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Abstract—Keyword search over a graph searches for a subgraph that contains a set of query keywords. A problem with most
existing keyword search methods is that they may produce duplicate answers that contain the same set of content nodes (i.e.,
nodes containing a query keyword) although these nodes may be connected differently in different answers. Thus, users may
be presented with many similar answers with trivial differences. In addition, some of the nodes in an answer may contain query
keywords that are all covered by other nodes in the answer. Removing these nodes does not change the coverage of the answer
but can make the answer more compact. The answers in which each content node contains at least one unique query keyword
are called minimal answers in this paper. We define the problem of finding duplication-free and minimal answers, and propose
algorithms for finding such answers efficiently. Extensive performance studies using two large real data sets confirm the efficiency
and effectiveness of the proposed methods.

Index Terms—Keyword Search, Graph Data, Polynomial Delay, Approximation Algorithm.
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1 INTRODUCTION

KEYWORD search is a well known method for
extracting relevant knowledge from a set of doc-

uments in information retrieval. Given a graph where
nodes are associated with text, keyword search over
the graph finds a subgraph that contains a set of query
keywords. Due to the fact that many types of data
can be represented by graphs, keyword search over
graphs has received much attention in recent years.
Most of the work in this area find minimal connected
trees (e.g, Steiner trees with the minimum sum of edge
weights [1], [2], [3], [4], [5]) or subgraphs that mini-
mize a proximity function (e.g., the sum of distances
from the nodes in the answer to a center node [6]).
However, these methods may generate many trees or
subgraphs with the same set of content nodes (i.e.,
nodes containing at least one query keyword) even
though these answers may have different intermedi-
ate nodes connecting the content nodes.

The following example illustrates the duplication
problem for a tree-based method. Suppose the nodes
in an input graph are web pages. Two nodes are
connected by an edge if there is a link from one page
to the other. Consider Figure 1. The user is interested
in finding pages that contain keywords k1 and k2. Two
nodes mk1 and nk1 contain keyword k1 and another
two nodes mk2 and nk2 contain keyword k2. The left
graph in the figure contains 4 trees that cover mk1 and
mk2, where each branch from mk1 to mk2 is a tree. The
right graph contains a single tree that covers nk1 and
nk2. Assume that the weight on each edge is the same.
According to the ranking function used in the tree
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Fig. 1. Duplication problems with tree answers.

approaches, the tree that contains nk1 and nk2 in the
right graph is produced after the first four trees that
cover mk1 and mk2 on the left, because it has more
edges than the other four trees. However, all the four
trees on the left have the same set of content nodes.
Since the users usually want to see different groups of
content nodes that are close to each other and might
not be interested in browsing multiple relations to
see how the nodes that contain input keywords are
related to each other, the above search results might
not be desirable1. Producing results with distinct sets
of content nodes can prevent the search engine from
overwhelming the user with many similar answers.

In addition to producing redundant results, current
tree and graph-based methods may produce non-
minimal answers. In other words, a content node in
an answer may cover input keywords which are all
covered by other content nodes. However, minimal
answers may be preferred in some situations. Suppose
that a customer wants to buy a set of items from
stores and wants to find a set of stores that together
have all the items he/she wants to buy. Assume that
the information about the stores is stored in a graph,

1. If a user wants to explore different relationships among the
content nodes, the method in [7] can be used to produce a set of
Steiner trees that connect a set of specified nodes together.
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Fig. 2. A non-minimal answer for query: Smartphone Pro-
gramming, Java Fundamentals, Object Oriented Programming and
ASP.NET over a graph connecting books via authors.

where a node represents a store and contains the list
of items that the store sells, and an edge between two
nodes is weighted by the distance between the two
stores. The customer issues a query specifying the set
of items he/she wants to buy. It would be better that
the search result is a list of stores in which each store
has at least one unique item in the query that other
stores do not have because there is no need to go to
a store that does not have a unique item in the query.
Another example is to determine required textbooks
that together cover all the topics in a course. Assume
that an online bookstore (e.g., Amazon.com) maintains
its product information in an underlying graph where
a node represents a book and contains the topics the
book covers, and two books are connected by an edge
if they share an author. Assume that the topics for a
course are Smartphone Programming, Java Fundamentals,
Object Oriented Programming and ASP.NET. A search
over the graph allows us to find a set of books that not
only covers all the topics but may also share the same
author(s), which is preferred because the writing style
of the books may be consistent. A possible answer
to this query is shown in Fig. 2, where the three
books share the same authors and together cover all
the topics. But the topics covered by “Java How to
Program” are also covered by the two other books.
Thus, from the money-saving prospective it is not
necessary to require the students to buy this book. In
this type of applications, minimal answers are desired.

The following example shows the existing graph
keyword search methods generate duplicate and non-
minimal answers. Consider a small part of the DBLP
dataset, which contains four authors and four papers.
The paper titles, author names and a weighted graph
that connect the authors and papers are shown in
Figure 3. The edge weights are computed in the
same way as in [6], [8]. Assume that the input key-
words are k1:dynamic, k2:fuzzy, k3:logic, k4:design and
k5:optimization. Among all the subsets of the nodes,
only {p2, p4} covers all the input keywords and is
also minimal. Other subsets either do not cover all the
input keywords or are not minimal. The top-5 answers
of the dynamic programming algorithm in [2] for
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Fig. 3. A sample graph from the DBLP dataset.

TABLE 1
Steiner trees generated by dynamic programming.

No. Root Leaf Nodes (Content Nodes)
1 p4 p2, p4

2 p2 p2, p4

3 a1 p2, p4

4 a3 p2, p4

5 a4 p2, p4

finding Steiner trees are given in Table 1, which shows
that all the answers contain the same set of content
nodes, although they have different roots connecting
the content nodes. The top-5 answers of the BLINKS
algorithm [4] are shown in Table 2, which shows that
the sets of content nodes of the last three answers are
exactly the same. In addition, none of the five answers
is minimal. The top-5 answers of the community-
finding method [6] are shown in Table 3. The second
column of the table presents the association of each
keyword with a node in the answer and the third
column shows the set of content nodes. Clearly, some
of these top-5 answers are duplicated and some of
them are not minimal.

In this paper, we first propose a new approach to
keyword search in graphs that produces duplication-
free answers. Each answer produced by our approach
has a unique set of content nodes. We also define
minimal answers, in which each node contains at least
one input keyword that other nodes do not. We
propose two algorithms that convert an answer to a
minimal answer. We prove that the problem of finding
a minimal answer while minimizing the proximity
function that we use is NP-hard. Thus, one of the algo-
rithms we propose is a greedy algorithm that searches
for a sub-optimal minimal answer. We prove that
this greedy algorithm has a bounded approximation
ratio. Finally, for finding top-k duplication-free and
minimal answers, we propose two approaches. The
first approach is faster but may miss some answers.
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TABLE 2
Distinct root trees generated by BLINKS.

No. Root Leaf Nodes (Content Nodes)
1 p2 p2, p3, p4

2 p4 p1, p2, p4

3 a1 p1, p2, p3, p4

4 p3 p1, p2, p3, p4

5 a2 p1, p2, p3, p4

TABLE 3
Answers from the community-finding method.

No. Keyword-Node Association Content
Nodes

1 (k1, p1), (k2, p4), (k3, p2), (k4, p4), (k5, p4) p1, p2, p4

2 (k1, p2), (k2, p2), (k3, p2), (k4, p4), (k5, p4) p2, p4

3 (k1, p2), (k2, p4), (k3, p2), (k4, p4), (k5, p4) p2, p4

4 (k1, p1), (k2, p2), (k3, p2), (k4, p4), (k5, p4) p1, p2, p4

5 (k1, p2), (k2, p2), (k3, p2), (k4, p3), (k5, p4) p2, p3, p4

The second approach takes more time in theory but
can produce all the answers if needed. Our extensive
experiments show the efficiency and effectiveness of
the proposed methods.

In the next section we discuss related work. In sec-
tion 3, we give formal problem statements. In section
4, a procedure for finding duplication free answers
in polynomial delay is presented. An algorithm for
finding the best answer in each search space is given
in section 5. Finding minimal answers is discussed
in section 6. Other issues including graph indexing
and presenting the answers are discussed in section
7. Experimental results are given in section 8. Section
9 concludes this work.

2 RELATED WORK

Most of the approaches to keyword search over
graphs find trees as answers. In [1], a backward search
algorithm for producing Steiner trees is introduced. A
dynamic programming procedure for finding Steiner
trees in graphs are presented in [2]. In [3], the authors
propose algorithms that produce Steiner trees with
polynomial delay. The algorithms follow the Lawler’s
procedure [9]. Since finding Steiner trees is an NP-
hard problem, producing trees with distinct roots is
introduced in [5]. BLINKS improves the work in [5]
by using an efficient indexing structure [4]. However,
distinct root tree methods may miss some answers
when top-k or all answers need to be produced be-
cause only one tree rooted at a node is considered in
the algorithms. If another tree rooted at the same node
also has a better weight than the trees rooted at other
nodes, this tree is not considered.

To show that distinct root tree approach is not
complete and might miss some combination of con-
tent nodes, an example is presented in Fig. 4. a1

and a2 contain keyword k1 and b1 and b2 contain
keyword k2. The graph has the following five nodes:
{r, a1, a2, b1, b2}. Thus, the number of answers is at

a1 b1
1
r

1

b2a2

22

Fig. 4. An example for showing the incompleteness of
distinct root trees approach (e.g. BLINKS [4]). a1 and
a2 contain keyword k1 and b1 and b2 contain keyword
k2. Using distinct root semantics, the answer which has
a2 and b2 as the content nodes is never produced.

TABLE 4
Five answers of distinct root tree approach for the

graph of Fig. 4

No. Root Node Leave Nodes (Content Nodes) Weight
1 r {a1, b1} 2
2 a1 {a1, b1} 2
3 b1 {a1, b1} 2
4 a2 {a2, b1} 3
5 b2 {a1, b2} 3

most five. Five answers with the associated root, the
set of content nodes and their weights are presented
in Table 4. The tree which has {a2, b2} as the content
nodes is not produced. The reason is that any tree
that has {a2, b2} as the content nodes has the weight
of at least 4. Thus, this combination of content nodes
is never produced using the distinct root semantics.

There are three methods that find subgraphs rather
than trees for keyword search over graphs [10], [6],
[8]. The first method finds r-radius Steiner graphs
that contain all of the input keywords [10]. Since the
algorithm for finding r-radius graphs indexes them
regardless of the input keywords, if some of the highly
ranked r-radius Steiner graphs are included in other
larger graphs, this approach might miss them. In
addition, it might produce duplicate and redundant
results [6]. The second and third methods find multi-
center communities or r-cliques as answers, respec-
tively [6], [8]. The authors of [8] show that finding
r-cliques are faster and more effective than finding
communities. However, all of these approaches might
produce duplicate and non-minimal answers.

Recently, the BROAD system is proposed to find
diversified answers for keyword search on graphs
[11]. The system is built on top of a keyword search
engine and partitions the answer trees produced by
the engine into dissimilar clusters. The dissimilarity
between answers is measured based on the struc-
tural and semantic information of the given trees.
The structural dissimilarity is measured based on
the sub-tree kernel introduced in [12]. The semantic
information is added to the kernel by merging the
textual content of the nodes using the well known
TF-IDF weighting scheme. A hierarchical browsing
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method is further proposed to help users navigate and
browse the results. Our effort of finding duplication-
free answers can be considered as a special case of
finding diversified answers, where each answer must
have a different set of content nodes. Our method
has cheaper computational cost due to its problem
simplicity. We find such “diversified” answers during
the search process, while BROAD does it as a post-
processing process. BROAD can be applied to the
results of our method to further diversify the answers
using the BROAD’s dissimilarity measures.

Keyword search in graphs is closely related to
finding a team of experts in social networks [13],
[14]. Given a set of required skills, the purpose is
to find a set of experts that together cover all of
the required skills and also be able to communicate
efficiently. The experts are connected together in a
social network which is modeled as a graph. Our
problem is also related to the graph pattern matching
problem [15]. However, finding duplication free and
minimal answers is not discussed in this area.

3 PROBLEM STATEMENT

Given a data graph whose nodes are associated with
text and a query consisting of a set of keywords, the
problem of keyword search in a graph is generally
to find a subgraph that contains all or part of the
keywords. The data graph can be directed or undi-
rected. The edges and/or nodes may have weights
on them. In this work, the same as [10], [2], [8],
we consider undirected graphs with weighted edges,
where two nodes are connected by an edge if there
is a relationship between them and the edge weight
represents the distance between the two nodes. Undi-
rected graphs can be used to model different types
of unstructured, semi-structured and structured data,
such as web pages, XML documents and relational
datasets. It should be noted that our approach is
adaptable to work with directed graphs2.

Definition 1: (Answer) Given a graph G and a set
of query keywords (Q = {k1, k2, . . . , kl}), an Answer
to Q in G is a set of content nodes in G that together
cover all of the input keywords in Q.

An Answer has a weight which can be defined ac-
cording to the application need based on the weights
of the edges in G that connect the nodes in the Answer.
The above definition does not require the nodes in
an Answer to be connected with each other either
directly or indirectly in G, but Answers with nodes
connected to each other can be preferred over those
with disconnected nodes by using a weight function.

Problem 1: (Duplication free keyword search)
Given a graph G, an integer k and a set Q of query

2. Algorithms 1, 3, 5 and 6 proposed in this paper are inde-
pendent of graph type. But the weight function and its related
procedures (Algorithms 2 and 4) need to be adapted to work with
directed graphs. For example, the weight of an answer can be
defined using the weights of edges in both directions.

keywords, find top-k unique Answers of Q in G whose
weights are optimal.

An Answer is unique if it appears at most once
in the top-k list. The next definition deals with the
minimality of the Answer.

Definition 2: (minAnswer) Given a graph G and
a set of query keywords (Q = {k1, k2, . . . , kl}), a
minAnswer of Q in G is an Answer of Q in G in which
each content node covers at least one query keyword
that other content nodes do not cover.

In other words, each content node of a minAnswer
uniquely contributes to cover at least one query key-
word.

Problem 2: (Duplication free and minimal key-
word search) Given a graph G, an integer k and a set
Q of input keywords, find top-k unique minAnswers
of Q in G whose weights are optimal.

To focus on the generality of the above keyword
search problems, we intentionally avoided defining
the weight of an Answer in Definitions 1 and 2. Below
we give two definitions of weight functions, used in
[8], [4], [6], to measure the proximity of the nodes in an
Answer. Note that other weight functions can be used
with our definitions. Also, most of the algorithms pro-
posed in this paper (i.e., Algorithms 1, 3, 5 and 6) are
independent of the weight function. Only Algorithms
2 and 4 depend on the weight function.

Definition 3: (sumDistance) Suppose that the set
of nodes in an Answer in graph G is denoted as
V = {v1, v2, . . . , vl}. The sumDistance of the Answer
is defined as

sumDistance =
l∑

i=1

l∑

j=i+1

dist(vi, vj)

where dist(vi, vj) is the shortest distance between vi

and vj in G, i.e., the sum of weights on the shortest
path between vi and vj in G [8].

Definition 4: (centerDistance) Suppose that the set
of nodes in an Answer in graph G is denoted as
V = {v1, v2, . . . , vl}. The centerDistance of the Answer
is defined as

centerDistance = min
c∈G

l∑

i=1

dist(c, vi)

where dist(c, vi) is the shortest distance between a
node c in G and vi. The node in G that achieves the
minimum distance is called the center of the Answer.

The centerDistance is used in [4], [6]. In [4], the
center is the root of the answer tree. Note that the
center may/may not be a node in the Answer.

When using sumDistance or centerDistance to de-
fine the weight of an Answer, Answers with smaller
weights are considered to be better because the nodes
in an Answer are closer to each other when its weight
is smaller.
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TABLE 5
An overview of Algorithms 2-6.

Alg. Complexity Type Dup. Free Minimal Minimize sumDistance Approx. Ratio Complete Time Complexity
Alg. 2 Polynomial Yes No Yes, bounded approx. 2 Yes O(l2 × |Dmax|2)
Alg. 3 Polynomial No with Alg. 2 Yes No N/A N/A O(n2)

Alg. 4 Polynomial No with Alg. 2 Yes Yes, bounded approx. (log n) dmax
dmin

N/A O(n2)

Alg. 5 Polynomial Yes Yes N/A in general N/A No O(l2 × |Dmax|2)
Alg. 6 FPT Yes Yes N/A in general N/A Yes O((

∏s
i=1 |Ki|) × l2 × |Dmax|2)

Note: N/A means not applicable, l is the number of query keywords, n(≤ l) is the number of nodes in the input answer for Alg. 4, dmax and dmin are
the max and min distances between any pair of nodes in the input answer for Alg. 4, s < l,

∑ s
i=1 |Ki| < l, Dmax � the number of nodes in graph.

3.1 An Overview of the Proposed Algorithms

In this paper, we propose six algorithms to solve Prob-
lems 1 and 2. Algorithm 1 is a general framework for
generating top-k duplication-free answers by wisely
dividing the search space. It calls Algorithm 2 (which
is a 2-approximation algorithm for finding a single
answer that minimizes sumDistance) to find top-k
duplication-free answers in polynomial delay. Thus,
Algorithms 1 and 2 together solve Problem 1.

To generate minAnswers, Algorithms 3 and 4 are
proposed to convert the answers generated by Al-
gorithm 2 into a minAnswer. Algorithm 3 does not
optimize a weight function, while Algorithm 4 finds a
minAnswer that also minimizes the sumDistance func-
tion with a bounded approximation ratio. However,
simply converting Algorithm 2’s answer to a minAn-
swer with Algorithm 3 or 4 may lead to generation of
duplicate answers in the top-k procedure.

To generate top-k duplication-free minAnswers (i.e., to
solve Problem 2), Algorithms 5 and 6 are proposed to
replace Algorithm 2 in Algorithm 1. Both algorithms
are general frameworks for confining or dividing the
search space to ensure minimality and no duplication
in the top-k answers generated by Algorithm 1. They
call a modified version of Algorithm 2 (which calls
Algorithm 4) to generate a minAnswer that also min-
imizes sumDistance. The difference between Algo-
rithms 5 and 6 is that Algorithm 5 is faster (completely
polynomial) but may miss some answers, while Al-
gorithm 6 is complete (i.e., it allows all the possible
answers to be considered), but is a fixed-parameter
tractable (FPT) algorithm. An overview of Algorithms
2-6 is given in Table 5.

4 FINDING TOP-k DUPLICATION FREE
ANSWERS IN POLYNOMIAL DELAY

An efficient search engine should satisfy three proper-
ties [3]. First, it should be able to generate all answers
without missing them. Second, the answers should
be presented in an order with better answers ranked
higher. Third, the search engine should produce the
answers efficiently. Assume that the maximum num-
ber of nodes containing a query keyword in the input
graph is m. Based on the definition of Answer, the
total number of Answers might be up to ml, where l is
the number of query keywords. Apparently, produc-
ing all of the Answers may overwhelm the user since

m and/or l can be large. Thus, it is important to pro-
duce top-k Answers (or all the answers if fewer than
k answers exist) in a ranked order. The efficiency of
a search engine is commonly measured based on the
delay between producing two consecutive answers. If
this delay is polynomial based on the input data, the
algorithm is called a polynomial delay algorithm [16],
[3].

Our algorithm for producing top-k duplication-free
answers is an adaption of Lawler’s procedure [9]
for finding top-k answers to discrete optimization
problems. Lawler generalized Yen’s algorithm in [17]
which finds the k shortest loopless paths in a graph. In
Lawler’s procedure, the search space is divided into
disjoined sub-spaces. The best answer in each sub-
space is found and used to produce the current best
global answer. The sub-space that produces the best
global answer is further divided into sub-subspaces
and the best answer among its sub-subspaces is used
to compete with the best answers in other sub-spaces
in the previous level to find the next best global
answer. Two main issues in this procedure are how
to divide a space into subspaces and how to find the
best answer within a (sub)space. To have duplication
free answers, the procedure for dividing the search
space into sub-spaces must produce disjoint sub-
spaces so that the same answer cannot be generated
from different sub-spaces.

Lawler’s procedure has been used to generate top-k
answers in graph keyword search in [6], [8], in which
a search (sub)space is represented by C1×C2×· · ·×Cl,
where Ci is the set of nodes containing query keyword
ki, and the space is divided by taking away certain
node(s) from Ci to form a subspace based on the best
answer in the space being divided. A problem with
this strategy is that a node taken away from Ci may
appear in Cj (where i �= j) if the node contains more
than one query keyword (i.e., it belongs to more than
one Ci for 1 ≤ i ≤ l), and thus the same set of content
nodes may be generated from different subspaces
if a node contains more than one query keyword,
although different answers have different keyword-
node associations. Since we aim at generating unique
sets of content nodes, a different strategy for dividing
a search space is needed to avoid duplicate answers.

We first illustrate our idea of dividing the
search space into disjoint subsets using an example.
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TABLE 6
Dividing the search space into disjoint subspaces based on

the best Answer {a, b, c}.

Subspace Inclusion set Exclusion set
SB1 Inc1 = {a, b} Exc1 = {c}
SB2 Inc2 = {a} Exc2 = {b}
SB3 Inc3 = {∅} Exc3 = {a}

Given a set of input keywords, we first use the
FindBestAnswer procedure (to be described later) to
find the best answer {a, b, c} in the input graph G,
where a, b, and c are nodes in G. Then we divide
the set of remaining answers to be found into three
subsets: (1) the answers that contain a and b but no c,
(2) the ones that contain a but no b, and (3) the ones
that contain no a. Clearly, (1), (2) and (3) are disjoined,
and they, together with {a, b, c}, comprise the set of all
possible answers. Each subset has constraints, which
can be represented using an inclusion set containing
the nodes that must be included and an exclusion set
containing the nodes that must be excluded3. Table 6
shows the constraints of these three subsets.

After dividing the search space into disjoint subsets
based on the global best answer, the best Answer in
each subspace is found using the FindBestAnswer
procedure. These best Answers are inserted into a
priority queue, where the Answers are ranked in as-
cending order of their weights. Obviously, the second
best Answer is the one at the top of the priority queue.
Suppose that this Answer is taken from SB2 and
contains p content nodes. After returning the second
best answer, SB2 is divided into p subspaces in the
way similar to the one shown in Table 6. In each
subspace, the best Answer is found and is added to
the priority queue. At this state, the priority queue
has 2 + p elements: two elements from the first step
and p elements from this new step4. Then, the top
Answer is returned and removed from the queue, its
corresponding space is divided into subspaces and the
best Answer (if any) in each new subspace is added
to the priority queue. This procedure continues until
the priority queue becomes empty or top-k Answers
are found.

The pseudocode of this procedure for enumerating
top-k Answers is described in Algorithm 1. The algo-
rithm first computes the set C of nodes that contain
at least one input keyword. This can be easily done
using a pre-built inverted index. In line 5, procedure
FindBestAnswer (to be described in the next section)
is called to find the best answer from the whole search
space (i.e., C). It takes input graph G, query Q, C,
an inclusion set and an exclusion set as input, and

3. The idea of using the inclusion and exclusion sets to represent
constraints is inspired by [18]. However, the constraints in [18]
are described using edges (instead of nodes as in our approach) for
finding a different type of answers.

4. This assumes that all of the subspaces contain at least one
Answer. In some cases, the subspace does not have any Answer.

Algorithm 1 Generate Duplication Free Top-k Answers

Input: the input graph G; the query Q = {k1, k2, . . . , kl}; k
Output: the set of top-k ordered Answers printed with polynomial delay
1: C ← an empty set for storing content nodes
2: for i ← 1 to l do
3: add the nodes in G containing ki to C
4: Queue ← an empty priority queue
5: A ← FindBestAnswer(G, Q, C, ∅, ∅)
6: if A �= NULL then
7: insert 〈A, ∅, ∅〉 into Queue
8: while Queue �= ∅ do
9: 〈A, Inc, Exc〉 ← top element of Queue

10: print(A)
11: k ← k − 1
12: if k = 0 then
13: return
14: {n1, n2, . . . , np} ← content nodes of A
15: for i ← 1 to p do
16: Inci ← Inc ∪ {n1, . . . , np−i}
17: Exci ← Exc ∪ {np−i+1}
18: if Inci ∩ Exci = ∅ then
19: Ai ← FindBestAnswer(G, Q, C, Inci, Exci)
20: if Ai �= NULL then
21: insert 〈Ai, Inci, Exci〉 into the right place of Queue

according to Ai’s weight

returns the best answer in the search space specified
by C. Since the first best answer is found in the
whole search space, empty inclusion and exclusion
sets are passed to the procedure in line 5. If the
best answer exists (i.e., A �= NULL), A, together with
the inclusion and exclusion sets (the constraints for
the space from which A is generated), are inserted
into Queue in line 7. The Queue is maintained in
the way that its elements are ordered in ascending
order of their weights. The while loop starting at line
8 is executed until the Queue becomes empty or k
answers have been outputted. In line 9, the top of the
Queue is removed, which contains the best answer
(A) in the Queue and its inclusion (Inc) and exclusion
(Exc) sets. The answer in A is outputted. Then, if the
number of answers has not reached k, the nodes in
A are assigned to n1, n2 . . . np where p is the number
of nodes in A. In lines 15-21, p new inclusion and
exclusion sets are produced based on the nodes in A
and the inclusion and exclusion sets for the space A
was generated from. The new subspaces are specified
by these new constraints. For each new subspace, if
the intersection of its inclusion and exclusion sets is
empty, the best answer is found and it is inserted
into the Queue with the constraints of its related
subspace. Clearly, if procedure FindBestAnswer runs
in polynomial time, Algorithm 1 produces answers
with polynomial delay.

Since for each best answer A the union of the
sub-spaces created based on A plus answer A itself
is the same as the search space from which A is
found, no answer is excluded from search spaces
in the next iterations. Thus, Algorithm 1 produces
top-k or all answers (if fewer than k answers ex-
ist) if FindBestAnswer finds the best answer in a
search (sub)-space. In addition, the sub-spaces pro-
duced based on answer A are all disjoint and none
of them contains A. Therefore, they do not lead to
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Algorithm 2 FindBestAnswer minimizing the sumDistance
function
Input: the input graph G; the query Q; the set of content nodes C; the set
of inclusion nodes Inc; the set of exclusion nodes Exc
Output: the best (approximate) Answer satisfying both Inc and Exc
constraints
1: Cov ← set of keywords covered by Inc
2: {k1, k2, . . . , kt} ← {Q − Cov}
3: for i ← 1 to t do
4: Di ← nodes of C having keyword ki and /∈ Exc
5: D ← ⋃ t

i=1 Di

6: F ← Inc ∪ D
7: if F = ∅ then
8: return NULL
9: leastWeight ← ∞

10: bestAnswer ← NULL
11: for each node fi in F do
12: weight ← 0
13: answer ← ∅
14: for each node nj in Inc do
15: weight ← weight + d(fi, nj)
16: answer = answer ∪ {nj}
17: for j ← 1 to t do
18: dist ← ∞
19: nearest ← NULL
20: for each node dk in Dj do
21: if d(fi, dk) < dist then
22: dist = d(fi, dk)
23: nearest = dk

24: if nearest /∈ answer then
25: weight ← weight + dist
26: answer = answer ∪ {nearest}
27: if weight < leastWeight then
28: leastWeight ← weight
29: bestAnswer ← answer
30: return bestAnswer

the same answer and the set of produced answers
is duplication free. In addition, this duplication free
search procedure is independent of the procedure for
finding the best answer and the weight function used
to measure the quality of an answer.

5 FINDING THE BEST ANSWER
IN EACH SEARCH SPACE

Algorithm 1 calls the FindBestAnswer procedure
to find the best answer in a search space specified
by a set of content nodes and the constraints (i.e.,
the inclusion and exclusion sets). The best answer
must contain the nodes in the inclusion set, exclude
the nodes in the exclusion set and also have an
optimal weight. Depending on the weight function
used, FindBestAnswer can be designed differently.
Below, we present an algorithm that produces an
answer satisfying the constraints and minimizing the
sumDistance function. We present a modification of
this algorithm which minimizes the centerDistance
later in this section.

5.1 Minimizing the sumDistance function

In [8] we proved that minimizing sumDistance is
an NP-hard problem, with respect to the number
of query keywords, and proposed an approximation
algorithm that finds an answer with an approximation
ratio of 2. The search space in that algorithm is a
Cartesian product C1 × C2 × · · · × Cl, where Ci is a
subset of nodes containing keyword ki and excluding

certain nodes. However, a node excluded from Ci

may appear in Cj if the node contains both ki and
kj . Since our answers must completely exclude the
nodes specified by the exclusion set, we modify the
algorithm in [8] to consider the constraints specified
by the inclusion and exclusion sets.

The pseudo-code of the modified algorithm,
FindBest-Answer, is presented in Algorithm 2. It
takes an input graph G, a query Q, a set of content
nodes C, and the inclusion and exclusion sets (Inc and
Exc) as input and produces the best (approximate)
Answer as output in polynomial time. The algorithm
approximates the sumDistance of an answer using
the sum of distances from each node in the answer
to a center node within the answer. In the pseudo-
code, set F is the search space, which consists of all
the nodes in the inclusion set and the set of content
nodes containing the query keywords not covered by
the inclusion set and not belonging to the exclusion
set. In the code, Di is the set of nodes that contain
keyword ki (which is not covered by the inclusion set)
but do not belong to the exclusion set. For each node
fi in F , an answer is formed by using fi as the center
and including all the nodes in the inclusion set and
adding the node in each Di that is closest to fi. The
final answer is the one with the least sum of distances
between each node in the answer and its center. In the
code, d(x, y) is the shortest distance between nodes x
and y, which can be efficiently obtained by consulting
a pre-built index (described in [8])5.

Clearly, the answer produced by this algorithm
satisfies the inclusion and exclusion constraints. Since
all the nodes in F have been considered as a center
candidate, it can be proved that the sumDistance

of the produced answer is no more than 2×(l−1)
l ×

the sumDistance of an optimal answer, where l is
the number of query keywords. Thus, the produced
answer has a weight that is at most twice that of
an optimal answer. The proof is similar to the one
in [8]. We omit it here due to the space limit. The
complexity of this algorithm is O(|F | × l × |Dmax|)
where |F | is the size of the set F , l is the number of
query keywords and |Dmax| is the maximum size of
Di for 1 ≤ i ≤ t. Since |F | ≤ (l × |Dmax|) + |Inc| and
|Inc| ≤ l−1, |F | = O(l×|Dmax|). Thus, the complexity
of Algorithm 2 is O(l2 × |Dmax|2).

5.2 Minimizing the centerDistance function

Authors of [4], [6] proposed algorithms to minimize
the centerDistance function. Here, we briefly de-
scribe how to modify Algorithm 2 to work with the
centerDistance function. In line 11 of Algorithm 2,
all of the content nodes of the uncovered keywords
and the inclusion set are checked for finding the best
approximate Answer that minimizes sumDistance.

5. Using a pre-built index to obtain the shortest distance between
nodes has been used in [10], [6], [8].
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Algorithm 3 ConvertToMinAnswerGeneral - General Procedure

Input: the set of content nodes as Answer; the query Q
Output: a minAnswer

1: for each node ni in Answer do
2: K = ∅
3: for j ← 1 to i − 1 do
4: K = K ∪ keywords(nj)
5: for j ← i + 1 to size(Answer) do
6: K = K ∪ keywords(nj)
7: if keywords(ni) ⊆ K then
8: remove ni from Answer
9: return Answer

However, for minimizing centerDistance, each node
in the input graph G should be considered as a center
of a possible answer. Therefore, instead of browsing
only the nodes in set F in line 11, the loop iterates
through all of the nodes in graph G and checks each
of them for finding the best center and its associated
answer. Thus, the time complexity of the algorithm
becomes O(N × l × |Dmax|), where N is the number
of nodes in graph G. Since N > F , the revised
Algorithm 2 for minimizing centerDistance is slower
than Algorithm 2 for minimizing sumDistance. Note
that the same as [4], [6], the modified Algorithm 2 for
minimizing centerDistance returns the exact answer
in polynomial time.

6 FINDING MINIMAL ANSWERS

Some of the Answers returned by Algorithm 2 and
existing algorithms may not be a minAnswer. That is,
the input keywords in some nodes of an Answer may
all be covered by other nodes in the answer. If these
nodes are removed from the answer, the remaining set
of nodes still covers all the input keywords. Below
we first present two algorithms for converting an
Answer to a minAnswer. However, the converted
minAnswer may violate the inclusion constraint for
finding duplication-free answers. We then propose
two approaches to solve the problem.

6.1 Generating Minimal Answers

The problem of finding a minimal answer from an
Answer can be solved in polynomial time as shown in
Algorithm 3. The algorithm checks each node in the
Answer to see if the input keywords the node contains
are all covered by other nodes. If yes, it removes the
node. The complexity of this algorithm is O(n2) where
n is the number of nodes in the input Answer.

Lemma 1: Algorithm 3 produces a minAnswer in
which each node contains at least one unique input
keyword. In addition, all the input keywords are
covered in the minAnswer.

Proof: Let ni be a node in the answer produced
by the algorithm. Assume that when the algorithm
checks whether ni should be removed, T was the
intermediate answer at that time. Since ni was not
removed, keywords(ni)�⊆ keywords(T −{ni}), where

keywords(ni) is the set of input keywords ni con-
tains and keywords(T − {ni}) is the set of input
keywords contained in T − {ni}. Since the output
minAnswer is a subset of T , minAnswer − {ni}
must be a subset of T − {ni}. Thus, keywords(ni)�⊆
keywords(minAnswer − {ni}), which means that ni

contains at least one unique keyword that the rest
of nodes in minAnswer does not contain. Also, since
the algorithm only removes a node when its input
keywords are completely covered by the rest of nodes
in T , the set of input keywords covered by T does not
change after a node is removed from T . Thus, the final
minAnswer covers the same set of input keywords as
the input Answer.

An Answer may contain multiple minAnswers.
The answer returned by Algorithm 3 may not be
optimal with respect to a weight function such as
sumDistance. Below we first prove that the prob-
lem of finding a minAnswer with the minimum
sumDistance is an NP-hard problem, and then
present a greedy algorithm to solve the problem.

Theorem 1: The problem of producing a minAnswer
from an Answer while minimizing sumDistance is
NP-hard.

Proof: We prove the theorem by a reduction from
the set cover problem. Given a set of m elements
(universe) and n sets whose union is the universe, the
set cover problem is to identify the smallest number
of sets whose union still contains all elements in
the universe. Consider the set of input keywords in
our problem as a universe. The nodes in an Answer
can be considered as the sets of keywords whose
union is the universe because they cover all the input
keywords. Assume that the shortest distance between
each pair of nodes in an Answer is the same. Then
finding a minAnswer from the Answer is equivalent
to finding the minimal number of nodes that cover all
the input keywords (i.e., the universe). This is because
a minAnswer with a smaller number of nodes has
a smaller sumDistance when the shortest distance
between each pair of nodes is the same. Since the set
cover problem is NP-hard [19], finding a minAnswer
while minimizing sumDistance is NP-hard.

Theorem 2: The problem of producing a minAnswer
from an Answer while minimizing centerDistance is
NP-hard.

Proof: We prove the theorem by a reduction from
the set cover problem. Given a set of m elements
(universe) and n sets whose union is the universe, the
set cover problem is to identify the smallest number
of sets whose union still contains all elements in
the universe. Consider the set of input keywords in
our problem as a universe. The nodes in an Answer
can be considered as the sets of keywords whose
union is the universe because they cover all the input
keywords. Assume that the shortest distance between
each node in the Answer and the center is the same.
Then finding a minAnswer from the Answer is equiv-
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Algorithm 4 ConvertToMinAnswer - Greedy Procedure for
Minimizing sumDistance

Input: the set of content nodes as Answer; the query Q
Output: a minAnswer with (sub)optimal
sumDistance

1: A ← ∅
2: while Q �= ∅ do
3: select a node n ∈ Answer that maximizes |keywords(n) ∩ Q|
4: Answer ← Answer − {n}
5: Q ← Q − keywords(n)
6: A ← A ∪ {n}
7: for each node ni in A do
8: calculate ni’s sum of distances to all the other nodes in A
9: sort nodes in A based on their sum of distances to other nodes in

descending order and put them in a list T .
10: minAnswer = ConvertToMinAnswerGeneral(T, Q)
11: return minAnswer

alent to finding the minimal number of nodes that
cover all the input keywords (i.e., the universe). This
is because a minAnswer with a smaller number of
nodes has a smaller centerDistance when the shortest
distance between each node and the center is the
same. Since the set cover problem is NP-hard [19], the
problem of finding a minAnswer while minimizing
centerDistance is NP-hard.

Since the problem is NP-hard, we design a greedy
algorithm to find a minAnswer that may be sub-
optimal in minimizing sumDistance. The algorithm
is presented in Algorithm 4. It first uses a greedy set-
covering procedure (Lines 1-6) to reduce the number
of nodes in Answer while still covering all the in-
put keywords. The procedure chooses nodes to form
an answer A as follows: at each stage, choose the
node that contains the largest number of uncovered
keywords. However, A may not be a minAnswer
because the above procedure is a greedy procedure
for minimizing the number of nodes. Thus, we further
sort the nodes in A based on their sum of distances
to other nodes in descending order, and then call
ConvertToMinAnswerGeneral (i.e., Algorithm 3) to
convert A into a minAnswer.

The complexity of the algorithm is O(n2), where n
is the number of nodes in the input Answer. Also,
since the set-covering procedure (Lines 1-6) chooses
nodes from Answer until all the input keywords are
covered and Lemma 1 states that the minAnswer
produced by ConvertToMinAnswerGeneral covers
all the input keywords, the minAnswer produced by
this algorithm covers all the input keywords.

Theorem 3: Algorithm 4 generates a minAnswer
that minimizes sumDistance with the approximation
ratio of (log n)dmax

dmin
where n is the number of nodes

in the input Answer and dmax and dmin are the
maximum and minimum distances between any pair
of nodes in Answer.

Proof: Assume that the number of nodes of an
optimal minAnswer that minimizes sumDistance is
optn and the number of nodes of the minAnswer
produced by Algorithm 4 is approxn. Also assume
that the number of nodes of an optimal answer that
minimizes the number of nodes (which is the objective

of the set cover problem) is optscn and the number of
nodes of the approximate answer produced by lines
1-6 (i.e., the greedy set cover procedure) is approxscn.
It has been proved that the number of nodes of the
answer obtained by the greedy set cover algorithm
is at most log n times that of the optimal answer
[19], where n is the number of nodes in the input
Answer. That is, approxscn ≤ log n × optscn. Since
the later steps of Algorithm 4 may further reduce
the number of nodes from the answer generated by
the greedy set-cover procedure, approxn ≤ approxscn.
Also, it is obvious that optscn ≤ optn. Thus, we
have approxn ≤ log n × optn. For a query with l
keywords, the sumDistances of the optimal and the
approximation answers satisfy the following inequal-
ities: 1) sumDistanceopt ≥ [

(
l
2

)− l + opnn]× dmin and
2) sumDistanceapprox ≤ [

(
l
2

) − l + approxn] × dmax

where dmax and dmin are the maximum and minimum
distances between any pair of nodes in the Answer,
respectively. Since approxn ≤ log n × optn, we have:

sumDistanceapprox

sumDistanceopt
≤ [

(
l
2

) − l + (log n × optn)] × dmax

[
(

l
2

) − l + opnn] × dmin

Therefore, the following can be easily derived:
sumDistanceapprox

sumDistanceopt
≤ (log n)dmax

dmin
.

It should be noted that Algorithm 4 is guaranteed
to generate a minAnswer. The approximation is in
terms of minimizing the weight of minAnswers.

Since the weight of a minAnswer may be smaller
than that of the Answer the minAnswer is generated
from, Algorithm 4 should be called after line 26 of
Algorithm 2 using answer ← ConvertToMinAnswer
(answer,Q). After that, the weight of the answer
should be updated as well. Thus, in Algorithm 2 the
generated minAnswer of each candidate is used to
compete with the minAnswers of other candidates so
that the minAnswer with the smallest weight among
the candidates can be returned by Algorithm 2.

Since the number of nodes in Answer is at most
the number of input keywords, the time complexity
of Algorithm 2 becomes O(|F | × (|Dmax| × l + l2)),
where l is the number of input keywords, |Dmax|
is the maximum size of Di (the set of the nodes
containing keyword ki) and |F | is the size of set F . As
we discussed in previous section, |F | = O(l×|Dmax|).
Therefore, the time complexity of Algorithm 2 be-
comes O(l2×Dmax× (Dmax + l)). Since l can be much
smaller than |Dmax| (l � |Dmax|), time complexity of
Algorithm 4 is the same as Algorithm 2 and is equal
to O(l2 × |Dmax|2).

The same strategy can be applied for minimizing
centerDistance in Algorithm 4. The only difference
is that in line 8, the distance to the center node
is taken into account and the sorting of line 9 is
based on this distance. Similar to Theorem 3, the
approximation ratio of the algorithm for minimizing
the centerDistance is d′

max

d′
min

where d′max and d′min are
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the maximum and minimum distances between any
nodes in the Answer6 and the center node, respec-
tively.

Theorem 4: The above modification of Algorithm
4 generates a minAnswer that minimizes
centerDistance with the approximation ratio of
d′

max

d′
min

where n is the number of nodes in the input
Answer and d′max and d′min are the maximum
and minimum distances between any nodes in the
Answer and the center node, respectively.

Proof: For a query with l keywords, the
centerDistances of the optimal and the approx-
imation answers satisfy the following inequali-
ties: 1) centerDistanceopt ≥ l × d′min and 2)
centerDistanceapprox ≤ l×d′max where d′max and d′min

are the maximum and minimum distances between
any nodes in the Answer and the center node, re-
spectively. If center node is part of the Answer, it
is excluded for computing d′min because in that case
d′min is equal to zero. Therefore, the following can be
easily derived:

sumDistanceapprox

sumDistanceopt
≤ d′max

d′min

.

6.2 Producing Top-k / All Minimal Answers

To generate all or top-k duplication-free minAnswers,
Algorithm 1 is needed to divide the search space
and call Algorithms 2 and 4 to find a minAnswer in
each subspace. This procedure works fine for finding
the first best minAnswer in the whole search space.
However, for finding subsequent answers, the search
space is divided into subspaces, each with inclusion
and exclusion constraints, and the best answer from
each subspace is generated to compete for the next
best answer. This requires that the minAnswer gen-
erated from each subspace contains all the nodes in
the inclusion set of that subspace. However, when
generating a minAnswer from an Answer and when
the inclusion set is not empty, Algorithm 4 may delete
some of the inclusion nodes if their keywords are
covered by other nodes in the Answer. This may
lead to generating duplicate answers by Algorithm
1. The problem can be illustrated with the following
example.

Consider the graph in Figure 5. It contains 6 nodes:
a, b, c, d e and f . Assume that the query consists
of 4 keywords k1, k2, k3 and k4. The first best an-
swer generated by Algorithm 2 is {a, b}. Since it is a
minAnswer, the algorithm for finding an minAnswer
also returns {a, b} as the first best minimal answer.
For finding the second best answer, the search space
is divided into two subspaces. The first subspace has

6. If the center node is part of the Answer, it is excluded for
computing d′min.

a:{k1,k2}
1

b:{k3,k4}

f:{k3,k4}
8

e:{k2,k3,k4}
c:{k1,k4}d:{k2,k3}

27
2

2

Fig. 5. An example for clarifying the problem of violat-
ing inclusion property.

the constraints Inc1 = {a} and Exc1 = {b} and the
second one Inc2 = {∅} and Exc2 = {a}. The proce-
dure for finding the best answer in the first subspace
returns {a, c, d} as the best Answer, which is then
converted to {c, d} by Algorithm 4 as the minAnswer.
Since node a is removed from the answer, the Inc1

constraint is violated.
To solve this problem, we change Algorithm 2

so that all the inclusion nodes in the Answer pro-
duced by the algorithm must contain at least one
unique input keyword. In this way, the inclusion
nodes in the answer cannot be removed when con-
verting the Answer to a minAnswer. Below we pro-
pose two approaches that use this strategy. The first
one is called the incomplete approach. It is faster
but may miss some answers. The second approach
is called the complete approach. It considers all the
answers but has higher time complexity than the first
approach. The algorithms for both approaches are
named FindMinimalAnswer below. They are called
in Algorithm 1 at the places where Algorithm 2 was
called. Both approaches are independent of the weight
function used to measure the quality of the answer.

6.2.1 Incomplete Approach

Based on the way the search space is divided in Alg. 1,
the nodes in the inclusion set of a subspace are part of
a previously-generated minAnswer. Thus, each node
in an inclusion set has at least one unique keyword
among other nodes in the set. If in Alg. 2 each Di con-
tains only the nodes that do not contain any keyword
that an inclusion node contains, the inclusion nodes
will keep their uniqueness and will not be removed
when converting the Answer to a minAnswer. This
is the idea of the incomplete approach.

The pseudo-code of this approach is presented in
Algorithm 5. Its inputs are the same as the ones for
Algorithm 2. It first collects the keywords covered
by the inclusion nodes into CovKeywords. Then it
calls procedure FindBestAnswerCovConstraint
to generate a minAnswer. Procedure
FindBestAnswerCovConstraint is similar to
procedure FindBestAnswer (i.e., Algorithm 2) with
two differences. The first difference is that in addition
to other inputs, it also takes set CovKeywords as
input and in line 4 of procedure FindBestAnswer
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the algorithm also excludes from Di all the nodes
that contain a keyword in CovKeywords. Since
Dis store the candidate nodes to be added to the
answer, this exclusion guarantees that no node with
a keyword in CovKeywords is added to the answer.
The second difference is that the procedure calls
Algorithm 4 after line 26 to convert a candidate
answer to a minAnswer and then calculates the
weight of the minAnswer. The best minAnswer is
returned. In section 6.1, we have showed that calling
Algorithm 4 within Algorithm 2 does not change the
complexity of Algorithm 2. Thus, the time taken by
Algorithm 5 is the same as Algorithm 2 and is equal
to O(l2 × |Dmax|2).

Algorithm 5 FindMinimalAnswer, Incomplete Approach

Input: the input graph G; the query Q; the set of content nodes C; the set
of inclusion nodes Inc; the set of exclusion nodes Exc
Output: the best minAnswer satisfying both Inc and Exc constraints
1: CovKeywords ← set of keywords covered by Inc
2: minAnswer ← FindBestAnswerCovConstraint(G, Q, C, Inc, Exc,

CovKeywords)
3: return minAnswer

However, Algorithm 5 may miss some answers
because it puts a too strong constraint on the search
space and removes some good candidate nodes. Con-
sider the example in Figure 5. The best answer in the
first subspace (Inc1 = {a} and Exc1 = {b}) is set
{a, e}. However, since a belongs to the inclusion set,
Algorithm 5 removes all of the nodes that contain a
keyword in a, i.e. k1 or k2. Thus, e is removed from
the search space because it contains k2. Therefore,
Algorithm 5 is not able to produce answer {a, e}. It
produces {a, f}, which has higher weight than {a, e}.

6.2.2 Complete Approach
To solve the missing-answer problem of the incomplete
approach, we propose the complete approach. Since
each node in the inclusion set has at least one unique
keyword, we first compute the set of unique keywords
for each node in the inclusion set and then calculate
the Cartesian product of these sets. For example, if
Inc = {a, b} and a and b uniquely contain {k1, k2}
and {k3, k4} respectively, the Cartesian product of
{k1, k2} and {k3, k4} is {k1, k3}, {k1, k4}, {k2, k3} and
{k2, k4}. Then, for each set s in the Cartesian product,
procedure FindBestAnswerCovConstraint is called
with s as the input value for CovKeywords to gen-
erate a minAnswer whose non-inclusion nodes do
not contain any keyword in s. Among all of the
minAnswers (each generated based on an element
in the Cartesian product), the best minAnswer is
returned as the solution.

The pseudo-code of the complete approach is pre-
sented in Algorithm 6. It first gets the set of inclu-
sion nodes as {n1, n2, . . . , ns}. Then, for each con-
tent node ni ∈ Inc, it gets the unique keywords
covered by ni and stores them in Ki. The Carte-
sian product of {K1,K2, . . . ,Ks} is calculated and

stores in CKeywordSet in line 3. For each member
CovKeywordsi of CKeywordSet, a minAnswer is
found by calling FindBestAnswerCovConstraint in
line 8. Procedure FindBestAnswerCovConstraint is
the same as the one used in the incomplete approach.
It finds a minAnswer and makes sure that its non-
inclusion nodes do not contain any keywords in
CovKeywordsi. If the minAnswer is not NULL and
its weight outperforms previous minimal answers,
leastWeight and bestMinAnswer are updated accord-
ingly. The algorithm returns the minAnswer with the
smallest weight among all the minAnswers corre-
sponding to the members of the Cartesian product.

Algorithm 6 FindMinimalAnswer, Complete Approach

Input: the input graph G; the query Q; the set of content nodes C; the set
of inclusion nodes Inc; the set of exclusion nodes Exc
Output: the best minAnswer satisfying both Inc and Exc constraints
1: {n1, n2, . . . , ns} ← set of nodes of Inc
2: ∀i, 1 ≤ i ≤ s, Ki ← unique keywords of ni

3: CKeywordSet ← Cartesian product of {K1, K2, . . . , Ks}
4: leastWeight ← ∞
5: bestMinAnswer ← NULL
6: for i ← 1 to size(CKeywordSet) do
7: CovKeywordsi ← CKeywordSet.get(i)
8: minAnswer ← FindBestAnswerCovConstraint(G, Q, C, Inc, Exc,

CovKeywordsi)
9: if minAnswer �= NULL then

10: weight ← weight of minAnswer
11: if weight < leastWeight then
12: leastWeight ← weight
13: bestMinAnswer ← minAnswer
14: return bestMinAnswer

Since in each element CovKeywordsi of the Carte-
sian product, each inclusion node has a unique key-
word, the keyword will remain unique in the Answer
generated by FindBestAnswerCovConstraint be-
cause the nodes containing that keyword will not be
added to the Answer. Hence, the inclusion nodes in
the Answer cannot be removed when converting the
Answer to the minAnswer. Therefore, Algorithm 6
does not violate the inclusion constraint. In addition,
since all possible combinations of the unique key-
words of the nodes in the inclusion set are evaluated,
no answer is missed. For the example in Figure 5,
the inclusion set of the first subspace is Inc1 = {a}.
Since a contains keywords k1 and k2, the Cartesian
product CKeywordSet is {{k1}, {k2}}. When {k1} is
used as the value for CovKeywordsi when calling
FindBestAnswerCovConstraint, {a, e} is returned as
the minAnswer, which is the best answer in the sub-
space that was missed by the incomplete approach.

The time complexity of the algorithm is
O((

∏s
i=1 |Ki|) × l2 × |Dmax|2), where s is the

average number of nodes in an inclusion set and |Ki|
is the number of unique input keywords in the ith
inclusion node. Note that

∑s
i=1 |Ki| ≤ l − 1, where l

is the number of input keywords. When the number
of input keywords is small, the maximum cardinality
of the Cartesian product is small. For example, for
six keywords, the worst case happens when the
inclusion set contains two nodes, one containing 3
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unique keywords and the other containing 2 unique
keywords. In this case,

∏2
i=1 Ki = |K1| × |K2| = 6.

Similarly, when l = 3, 4, 5 or 7,
∏s

i=1 Ki is at most 1, 2,
4, or 8, respectively. Thus, since the number of query
keywords is usually small in practice, Algorithm 6 is
fixed-parameter tractable (FPT) [20].

7 DISCUSSION OF SOME ISSUES

7.1 Graph Indexing

In Algorithms 2 and 4, we need to compute the short-
est distance between two nodes in the input graph.
Calculating the shortest path while searching for the
best answer is expensive. Since the shortest distance
between any two nodes in a graph is independent
of the query, we pre-built an index that stores the
shortest distances between nodes. A straight forward
indexing method is to calculate and store the shortest
path between each pair of nodes. However, this index
needs O(n2) storage, where n is the number of nodes
in graph G. This index is very large and not feasible
for graphs with a large number of nodes. We use the
neighbor indexing method in [8] to pre-compute and
store the shortest distances and paths for the pairs
of nodes whose shortest distance is within a certain
threshold rmax. Details on this indexing method can
be found in [8]. Note that the idea of indexing the
graph using a distance threshold has also been used
in [6], [10].

7.2 Presenting the Answers

The Answers and minAnswers produced by our algo-
rithms are a set of content nodes. Often it is important
to see how these nodes are connected to each other in
the input graph. The neighbor index that we use stores
not only the shortest distances but also the shortest
paths between nodes. Thus, the relations between the
nodes can be revealed using the index. In this work,
we use two approaches to revealing the relationships
between nodes in an answer. In the first approach,
a Steiner tree that connects the nodes in an answer
with the minimum weight is created after the answer
is generated and the user indicates that he/she would
like to see the connections. Figures 11 and 12 depict
two trees created by our tree-generating procedure for
two answers used in our user study (to be described
later). Note that generating a Steiner tree from an
answer is much faster than generating a tree directly
from the input graph. We use an algorithm in [8], [21]
to generate the Steiner tree. In the second approach
a multi-center sub-graph is generated to reveal the
relations among content nodes in an answer. A center
for each answer is any node in the graph with the
distance up to r to any content node in the answer
[6]. A path between each pair of content nodes and
centers is added to the sub-graph. The advantage of
using multi-center graphs rather than trees is that it

TABLE 7
Keywords used in DBLP data set.

Frequency Keywords
0.0003 distance, discovery, scalable, protocols
0.0006 graph, routing, space, scheme
0.0009 fuzzy, optimization, development,

support, environment, database
0.0012 modeling, logic, dynamic, application
0.0015 control, web, parallel, algorithms

reveals more relations. The disadvantages is that it
might add some irrelevant nodes to the answer [8]
and the size of an answer can be overwhelmingly
large. Some other methods can also be used.

8 EXPERIMENTAL RESULTS

We implemented all the algorithms presented above.
In addition, for the purpose of comparison and show-
ing that previous approaches produce duplicate and
non-minimal answers, we implemented four algo-
rithms in the literature: Dynamic [2], BLINKS [4],
Community [6], and r-clique [8]. All of the algorithms
are implemented in Java. The experiments are con-
ducted on an Intel(R) Core(TM) i7-2720QM 2.20GHz
computer with 16GB of RAM. 7.

8.1 Data Sets and Queries

Two real world data sets, DBLP and IMDb, are used in
our experiments. The DBLP graph is produced from
the DBLP XML data8. The dataset contains informa-
tion about a collection of papers and their authors. It
also contains the citation information among papers.
Papers and authors are connected together using the
citation and authorship relations. The numbers of tuples
of the 4 relations author, paper, authorship and cita-
tion are 947K, 2,578K, 5,221K, and 112K respectively.
Keyword search over a DBLP graph is useful to
find, e.g., a set of papers related to an author that
covers a list of topics. The papers found in this way
are more likely related to each other via authors.
We used two approaches for assigning weights to
the edges of the graph. In the first approach, the
weight of the edge between two nodes v and u is
(log2 (1 + vdeg) + log2 (1 + udeg))/2, where vdeg and
udeg are the degrees of nodes v and u respectively.
This approach is called logarithmic edge weight and
was used in [8], [6], [5], [2] . The second approach
simply assigns the uniform weight of 1 to each edge.
It is called uniform edge weight and was used in [10].
The set of input keywords used in our experiments
and their frequencies in the input DBLP graph are
shown in Table 7. The queries used in our experiments

7. The reason for using a 16GB RAM is that the Dynamic
method stores the whole graph in the main memory. Other methods
including ours use proper indexing, for which smaller RAM can be
used.

8. http://dblp.uni-trier.de/xml/
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Fig. 6. Percentage of duplicate answers of different methods
with different edge weights on DBLP dataset.

are randomly generated from this set of keywords
with the constraint that in each query all keywords
have the same frequency (in order to better observe
the relationship between run time and keyword fre-
quency). Note that the input keywords shown in Table
7 were generated by the authors of [6] and used to
generate queries in [6], [8]. We use the same set of
input keywords and the same way to generate queries
to make our results comparable to others.

The IMDb dataset contains the relations between
movies and the users of the IMDb website that rate
the movies9. The numbers of tuples of 3 relations
user, movie and rating are 6.04K, 3.88K and 1,000.21K,
respectively. The edges of the graph are weighted in
the same way as for the DBLP graph. Due to the space
limit, for the IMDb dataset we only present the results
of query with keywords house, king, night, city, city,
world and story. The same set of input keywords is
used in [6], [8].

8.2 Duplication of Previous Approaches

Our top-k method is guaranteed to generate
duplication-free answers. In this section, we show
the rates of duplicate answers of previous methods.
Figure 6 shows the percentage of duplicate answers
for four previous methods on the DBLP dataset
with two different edge weights, different values
of keyword frequency, different numbers of query
keywords and different k values.10 Two answers are
considered duplicates if they have the same set of
content nodes. The rate of duplicate answers in the
Dynamic method [2] is higher than BLINKS [4],
Community [6] and r-cliques [8]. This is because it
finds minimum cost connected trees, and in most
of the cases, the same set of content nodes are
connected via different connections. BLINKS also

9. http://www.grouplens.org/node/73
10. Unless it is mentioned otherwise, in our results for DBLP,

when not changing, the number of keywords is 4, keyword fre-
quency is 0.0009 and top-50 answers are found. For the Community
and r-clique methods, the rmax value is 8 and 5 for the logarithmic
and uniform edge weights respectively.
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Fig. 7. Percentage of duplicate and non-minimal answers in
different methods on IMDb dataset.

has a high rate of duplication. It is due to its policy
of defining trees based on a unique root. The same
set of content nodes may have a different root. The
Community and r-clique methods have the smallest
rate of duplication among the existing methods
because they divide the search space more wisely.
But they still have some duplications. By increasing
the frequency of keywords, the duplication rate of
Dynamics and BLINKS increases. By increasing the
number of keywords, the duplication rate generally
decreases for Dynamic and BLINKS. Changing the
value of k does not have a significant effect on the
duplication rate. All these previous methods have
duplications for any value of k in the top-k answers.

The percentage of duplicate answers for 4 different
methods on the IMDb dataset is shown in Figure 7,
in which the edge weights are logarithmic and rmax

is 11 for the Community and r-clique methods. The
Community and r-clique methods do not produce any
duplicate answer for the queries used due to small
numbers of content nodes (e.g., only 23 nodes contain
keyword house). In addition, for 5 and 6 keywords,
the duplication rate of all methods is close to zero due
to small numbers of content nodes.

8.3 Non-Minimality of Previous Approaches

Both the complete and incomplete approaches pro-
posed in this paper are guaranteed to generate only
minAnswers. In Figure 8 we show the rates of
non-minimal answers of four previous methods on
the DBLP dataset with two different edge weights.
The rates of non-minimal answers in Community
and r-clique are higher than those of BLINKS
and Dynamic. This is because for each keyword,
Community finds the closest keyword holder to the
center of the community. However, the keyword may
be covered by another node associated with the an-
other keyword in the answer. This leads to non-
minimal answers. The similar scenario occurs for the
results of r-clique. In Dynamic, when merging two
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Fig. 8. Percentage of non-minimal answers of different
methods with different edge weights on DBLP dataset.

trees, their keywords cannot overlap. This leads to a
very small rate of non-minimality. This is also valid
on the IMDb dataset (Figure 7).

8.4 Run-time Comparison

One way to produce duplication-free answers is to
post-process the answers generated from a keyword
search method by removing the duplicates. In this
section, we would like to see if our approach (which
avoids generating duplicates) is faster than using the
post-pruning method. Below we compare the run
time of our methods to that of the r-clique and
Community methods with the post-pruning proce-
dure. When comparing with Community, we use the
centerDistance function which is the weight func-
tion used in Community. Note that minimize the
centerDistance function is slower than minimizing
sumDistance. Note that the centerDistance weight
function is also used in BLINKS. We do not compare
with Dynamic because Dynamic is too slow for its
results to be put into the same graph with others. We
do not directly compare with the original BLINKS
algorithm because BLINKS generates much fewer
answers than others. That is, if we allow all the meth-
ods to generate all the possible answers, BLINKS
only generates a subset of them while ours generates
them all (i.e., BLINK misses some answers.11) Thus,
due to the incompleteness of BLINKS, we do not
compare with the post-pruning version of original
BLINKS, but its weight function is used in the
Community method to compare with our approach
with a modified Alg. 2 that minimizes BLINKS’ weight
function.

Figure 9 shows the run time of different methods
on DBLP with the logarithmic edge weight. The

11. This is due to its use of distinct root semantic for producing
answers. The number of answers produced by BLINKS is O(n)
where n is the number of nodes in the graph. However, the
number of answers in our model is O(|Dmax|l) where |Dmax|
is the maximum size of Di for 1 ≤ i ≤ l and l is the number
of query keywords. See the related work for an example on the
incompleteness of BLINKS.

first method is r-clique (or Community in the sec-
ond chart) which may generate duplicate and non-
minimal answers. PP-Dup-Free refers to the r-clique
(or Community in the second chart) method that
post-prunes duplicate answers. PP-Dup-Free&Minimal
refers to the r-clique (or Community in the second
chart) method that post-prunes both duplicate and
non-minimal answers. Dup-Free refers to our proce-
dure for finding duplication free answers (i.e., Al-
gorithms 1 and 2). The last two methods refers to
our two approaches for finding duplication-free and
minimal answers: the incomplete and complete ap-
proaches. To make fair comparisons, all of the meth-
ods use the same indexing method described in [8].
All the run times are the average time for producing
one answer and presented in the logarithmic scale.

The run time of r-clique and Community are slower
than our duplication free method (Dup-Free) for all the
three different settings. Sine they both use the same
proximity measure, it seems to be a surprise. How-
ever, it is due to the fact that our method divides the
search space into sub-spaces more wisely. The number
of subspaces is usually smaller in our method. For
example, for four keywords, assume that the best
answer A contains only two nodes. The r-clique and
Community methods divides the search space into
four subspaces (equal to the number of keywords).
But our procedure divides the search space into two
subspaces (equal to the number of nodes in A). Since
the number of nodes is always no larger than the
number of keywords, we gain better performance.

The results show that finding duplication free an-
swers with post-processing is two to four times slower
than our procedure. Finding duplication free and
minimal answers using post processing is three to
ten times slower than each of our approaches. By
increasing the frequency of keywords, the number of
keywords or the value of rmax, the run time increases.
In addition, the run time (for producing one answer)
does not change when the value of k changes. It shows
that they all scale well with any number of required
answers.

8.5 Incomplete vs. Complete Approaches

The incomplete approach is faster in theory but it may
miss some answers. On the other hand, the complete
approach can produce all answers, but is slower.
Figure 9 shows that for up to 6 keywords, the run time
difference between the two approaches is less than 5%
(which may be hard to see on the log scale in Figure
9). This is due to the small cardinality of the Cartesian
product when the number of keywords is small and
also because the worse case rarely happens in practice.
For 7 to 10 keywords, our experiments show that the
run time difference is up to 20%. In terms of missing
answers, based on our experiments, the incomplete
approach misses few answers for up to six keywords
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distance threshold used in r-clique and Community.
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(less than 1% comparing to the complete approach).
For 7 to 10 keywords, the incomplete approach misses
up to 5% of the answers. Thus, the performances of
the two approaches are close in practice.

8.6 The Quality of the Approximation Algorithm
for Producing Minimal Answers

To evaluate the quality of the minAnswer generated
by the greedy Algorithm 4, we used exhaustive search
to find the optimal (exact) answer that minimizes
sumDistance. Figure 10 shows the average weight of
the answers produced by the exact and greedy algo-
rithms for different values of k. The results shows that
the difference of the two algorithms is at most 10% in
practice, suggesting the high quality of the proposed
greedy algorithm. Similar results are obtained for the
centerDistance function.

TABLE 8
Set of queries used in the user study.

Query Keywords
1 parallel, graph, optimization, algorithm
2 dynamic, fuzzy, logic, algorithm
3 graph, optimization, modeling,
4 development, fuzzy, logic, control

Recursive least-squares 
using a hybrid Householder 

algorithm on massively 
parallel SIMD systems

How to Partition a Graph
by a Multi-Agent Approach 

based on a Hybrid 
Optimization Toolparallel SIMD systems Optimization Tool

Hans- Heinrich 

write write

Naegeli

A distributable algorithm for

write

A distributable algorithm for
optimizing mesh partitions

Fig. 11. A tree generated from a non-minimal answer.

8.7 The Quality of the Minimal Answers

Finding duplication free answers is well motivated.
Clearly, users prefer answers without duplication.
However, it may be unclear whether users prefer min-
imal (more compact) over non-minimal (less compact)
answers. To investigate this issue, we conducted a
user study that compares minimal and non-minimal
answers in terms of their relevancy to the query. For
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Recursive least-squares 
using a hybrid Householder 

algorithm on massively

How to Partition a Graph
by a Multi-Agent Approach 

based on a Hybridalgorithm on massively
parallel SIMD systems

based on a Hybrid
Optimization Tool

write write

Hans- Heinrich 
Naegeli

Fig. 12. A tree generated from a minimal answer.
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Fig. 13. Results of the user study.

this purpose we used 4 meaningful queries for the
DBLP dataset as shown in Table 8 and applied our
Algorithms 1 and 2 to find duplication-free answers.
We collected the first 10 non-minimal answers from
the top-100 answers for each query, and used Algo-
rithm 4 to convert them into minimal answers. We
asked 8 users (who are graduate students in computer
science but not involved with this work) to compare
each pair of non-minimal and minimal answers by
giving each answer a relevance score between 0 and 1
with 1 meaning completely relevant and 0 completely
irrelevant to the query. Each answer is presented to
the user as a Steiner tree generated using the first
answer presentation method discussed in Section 3.
Figure 11 shows a tree generated from a non-minimal
answer for the first query (i.e. ”parallel graph opti-
mization algorithm”) and Figure 12 shows the tree
for its corresponding minimal answer.

For each answer we use the average of the relevance
scores from the 8 users as the relevance score of the
answer. For each query, we compute the average of
the relevance scores of its first k non-minimal an-
swers, and the average of the relevance scores of their
corresponding minimal answers, where k = 5 or 10.
These average relevance scores are presented in Figure
13. Clearly, minimal answers receive higher relevance
scores than non-minimal ones in all the queries. This
indicates that users prefer more compact answers
as long as the set of nodes cover all of the query
keywords. Also, larger answers have higher chance
to include irrelevant nodes.

To further study the quality of the minimal answers,
a state-of-the-art IR score is used to evaluate the
answers. The IR scores are calculated based on the
method used in [22]. The IR-score of a content node
v for query Q is calculated as follows:

Score(v,Q) =
∑

k∈Q∩v

1 + ln(1 + ln(tf))
(1 − s) + s cs

AVcs

× ln
N + 1

df
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Fig. 14. Results of the IR-Based ranking.

where, for a word k that appears in both v and Q, tf
is the frequency of k in v, df is the number of nodes
of the same type as v that contains k12, cs is the size
of v in characters, AVcs is the average size of all of
the nodes with the same type as v in characters, N
is the total number of nodes with the same type as
v and s is a constant. The same as in [22], we set s
to 0.2. Then, the combined score of the answer A that
contains p content nodes is calculated as follows:

CombinedScore(A,Q) =
∑p

i=1 Score(vi, Q)
p

The IR scores of minimal and non-minimal answers
for the queries in Table 8 are presented in Figure 14.
The result suggests that the IR scores of the minimal
answers are generally higher than the non-minimal
answers (except for the third query in which the IR-
scores of both of the answer sets are very close.).

9 CONCLUSION

We have proposed novel and efficient methods for
keyword search in graphs. A problem with existing
approaches is that they may produce duplicate an-
swers that have the same set of content nodes with
trivial differences in their connections. To address this
problem, we introduced a procedure that produces
duplication free answers by wisely dividing the search
space. In addition, since users are usually interested
in exploring more compact answers [8] and in some
applications (such as textbook selection) answers with
unique contributions from each node are preferred,
we defined minimal answers and proposed two algo-
rithms for converting an answer to a minimal answer
and two approaches to finding top-k or all duplica-
tion free and minimal answers. Our algorithms are
guaranteed to generate duplication-free and minimal
answers. We presented the rates of duplicate and non-
minimal answers produced by previous approaches.
We compared the run-time of our proposed methods
to that of using post-pruning techniques to remove
duplicate answers. We showed that our approaches
are faster than post-pruning techniques. We also
showed that our greedy algorithm for minimizing the
weight of a minimal answer produces minimal an-
swers whose weights are close to the optimal weights
produced by the exact algorithm. Finally, we show

12. For example, if v is a paper, df is the number of the papers
containing keyword k in the dataset.
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that the minimal answers have higher quality than
non-minimal answers through a user study and a
state-of-the-art IR weighting function. our user study
indicates that users prefer minimal answers to non-
minimal ones.
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