
Precise Documentation of Requirements and Executable
Specifications

Jonathan S. Ostroff, Chen-Wei Wang and Simon Hudon

Technical Report CSE-2012-03

June 11 2012

Department of Computer Science and Engineering
4700 Keele Street, Toronto, Ontario M3J 1P3 Canada

Precise Documentation of Requirements
and Executable Specifications

Jonathan S. Ostroff, Chen-Wei Wang, Simon Hudon

Abstract

We propose a format for precise documentation of requirements to drive the
development of dependable software products and to provide evidence for their
certification. Requirements are elicited from customers and expressed informally
as atomic English descriptions. To analyze the consistency of the requirements, we
translate them into a software specification consisting of model contracts and tabular
expressions. Model contracts describe queries as pre/post-conditions using math-
ematical constructs (e.g. quantifiers, sets, relations, sequences) which make them
more expressive than classical implementation contracts. Tabular expressions use
these queries to provide complete black-box descriptions of the system input-output
relation. We validate the requirements via proofs of (a) the completeness, dis-
jointness, and well-definedness of the specification and (b) the consistency between
the specification and the atomic requirements. The model contracts are translated
into an executable specification using MSL (model specification language). The
executable specification plays a dual role. Even before code production, the speci-
fication is used to validate the requirements. Once the code is produced, we verify
that the code satisfies the specification via runtime assertion checking.

Keyword: precise documentation of requirements, model contracts, well-definedness
of tabular expressions, executable specifications, validation, runtime verification,
certification.

1

Precise Documentation using MSL Page 2 of 32

Contents

1 Introduction 3

2 Precise documentation: overview of our contribution 6

3 Atomic E-descriptions 8

4 Modular specifications 10

5 Atomic R-descriptions 12

6 Software specification as model contracts and tabular expressions 13

7 Critical abstraction in the pulse software specification 13

8 Validating requirements via proofs 15

9 Well-definedness of queries in specification modules 17

10 Well-definedness of tabular expressions 26

11 MSL – executable specifications 30

12 Conclusion 31

List of Figures

1 IEEE-181 standard (2011) for a Single Positive Pulse 3
2 Is this a single positive pulse? . 3
3 Context diagram for pulse software . 4
4 Validation and Verification entail: Env , Imp ` Req 5
5 Completeness, Disjointness and Well-definedness of tabular expressions . . 5
6 Modular Specification for IEEE-181 single positive pulses 11
7 Specification of real functions in floats . 15
8 Proving a property of module positive that also validates REQ9 15
9 Design of Mathematical Specification Library 29

List of Tables

1 Function table for requirements (see Table 3 for conditions) 17
2 Output Parameters . 17
3 Conditions . 17
4 Errors and Warnings . 17

Precise Documentation using MSL Page 3 of 32

1 Introduction

Software certification has emerged as an important issue for governments, consumers and
software developers of safety or mission critical software such as medical devices, nuclear
reactors or high assurance business systems. One challenge is how to develop software in
a way that facilitates certification. The other is how to collect and use evidence about
software products to evaluate whether they should or should not be certified for use. An
effective standard is one that helps developers to produce systems of acceptable reliability
and safety. It should also help certifiers to determine compliance with the standard.

A necessary part of product-based certification is the need for artifacts such as re-
quirements documents, design specifications, and arguments showing that requirements
have been validated and the software verified for compliance with the specifications [11].
In this paper we propose a format for precise documentation using model contracts. The
format helps to validate the requirements. Requirements are translated into executable
specifications that can help to check that code satisfies the requirements. The methods
of this paper are applicable to transformational systems or reactive systems in which it is
sufficient to check one step transition functions [9].

As a running example, we will use recent work with an industrial partner. The partner
provided a few hundred lines of code taken from their software for a biomedical device
where the interest is in monitoring vital signs such as blood pressure, heart rate and
temperature. In Fig 3 we have identified the boundary of the pulse software and its
operating environment. A reading from the device arrives as a sampled pulse. The
software is required to calculate parameters of the pulse as defined by the IEEE Standard
181 on Transitions, Pulses, and Related Waveforms (see Fig. 1).

Figure 1: IEEE-181 standard
(2011) for a Single Positive Pulse

80

100

120

140

160

180

200

220

240

0 5 10 15 20 25 30 35

y10

y50

y90

y10

y50

y90

Figure 2: Is this a single positive pulse?

The sampled waveform is a plot of pressure levels (vertical y axis) versus time instants
(horizontal t axis). In the IEEE-181 standard, a single positive pulse is divided into a
positive-going transition (one whose terminating level s2 is more positive than its orig-
inating level s1), and a negative going transition (one whose terminating state is more
negative than its originating state). The standard specifies that we use linear interpolation
to obtain times that are in-between the sampled time instants.

The software calculates a variety of parameters using floating point arithmetic. For
each transition of the pulse this includes: the 10%, 50% and 90% levels/instants and

Precise Documentation using MSL Page 4 of 32

transition duration. Pulse parameters such as amplitude, duration etc. must also be
calculated, all according to IEEE-181 requirements.

The code and five sample pulses were provided as a small example of the challenges
that our industrial partner is faced with in developing much bigger systems. This pulse
example, although small, will be used to illustrate the use of precise documentation to
drive software quality and provide some evidence for certification. Our industrial partner
had the following questions:

 Software

 Under Development

(SUD)

IEEE-181

Pulse

Standard

blood cuff
measuring

instruments

and filters

Patient

Environment

monitored
variables

controlled
variables

signal: SEQ[STRING] pulse parameters:
1) duration
2) 10%, 50%, 90% levels/instants

errors

Figure 3: Context diagram for pulse software

1. How can we increase confidence that our code is correct. Are there static tools that
can be used to check the code mechanically (such as detecting division by zero)? The
need to deal with floating point arithmetic is an additional challenge.

2. How can we present arguments to certifying agencies such as the FDA that the code
is safe and fit for use?

3. One of the major problems is detecting if an input signal is a single positive pulse. In
healthy patients a blood pressure signal might be close to Fig. 1 representing a classical
positive single pulse. But what about the signal in Fig. 2? For ill patients there may be
significant variance from the classical shape and at some point we need to flag that the
signal does not really represent a legal pulse. The code does have some error checking
which is an implicit statement of what is acceptable as input. For example, the code
signals an error when there are zero data points thus ruling out such input. However,
providing a more complete specification is challenging. There are data sets where
the code produces spurious results. On the other hand, unless we can state what we
are calculating, we are unlikely to be able to demonstrate compliance with standards

Precise Documentation using MSL Page 5 of 32

Requirements
Req

Specification
Spec

Implementation Code
Imp

- atomic E/R statements
- global properties

- tabular expressions
- model contracts
 * completeness/disjointness
 * well-definedness
 * proofs of global properties
- executable specifications (MSL)

validation: Env, Spec ⊢ Req verification: Imp ⊧ Spec

Figure 4: Validation and Verification entail: Env , Imp ` Req

Input conditions Output r
C1(x) C11(x) R1(x , r)

C12(x) R2(x , r)
C3(x) R3(x , r)

Given : P1 , C1(x)∧C11(x)

P2 , C2(x)∧C12(x)

P3 , C3(x)

Qi , Ri(x , r) for i ∈ 1 . . 3

(a) Meaning of Table : ∀i ∈ 1 . . 3 • Pi⇒Qi

(b) Completeness : ∃i ∈ 1 . . 3 • Pi

(c) Disjointness : ∀i , j ∈ 1 . . 3 | i 6= j • ¬(Pi ∧Pj)
(d) Well-definedness : ∀i ∈ 1 . . 3 • D(Pi)∧(Pi⇒D(Qi))

Figure 5: Completeness, Disjointness and Well-definedness of tabular expressions

requiring that medical devices be safe and efficacious. Thus a complete specification
of behaviour is imperative. But how do we do that? The IEEE standard provides no
guidance on when a signal is a a valid single pulse or not.

Static checkers are capable of finding inconsistencies in the implementation (null pointers,
indices out of bound, division by zero, etc.). Likewise strongly typed languages provide
certain consistency guarantees in implemented code. But even if the implementation is
internally consistent we still do not know that we are building the right product, one that
satisfies the goals of our customers. The most severe problems occur at the requirements
stage and at the software’s interface with the rest of the system [10]. Accidents involving
software occur, not because the software failed to meet its requirements, but because the
requirements weren’t the right requirements.

At the very least we need two artifacts: the program code and a specification that
captures customers goals. The code describes what executions will do. The specifica-
tion describes what they are supposed to do. The terms verification and validation are
commonly used in software engineering to mean two different types of analysis (Fig. 4).
In validation we ask: Are we building the right system? In verification we ask: are we

Precise Documentation using MSL Page 6 of 32

building the system right? Validation is the process of checking whether the specification
captures the customers needs, while verification is the process of checking that the soft-
ware meets the specification. Both types of analysis require the existence of a complete
and unambiguous specification.

The specification for the pulse code is supposedly the IEEE-181 standard. However,
that standard itself is ambiguous in some places and not always complete. For example,
there is no guarantee that an input signal will be monotonically increasing in a positive
transition (see Fig. 2). There may thus be multiple 50% instants. The standard specifies
that the first one must be used. This makes sense for the positive transition but seems
an inconsistent choice for the negative transition, in which case the last 50% seems more
appropriate. At the very least, the standard should explicitly specify which instant to
choose for each transition. More such examples will emerge in the sequel.

The pulse code provided by our industrial partner fails to signal input errors and does
not calculate parameters correctly due to the absence of precise requirements. If one
submits the input signal 〈0, 1〉 to their code, no error is returned and the parameters are
thus calculated. One might imagine that all is in order. But, when we examine outputs
such as pulse duration and other parameters what is returned is NaN (not a number)
due to division by zero and other issues. Input signal 〈0, 1, 0〉 produces no error (which
is correct) and no NaN in the outputs. But, 〈0, 1, 1〉 also produces no error (which is
incorrect) even though may of the parameters calculated return NaN. Precise requirements
and validation of the requirements (e.g. via checks for completeness, disjointness and well-
definedness) will address these issues.

2 Precise documentation: overview of our contribution

The lack of precise requirements is the most critical problem in the pulse software to
the point that the developed code fails to signal input errors and does not calculate the
parameters correctly. The effort that went into building the code was premature. The
first question to address is “are we building the right system”?

Even medium sized projects typically involve hundreds of requirements needing or-
ganization into a proper hierarchical structure. In addition to proper organization, we
propose a format for rigorous mathematical documentation for validating requirements.
An overview of our notion of precise documentation is shown in Fig 4. In our approach, a
requirements document (RD) contains a context diagram, E/R-descriptions (atomic envi-
ronment and requirement descriptions), and a formal specification using model contracts
and tabular expressions.

Given that requirements are about the phenomena of the environment, there is a
need to discover the system boundary with monitored variables as the inputs and con-
trolled variables as the output [6, 14, 4]. The context diagram (Fig. 3) and English-
language atomic E-statements capture assumptions about the environment in which the
software product must work and delineate the system boundary. In the pulse example,
E-statements (Section 3) differentiate between valid and invalid signals. R-statements
(Section 5) describe the required calculation of parameters for valid pulses and the error
codes for invalid pulses. Each R-description should be atomic (each description carries a
single traceable element), clear (everyday language is perhaps the only medium that all
users and developers share), verifiable (there is some way to test it) and abstract (does

Precise Documentation using MSL Page 7 of 32

not impose a specific solution or implementation).
How can we organize our requirements in such a way that we can argue for their

completeness? Black-box input-output relations specified as tabular expressions (Fig. 5)
have straightforward proof obligations for completeness and disjointness [17]. But, com-
plex systems will usually require the use of auxiliary functions in tabular expressions. A
critical issue is how to consistently introduce model contracts involving partial functions.
We contribute the following:
• We use model contracts (Section 6) involving pre/post conditions to document auxil-

iary functions used in the tabular expressions. The pre/post conditions use standard
mathematics (predicate logic, set theory, etc.). Modules (Section 4) are used to or-
ganize the functions into related units for simplicity and compositional reasoning. A
specification is the tabular expression documenting the input-output function together
with the model contracts. Specifications will be used to validate the E/R-statements.
For the pulse example, the complete specification is less than two pages (Fig. 6 and
Table 1).
• Preconditions entail that our functions are partial and thus tabular expressions may not

be well-defined. We provide proof obligations for determining when tabular expressions
are well-defined. The well-definedness of a tabular expression is provided in Fig. 5 (see
(d)). A table is well-defined if all its rows are well-defined. Section 9 discusses the
necessary proof obligations.
• As analysis proceeds, we are usually able to derive important global properties. These

global properties are documented as atomic R-statements (for confirmation by our
customers and domain experts). We provide the proof obligations for establishing that
the specification (model contracts and tabular expressions) entails the global properties
(see Section 8).
The software to be developed addresses a specific domain of discourse. It might be

nuclear reactors or medical devices and pulse signals as in our case. There is a need to
devise a suitable (and, if possible, re-usable) theory to deal with the domain in the spirit
of abstract data types where we list the applicable operations and their properties. Meyer
has pointed out that: “If we do not treat this task as a separate step, we end up with
the kind of specification that works for toy examples but quickly becomes unmanageable
for real-life applications. Most of the verification literature, unfortunately, relies on such
specifications. They lack abstraction since they keep using the lowest-level mathematical
objects and constructs, such as numbers and quantified expressions. They are to specifi-
cation what assembly language is to modern programming”[13]. At the specification level
we need the full expressive capability of abstract mathematics including the freedom to
invent new notation. During the development of the formal specification, it is essential
to find a suitable abstraction for describing the essential properties of the system under
development. For the pulse software, a real-value interpolation function is the appropriate
abstraction for linking the input (sampled waveform) with the calculation of the output
parameters (see Section 7).

What evidence can we provide for validating of the requirements and verifying the
software? In the previous sections of this paper we provided a method for developing
a precise requirements document (RD) using model contracts and tabular expressions.
Given such an RD, we have a hierarchy of increasing assurance as follows:

Precise Documentation using MSL Page 8 of 32

1. Testing and inspection of the software against the RD: Testing commences once the
code is produced. This is late in the process. If defects are discovered the rework can
significantly impact on the cost and timescale of the process, especially if there are
defects or inconsistencies in the design or the RD.

2. The use of executable specifications via runtime assertion checking (see MSL below):
Before any code is developed, executable specifications do automatic type checking
and are used to check for completeness, disjointness and well-definedness of the tabular
expressions. They are also used to check the consistency of global properties (such as
REQ9). While developing production code, executable specifications are used to check
that the implementations satisfy the specification.

3. Proofs : The highest level of assurance is where both validation and verification are
done via proofs. In this paper we developed an appropriate calculus for such proofs
(e.g. see Fig 8) based on our notion of documentation and model contracts. While
substantial progress has been made in mechanizing such proofs, there are still many
challenges [5].

Where the highest level of assurance is needed, we provide the necessary proof obliga-
tions. In Section 11, we also provide executable specifications by extending MSL (Model
Specification Language [15]) to support floating point arithmetic and real-valued func-
tions. Model contracts can be stated in MSL allowing for more abstract descriptions than
classical contracts (which are more suitable for checking implementation consistency).
Such executable specifications are used to validate requirements by checking complete-
ness, disjointness, well-definedness and consistency between tabular expressions and global
properties. This may be done before any code is developed. Once the software is devel-
oped, the implemented code can be checked against the executable specifications. In the
conclusion (Section 12) we briefly review how the methods of this paper can be applied
to the challenges presented by the pulse example.

3 Atomic E-descriptions

As mentioned earlier, we use the pulse example to illustrate our notion of precise docu-
mentation. Consider the context diagram for the pulse code in Fig. 3 (using a notation
adapted from [7]). The context diagram describes the boundary between the software
system under development (SUD) and the environment in which that software operates.
Requirements must take into account phenomena in the environment. In fact, the soft-
ware satisfies its requirements if it produces the required effect in the problem domain, i.e.
in the environment. Such requirements will be documented with atomic R-descriptions.
We will also have E-descriptions to document assumptions that we make about the envi-
ronment. We now illustrate R/E-descriptions for the pulse example.

On the one hand we had (a): the code provided by our industrial partner. We also
had (b): the IEEE-181 standard, which was used to produce a requirements document
sufficiently rigorous to derive (predict) the output given an arbitrary input signal (e.g.
the input in Fig. 2). We then compared the results of (b) with (a). There are some
remarkable divergences that illustrate the issues we have raised.

One divergence is in the calculation of the pulse amplitude and the resulting 10%,
50% and 90% levels of the input signal. For example, the code (a) yielded a 50% level
of 162.3461 mmHg for the positive transition and 162.5000 for the negative transition

Precise Documentation using MSL Page 9 of 32

whereas our document (b) yielded 162.3461 for both transitions. Why this divergence?
Section 5.1 of the standard asserts that the 50% level of a two state waveform is

calculated from the pulse amplitude, i.e. the difference between the high state s2 and
the low state s1 of the signal. A variety of ways are provided for determining the low
and high levels including histograms, Short-estimators and peak methods as in Section
5.2.3.1: “Determine the maximum peak and minimum peak values of ... the single pulse
waveform: 1) Take the minimum peak value as the low or first state level. 2) Take the
maximum peak value as the high or second state level.”

Contra (a), the standard does not mention calculations of different peaks for each
transition. Rather there is a single peek for the pulse and hence the same 50% level for
each transition as per (b). When questioned, our industrial partner answered that their
input signals are somewhat asymmetric and thus they decided to calculate the amplitude
and levels per transition. The standard would be clearer if it had explicitly addressed all
possibilities including asymmetric pulses. In fact, the methods discussed in this paper
might very well be used by standards organizations and would help to ensure that the
standards are complete.

ENV1

A valid pulse consists of at least 3
samples, has a unique maximum
and each transition has at least one
50% instant.

A pulse is valid

iff s3∧ um ∧ t50?

(modular specifica-

tion Fig. 6)

The crucial point is that assumptions about the environment in which the software
will be operating need to be explicitly documented in atomic descriptions such as ENV1.
Without that we will not be able to check the correctness of the code.

ENV1 defines a valid single positive pulse. There must be at least 3 samples, a
unique maximum and both 50% levels must exist. Without these constraints, we cannot
partition the input pulse into two transitions and thus an error must be signalled. ENV2
documents our assumption that the levels are the same across both the positive and
negative transitions.

ENV2

The unique maximum partitions
the waveform into a positive tran-
sition and a negative transition.
The 10%, 50% and 90% levels are
the same for both the positive and
negative transitions.

See levels y10, y50

and y90 in Table 2

and in Fig. 6 (wave-

form module).

An atomic description consists of at last three parts: the description number (e.g.
ENV1), an informal statement in English and a cross reference to the mathematical
model. The English statement allows us to communicate with our customers when we
validate the RD and it may also describe global safety properties that the system as a

Precise Documentation using MSL Page 10 of 32

whole must satisfy. The description number provides traceability through to the design,
the code and the acceptance tests. (An atomic description might have more attributes
such as the date it was documented, the author, the basis for the assumption and so on;
and there are tools such as DOORS for keeping track of such statements).

The input is a file which is a sequence of strings (SEQ [S], where S is the set of all
strings). The input file represents a sampled waveform of blood pressure from the patient.
Each string in the sequence is supposed to represent a double precision value that satisfies
the IEEE-758 real number specification. However, there is no guarantee that the input
data has not been corrupted, or there may have been overflow in upstream instrumentation
so that strings might represent special values such as +Infinity, -Infinity, and NaN. We
let F denote the set of all finite floats (i.e. no specials). The boolean query vf (valid file)
holds precisely when all the strings in the file can be converted into finite floats.1

4 Modular specifications

It is easier to understand and analyze specifications if they can be decomposed into
modules. Fig. 6 provides modular specifications such as s-SIGNAL. SIGNAL is a module
template and s is an instance of that template. The sampled input waveform is represented
as swf : SEQ [F] with precondition vf .

Boolean queries s3 (are there at least 3 samples?) and um (is there a unique max-
imum?) are also defined. For example ymax (the maximum peek level of the pulse) is
defined as (↑ i |1 ≤ i ≤ n • swf (i)) where ↑ is the maximum quantifier, and with pre-
condition s3 , n ≥ 3 (where n , swf .count) to ensure that ymax is well-defined. The
unique maximum query um is defined as (#i |1 ≤ i ≤ n • swf (i) = ymax) = 1, using the
counting quantifier.

Our module specifications are like UML object diagrams in terms of state sharing, e.g.
module p (an instant of PULSE) and negative and positive (instances of TRANSITION)
share the module instance w . However, in another sense, module diagrams are unlike
object diagrams. Object diagrams usually show only object attributes. Module templates
provide all the features of the module. More importantly, objects (instances of classes)
can be created and linked dynamically and thus their diagrams only illustrate examples
of state. By contrast, module instances and their interconnections exist right from the
beginning, i.e. the structure is static throughout the computations of the system, and
their diagrams characterize the general state. Thus p.negative.w always refers to the same
module as p.positive.w (the state of module w is thus shared by modules positive and
negative). This removes the need for any aliasing analysis between modules (additional
constructs will be needed for those situations in which aliasing is required to be dynamic).

Modules thus simplify specifications by allowing us to partition the state and encap-
sulate the resulting parts (and their relevant operations). Implementations are free to
choose a different partition. The main effect of the use of modules is on the intellectual
complexity of the specification (a ”bad” partition will thus make it harder on the de-
veloper). Module composition is thus defined as the union of sub-module variables and
operations.

Although the analogy is not precise, we have used the UML composition relation

1Programing languages come with built-in functions to check if a string is a finite float and to convert
from S to F.

Precise Documentation using MSL Page 11 of 32

p-PULSE

duration: F , t50n − t50p
--time between 50% instants of positive and negative transitions

require t50?
t50?: B , t50p?∧ t50n? --do both 50% instants exist?

t10?: B , t10p?∧ t10n? --do both 10% instants exist?

require t50p?∧ t50n?
error ,warning , ok : B
error , ¬(vf ∧ s3∧ um ∧ t50?)
warning , ¬error ∧¬t10?
ok , vf ∧ s3∧ um ∧ t50?∧ t10?

assume: vf ∧ s3∧ um
property:
complete(〈error ,warning , ok〉)∧ disjoint(〈error ,warning , ok〉)
ok⇒ t10p?∧ t10n?∧ t50p?∧ t50n?∧ t90p?∧ t90n?∧ durationp?∧ durationn?
-- ‘ok’ means all parameters can be calculated

ok⇒(t10p < t50p < t90p)∧(t90n < t50n < t10p)

positive-TRANSITION

t10p?: B , wf .has(1, t50p, y10)
t10p: F , wf .last(1, t50p, y10)

require t10p?
t90p?: B ,
wf .has(t50p, tmax , y90)
t90p:F ≡ wf .first(t50p, tmax , y90)

require t90p?
durationp?: B , t10p?∧ t90p?
durationp: F , t90p − t10p

require durationp?

assume: vf ∧ s3∧ um ∧ t50p?
property:
durationp?⇒ t10p < t50p < t90p

negative-TRANSITION

t10n?: B , wf .has(t50n,n, y10)
t10n: F , wf .first(t50n,n, y10)

require t10n?
t90n?: B ,
wf .has(tmax , t50n, y90)
t90n:F ≡ wf .last(tmax , t50n, y90)

require t90n?
durationn?: B , t10n?∧ t90n?
durationn: F , (t90n − t10n)

require durationn?

assume: vf ∧ s3∧ um ∧ t50n?
property
durationn?⇒ t90n < t50n < t10n

w-WAVEFORM

wf : RFUN[F] with wf .samples =
swf
--real function wf ∈ F 9 F

amplitude: F , ymax − ymin
y10: F , ymin + 0.1 ∗ amplitude
y50: F , ymin + 0.5 ∗ amplitude
y90: F , ymin + 0.9 ∗ amplitude
t50p?: B , wf .has(1, tmax , y50)
t50p: F , wf .first(1, tmax , y50)
require t50p?

t50n?: B , wf .has(tmax ,n, y50)
t50n: F , wf .last(tmax ,n, y50)
require t50n?

tmax : F --instant for ymax
require s3∧ um
ensure 1 ≤ Result ≤ n

∧ wf (Result) = ymax

assume: vf ∧ s3∧ um

s-SIGNAL

swf : SEQ[F] -- sampled waveform

n : N , swf .count
s3: B , (n ≥ 3) --at least 3 samples?

ymax : F , (↑ i |1 ≤ i ≤ n • swf (i))
--maximum level (s2 in IEEE-181)

require s3
ymin: F , (↓ i |1 ≤ i ≤ n • swf (i))
--minimum level (s1 in IEEE-181)

require s3
um: B , (#i |1 ≤ i ≤ n • swf (i) = ymax) = 1
--is there a unique maximum?
require s3

assume: vf --valid file

Figure 6: Modular Specification for IEEE-181 single positive pulses

Precise Documentation using MSL Page 12 of 32

between modules to denote module dependencies. Following the dependency arrows,
module instance positive depends on w which depends on module s . Thus, for example,
an expression tmax in module positive should really be denoted w .s .tmax . However,
where there is no ambiguity, we may use tmax without the module qualifiers. Section 6
provides more detail of modular specifications.

5 Atomic R-descriptions

Having defined what a valid (and invalid) pulse is, we can now write the appropriate
R-descriptions.

REQ3

ok: If the input pulse is valid and
the 10% levels of both transitions
exist then output all the parame-
ters:
(a) For each transition: 10%, 50%

and 90% levels and instants.
(b) For each transition: the tran-

sition duration (i.e. time from
the 10% instant to the 90% in-
stant).

(c) The pulse duration (time from
the 50% instant of the positive
transition to the 50% instant of
the negative transition).

See IEEE-181. The
input pulse is valid
and the 10% levels
exist iff query ok in
the pulse module
(Fig. 6) holds. This
corresponds to the
first row of the
tabular expression
in Table 1.

Output parameters
are listed in Table 2
and specified in
Fig. 6.

REQ4

Warning: If the input pulse is
valid and at least one of the 10%
levels is missing then output all the
parameters except for the missing
10% levels and instants (and as-
sociated transition duration) and
issue a warning.

See pulse mod-

ule (Fig. 6) for

query warning ,

corresponding to

3 warning rows in

grey in Table 1. See

Table 4.

REQ5

Error: If the input pulse is invalid
then no parameters are calculated
and appropriate error messages are
printed.

See query error in
pulse module Fig. 6.
Error message are in
Table 4.

Precise Documentation using MSL Page 13 of 32

6 Software specification as model contracts and tabular expressions

The modular specification of the pulse software in Fig. 6 contains queries defined by
model contracts (pre/post-conditions). These queries simplify the description of the input-
output behaviour of the software systems as a tabular expression (Table 1). The model
contracts (organized by modules) and the tabular expression together constitute the soft-
ware specification. This specification will be used to validate the requirements via checks
for its completeness, disjointness and well-definedness and by proving that the specifica-
tion entails global properties described in the requirements. Initially, some of the global
properties were omitted in the atomic R-descriptions. The validation process caused us
to realize that these requirements were necessary. We provide an example in the sequel.

We have already explained the the module s (instance of module template SIGNAL).
We now explain some aspects of module w (instance of WAVEFORM) and module positive
(instance of TRANSITION) in Fig. 6. Section 5.3.1 of the IEEE-181 standard provides the
procedure for calculating the 50% level w .y50 and corresponding instances t50p (t50n)
of the positive (negative) transition.

The standard does not specify (and the code from our industrial partner does not
check) that w .y50 can only be calculated if the precondition vf ∧ s3∧ um holds. To
address this defiency in the standard, we use an “assume: vf ∧ s3∧ um” clause in the
waveform module to assert that the precondition vf ∧ s3∧ um applies to all queries in
module. The expression w .y50 may only be used in a context in which its precondition
holds, and it is then said to be well-defined (see Section 9).

7 Critical abstraction in the pulse software specification

Section 5.3.1 (eqn. 5) of the IEEE-181 standard provides a linear interpolation formula
for calculating in-between instants (e.g. the 50% instant positive.t50p). A problem with
the standard is that the formula is undefined for integer values of t (representing the
original samples) due to division by zero. Also, there may be multiple 50% instants. The
standard specifies that the first one must be used. This makes sense for the positive
transition but seems an inconsistent choice for the negative transition, in which case the
last 50% seems more appropriate. At the very least, the standard should explicitly specify
which instant to choose for each transition. To address these problems in the standard (see
the environment in the context diagram Fig. 3), we introduce the following E-description:

ENV6

Associated with the sampled
waveform swf , there is an ap-
proximation wf to the continuous
waveform using linear interpolation.

wf : RFUN[F] is in

the waveform mod-

ule in Fig. 6

Given an arbitrary sequence of float inputs (i.e. swf), we need a well-defined query that
returns a level for an arbitrary instant t . The specification thus introduces an interpolated
real wave-function wf : RFUN[F] in the waveform module. Fig. 7 provides the relevant
queries for such interpolated real functions. For example, wf .image(t) returns the inter-
polated level for arbitrary instant t under the precondition 1 ≤ t ≤ n. For simplicity, we

Precise Documentation using MSL Page 14 of 32

abbreviate wf .image(t) by wf (t). Fig. 7 also provides the definitions for wf .has(t1, t2, y),
wf .first(t1, t2, y) and wf .last(t1, t2, y).2 The remaining atomic requirements are:

REQ7

• If the positive transition has mul-
tiple 50% instants, then output
the first such instance.
• If the negative transition has mul-

tiple 50% instants, then output
the last such instance.

Clarification of an
ambiguity in
IEEE-18. See
queries t50p and
t50n in the
waveform module
Fig. 6.

REQ8
Output the 10% and 90% instants
closest to the 50% instants.

Stated in section

5.3.3.2 of IEEE-181

REQ9

• For the positive transition:
t10p < t50p < t90.
• For the negative transition:

t90n < t50n < t10n.

Clarification of an

ambiguity in IEEE-

181. See global prop-

erties in pulse mod-

ule Fig. 6.

2The relationship between the continuous waveform wf and the sampled waveform swf is swf =
1..n C wf (using the domain restriction operator). Given a real t and a natural number n, bt + nc =
btc + n. Thus bt + 1c = btc + 1. In the definition of wf (t) the coefficients always add up to one, i.e.
(bt +1c− t)+(t−btc) = 1. This eliminates the possibility of division by zero and avoids the case analysis
in the IEEE-181 standard.

Precise Documentation using MSL Page 15 of 32

RFUN[FLOAT]

samples: SEQ[F] --sampled y values
count : {1..samples.count}
image (x : F): F , (samples[bxc]× (bx + 1c − x) + samples[dxe]× (x − bxc))
--ordinate y for abscissa x
require 1 ≤ x ≤ count

has(x1, x2, y:F): B --does y occur between x1 and x2?
ensure

(1 ≤ x1 ≤ x2 ≤ count)⇒ (Result ≡ (∃x : F|x1 ≤ x ≤ x2 • image[x] = y))
¬(1 ≤ x1 ≤ x2 ≤ count)⇒ (Result ≡ false)

first(x1, x2, y: F): F , (↓ x : F|x1 ≤ x ≤ x2 ∧ image[x] = y • x)
--first instance of level y in interval [x1, x2]
require has(x1, x2, y)

last(x1, x2, y: F): F , (↑ x : F|x1 ≤ x ≤ x2 ∧ image[x] = y • x)
--last instance of level y in interval [x1, x2]
require has(x1, x2, y)

Figure 7: Specification of real functions in floats

Prove: durationp?⇒(t10p < t50p)
t10p < t50p

= 〈defn. of t10p in module positive in Fig. 6 and durationp?⇒ t10p?〉
wf .last(1, t50p, y10) < t50p

= 〈defn. of RFUN.last〉
(↑ t : F|1 ≤ t ≤ t50p ∧wf (t) = y10 • t) < t50p

= 〈↑ and <〉
(∀t : F|1 ≤ t ≤ t50p ∧wf (t) = y10 • t < t50p)

= 〈trading〉
(∀t : F|1 ≤ t ∧ t ≤ t50p ∧ t50p ≤ t • wf (t) 6= y10)

⇐ 〈drop first conjunct in range; anti-symmetry of ≤〉
(∀t : F|t = t50p • wf (t) 6= y10)

= 〈one point rule〉
wf (t50p) 6= y10

= 〈wf (t50p) = y50 and defn. of t50p in waveform〉
¬(y50 = y10)

= 〈defn. of amplitude in waveform with its assumption〉
¬((ymin + 0.5 ∗ amplitude) = (ymin + 0.1 ∗ amplitude))

= 〈arithmetic and amplitide 6= 0〉
¬(0.5 = 0.1)

= 〈0.5 6= 0.1〉
true

Figure 8: Proving a property of module positive that also validates REQ9

8 Validating requirements via proofs

REQ9 addresses a scenario in which two 10% (or 90%) instants are equally close to t50,
e.g. where the first instant occurs before t50 and the second occurs after t50. During the
analysis of the IEEE-181 standard via the modular specification (Fig. 6), we realized that

Precise Documentation using MSL Page 16 of 32

the standard does not explicitly specify which instant to choose in this scenario; hence
the need to introduce REQ9 asserting that the instants must be in the obvious order.

How do we reflect this new requirement into the specification? We do this by trans-
forming REQ9 into properties in the modules in Fig. 6. A property of a module is a
predicate that must be proved using just the definitions of features in the module and
its dependents. For example, in the positive transition module we have the property
durationp?⇒ t10p < t50p < t90p (likewise for the negative transition). Part of the proof
is provided in Fig. 8.

How do we transform the atomic requirement REQ9 into a formal specification? It is
declared as a property proof obligation ok ⇒ (t10p < t50p < t90p)∧(t90n < t50n <
t10n) in the pulse module (the top module in Fig. 6). The proof follows directly from the
proofs already performed in the two lower transition modules. This proof demonstrates
the consistency between the modular specification and the atomic description REQ9,
hence, an important component of requirements validation.

Completeness and disjointness of tabular expressions are described in (b) and (c) of
Fig. 5. The tabular expression in Table 1 specifies the input-output behaviour of the
pulse software. The rows of the table can be divided into three disjoint groups. The first
row of the table corresponds to input signals that satisfy query ok (all parameters can
be calculated). The grey rows correspond to query warning (most parameters can be
calculated, with a warning for those that cannot be calculated). The rows below the grey
area correspond to query error (invalid input, thus no parameters can be calculated).
Completeness (error ∨warning ∨ ok) and disjointness of the pulse specification also ap-
pear as properties to be proved in the pulse module (see Fig. 6). These proofs are part of
requirements validation.

Tabular expressions (e.g. Table 1) and atomic requirements (e.g. REQ9) play dif-
ferent roles. The tabular expression ensures that the input-output black-box relation is
completely specified. However, it is not obvious from the tabular expression that REQ9
holds as a global safety property. The modular specification of queries in Fig. 6 is used
to prove that REQ9 holds as a logical consequence of the tabular expression.

Precise Documentation using MSL Page 17 of 32

conditions on input Error Warning Parameters

vf s3 um t50? t10? no no all (see Table 1)

¬t10? ¬t10p? no 1 not t10p

¬t10n? no 2 not t10n

¬t10? no 3 no t10
¬t50? 1 no none

¬um 2
¬s3 3

¬vf junk 4
specials 5

output overflow 6 no none

Table 1: Function table for requirements (see Table 3 for conditions)

Parameter Description

duration pulse duration
y10 10% level
y50 50% level
y90 90% level

durationp positive transition duration
t10p positive 10% instant
t50p positive 50% instant
t90p positive 90% instant

durationn negative transition duration
t10n negative 10% instant
t50n negative 50% instant
t90n negative 90% instant

Table 2: Output Parameters

Ab. Meaning

vf is input file valid?

s3 are there at least 3 samples?

um is there a unique maximum?

t50? do both t50% instants exist?

t10? do both t10% instants exist?

t10p? does t10p exist? (t10p is positive tran-
sition instant for level y10)

t10n? does t10n exist? (t10n is negative
transition instant for level y10)

Table 3: Conditions

Error Warning

1 file has junk strings No t10p instant, positive transition duration
2 file has float specials No t10n instant, negative transition duration
3 file lacks 3 finite floats No t10 instants/duration for either transition
4 file lacks unique peak
5 file lacks both 50 percent levels
6 output overflow

Table 4: Errors and Warnings

9 Well-definedness of queries in specification modules

What is the effect of adding a new query q in a specification module? It introduces a new
axiom into the theory and rules for how to calculate with expressions in q , including the
case in which q is a partial function or relation. These partial relations are also used in
tabular expressions. We need to ensure that wherever they are used in tables they are
well-defined.

In classical tabular expressions [8, 16], all partial functions are transformed into total
functions by extending the range of functions with a special undefined value. However,
the logic used is still a two-valued predicate logic. This is achieved by defining any

Precise Documentation using MSL Page 18 of 32

expression involving an undefined term to evaluate to false in an assignment. Predicates
are identified with their satisfying assignments (so that 1÷ x = 1÷ x effectively reduces
to x 6= 0). Advantages of the approach are that the logic is kept simple, the assigned
meanings are consistent with intuitive interpretations, and the expressions are simpler in
certain cases while preserving two valued logic. However, complements will not always
work (e.g.

√
x >

√
y and

√
x ≤ √y both evaluate to false) and complexity reappears

in the axiomatic definitions of the functions (requiring the introduction of an undefined
value). Also, conventional simplification rules, and hence some automatic simplifiers and
verifiers would need to be modified or used with caution as they are often based on the
implicit assumption that functions are total. The theorem prover PVS has been used
to provide tool support for tabular expressions [9, 19, 2]. In PVS, partial functions are
converted into total functions using predicate subtyping which generates type checking
proof obligations.

Model contracts presume that functions and relations will be partial. We thus seek
a logic in which we can introduce and reason with partial functions without the need to
constantly convert them into total functions. In the logic that we adopt in the sequel, the
predicate 1÷x = 1÷x does not pass a well-definedness check (done using proof obligations
in a standard theorem prover). However, (x 6= 0) ∧ (1÷ x = 1÷ x) is well-defined and it
can then be submitted to the theorem prover as if all functions were total (the prover will
fail to prove it). We thus preserve the ability to introduce partial functions (without the
complexity and bloat of converting them into total functions) while using standard tools
and mathematical conventions. Consider the following query with its pre/post-conditions
in a specification module:

q(x : Tx) : Tr

-- introduce new query q into the theory
require Cq(x)
ensure Rq(x ,Result)

Let A be the set of axioms (and derived theorems) of our theory already in place before
the introduction of query q . For our logic we use notations similar to that of [3]. The
query can be safely introduced into our theory provided that the special local variable
Result (denoting values returned by the query) does not occur free in Cq , the free variables
of Rq are limited to x and Result , the precondition Cq and postcondition Rq refer only to
previously defined symbols, and the query is feasible:

x ∈ Tx ∧Cq(x) ⇒ ∃r ∈ Tr • Rq(x , r)

This entails that Tr is not empty. Under these conditions we can add the following axiom
to A, where r is a fresh variable:

Query Axiom: x ∈ Tx ∧ r ∈ Tr ∧Cq(x)∧(r = q(x)) ⇒ Rq(x , r)
provided: x ∈ Tx ∧Cq(x) ⇒ ∃r ∈ Tr • Rq(x , r)

Precise Documentation using MSL Page 19 of 32

In the sequel we omit typing constraints assuming that variables and expressions are
of the correct type. This is because correct typing is decidable and can be dealt with
prior to well-definedness and validity [1]. If query q is a function then we must also prove
that:

Rq(x , r1)∧Rq(x , r2) ⇒ r1 = r2

As an example, suppose we have already defined a fragment of Peano arithmetic with
constant “0”, addition “+” and successor function s ∈ N→ N with A containing axioms
such as s(x) = x + 1, s(x + y) = s(x) + y and x = y ≡ s(x) = s(y). We would now like
to introduce a predecessor (partial) function p as follows:

p(x : N) : N
-- predecessor function

require x 6= 0
ensure s(Result) = x

Obviously p(0) is undefined and so are expressions such as p(0)∨¬p(0). The question
is how to deal with such undefined expressions. Also, suppose

φ1 , p(x + y) = p(x) + y

φ2 , (x 6= 0) ⇒ (p(x + y) = p(x) + y)

How would we write proofs of sequents such as A ` φ1 and A ` φ2? We should be able to
prove the latter but the former is undefined (if x = 0) and thus should not be provable.

Following the logic developed for Event-B [1], we inductively define the WD (well-
definedness) operator D that maps formulas to their WD predicates. For a variable x we
have that D(x) , true. What about the well-definedness of a query q(x)? For a query,
D(q(x)) , D(x)∧Cq(x). This works on the assumption that the feasibility of q has
already been demonstrated, i.e. that Cq(x) is a legitimate precondition (see “provided”
clause in the Query Axiom). Given any formula α we have that D(D(α)) ≡ true, i.e. WD-
predicates are themselves well-defined [1]. We introduce additional rules for the counting
quantifier and maximums and minimums:

Precise Documentation using MSL Page 20 of 32

D(true) , true (1)

D(x) , true (2)

D(q(x)) , D(x)∧Cq(x) (3)

D(exp1 = exp2) , D(exp1)∧D(exp2) (4)

D(¬P) , D(P) (5)

D(P ∧Q) , (D(P)∧(P⇒D(Q)))

∨ (D(Q)∧(Q⇒D(P))) (6)

D(P⇒Q) , (D(P)∧(P⇒D(Q)))

∨ (D(Q)∧(¬Q⇒D(P))) (7)

D(P ∨Q) , (D(P)∧(¬P⇒D(Q)))

∨ (D(Q)∧(¬Q⇒D(P))) (8)

D(P ≡ Q) , D(P)∧D(Q) (9)

D(∀x • P) , ∀x • D(P) ∨ (∃x • D(P)∧¬P) (10)

D(∃x • P) , (∀x • D(P)) ∨ (∃x • D(P)∧P) (11)

D((#i | p ≤ i < q ∧ R(i) • P(i))) , (∀i • D(p ≤ i < q ∧ R(i))) (12)

∧ (∀i • p ≤ i < q ∧R(i) ⇒ D(exp(i)))

D((Σi | p ≤ i < q ∧ R(i) • exp(i))) , (∀i • D(p ≤ i < q ∧ R(i))) (13)

∧ (∀i • p ≤ i < q ∧R(i) ⇒ D(P(i)))

D((Πi | p ≤ i < q ∧ R(i) • exp(i))) , (∀i • D(p ≤ i < q ∧ R(i))) (14)

∧ (∀i • p ≤ i < q ∧R(i) ⇒ D(exp(i)))

D((↑ i | p ≤ i < q ∧ R(i) • exp(i))) , [∀i • D(p ≤ i < q ∧ R(i))] (15)

∧ [∀i • p ≤ i < q ∧R(i) ⇒ D(exp(i))]

∧ [∃i • p ≤ i < q ∧ R(i)]

D((↓ i | p ≤ i < q ∧ R(i) • exp(i))) , [∀i • D(p ≤ i < q ∧ R(i))] (16)

∧ [∀i • p ≤ i < q ∧R(i) ⇒ D(exp(i))]

∧ [∃i • p ≤ i < q ∧ R(i)]

Intuitively, the above definitions enumerate possible conditions where a conjunction
or implication in a predicate could be well-defined. Applying the rules to φ1 we obtain:

Prove: A ` D(φ1)

Precise Documentation using MSL Page 21 of 32

D(φ1)

= 〈 Definition of φ1 〉
D(p(x + y) = p(x) + y)

= 〈 using D rule for equality 〉
D(p(x + y)) ∧ D(p(x) + y)

= 〈 using D rules for function application 〉
(D(x + y) ∧ x + y 6= 0)∧ (D(x) ∧ x 6= 0 ∧ D(y))

= 〈 Simplifying: D(x) = D(y) = true = D(x + y) 〉
x + y 6= 0 ∧ x 6= 0

= 〈 Arithmetic and x , y ∈ N 〉
x 6= 0

So we are unable to prove that D(φ1) is a theorem. Hence predicate φ1 does not pass
the D-filter. At this point we figure out that we need x 6= 0 either in the antecedent of
φ1 or as it appears in φ2 (where φ2 , x 6= 0⇒φ1). If we redo the above proof but this
time for D(φ2) we see that D(φ2) reduces to true and hence is a theorem. The query
introduction axiom, QIA, now becomes:

Axiom QIA for query q : r = q(x) ⇒ Rq(x , r)

provided r is fresh and q is feasible, i.e.

Cq(x) ⇒ ∃r • Rq(x , r)

and feasibility is well-defined:

D(Cq(x) ⇒ ∃r • Rq(x , r))

(If q is in closed form we can use CFF, see below)

Whenever we are asked to prove a sequent A ` βq , where βq involves a query q , we
show below the need to discharge two proof obligations WD and Validity:

WD: A,QIA `D D(β) Validity: A,QIA `D β

where

H `D P , D(H),D(P),H ` P (eqvD)

Proof
Let Aq , A∧QIA. Then

Precise Documentation using MSL Page 22 of 32

P5
taut
`D D(Aq)

P3
eqvD

` D(Aq)
cut

P0
mon

P6
taut

P4
mon

Aq `D D(βq)

P1
eqvD

D(Aq),Aq ` D(βq)
cut

Aq `D βq

P2
eqvD

D(Aq),Aq ` βq
cut

D(Aq),D(Aq)⇒Aq ` βq
MP

D(Aq)⇒Aq ` βq
cut

with

P0 , D(Aq)⇒Aq ` D(Aq)

P1 , D(Aq),D(D(βq)),Aq ` D(βq)

P2 , D(Aq),D(βq),Aq ` βq
P3 , D(D(Aq)) ` D(Aq)

P4 , D(Aq),Aq ` D(D(βq))

P5 , ` D(D(Aq))

P6 , ` D(D(βq))

Q.E.D.
We have thereby separated the proof of A ` β into two separate proofs WD and

Validity. In the validity proof, we drop the precondition Cq(x) in the antecedent of QIA
as we have a guarantee that the formula is well-defined. For example, QIA applied to the
predecessor function p yields: r = p(x) ⇒ s(r) = x .

We can then reformulate the predicate logic rules in order to check the well-definedness
of any new expressions that are introduced in a proof either through ∃-introduction (in
the goal), ∀-introduction (in the hypothesis) or the cut rule [12, p46], e.g.

∀-introduction in hypothesisD
H `D D(e) H ,P [x := e] `D Q

H ,∀x • P `D Q

∃-introduction in goalD
H `D D(e) H `D P [x := e]

H `D ∃x • P

cutD
H `D D(G) H `D G G ,H `D P

H `D P

The critical idea is that both the well-definedness and validity proofs are done in this
variant of predicate calculus without the need for special machinery such as 3-valued
logic and without the need to convert partial functions into total functions.

The new sequent allows us to use implicitly the fact that each predicate is well-defined.
This means that we can use this new logic as a logic that preserves well-definedness

but for which we can prove the validity of the inference rules in the traditional predicate

Precise Documentation using MSL Page 23 of 32

calculus as [12]. We supplement the usual predicate logic, with the inference rules of
equational logic [3, 18] and prove the validity of the three new inference rules of equational
logic:

EquanimityD
H `D D(P) H `D P H `D P ≡ Q

H `D Q

LeibnizD
H `D D(P ≡ Q) H `D P ≡ Q

H `D α[x := P] ≡ α[x := Q]

TransitivityD
H `D D(Q) H `D P ≡ Q H `D Q ≡ R

H `D P ≡ R

Proof of LeibnizD.

D(H),H ` D(D(P ≡ Q))
taut

H `D D(P ≡ Q)

P0

eqvD

D(H),H ` D(P ≡ Q)
cut

H `D P ≡ Q

P1

eqvD

D(H),H ` P ≡ Q
cut

D(H),H ` α[x := P] ≡ α[x := Q]
Leibnz

D(H), D(α[x := P] ≡ α[x := Q]), H ` α[x := P] ≡ α[x := Q]
mon

H `D α[x := P] ≡ α[x := Q]
eqvD

with

P0 , D(H),D(D(P ≡ Q)),H ` D(P ≡ Q)

P1 , D(H),D(P ≡ Q),H ` P ≡ Q

When using Leibniz’s rule with `D, it is important to prove D(P ≡ Q) even though
α[x := P] ≡ α[x := Q] is well-defined. This is because the well-definedness of P and Q
in α might depend on the surrounding terms. For example, with:

α , x ∧R

It is possible to prove D(α[x := P]) by proving D(R)∧(R⇒D(P)) whereas D(P)
does not hold on its own, which makes it necessary to provide D(P ≡ Q) as a premise.

In the case of the predecessor p query, we can prove its well-definedness and feasibility
as follows:

WD of Feasibility (simplified): D(x 6= 0) ∧ (x 6= 0 ⇒ D(∃r • s(r) = x))
We prove the two conjuncts individually.

Precise Documentation using MSL Page 24 of 32

D(x 6= 0)

= 〈 D over ¬ and = 〉
D(x)∧D(0)

= 〈 D applied to atomic formulae 〉
true ∧ true

= 〈 identity of ∧ 〉
true

D(∃r • s(r) = x)

⇐ 〈 D over ∃ 〉
∀r • D(s(r) = x)

= 〈 see Lemma: D(s(r) = x) ≡ true 〉
∀r • true

= 〈 r not free in true〉
true

Lemma:

D(s(r) = x)

= 〈 D over = 〉
D(s(r))∧D(x)

= 〈 D over function application 〉
Cs(r)∧D(r)∧D(x)

= 〈 precondition of s; D over atomic formulae 〉
true ∧ true ∧ true

= 〈 identity of ∧ 〉
true

Feasibility of p: x 6= 0 ⇒ ∃r • s(r) = x .
We prove it by induction over x. In the base case (x = 0), the antecedent of the implication
becomes 0 6= 0 which makes the formula true. All that is left is the induction step
(assuming it holds for x , we prove it for s(x)):
Proof of Induction step:

s(x) 6= 0 ⇒ ∃r • s(r) = s(x)

⇐ 〈 instantiation with r := x 〉
s(x) 6= 0 ⇒ s(x) = s(x)

= 〈 reflexivity of =〉
s(x) 6= 0 ⇒ true

= 〈 right zero of ⇒ 〉
true

In the above proof we did not need the induction hypothesis x 6= 0 ⇒ ∃r • s(r) = x .
When the query postcondition is in closed form “Result = f (x)” and where Result

does not occur in f (x) and f (x) only refers to already introduced queries that themselves
have been shown to be feasible, we then have a simpler proof obligation for feasibility:

CFF(closed form feasibility): D(Cq(x)) ∧ (Cq(x)⇒D(q(x)))

Proof : If Rq(x , r) is in closed form, then query q is feasible:

Assume: Rq(x , r) , r = fq(x), i.e. Rq(x , r) is in closed form

Precise Documentation using MSL Page 25 of 32

∃r • R(x , r)

= 〈 Assumption: R(x , r) is in closed form 〉
∃r • (r = f (x))

= 〈 one-point rule 〉
true

WD of feasibility: D(Cq(x)) ∧ (Cq(x) ⇒ ∀r • D(Rq(x , r)))
The only difference between the above formula and CFF is in the substitution of

D(q(x)) for ∀r • D(Rq(x , r)). We will therefore write our proof by strengthening the
latter into the former.

Assume: Rq(x , r) , r = fq(x), i.e. Rq(x , r) is in closed form
∀r • D(Rq(x , r))

= 〈 Assumption: R(x , r) is in closed form 〉
∀r • D(r = q(x))

= 〈 D over = 〉
∀r • D(r)∧D(q(x))

= 〈 D over atomic formulae ; identity of ∧ 〉
∀r • D(q(x))

⇐ 〈 r is not free in D(q(x)) 〉
D(q(x))

Therefore, CFF is sufficient for proving the feasibility of a query when its specification
is expressed in closed form.
We use the WD proof obligation to filter out formulas that are not well-defined. Only on
formulas such as φ2 which pass the filter do we then go on to the validity proof.

Prove: A,QIA `D φ2

Assume: x 6= 0
(p(x + y) = p(x) + y)

= 〈 Let r1 = p(x + y) and r2 = p(x) 〉
(r1 = r2 + y)

= 〈 From A: a = b ≡ s(a) = s(b) 〉
s(r1) = s(r2 + y)

= 〈 From A: s(a + b) = s(a) + b 〉
s(r1) = s(r2) + y

= 〈 By QIA s(r1) = x + y and s(r2) = x 〉
x + y = x + y

= 〈 reflexivity of equality 〉
true

This proof justifies the less formal style of mathematicians who intuitively avoid ill-
defined statements and argue about partial functions and relations directly using their
definitions without the need to pay attention to their preconditions. The assumption

Precise Documentation using MSL Page 26 of 32

x 6= 0 is not actually used in the validity proof. It is needed only to ensure that we pass
the WD proof obligation.

10 Well-definedness of tabular expressions

We can now also justify the well-definedness condition (d) of the tabular expression in
Fig. 5 (using the meaning definition (a) of a tabular expression).

Prove: (d) ⇒ D((a))
D(∀i ∈ 1 . . 3 • Pi⇒Qi)

⇐ 〈 using the D definition for ∀ 〉
∀i ∈ 1 . . 3 • D(Pi⇒Qi)

⇐ 〈 Definition of D for ⇒ 〉
∀i ∈ 1 . . 3 • D(Pi)∧(Pi⇒D(Qi))

As an example, consider the introduction of query ymax in the signal module (Fig. 6)
and assume that we have already demonstrated the feasibility of query swf (i) (which
must be done as part of the development of the theory for sequences SEQ[G]). Here is
the proof that the query ymax is feasible:

Prove: vf ∧ s3 ⇒ [∃r • r = (↑ i |1 ≤ i ≤ n • swf (i))]
Assume: vf ∧ s3

∃r • r = (↑ i |1 ≤ i ≤ n • swf (i))

= 〈 ymax is closed form, thus by CFF (closed form feasibility) 〉
D(↑ i |1 ≤ i ≤ n • swf (i))

= 〈 Definition of D for ↑ 〉
[∃i • 1 ≤ i ≤ n] ∧ [∀i | 1 ≤ i ≤ n • D(swf (i))]

= 〈 By assumption s3 and s3 ≡ n ≥ 3 we have that (∃i • 1 ≤ i ≤ n) holds 〉
∀i | 1 ≤ i ≤ n • D(swf (i))

= 〈 D(swf (i)) ≡ D(i)∧ 1 ≤ i ≤ n and D(i)≡ true 〉
∀i | 1 ≤ i ≤ n • 1 ≤ i ≤ n

= 〈 trading and reflexivity of ⇒ 〉
true

Now consider the first row of the tabular expression in Table 1. The condition pred-
icate for that row is ok , vf ∧ s3∧ um ∧ t50?∧ t10?. We would like to demonstrate
the well-definedness of this condition. We can work incrementally by first showing the
well-definedness of vf ∧ s3 and then exploiting this to establish D(ok).

Precise Documentation using MSL Page 27 of 32

D(vf ∧ s3)

⇐ 〈 definition of D for conjunction 〉
D(vf)∧(vf ⇒D(s3))

= 〈 D(vf) = true: any string sequences can be checked for conversion to floats 〉
vf ⇒D(s3)

= 〈 D(s3) = vf , i.e. the precondition of s3 in module p-PULSE Fig 6 〉
vf ⇒ vf

= 〈 reflexivity of ⇒ 〉
true

Finally, we consider the proof in Figure 8. Since it is done in our equational logic
for partial functions, we need to consider the well-definedness conditions raised by the
repeated application of transitivity. Ignoring the steps where no partial functions are
used (which are always well-defined), we come up with the following proof obligations:
• D(wf .last(1, t50p, y10) < t50p)
• D((↑ t : F|1 ≤ t ≤ t50p ∧wf (t) = y10 • t) < t50p)
• D((∀t : F|1 ≤ t ≤ t50p ∧wf (t) = y10 • t < t50p))
• D((∀t : F|1 ≤ t ∧ t ≤ t50p ∧ t50p ≤ t • wf (t) 6= y10))
• D((∀t : F|t = t50p • wf (t) 6= y10))
• D(wf (t50p) 6= y10)

As an example, here is how we can prove the first one:

D(wf .last(1, t50p, y10) < t50p)

= 〈 Definition of D 〉
wf .has(1, t50p, y10)

= 〈 Definition of t10p? 〉
t10p?

⇐ 〈 Definition of durationp? 〉
durationp?

Precise Documentation using MSL Page 28 of 32

Listing 1: Executable PULSE Specification

class PULSE feature
sampled signal: SIGNAL −− sampled input
w: WAVEFORM −− waveform as a real function of levels vs. instants
duration: FLOAT −− pulse duration

require t50 ok
ensure Result = (trans2.t50.value − trans1.t50.value)

t10 ok: BOOLEAN −− do both 50% instants exist?
ensure Result = (trans1.t10.ok and trans2.t10.ok)

t50 ok: BOOLEAN −− do both 50% instants exist
ensure

s3 and um implies (Result = (trans1.t50.ok and trans2.t50.ok))
not (s3 and um) implies not Result

trans1: POSITIVE TRANSITION
trans2: NEGATIVE TRANSITION
error: BOOLEAN −− no parameters can be calculated

ensure Result = not (s3 and then um and then t50 ok)
warning: BOOLEAN −− 10% instants cannot be calculated

ensure Result = (not error and then not t10 ok)
ok: BOOLEAN −− all parameters can be calculated

ensure Result = (not error and then not warning and then t10 ok)
s3: BOOLEAN −− are there at least 3 samples?

ensure Result = sampled signal.s3
um: BOOLEAN −− Is there a unique maximum
ensure Result = sampled signal.um

invariant
completeness: error or else warning or else ok
disjointness: not (error and warning) and

not (error and ok) and not (warning and ok)
case ok: ok implies trans1.t10.ok and trans1.t50.ok and

trans1.t90.ok and trans1.duration.ok and
trans2.t10.ok and trans2.t50.ok and
trans2.t90.ok and trans2.duration.ok

req9: ok implies trans1.t10.value < trans1.t50.value and
trans1.t50.value < trans1.t90.value and
trans2.t10.value > trans2.t50.value and
trans2.t50.value > trans2.t90.value end

end−− class PULSE

Precise Documentation using MSL Page 29 of 32

model implementations

mathematical models

float

M_SET[G]

M_RFUN[FLOAT]

M_ANY

M_SEQ[G]

M_NSEQ

M_FUN[G, H]

M_BAG[G]M_REL[G, H]

count: INTEGER

-- number of distinct elements in the set

infix “Í” (s: M_SET[G]):BOOLEAN

-- is every element in the set in s?

has (v: G):BOOLEAN

-- is v an element of the set?

infix “+” (v: G): M_SET[G]

-- a set like the current set with the addition of element v

infix “È” (s: M_SET[G]): M_SET[G]

-- all elements in set union with s

hold_count (exp: PREDICTE[ANY, TUPLE[G]]): BOOLEAN

-- counting quantifier: no. of elements in set satisfying exp

has (x1, x2, y: FLOAT): BOOLEAN

-- is there an x, where x1 ≤ x ≤ x2 with image (x) = y?

image (x: FLOAT): FLOAT -- ordinate y for abscissa x

* M_SET_I[G]

M_SET_I_LINEAR[G]

M_SET_I_SORTED[G]

FLOAT FLOAT_COMPARER

rep

is_approx_equal

REF[G]

first (x1, x2, y: FLOAT): FLOAT

--first instant x where x1 ≤ x ≤ x2 with image (x) = y

last (x1, x2, y: FLOAT): FLOAT

Figure 9: Design of Mathematical Specification Library

Precise Documentation using MSL Page 30 of 32

11 MSL – executable specifications

In the previous sections of this paper we provided a method for developing a precise
requirements document (RD) using model contracts and tabular expressions. Before any
code is developed, executable specifications using MSL (see below) do automatic type
checking and are used to check for completeness, disjointness and well-definedness of the
tabular expressions. They are also used to check the consistency of global properties (such
as REQ9). While developing production code, executable specifications are used to check
that the implementations satisfy the specification.

The original pulse software was only a few hundred lines of code. However, many
warnings and error checks were omitted and there were ambiguities in the requirements.
Thus more code will be needed than originally envisaged and the calculation of parameters
will have to be changed. The need to deal with floating point arithmetic is also challenging.
Thus where the highest assurance is not required, the use of executable specifications
(in addition to testing) may provide sufficient evidence for certification, depending on
the application. We describe below the use of MSL (model specification language) for
executable specifications. The use of model contracts in the RD make the transition to
MSL relatively seamless.

As described in [15], the BON class diagram for MSL is shown in Fig. 9. MSL collection
classes for sets, functions, relations, bags, sequences etc. are immutable (using Eiffel’s
expanded construct) and void safe and thus have a specification-friendly value semantics.
We have subsequently added to MSL appropriate machinery for dealing with floating
point arithmetic including the ability to do approximate comparisons of two floating
point values. The model-based specification in Fig. 6 relies on the notion of real-valued
functions RFUN (Fig. 7) which is the abstraction at the heart of the mathematical model.
MSL’s version is M RFUN[FLOAT] as shown in Fig. 9.

MSL can be used for validation and verification as follows. The model-based specifica-
tion of Fig. 6 is converted to MSL. In Eiffel, classes are used for types and modules. So the
MSL pulse specification has class names and features matching the abstract specification.
Strong type checking via the compiler ensures that all the signatures and contracts are
consistent. A fragment of class SIGNAL is:

class SIGNAL feature
swf: M NSEQ −− input sampled waveform as a sequence of floats
s3: BOOLEAN −− are there at least 3 samples?

ensure Result = (swf.count >= 3)
ymax: FLOAT −− maximum level

require s3 and um
ensure Result = swf.maximum

um: BOOLEAN −− is there a unique maximum?
ensure Result = (swf.hold count (agent swf [i] = swf.maximum) = 1)

Query ymax is obtained via the counting quantifier hold count using Eiffel’s agent mecha-
nism for quantifiers. In class WAVEFORM we declare the real function of levels versus
instants as wf: M RFUN. This allows us to define instants with contracts, e.g.

The queries t50p? and t50p in the abstract model contracts (Fig. 6) are represented by
a tuple in the executable specification. Executing the specification results in the contracts

Precise Documentation using MSL Page 31 of 32

wf: M RFUN −− real function wf ∈ F 7→ F
t50p: TUPLE[ok:BOOLEAN;value:FLOAT]

ensure
Result.ok = wf.has (1,tmax,w.y50)
Result.ok implies (Result.value = wf.first (1, tmax,w.y50))

end

being checked. In addition, properties can be checked by declaring them as class invariants
as shown in Listing 1. Invariants are used to check the completeness, disjointness and well-
definedness of the tabular expression. They also check global properties such as REQ9.
Once the code is produced, the code can be checked against the MSL specification, again
via runtime assertion checking.

12 Conclusion

One way to obtain a precise requirements document is to include a context diagram
describing the environment of the system under design and atomic E/R descriptions
(that capture customer goals in informal English). The E-descriptions provide a method
to document assumptions, constraints and business rules that come from the environment
and that impact on the requirements.

A formal specification is needed to validate the requirements. A useful specification
consists of model contracts and tabular expressions and a calculus for reasoning about the
specification. The specification can be translated into an executable MSL specification.
Beyond testing we have shown how to use proofs or runtime assertion checking to validate
the requirements via completeness, disjointness, well-definedness and consistency checks
against the atomic descriptions. Once we have some assurance that the requirements are
precise and consistent, we can develop production code and verify the code against the
specification. Certification of certain safety critical systems would suggest proofs, but
other mission critical systems systems might admit the additional assurance provided by
executable specifications.

The pulse code provided by our industrial partner illustrates some of the advantages
of our approach. As mentioned earlier, if one submits input signals such as 〈0, 1, 1〉 to
their code, no error is returned and the parameters are thus calculated. The problem
is that the pulse duration and some of the parameters are NaN (not a number) due to
division by zero and other issues. There was no check done for completeness, disjointness
and well-definedness. In order to achieve completeness (and full error checking) we need
to first clarify the difference between valid and invalid pulses. The IEEE-181 standard
was not clear on this. Our first job was to clarify these differences in atomic E-statements
(e.g. see ENV1, ENV2) and then to specify when paremeters could be calculated and
when errors or warnings must be raised in the atomic R-statements. From this analysis it
emerged that we need three or more sample points, a unique maximum and a variety of
other properties that the signal 〈0, 1, 1〉 does not satisfy. We used the E/R-statements to
construct a tabular expression (Table 1) based on model contracts (Fig. 6), from which
completeness and the consistency of global properties can be checked. The changes at
the requirements level indicate that the code would have to be significantly different than
what was originally provided.

Precise Documentation using MSL Page 32 of 32

Of course, much more will be needed in the RD. Hazards must be analyzed and
acceptance tests must be provided. But even testing would be incomplete without a
precise documentation of the requirements. The rows in tabular expressions and the
atomic descriptions of global properties suggest important acceptance test scenarios.

The methods of this paper are applicable to transformational systems or reactive
systems in which it is sufficient to check one step transition functions [9]. In future work,
we hope to show how to extend the methods of this paper to more general reactive systems.

References
[1] Jean-Raymond Abrial and Louis Mussat. On using conditional definitions in formal theories. In

ZB2002 Formal Specification and Development in Z and B, LNCS 2272. Springer-Verlag, 2002.

[2] C. Eles and M. Lawford. A tabular expression toolbox for matlab/simulink. In NASA Formal
Methods, volume LNCS 6617, pages 494–499, 2011.

[3] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Springer Verlag, 1993.

[4] Carl A. Gunter, Elsa L. Gunter, Michael Jackson, and Pamela Zave. A Reference Model for Re-
quirements and Specifications. IEEE Software, 17(3):37–43, 2000.

[5] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller, and Matthew Parkinson. Be-
havioral interface specification languages. Technical report, Microsoft, 2010.

[6] Michael Jackson. Software Requirements & Specifications: a lexicon of practice, principles and
prejudices. Addison-Wesley, New York, NY, USA, 1995.

[7] Michael Jackson. The operational principle and problem frames. In Cliff B Jones, A.W. Roscoe,
and Kenneth R Wood, editors, Reflections on the Work of C. A. R. Hoare. Springer Verlag, 2010.

[8] Ying Jin and David Lorge Parnas. Defining the meaning of tabular mathematical expressions.
Science of Computer Programming, 75(11):980–1000, November 2010.

[9] M. Lawford, P. Froebel, and G. Moum. Application of tabular methods to the specification and
verification of a nuclear reactor shutdown system. Formal Methods in System Design, 2004.

[10] Robyn R. Lutz. Analyzing Software Requirements Errors in Safety Critical Embedded Systems.
pages 126–133, San Diego, 1993. Analyzing Software Requirements Errors in Safety Critical Em-
bedded Systems.

[11] T. S. E. Maibaum and Alan Wassyng. A product-focused approach to software certification. IEEE
Computer, 41(2):91–93, 2008.

[12] Farhad Dinshaw Mehta. Proofs for the Working Engineer. PhD thesis, ETH, Zurich, 2008.

[13] Bertrand Meyer. Domain theory: the forgotten step in program verification.
http://bertrandmeyer.com, April 2012.

[14] Jonathan S. Ostroff and Richard F. Paige. The Logic of Software Design. Proc. IEE - Software,
147(3):72–80, 2000. The Logic of Software Design.

[15] Jonathan S. Ostroff and Faraz Ahmadi Torshizi. Testable Requirements and Specifications. In
Bertrand Meyer and Yuri Gurevich, editors, Tests and Proofs (TAP’07), volume LNCS 4454.
Springer Verlag, 2007.

[16] David Parnas. Predicate logic for software engineering. IEEE Trans. Softw. Eng., 19(9), 1993.

[17] David L. Parnas and Jan Madey. Functional Documentation for Computer Systems. Science of
Computer Programming, 25:41–61, 1995. Functional Documentation for Computer Systems.

[18] George Tourlakis. On the Soundness and Completeness of Equational Predicate Logics. Technical
report, Toronto, 1998. On the Soundness and Completeness of Equational Predicate Logics.

[19] Alan Wassyng and Mark Lawford. Software tools for safety-critical software development. STTT,
8(4-5):337–354, 2006.

