relationships among the tables) is available.
The methods use information-theoretic measures to evalu-
ate the importance of a relation and/or an edge in the given
database, and rank the MJNSs based on the importance of
the relations and/or edges in an MJNS. We classify the pro-
posed methods into three categories: (1) ranking based on
the importance of the nodes in an MJNS; (2) ranking based
on the importance of the edges in an MJNS; and (3) rank-
ing based on the importance of both nodes and edges in an
MJNS.

3.1 Ranking by Importance of Nodes
Given a database D, this type of methods assumes that

the importance of an MJNS M is related to the importance
of the tables in D that instantiate the schemas in M . Here,
we propose a ranking method called key entropy transfer
(KE) that ranks the tables in D. Consider GD = (VD, ED)
as an undirected graph representing a relational database
D, where VD is the set of nodes representing relations (i.e.,
tables) in D and ED is the set of edges representing foreign
key relationships. The KE method builds a node-to-node

transition probability matrix M based on the entropies of
table attributes, and performs a random walk on GD with
M . The steady-state probabilities of the random walk are
then assigned as the importance scores of the tables.

Let r.A denote an attribute A in table r, and let a repre-
sent a value of r.A. The entropy of r.A is defined as follows:

H(r.A) = −
∑

∀a∈r.A

p(a) × log p(a) (1)

where p(a) is the probability that a occurs in column r.A
(i.e. P (r.A = a)).

For each table in D, a primary key is created that consists
of all of the attributes in the table, and a self-loop using this
key is added to the corresponding node in GD. This is done
even when the table already has a primary key. The purpose
of the self-loop is to keep some of the table’s information
within the table during the random walk (i.e., to make the
random walk have more probability to stay at a node).

In [18] it is suggested that the importance of a table is
equivalent to the entropy of all of its attributes, including
the numeric attributes. To compute the entropy for numeric
attribute, discretization should be performed first in order to
compute the probabilities involved in the entropy computa-
tion. Thus, the entropy value of a numeric attribute greatly
depends on the discretization method used or the parameter
value used in a discretization method (such as the number
of intervals in the equi-width discretization method). To
avoid such dependencies, for a numeric attribute, we set its
entropy to the maximum value, which is log|r|. We further
discovered in our experiments that for a non-key attribute
(i.e., an attribute that is not a primary or foreign key), using
its true entropy or the maximum entropy (i.e., log|r|) does
not make much difference in terms of finding meaningful
MJNSs (which will be shown in our experimental results).
Thus, to speed up the entropy computation, we use log|r| as
the entropy value for all the non-key attributes. Since the
entropies of only primary and foreign keys are truly com-
puted, this method is referred to as the key entropy (KE)
method.

We define the information content of a table r as follows:

IC(r) = (|Cnj
r | + 1) × log |r| +

∑

A∈C
j
r

H(A) (2)

where Cnj
r and Cj

r denote the set of non-key and key columns
of table r, respectively. (Each column in Cj

r is part of at least
one edge and is either a primary or foreign key attribute.)
In this equation, each non-key column has the log |r| contri-
bution to the importance of the table. The more non-key
columns each table has, the more important it is. The num-
ber of non-key columns are summed up with one to reflet
the self primary key join. The IC value of a table measures
the importance of the table without considering the foreign
key relationships between tables.

To take into account such relationships, the information
transfer rate on a join edge starting from r.A (no matter if
r.A is a primary or foreign key in the connection) is defined
as follows:

T (r.A → r′.A′) =

H(r.A)

IC(r) +
∑

X∈C
j
r
[(nr.X − 1) × H(r.X)]

(3)

where nr.X denotes the total number of join edges involving
attribute r.X, including the self loop primary key. Since the
self loop contains all the attributes of r, nr.X ≥ 1. Note
that T (r.A → r′.A′) does not depend on r′.A′, which means
that the same amount of information is transferred from r.A
along any edge starting from A.

A transition probability matrix for the random walk is then
built by

Π(r, r′) =
∑

r.A−r′.A′
T (r.A → r′.A′) r �= r′ (4)

where the sum ranges over all the join edges between r and
r′ in the database graph GD. Additionally, Π(r, r) is defined
as:

Π(r, r) = 1 −
∑

r �=r′
P (r.A → r′.A′) (5)

The probability matrix is an n × n matrix, where n is the
number of tables in the database. It is a matrix with num-
bers between 0 and 1 and each row sums up to 1. If two
tables r and r′ are connected together in GD, Π[r, r′] is
greater than zero and its value determines the amount of
information transferred along the (r, r′) edge. If more than
one join edge exists between two tables, the information on
each join edge is summed up.

The importance of a table r is defined as its stable-state
probability of a random walk on GD with the probability
matrix Π. For any given probability matrix Π over a con-
nected and non-bipartite graph G, there exits a unique sta-
tionary distribution Ξ [16]. Therefore, the table’s impor-
tance in the above model is well defined. The stationary
distribution vector can be obtained by applying an eigenvec-
tor calculation method. We use an iterative method used in
[18]. The method starts with an arbitrary non-zero vector
Ξ0

6. Then, Ξi+1 = Ξi ×Π is computed repeatedly until the
distance between Ξi and Ξi+1 is less than a given threshold.
Setting the threshold to zero results in stopping the method
when the stationary distribution is reached.

The importance scores of the tables in a database can be
computed offline before a keyword search starts7. During
the keyword search we use the scores to rank the minimal
joining networks of schemas (MJNSs). Given a set of query
keywords and their corresponding roles, all the MJNSs gen-
erated in the procedure described in Section 2.2 share the
same set of role relation schemas. Thus, to rank the MJNSs,
we only need to consider the non-role relation schemas in
each MJNS. We use the average importance score of the
tables associated with these non-role relation schemas to
compute an importance score for an MJNS M , as defined
below:

Scoretable(M) =

∑
r/∈Roles TblScore(r)

n
(6)

where Roles is the set of role relations, n is the number of
non-role relation schemas in M , and TblScore(r) is the im-
portance score of table r computed using the KE method.
Note that if a non-role relation schema appears more than
once in the given MJNS, it is counted more than once (equal

6The final value of stationary distribution Ξ does not depend
on the initial value Ξ0. However, we set Ξ0 to IC(r).
7The scores should be updated periodically if the database
content changes.

SECTOR

PK,U1 SC_ID

U1 SC_NAME

TRADE_TYPE

PK TT_ID

TT_NAME
TT_IS_SELL
TT_IS_MRKT

TRADE

PK,U2,U1 T_ID

U2,U1 T_DTS
FK3 T_ST_ID
FK4 T_TT_ID

T_IS_CASH
FK2,U2 T_S_SYMB

T_QTY
T_BID_PRICE

FK1,U1 T_CA_ID
T_EXEC_NAME
T_TRAD_PRICE
T_CHRG
T_COMM
T_TAX
T_LIFO

SECURITY

PK,U1 S_SYMB

U1 S_ISSUE
FK3 S_ST_ID

S_NAME
FK2,U1 S_EX_ID
FK1,U1 S_CO_ID

S_NUM_OUT
S_START_DATE
S_EXCH_DATE
S_PE
S_52WK_HIGH
S_52WK_HIGH_DATE
S_52WK_LOW
S_52WK_LOW_DATE
S_DIVID
S_YIELD

ACCOUNT_PERMISSION

PK,FK1 AP_CA_ID
PK AP_TAX_ID

AP_ACL
AP_L_NAME
AP_F_NAME

EXCHANGE

PK EX_ID

EX_NAME
EX_NUM_SYMB
EX_OPEN
EX_CLOSE
EX_DESC

FK1 EX_AD_ID

HOLDING_HISTORY

PK,FK1,U1 HH_H_T_ID
PK,FK2,U1 HH_T_ID

HH_BEFORE_QTY
HH_AFTER_QTY

COMPANY

PK,U2,U1 CO_ID

FK3 CO_ST_ID
U1 CO_NAME
FK2,U2 CO_SC_ID

CO_SP_RATE
CO_CEO

FK1 CO_AD_ID
CO_DESC
CO_OPEN_DATE

WATCH_ITEM

PK,FK2 WI_WL_ID
PK,FK1 WI_S_SYMB

ADDRESS

PK AD_ID

AD_LINE1
AD_LINE2

FK1 AD_ZC_CODE
AD_CTRY

WATCH_LIST

PK WL_ID

FK1 WL_C_ID

INDUSTRY

PK IN_ID

IN_NAME ZIP_CODE

PK ZC_CODE

ZC_TOWN
ZC_DIV

LAST_TRADE

PK,FK1 LT_S_SYMB

LT_DTS
LT_PRICE
LT_OPEN_PRICE
LT_VOL

FINANCIAL

PK,FK1 FI_CO_ID
PK FI_YEAR
PK FI_QTR

FI_QTR_START_DATE
FI_REV
FI_NET_EARN
FI_BASIC_EPS
FI_DILUT_EPS
FI_MARGIN
FI_INVENT
FI_ASSETS
FI_LIAB
FI_DIVID
FI_OUT_BASIC
FI_OUT_DILUT

BROKER

PK,U1 B_ID

FK1 B_ST_ID
U1 B_NAME

B_NUM_TRAD_YTD
B_COMM_YTD

COMPANY_COMPETITOR

PK,FK1,I1 CP_CO_ID
PK,FK2 CP_COMP_CO_ID
PK,FK3 CP_IN_ID

CUSTOMER_ACCOUNT

PK,U2,U1 CA_ID

FK1,U2 CA_B_ID
FK2,U2,U1 CA_C_ID

CA_NAME
CA_TAX_ST
CA_BAL

CASH_TRANSACTION

PK,FK2,U1 CT_T_ID

FK1,U1 CT_CA_ID
U1 CT_DTS

CT_AMT
CT_NAME

TRADE_HISTORY

PK,FK2,U1 TH_T_ID
PK,FK1,U1 TH_ST_ID

U1 TH_DTS

SETTLEMENT

PK,FK2,U1 SE_T_ID

FK1,U1 SE_CA_ID
SE_CASH_TYPE
SE_CASH_DUE_DATE
SE_AMT

NEWS_ITEM

PK NI_ID

NI_HEADLINE
NI_SUMMARY
NI_ITEM
NI_DTS
NI_SRC
NI_AUTH

COMPANY_INDUSTRY

PK,FK1 CI_CO_ID
PK,FK2 CI_IN_ID

CUSTOMER

PK,U1 C_ID

U1 C_TAX_ID
FK2 C_ST_ID

C_L_NAME
C_F_NAME
C_M_NAME
C_GNDR
C_TIER
C_DOB

FK1 C_AD_ID
C_CTRY_1
C_AREA_1
C_LOCAL_1
C_EXT_1
C_CTRY_2
C_AREA_2
C_LOCAL_2
C_EXT_2
C_CTRY_3
C_AREA_3
C_LOCAL_3
C_EXT_3
C_EMAIL_1
C_EMAIL_2

TRADE_REQUEST

PK,FK4,U1,U2 TR_T_ID

TR_DTS
FK3,U2 TR_ST_ID
FK5,U2 TR_TT_ID
FK2,U2 TR_S_SYMB

TR_QTY
U2 TR_BID_PRICE
FK1,U1 TR_CA_ID

CUSTOMER_TAXRATE

PK,FK2 CX_TX_ID
PK,FK1 CX_C_ID

CHARGE

PK,FK1 CH_TT_ID
PK CH_C_TIER

CH_CHRG

STATUS_TYPE

PK ST_ID

ST_NAME

NEWS_XREF

PK,FK2,U1 NX_NI_ID
PK,FK1,U1 NX_CO_ID

DAILY_MARKET

PK,U1 DM_DATE
PK,FK1,U1 DM_S_SYMB

DM_CLOSE
DM_HIGH
DM_LOW
DM_VOL

TAXRATE

PK TX_ID

TX_NAME
TX_RATE

HOLDING

PK,FK3,U2,U1 H_T_ID

FK1,U2,U1 H_CA_ID
FK2,U2,U1 H_S_SYMB
U1 H_BUY_DTS

H_PRICE
U2 H_QTY

COMMISSION_RATE

PK CR_C_TIER
PK,FK2 CR_TT_ID
PK,FK1 CR_EX_ID
PK CR_FROM_QTY

CR_TO_QTY
CR_RATE

Figure 5: The TPC-E schema graph. The direction of the edges are from the foreign key to the primary key.

… A
… a
… a
… a
… b
… b
… c
… c
… d

… A
… a
… b
… c
… d

r’

r

… A’
… a
… a
… a
… a
… b
… b
… b
… b

… A
… a
… b
… c
… d

r’

r

(a) (b)

Figure 6: Two different instances of the foreign key
connections between tables r and r′

to the number of occurrences in the MJNS). This is reason-
able since the more a relation schema appears, the more
important it is for connecting the role relation schemas to-
gether in the MJNS.

3.2 Ranking by Importance of Edges
Another approach to ranking the MJNSs is based on the

importance (strength) of the edges (i.e. foreign key connec-
tions) that connect the nodes in an MJNS. Below we present
two measures for ranking the edges in the database schema.

Intuitively, edge strength can also be measured by the
fraction of the join key values being instantiated. The more
fraction of primary key values are instantiated, the more im-
portant the edge is [18]. However, in [18], the authors also
assumed that by increasing the number of connections be-
tween two tables, the importance of the edge decreases. As
we will show in the experiments, this assumption does not

work for finding meaningful MJNSs. We propose the follow-
ing measure, called instantiation fraction (IF), to quantify
the importance of an edge based on the fractions of instan-
tiated key values.

STIF (r.A, r′.A′) =
N inst

r.A

Nr
× N inst

r′.A′

Nr′
(7)

where N inst
r.A is the number of tuples in r that instantiates

the edge between r.A and r′.A′, and Nr is the total number
of tuples of table r. STIF (r.A, r′.A′) of the the left and
right instances in Fig. 6 is equal to 1 and 0.5, respectively.
We believe the left instance represents a stronger association
between r and r′.

A modification of the above model is to consider the en-
tropy of each column. By adding the entropies, the infor-
mation content of each column is taken into account. This
version of the IF measure, denoted as IF Ent, is defined as

STIF Ent(r.A, r′.A′) =

N inst
r.A

Nr
× rinst

r′.A′

Nr′
× Hnorm(r.A) × Hnorm(r′.A′) (8)

where Hnorm(r.A) and Hnorm(r′.A′) are normalized entropies

of r.A and r′.A′, respectively. The values of
Ninst

r.A
Nr

and
Ninst

r′.A′
Nr′

lie between zero and one. Thus, to make instantiation frac-
tions and entropies equally important to the strength of the
edge, normalized entropies in range [0, 1] are used.

The same as the table importance scores, edge impor-
tance scores defined above can be computed offline. During
a keyword search, to rank the MJNSs by edge importance,

we compute a score for each MJNS using its average edge
importance score, defined below:

Scoreedge(M) =
∑

∀(r.A,r′.A′)∈M EdgeScore(r.A, r′.A′)

m
(9)

where M is an MJNS, EdgeScore(r.A, r′.A′) is an edge
strength function and can be either STIF or STIF Ent, and
m is the number of edges in the MJNS M . The same as
in ranking MJNSs based on the node importance, if one
edge appears more than once, it is counted more than once.
Since the edge strength scores are pre-computed, computing
Scoreedge is fast and efficient.

3.3 The Hybrid Ranking Model
Our last approach to ranking MJNSs is to rank them

based on the importance of both nodes and edges. In this
hybrid model, we consider node importance when measuring
the edge strength. The new edge strength is computed as
follows:

EdgeScore(r.A, r′.A′) × TblScore(r) + TblScore(r′)
2

(10)

If we use STIF for edge strength and the KE method for
computing node importance, the hybrid formula becomes:

STIF KE(R.A, R′.A′) =

STIF (R.A, R′.A′) × KE(R) + KE(R′)
2

(11)

Since the value of STIF (R.A, R′.A′) lies between zero and
one, KE(R) and KE(R′) should be normalized into range
[0, 1].

To rank the MJNSs, the score of an MJNS is computed
using Equation 9 with STIF KE as the EdgeScore function.

3.4 Penalizing Larger MJNSs
In all the MJNS ranking methods we described above, the

average of node/edge importance scores is used to compute
a score for an MJNS. Thus, the size of the MJNS (i.e., the
number of nodes) is ignored in these ranking methods. Al-
though we have shown that ranking MJNSs purely based
on their size does not return satisfactory results in databses
with large and complex schema, completely ignoring the size
may not be a good strategy either. Generally, interpreting
and understanding larger MJNSs is harder than interpret-
ing smaller ones. Thus, for two MJNSs with similar average
node or edge scores, the one with the smaller size should be
ranked ahead of the larger one. To achieve this purpose, the
final score of an MJNS M can be adjusted as8:

Scorenew(M) = Scoreold(M) × 1

log(tree size)
(12)

where tree size is the number of nodes in M , and Scoreold

can be either Scoretable or Scoreedge.
In the following section, we evaluate all the scoring meth-

ods with and without the penalization factor.

3.5 Runtime Discussion
The runtime of our methods are similar to that of DIS-

COVER I [9]. All MJNSs have to be found for the keyword

8This formula was used in [14] to penalize large XML trees.

0 08

0.12

0.16 Max CN Size: 6 Max CN Size: 7

C
oe

ff
ic

ie
nt

0.00

0.04

0.08

0.12

s �
C

or
re

la
tio

n
C

oe
ff

i

-0.04

0.00

D
IS

C
-I IC V
E

C
E

V
JE

C
JE K

E
Fa

no
ut M
I IF

IF
_E

nt
IF

_K
E

K
en

da
ll'

s �
C

or

Figure 7: Results of Kendall’s τ coefficient without
penalizing larger MJNSs.

query under the Dmax threshold. The primary overhead is
evaluating the SQL queries associated with the MJNSs. For
us, this overhead is marginally more than DISCOVER I be-
cause our networks can be marginally larger due to roles.
As with DISCOVER I, though, we can evaluate MJNSs in a
pipelined fashion from highest to lowest relevance until we
have achieved enough answers. Thus, we usually stop early,
not having needed to evaluate most of the MJNSs. We are
not directly comparable with DISCOVER I on a query by
query basis, since the networks between the two may be or-
dered quite differently. Therefore, the number of networks
needed to be evaluated for a given query can vary widely.

Our runtime compares very favorably against DISCOVER
II [8]—just as DISCOVER I does. This is because DIS-
COVER II is comparably quite expensive. It must evaluate
all its networks before the answers can be ranked. It has no
options to stop early.

4. EXPERIMENTAL EVALUATION
We evaluate our proposed ranking methods for finding

the most meaningful/relevant MJNSs. All of the evaluated
methods are implemented in Java. The experiments were
performed on a performance test machine with an Intel(R)
Core(TM) i7 2.80 GHz processor and 4GB of RAM.

4.1 Dataset and Experimental Setup
The experiments are conducted over the TPC-E database.

TPC provides a transaction log which we use to generate a
gold standard for ranking MJNSs (Section 4.2). Since no
active transaction is performed, table trade request is not
loaded with any data. Therefore, in our experiments, table
trade request is removed from the schema along with all of its
foreign key connections. EGen, a package from TPC, is used
for generating an instance of the database. The parameters
of EGen are set to the same as those in [18, 19]. The number
of customers, initial trade days and scale factor are set to
1000, 10, and 1000, respectively.

The focus of this work is ranking the MJNSs. As de-
scribed in Section 2, the input to our MJNS generator is
the keyword roles. That is, the main input to our ranking
methods and other methods is a set of relation names (i.e.,
query keyword roles). Table 1 lists ten sets of query key-
word roles that we use as the input query templates in our
evaluation. For example, the first set of keyword roles spec-
ifies the names of two relations: Customer and Company,
which may result from keyword query {Joseph, Andersen}.
As another example, the fourth query template is meant to
find the relationships between two customers.

The MJNS generator also receives the maximum size of
the MJNS as input. Since TPC-E has a large schema with

Table 1: List of 10 sets of query keyword roles.
No. Keyword Roles (Query Templates)

1 Customer, Company
2 Company, Broker
3 Customer, Broker
4 Customer, Customer

5 Customer, Company, Industry
6 Customer, Company, Trade Type
7 Customer, Company, Broker
8 Customer, Company, Exchange

9 Customer, Company, Broker, Security
10 Customer, Company, Broker, Customer Account

6

8

10
Max CN Size: 6 Max CN Size: 7

er
la

p

3

4

5
Max CN Size: 6 Max CN Size: 7

er
la

p

0

2

4

6

8
T

op
-1

0
ov

er
la

p

0

1

2

3

4

T
op

-5
 o

ve
rl

ap

0

2

D
IS

C
-I IC V
E

C
E

V
JE

C
JE K

E
Fa

no
ut M
I IF

IF
_E

nt
IF

_K
E

T
op

0

1

D
IS

C
-I IC V
E

C
E

V
JE

C
JE K

E
Fa

no
ut M
I IF

IF
_E

nt
IF

_K
E

T
o

D F IF ID F IF I

Figure 8: Results of the top-5 and top-10 without
penalizing larger MJNSs.

dimensional tables, setting the maximum MJNS size to a
value less than six results in generating MJNSs that are
mostly connected through dimensional tables. On the other
hand, setting the maximum value larger than seven results
in generating many MJNSs, whose results are hard to inter-
pret by the users of the system. Thus, the maximum size
(i.e., Dmax) of the MJNSs is set to six and seven in our
experiments.

4.2 Gold Standard and Performance Measures
TPC provides twelve transactions along with the TPC-E

benchmark. The set of transactions represents the usage of
the database. Thus, they could be considered as a query
log for the TPC-E benchmark [19]. We parsed the pseudo-
codes of transactions and recorded the number of times a
join between a pair of attributes r.A and r′.A′ is performed.
Let us denote this number by n(r.A, r′.A′). The importance
of the connection between r.A and r′.A′ is calculated as
n(R.A,R′.A′)

Ntotal
, where Ntotal represents the total number of

joins in all the pseudo-codes of all the transactions. Given
an MJNS, its average edge importance score is calculated as
its gold standard importance score. Given a set of MJNSs,
their gold standard importance scores are used to rank the
MJNSs to generate a gold stardard ranking.

Given a query, we use our MJNS generator to produce all
the MJNSs for the query and then use each of the ranking
methods (listed in Table 2) to rank the MJNSs. The ranked
list from a method is then compared with the gold standard
ranking of these MJNSs. To see how close a ranked list pro-
duced by a ranking method is to the gold standard ranking,
we employ two measures used in the IR community [2]. The
first one is a statistical measure for comparing two ranked
lists, called Kendall’s τ coefficeint [12]. It returns a value
between +1 and -1, measuring the correlation between the
two lists. If two lists are identical, it returns +1. If they
are reversely ordered, it returns -1. Generally, a positive
value means that two lists are related, and a negative value
means that they are reversely related. The statistical tests
were performed using SPSS 15.0 for Windows. The second
measure is the size of the overlap between the top-k items

KE DISC-I MI IF IF_Ent

IF_KE

0.018 0.004 0.003 0.025 0.399
0.000 0.001 0.032 0.000 0.903
0.001 0.000 0.037 0.052 0.070
0.000 0.0001 0.012 0.016 0.656

IF_Ent

0.153 0.023 0.002 0.040
0.021 0.002 0.071 0.016
0.193 0.017 1.000 0.004
0.0000 0.000 0.001 0.207

IF

0.001 0.000 0.096
0.000 0.000 0.541
0.000 0.000 0.002
0.000 0.000 0.002

MI

0.000 0.000
0.000 0.000
0.081 0.012
0.462 0.009

DISC-I

0.443 top-5 overlap without penalization
0.021 top-10 overlap without penalization
0.096 top-5 overlap with penalization
0.033 top-10 overlap with penalization

Figure 9: p-values of t-tests on the top-5 and top-10
overlap results. MNJS maximum size is 7.

8

10
Max CN Size: 6 Max CN Size: 7

4

5
Max CN Size: 6 Max CN Size: 7

2

4

6

8

10
Max CN Size: 6 Max CN Size: 7

p-
10

 o
ve

rl
ap

1

2

3

4

5
Max CN Size: 6 Max CN Size: 7

p-
5

ov
er

la
p

0

2

4

D
IS

C
-I IC V
E

C
E

V
JE

C
JE K

E
Fa

no
ut M
I IF

IF
_E

nt
IF

_K
E

T
op

-1
0

o

0

1

2

D
IS

C
-I IC V
E

C
E

V
JE

C
JE K

E
Fa

no
ut M
I IF

IF
_E

nt
IF

_K
E

T
op

-5
 o

D
IS

C
- IC V
E

C
E

V
JE

C
JE K

E
Fa

no
u M IF

IF
_E

n
IF

_K
E

D
IS

C
- IC V
E

C
E

V
JE

C
JE K

E
Fa

no
u M IF

IF
_E

n
IF

_K
E

Figure 10: Results of the top-5 and top-10 with pe-
nalizing larger MJNSs.

in the two lists. We call this measure top-k overlap. We
use five and ten as the values of k. In our evaluation, the
performance score of a method is measured by the average
score over the ten “queries” listed in Table 1.

4.3 Results of Ranking Methods without Size
Penalization

We evaluated a total of twelve MJNS ranking methods.
They are described in Table 2. We present the results of
these ranking methods without penalizing larger MJNSs.
The results are not compared with the IR based ranking
methods (such as DISCOVER II [8]) since those methods
are suitable for ranking the final answers but not the set of
MJNSs.

The results of the twelve methods in terms of Kendall’s
τ rank correlation coefficient are presented in Fig. 7. The
results suggest that for the maximum MJNS size of six, the
ranking closest to the gold standard is achieved by the V E
method. The best results for the maximum MJNS size of
seven are produced by IF , KE and IF Ent. However, the

Table 2: List of methods for ranking MJNSs. Our
proposed methods are shown in bold face.

Method Description
DISC-I Size of MJNSs [9] (i.e. DISCOVER I)
IC Node’s importance, information content, Equation 2
VE Node’s importance, variable entropy [18]
CE Node’s importance, constant entropy [18]
VJE Node’s importance, variable joinable entropy [18]
CJE Node’s importance, constant joinable entropy [18]
KE Node’s importance, key entropy, Section 3.1
Fanout Edge’s importance, Definition 6 in [18]
MI Edge’s importance, mutual information [19]
IF Edge’s importance, instantiation fraction, Equation 7
IF Ent Edge’s importance, IF & entropy, Equation 8
IF KE Hybrid method, IF & KE, Equation 11

correlation between V E and gold standard is not high when
the maximum size of the MJNS is set to seven. This is
not the case for IF and IF Ent when the maximum size of
the MJNS is set to six. On the other hand, the correlation
between KE and the gold standard is high for both of the
maximum MJNS sizes. It achieves the best average and
most stable result in terms of Kendall’s τ coefficient.

We also observe that ranking MJNSs by their size does not
work well (indicated by the result for DISC-I). Its Kendall’s
τ coefficient is close to zero when the maximum MJNS size
is 6, and it is negative when the size is 7. Therefore, ranking
the results solely based on the number of nodes in the MJNS
does not produce satisfactory results. Since only the size has
been used to rank joining networks in previous methods, our
proposed ranking methods outperform previous ones.

The results also show that some measures for node/edge
importance (such as CE and Fanout) produce poor results
as well. The measures that we present in this paper are
much better than those measures.

The results of the top-5 and top-10 evaluations are pre-
sented in Fig. 8. By increasing the maximum size of the
MJNS from 6 to 7, the top-k overlap with the gold standard
decreases. This result is expected since by increasing the
maximum size, the number of generated MJNSs increases.
As the value of k is a constant (i.e. it is set to 5 or 10)
and there are more items (MJNSs) in the list, the chance
for overlap in top-k lists decreases.

Generally, the methods that rank MJNSs based on the
edge importance work better than the ones based on the
node importance. The difference between the two types of
methods becomes greater when the maximum MJNS size is
7. In order to see whether different methods are significantly
different from each other, we run the t-test. The p-values of
the t-tests are presented in Fig. 9 for the maximum MJNS
size of 7. The results for the maximum size of 6 is not
presented due to space limits. But, they follow the same
trend. Also, due to space limits, the t-test results for the
node-based ranking methods are not presented.

Among the edge based methods, IF is the best in most
of the cases. MI is the second best in general according
to Fig. 8. The t-test results show that their performances
are not significantly different (with p-values of 0.096 and
0.541) without penalizing larger MJNSs. The other edge
based method IF Ent performs the best when the maxi-
mum MJNS size is 6, but not well when the maximum size
is 7. Similar observation is found for the hybrid method
IF KE. Thus, these two methods are not stable compared
to IF and MI.

Looking at the results for the node based methods in
Fig. 8, we observed that the results of V E and KE are very
similar. Thus, using KE is better than using V E, since it
is faster to evaluate, as discussed in Section 3.1.

4.4 The Effect of Penalizing Larger MJNSs
The results of the top-5 and top-10 evaluations with pe-

nalizing larger MJNSs are presented in Fig. 10 and t-test
results are shown in Fig. 9. Note that the penalization tech-
nique (Equation 12) is applied to the computation of our
gold standard as well.

Comparing the results in Fig. 8 and Fig. 10, we observe
that the MI method is significantly negatively affected by
the use of the size penalization technique, while the perfor-
mance of other methods remain pretty much the same.

80

100
DISC-I DISC-II IF

n
(%

)

80

100
DISC-I DISC-II IF

n
(%

)

20

40

60

80

Pr
ec

is
io

n
(%

20

40

60

80

Pr
ec

is
io

n
(%

0

20

Q1 Q2 Q3 Q4

Pr

Top-5
0

20

Q1 Q2 Q3 Q4

Pr

Top-10

Figure 11: Top-5 and Top-10 precision of answers.
This set of results also suggests that the edge importance

based methods are better than the node based methods, and
that the edge based method IF is a stable method with the
best overall performance. Again, the edge based IF Ent
method and hybrid method IF KE have the best or close
to best performance for the maximum MJNS size of 6, but
their performance descreases significantly for the maximum
MJNS size of 7. In addition, both Fig. 8 and Fig. 10
suggest that the size based method (DISC-I) has the worst
performance. The t-test results show that it is significantly
worse than other methods.

4.5 Relevance Evaluation of Final Answers by
a User Study

To see how effective ranking of MJNSs impacts the final
answers of the keyword search, we compare the top-k final
answers from our keyword search method that uses the IF
method for ranking MJNSs with the final answers produced
by the method that ranks based on the number of joins
(Discover I [9]), and the one based on the IR techniques
(Discover II [8]) in terms of how relevant their answers are
to the query. A common metric of relevance used in infor-
mation retrieval is top-k precision, defined as the percentage
of the answers in the top-k answers that are relevant to the
query. To evaluate the top-k precision of the methods, we
conduct a user study. We use four sets of keyword related to
the first, second, fifth and sixth queries in Table 1 to eval-
uate the search results by human user. For example, the
first query is “Jacob Insurance” in which “Jacob” is associ-
ated with the customer table and “Insurance” is associated
with the company table (i.e., their roles are customer and
company, respectively). In the experiment, top-5 and top-10
answers are produced for each query by each search method.

We ask eight graduate students in computer science, infor-
mation technology, and mathematics to judge the relevancy
of the answers. A user assigns a score between 0 and 1 to
each final answer, where 1 means completely relevant and 0
means completely irrelevant to the query. This score may
vary among the users. Thus, the average of the relevancy
scores from the 8 users is used as the final relevancy score for
an answer. The top-k precision is computed as the average
relevancy score of the top-k answers.

The top-5 and top-10 precisions for each query are pre-
sented in Fig. 11. Clearly, the IF method which ranks the
answers based on the edge strength between the associated
entities achieves much better precisions than DISC-I and
DISC-II in all the queries for both k values. The reason for
DISC-I and DISC-II to have a lower precision is that in most
of the cases, the tuples of the final answers are connected to-
gether by the dimension tables (e.g. status type) and fact
tables are not involved. Thus, most of the users find the
answers not so meaningful and assign them lower scores.

4.6 The Importance of Role Selection
We designed an experiment, in order to show the impor-

1

10

100

1000

Q1 Q2 Q3 Q4

Top IF with Specified Roles

Top IF without Specified Roles

Total with Specified Roles

Total without Specified Roles

N
um

be
r

of
 M

JN
Ss

Figure 12: Number of MJNSs with/without speci-
fied roles.

tance of role selection in the search procedure. We show
that role selection cuts significantly the search space in a
database with a large and complex schema by removing
irrelevant answers from the final list. It also shows that
ranking based on only the importance of nodes/edges in the
database schema is not enough to prune irrelevant answers.
The four sets of keywords (used in user study in Section 4.5)
are taken for this experiment. For each query, we calculate
the number of MJNSs with the highest IF score with and
without specified roles. For example, for the first query (i.e.,
“Jacob Insurance”), the highest IF score is 1.0. Therefore,
with specified roles, we show the number of MJNSs with the
score of 1.0 when the roles are set to customer and company
for the two keywords. Without specified roles, we show the
number of MJNSs which covers query“Jacob Insurance”and
have the IF score of 1.0. The results are shown in Fig. 12.
The total number of MJNSs is also shown in the figure in
order to provide intuition about the size of the search space.
Without specifying roles, we have large number of MJNSs—
note that the scale in Fig. 12 is logarithmic—with the same
highest score. For example, for the first query, there are 67
MJNSs ranked at the top without specified roles. However,
only three of these MJNSs are relevant assuming the user
is interested to see the relations between a customer and
a company. Thus, without specified roles, the top ranking
final answers could contain many irrelevant answers.

5. RELATED WORK
Existing approaches to keyword search over relational dat-

abases fall into two classes. The first class converts the
database into a graph, on which the search is then performed
[11]. The foreign key connections correspond to the edges of
the graph. One of the challenges of this approach is fitting
the graph into main memory [11]. Although some indexing
techniques are proposed in the literature [7], converting a
relational database with millions of records into a graph is
memory consuming. In addition, how to find meaningful
sub-graphs as query answers is still an open issue [11].

The second class of approaches considers the relational
schema as a graph. The search is directly performed over
the relational databases by generating and executing SQL
queries on the RDBMS [1, 9, 8, 15]. Therefore, it heavily re-
lies on the database schema and query processing techniques
in the RDBMS. The methods for ranking the query answers
are divided into two categories. For the first, the final an-
swers are simply ranked based on the number of joins [1, 9].
This follows from the intuition that the smaller the number
of joins, the easier to interpret the results. For the second
the final answers are ranked based on the IR score of the tu-
ples that contain the input keywords [8, 15]. We propose a

series of methods for ranking the final answers first based on
the importance of the nodes/edges of their associated join
trees, and then based on an IR score as a secondary ranking
measure. This approach finds more meaningful and suitable
results for the users.

Below we first discuss two recent methods on finding mean-
ingful answers for keyword search over relational databases,
pointing out their differences from our work. Then we con-
sider the work for ranking the components of a database
schema.

5.1 Finding Meaningful Answers
The authors of [3] propose a framework for keyword search

in relational databases. For building the index, traditional
keyword search methods require access to the actual data
stored in the RDBMS. In contrast, the method proposed in
[3] uses intensional knowledge. Therefore, it can be used in
applications in which building and maintaining specialized
indexes are not feasible. Such systems only allow access to
the data through predefined queries, wrappers or web forms.
For interpreting the role of each keyword in the query, the
authors extend the Hungarian algorithm [5] for finding the
tuples that are most likely related to the meaning of the
keyword. Our work can be considered as a subsequent step
in which we rank the set of interconnected tuple sets for
given pairs of keyword-entity.

The goal of the SODA (Search Over DAta warehouse) sys-
tem, just as for us, is to enable end users to explore large
data warehouses with complex schemas by applying the key-
word search approach [4]. SODA is based on the idea of
applying a graph pattern matching algorithm to generate
SQL queries based on the given keywords. The focus of
the system is to disambiguate the meaning of words using
the joins and inheritance relationships among the matching
tables. Our system differs from [4] in that we do not use
metadata or other extra information. Our ranking model
uses the schema and its instance to find the most meaning-
ful relationships between the roles of query keywords. In
addition, our focus is to rank the join trees rather than the
roles of the keywords.

5.2 Ranking the Components of the Database
Schema

A database schema is composed of a set of tables and
connections (i.e., foreign keys) between them. Thus, the
schema can be considered as a graph: tables are vertices and
the foreign keys are edges. There are different methods for
ranking tables and for raking connections. The two works
[10, 18] study the problem of measuring table importance
in a database. Both define the importance of a table as the
steady state probability of the table in a random walk over
the database graph G. The purpose of the work in [10] is to
generate a form-based database query interface, and in [18],
it is to summarize a relational schema with respect to the
given database instance.

The method in [10] assumes that the importance of a ta-
ble is proportional to the number of tuples, the number of
attributes that it contains, and the number of connections
it has to other tables. Based on this assumption, a prob-
ability matrix for the random walk is built. As discussed
in [18], this is a reasonable assumption for an XML schema
on which the method was evaluated, but it may fail to pro-
duce good results for relational databases, especially on data

warehouses that have dimension tables (e.g., address and zip
code in TPC-E). Dimension tables usually have many con-
nections to other tables. However, such connections may not
indicate interesting relationships among the tuples they con-
nect. For example, the first tree in Fig. 2 connects customer
and company through the status type dimensional table. As
discussed before, this is not an interesting relation between
the keywords in the given query. The way the probability
matrix is defined in [10] results in dimension tables gaining
more importance than fact tables, which is not desirable in
the context of data warehouses. Therefore, we do not choose
this method as our baseline due to its poor performance over
relational databases.

In [18], four methods for measuring the importance of ta-
bles are presented and shown to outperform the method in
[10] for summarizing relational databases. The authors as-
sume that a table’s importance is proportional to the sum of
its attribute entropies. Then, a probability matrix composed
of the tables of the database schema is built. The impor-
tance of a table is then again defined as the steady state
probability of the table in a random walk over the database
graph G. Each of the four methods follow a different ap-
proach for building the probability matrix. All of them are
implemented as our baseline in Section 4. Our proposed key
entropy transfer model (KE) for measuring the importance
of tables in Section 3 follows the spirit of the measures of
[18]. Entropy techniques are common tools used for a va-
riety of database problems, such as for modeling data and
constraint repair [6].

Two measures for finding the importance (strength) of the
edges (foreign keys) in the database schema is recently in-
troduced in [18] and [19]. [18] proposes a method that mea-
sures the similarity between two given tables. This method
is called Fanout and is based on the ratio of instantiated
fraction to the matched average fanouts of the tables along
each edge (See [18] for details.). The method in [19] is based
on the mutual information between two tables. Both of these
works have been applied for summarizing schema graphs and
are implemented in Section 4 as baselines. One of our edge
based ranking methods, the instantiated fraction, adapts the
method in [18].

6. CONCLUSIONS & FUTURE WORK
Our goal has been to improve relevance scoring of an-

swers based on their networks (join trees) in light of larger
and more complex database schema. We propose a series
of measures, and algorithms to compute them based on the
importance of nodes and edges to capture the intended se-
mantic of queries. Extensive experiments with respect to a
gold standard and a user study on a large and complex TPC-
E schema establish that the proposed methods are able to
capture well the intended semantics behind queries. We fur-
ther find that one of the proposed edge based ranking meth-
ods (IF) outperforms other methods. While our methods
prove to be effective, there is room for further research and
improvement. In this work we sought to demonstrate how
effective deriving relevance of the nodes and edges of the
database schema could be based on just the schema and
data, by no means are we advocating that auxiliary infor-
mation cannot improve it. We would like to explore the use

of Linked Data9 and WordNet10.

7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A

system for keyword-based search over relational
databases. In Proc. of ICDE’02, 2002.

[2] J. Bar-Ilan, M. Mat-Hassan, and M. Levene. Methods
for comparing rankings of search engine results.
Computer Networks, 50:1448–1463, 2006.

[3] S. Bergamaschi, E. Domnori, F. Guerra, R. T. Lado,
and Y. Velegrakis. Keyword search over relational
databases: A metadata approach. In Proc. of
SIGMOD’11, 2011.

[4] L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and
K. Stockinger. SODA: Generating SQL for Business
Users. In Proc. of VLDB’12, 2012.

[5] F. Bourgeois and J. C. Lassalle. An extension of the
munkres algorithm for the assignment problem to
rectangular matrices. Communications of ACM,
14:802–804, 1971.

[6] F. Chiang and R. J. Miller. A unified model for data
and constraint repair. In Proc. of ICDE’11, 2011.

[7] B. Dalvi, M. Kshirsagar, and S. Sudarshan. Keyword
search on external memory data graphs. In Proc. of
VLDB’08, 2008.

[8] V. Hristidis, L. Gravano, and Y. Papakonstantinou.
Efficient ir-style keyword search over relational
databases. In Proc. of VLDB’03, 2003.

[9] V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. In Proc. of
VLDB’02, 2002.

[10] M. Jayapandian and H. V. Jagadish. Automated
creation of a forms based database query interface. In
Proc. of VLDB’08, 2008.

[11] M. Kargar and A. An. Keyword search in graphs:
Finding r-cliques. In Proc. of VLDB’11, 2011.

[12] M. Kendall. A new measure of rank correlations.
Biometrika, 30:91–93, 1983.

[13] G. Koutrika, A. Simitsis, and Y. E. Ioannidis.
Explaining structured queries in natural language. In
Proc. of ICDE’10, 2010.

[14] Z. Liu and Y. Chen. Processing keyword search on
xml: a survey. World Wide Web, 14:671–707, 2011.

[15] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: Top-k
keyword query in relational databases. In Proc. of
SIGMOD’07, 2007.

[16] R. Motwani and P. Raghavan. Randomized algorithms.
Cambridge Univ. Press, 1995.

[17] L. Qin, J. X. Yu, and L. Chang. Keyword search in
databases: The power of rdbms. In Proc. of
SIGMOD’09, 2009.

[18] X. Yang, C. M. Procopiuc, and D. Srivastava.
Summarizing relational databases. In Proc. of
VLDB’09, 2009.

[19] X. Yang, C. M. Procopiuc, and D. Srivastava.
Summary graphs for relational database schemas. In
Proc. of VLDB’11, 2011.

9http://linkeddata.org
10http://wordnet.princeton.edu

