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Abstract 
 

This White Paper lays out a set of new research objectives and the skeleton of a plan on 
how to achieve these. The objectives were motivated by the desire to take the successful 
Selective Tuning model of visual attention (ST) and move it to the next stage of its natural 
development. A key missing element of ST is an executive controller, a component that 
uses the attentional processes that Selective Tuning provides in solving real problems 
associated with visual perception, visual cognition and reasoning, including the use of 
vision for the guidance of action. To this end, the conceptualization of Ullman's Visual 
Routines seems to provide the best starting point. This extremely brief White Paper 
presents a proposal for how Ullman's work may be re-examined in the light of an up-to-
date understanding of visual attention and visual processing more generally. 
Conceptually, Ullman's contribution was significant but he left most of the details 
unspecified. This proposal suggests ways to update Ullman's visual routines concept 
given modern views on vision and attention, and moves to subsequently revise, extend 
and flesh-out the ideas in order to provide the functionality required to develop an 
executive controller for ST. 
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Research Objectives  
 
The dream of useful robots, such as companion robots for the elderly, autonomous vehicles or 
flexible manufacturing robots that interact with human workers, requires major advances in the 
computational realization of vision and visual cognition. Pessig & Tarr (2007) conclude that 
behavioral and neuroscientific research must be better grounded in models of object recognition 
and computational models must be better grounded in empirical data. Dickinson (2009) reaches 
a similar conclusion specifically advocating a stronger emphasis on shape, shape abstraction 
and viewpoint control within recognition paradigms.  Such a broad interdisciplinary interplay has 
been at the heart of our Selective Tuning model of visual attention which has now received 
strong experimental support. Further, it has been extended to show how attention interacts with 
recognition and with feature binding.  
 
A proposal on the inter-relationships among visual attention, object (and event) recognition and 
visual feature binding within an overall framework for visual perception was presented in 
Tsotsos et al. (2008) and in Tsotsos (2011). Key elements include:  
 a) attention is a set of mechanisms that tune the search processes in vision to achieve 
their best performance to a given task (even in free viewing);  
 b) an overall visual processing network that can solve a particular class of vision 
problems very quickly but can be tuned dynamically to adapt its performance to the remaining 
sub-classes of vision problems but at a cost of greater time to process;  
 c) the greater processing time is realized by iterative feed-forward and recurrent 
processing passes through the network, each primed by task or sub-task information to achieve 
particular goals or sub-goals;  
 d) top-down tracing of neural activations supplemented by local, within receptive field, 
surround suppression throughout the network plays the role of localization of an attended 
stimulus.  
 
This Selective Tuning (ST) theory (Tsotsos et al. 1995), has received strong experimental 
support (summarized in Tsotsos et al. 2008, Hopf et al. 2010; Tsotsos 2011). However, on its 
own it is certainly insufficient. A critical component that is missing is the 'executive control' 
function for attention, and indeed for vision as a whole. ST shows how intermediate 
representations may be created, it details a set of mechanisms that together comprise what is 
commonly called attention, but does not show how they may be used in visual reasoning or in 
solving the kinds of tasks an autonomous agent may face. How can an agent use task 
requirements and construct the proper sequence of operations (sensing, gaze and viewpoint 
changes, attention, classification, identification, localization, etc.) in order to fulfill that task? This 
exact problem has been considered previously in the concept of a visual routine (Ullman 1985).  
 
Ullman's visual routine (VR) idea has been very influential. However, Ullman based his 
conceptualization on knowledge of human vision and attention of the early 1980's, and most 
followers of VRs do the same. Among them, Ballard & Hayhoe make strong arguments about 
the need for non-saliency methods (the ones Ullman used) for attention but do not propose an 
alternative (Ballard & Hayhoe 2009).  
 
It is important at this point to stress that our perspective is to consider vision as much more than 
a classifier. Classifiers as they are commonly used in computer vision may be useful for solving 
what I call the 'at a glance' visual problems, such as detection or categorization in uncluttered 
scenes. But everyday vision as we all experience it involves much more. We may call these the 
'more than a glance' problems (problems where simple detection or naming of a single item in a 
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scene does not suffice, eg., tracking objects in time-varying scenes, questions about image 
contents, Non-pop-out visual search, where a behavior is required such as an eye movement or 
a manipulation).  It is not an exaggeration to claim that most of our visual behavior is of the 
more than a glance variety. 
 
 
 
The Original Visual Routines    
 
Ullman suggested a strategy for how human vision extracts shape and spatial relations. He 
proposed:   
 • VRs compute spatial properties and relations from base representations to produce  
  incremental representations;  
 • VRs are assembled from elemental operations;  
 • new routines can be assembled to meet processing goals;  
 • different VRs share elemental operations;  
 • a VR can be applied to different spatial locations;  
 • mechanisms are required for sequencing elemental operations and selecting the  
  locations at which VRs are applied;  
 • VR's can be applied to both base and incremental representations.  
 
Ullman proposed that universal routines operate in the absence of prior knowledge. His 
elemental operations were: shift of processing focus, indexing, boundary tracing, marking and 
bounded activation. The base representations are derived automatically, are assumed correct, 
and describe local image properties such as color, orientation, motion and depth (Marr's 2½D 
Sketch, 1982). In this regard, the work is based completely on how Marr viewed visual 
processing in the brain. Attentive operations are critical and based on Koch & Ullman (1985). As 
result, the saliency map ideas play a central role for Ullman, understandably. Ullman outlined 4 
aspects: elemental operations, how they are integrated into routines, VR control; creation of 
new task-based VRs. He only detailed the first. 
 
 
How we Understood Attention and Vision in 1984   
 
The dominant relevant papers were Feature Integration Theory (Treisman & Gelade 1980), 
Marr's theory of vision (1982) and The Saliency Map model of visual attention (Koch & Ullman 
1985), itself strongly motivated by Feature Integration Theory. Attention involved a spotlight that 
selected regions of interest in images based on peaks in a conspicuity representation. With 
respect to visual perception, Marr claimed that feedforward processing, through a set of 
independent modules, suffices and results in representations termed the primal and 2½D 
sketches. He believed these reflected the result of the first 160ms of human vision; he did not 
consider processes beyond this time limit. Marr's theory makes a strong assumption: that 
images be quickly and easily segmentable. 
 
 
VR's Since Ullman   
 
A number of researchers have pursued the visual routines concept, but not as many as one 
might think. Johnson (1993) and McCallum (1996) looked into how VRs may be learned, using 
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genetic programming and reinforcement learning. Horswill (1995) developed a system that 
performs visual search to answer queries in a blocks world. He included a set of task-specific 
weights to compute a saliency map, a set of markers that hold the centroids of regions, and a 
return inhibition map that masks out regions that should not be selected. Brunnström et al. 
(1996) propose an active approach including an attentional mechanism and selective fixation. 
They define VRs that can rapidly acquire information to detect, localize and characterize 
features. Ballard et al. (1997) emphasize the need for an attentive 'pointing device' in visual 
reasoning. Rao's (1998) primitive VR operations are: shift of focus of attention; operations for 
establishing properties at the focus; location of interest selection. These enable VRs for many 
visuospatial tasks. Ballard & Hayhoe (2009) describe a gaze control model for event sequence 
recognition. They highlight problems with saliency map methods for task-based gaze control. 
 
Biological research has also embraced VRs. Roelfsema et al. (2000; 2003) and Roelfsema 
(2005) have provided neurophysiologic support. They discovered neurons in motor cortex 
selective for movement sequences. They also monitored the progression of a sequence by 
recording activity of neurons in early visual cortex, associating elemental operations with 
changes in neuron response. They thus suggested an enhanced set of VRs: visual search, 
cuing, trace, region filling, association, working memory, suppression, matching, motor acts. 
Cavanaugh et al. (2001) found that discrimination of motion patterns demands attention. They 
consider a sprite as the set of routines that detects specific motion.  
 
VRs also found utility in practical domains: control of humanoids (Sprague & Ballard 2001); 
autonomous driving (Salgian & Ballard 1998); natural language interpretation and motor control 
(Horwsill 1995); control of a robot camera system (Clark & Ferrier 1988).  
 
 
 
Methods and Proposed Approach   
 
Notwithstanding the previous briefly mentioned works, progress on systems with visual 
cognition that visual routines may enable remains elusive. Perhaps the lack of progress is due 
to: 1) all authors conclude that attention is required for VR's however the conceptualization of 
attention used is the saliency map idea that accounts only for gaze change, not the full breadth 
of attention - Ballard & Hayhoe make this point too; 2) the premise that one feed-forward pass 
through the visual hierarchy is sufficient to provide all required information is pervasive, yet true 
only for special cases and clearly not for scenes where viewpoint change or visual search are 
required (Tsotsos et al. 2008). Our first step is to see how these two issues impact the concept 
of VR's. In the following, the broader VR functionality suggested by the union of Ullman, 
Roelfesma, Cavanaugh and Ballard & Hayhoe is used. This is a novel and innovative 
perspective, based on our ST model, an approach to VR's not previously considered. 
 
   Almost everything has changed in our knowledge of vision and attention since 1984. We know 
that attention is more complex than region-of-interest selection for gaze change. It also involves 
top-down priming of early visual computations, feedback processing, imposes a suppressive 
surround around attended items to ignore background clutter and modulates individual neurons 
to optimize them for the task at hand both before the stimulus is presented as well as during its 
perception. Attentive modulation changes the operating characteristics of single neurons 
virtually everywhere in the visual cortex (see Itti et al. 2005). None of these are seen in the 
previous computational research on VR's (but all exist within ST). Moreover, we know the time 
course of attentive effects differs depending on task; attentional effects are seen after Marr's 
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limit of 160ms. Further we now know there are no independent modules, as Marr beleived,  
because most neurons are sensitive to more than one visual modality/feature. We also know 
that the feedforward pass of the visual cortex has strict limits on what can and cannot be 
processed. It is not the case that this feedforward pass, as Marr had thought, suffices to 
compute a complete base representation on which any additional reasoning can take place. If 
anything, that feedforward pass is only the beginning of the act of perception. Basic feedforward 
visual tasks have been proved intractable in their most general definition refuting Marr's belief in 
a complete feedforward early visual process and a passive, fixed visual cortex has been refuted. 
(For justification of these claims see Tsotsos & Bruce 2008, Tsotsos et al. 2008, Pessig & Tarr 
2007, Dickinson et al. 2009 for reviews). This research will re-visit VR's in this context. We 
address the following in this research program: 
 
1) How do Ullman's VR's fare with a current understanding of human visual processing and 
attention?  
 
   We will first examine how the conception of attention in VR's (recall, we mean the broader 
concept of VR) changes with a current view of attention and vision processing. Simultaneously, 
we will determine the dependence of his routines on a passive, complete and constant base 
representation (in the Marr sense). This step highlights changes that must be made to the 
general concept of the visual routine.  
 
2) Can ST play the role of attention as Ballard & Hayhoe describe?  
 
   Spatial attention in the form of a location of interest plays a central role in VR's. Ballard & 
Hayhoe argue that the saliency map view of attention is not the appropriate one, but do not say 
what an alternate choice might be. Our ST model seems to provide the elements required but 
does ST's conceptualization of attention fit the visual routines functionality and if not, what must 
change?  
 
3) How must VR's be updated given current understanding of vision and attention?  
 
    Given the changes steps 1 and 2 reveal, we will take the general statements of the various 
VR's and update them with current best knowledge of vision and attention providing detailed 
definitions for all of the VR's mentioned above. For example, in a multi-step routine for, say, 
boundary tracing, given that we know that top-down priming is possible, how can the VR be 
primed dynamically depending on its current state? VR definitions will be modified as needed. 
 
4) What is the best representation for a VR?  
 
    Once the VR's have been redefined, the next step is to determine how to best represent 
these. A start on needed representational concepts follows. The incremental representations will 
be the elements that populate working memory. Previous conceptualizations have not included 
a working memory but it is an important element for a full attentive vision system. Ullman's 
universal routines will be termed methods and when tuned to specific tasks, scripts. The 
routines will be of four classes: task, sensing, motor, and reasoning in order to cover the 
breadth the above authors have presented. A task method creates the information needed by a 
task script from a given task specification. Task scripts are responsible for tuning other methods 
to particular tasks and producing reasoning, sensing or motor scripts. They may employ the 
Restriction and Suppression mechanisms of ST. A sensing method represents an un-tuned 
(without any priming) feed-forward pass through the visual processing hierarchy. A sensing 
script represents a tuned feed-forward pass. A motor method is a ballistic action to move the 
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agent (or one of its components) from point A to B, while a motor script is tuned by information 
about path, obstacles, or other motion constraints. A reasoning method provides a generic 
answer to a question about a stimulus: location, feature composition, size, shape, spatial 
relations, and so on. To do so, it may embody all of the attentional mechanisms of ST. A 
reasoning script is a reasoning method tuned to the task at hand. These are intended to be the 
direct successors to the VR's Ullman proposed for spatial relations and shape properties.  
Scripts and methods may link to others of the same or different class. A key question is how is it 
determined which methods/scripts to apply at any given time. Methods and scripts each have 
triggers, elements of incremental representations created by other methods or scripts. That is, a 
VR may be activated when one of its trigger elements reaches a strong enough response in 
working memory. Because VR's represent action sequences, a graphical model is the right 
representational device (see Bishop 2006, for review). Markov Decision Processes (MDPs), 
Partially Observable MDP's (POMDP's)  and Dynamic Bayes Nets (DBNs) will form the starting 
points of investigation. Ballard & Hayhoe (2009) and Yi & Ballard (2009) argue for the 
effectiveness of DBN's to represent VR's, detailing how human experimental data can program 
a DBN which can recognize new instances.  
 
5) Given the new definition, can useful routines be developed and tested, and shown to have 
robust properties?  
 
    We will hand-code a set of VR's in order to test their operation. This test requires a sufficiently 
complex visual representation to replace the base representation Ullman had conceived. 
Fortunately we have developments on both motion and shape detection within an attentive 
framework (Tsotsos et al. 2005; Rodriguez-Sanchez 2010). We will follow the methodology of Yi 
& Ballard (2009) as a first step. 
 
6) Can these new VR's be learned and if so how?  
 
    Ghahramani (1997) lays out several approaches to learning DBNs. Reinforcement learning 
(RL) seems an ideal framework in which to learn these sequences of operations because its 
strength is its ability to address the issues of choosing sequences of actions (Sutton & Barto 
1998). Others have used RL to learn VR's in the past (eg. McCallum 1993).  Mugan & Kuipers 
(2009) use RL for their robot control task resulting in an agent that learns a hierarchy of actions 
in a continuous environment; this seems closest to our needs. Our requirements include: the 
model structure is unknown; we can observe external actions of the agent (visual gaze changes 
for example) but not the internal ones (visual reasoning for example); the agent can interact with 
the environment (move about, take different views of objects, move things around); the agent 
needs to not only recognize sequences of actions that it sees but also to generate control 
signals from learned sequences, appropriate for the current task. We will begin with the Mugan 
& Kuipers work, evaluate its suitability, and extend or modify as required. 
 
7) Can the set of new VR's be mapped onto an executive controller for ST?  
 
    In order to design an executive controller for ST using VR's, the first question that must be 
addressed is how is the right VR chosen at the right time? The executive may be primed by task 
but task progress would dictate next steps in a sequence. This element was not included in past 
works mostly because most past work has not considered a number of VR's working in concert. 
Generally, the action of the executive controller is to select/assemble the proper set of VR's, to 
set up the processes to tune them, to execute them while monitoring task progress, and make 
modifications along the way in order to fulfill the task. It is one of the key elements of VR's 
Ullman described but has not been yet addressed. 
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Evaluation and Milestones   
 
No existing video dataset can provide a test domain for this work and thus we will create our 
own. Our past developments on methods for detecting, attending, classifying and localizing 
motion and shape will form the basis for the tests. We will develop software that generates 
synthetic video sequences (we have previously done this for random polyhedral scenes with 
excellent results (Parodi et al 1998) and will follow that methodology). The idea is this: place 
random 2D coloured shapes randomly in a scene, with visual field processed being a small 
subset of the full scene to enable gaze shifts; occlusion will be permitted but not transparency; 
the shapes will each exhibit a randomly chosen affine motion with a randomly chosen duration; 
images may be degraded by noise and/or contrast manipulations; we will follow Parodi et al. 
(1998) in order to ensure the statistical properties of the generator. This generator will be made 
public. Of this dataset, we can ask questions such as: how many shapes in an image? how 
many similar shapes? how many shapes of a particular  type?  how many near a specific one? 
any odd-man-outs (shape, size, speed, direction)? any above  another (below, next-to)? how 
many of a particular type are moving? how many moving similarly? One might imagine a much 
larger set of similar queries that may be investigated. 
 
The evaluation procedure will follow the strategy of Parodi et al. (1998). Random videos will be 
generated and grouped depending on the number of shapes in the video. The system would 
then answer each of N questions for each video. Ground truth can be hand-coded for spatial 
relations; numbers/shape types and velocities can be attached by the generating program. For 
the responses we will tabulate %correct, false positives/negatives, distance from correct 
answer, all with respect to input set size.  
 
If the above evaluation is successful, more complex queries and tasks will be considered. The 
above will exercise the general framework but do not test the motor methods/scripts. This 
extension can occur within a real laboratory environment and with real robots and involve 
search for objects (as in Shubina & Tsotsos 2010; Andreopoulos et al. 2011) or other complex 
tasks involving locomotion, navigation and manipulation, such as those a wheelchair user might 
require (Tsotsos et al. 1998; Andreopoulos & Tsotsos 2007). 
 
 
 
Significance    
 
Recently, the quest to develop effective methods for categorizing objects, events or scenes from 
video has dominated computer vision. Progress has been tremendous (Dickinson et al. 2009); 
however that progress should not be considered as nearing the solution to computer vision. The 
role of visual perception, for both humans and robots, is not to simply categorize images or to 
detect a particular object. It is to enable an understanding of the physical world and to guide 
action and behaviour. Without the ability to visually reason about what is seen, this goal cannot 
be realized. In natural human behavior, we need to know not only what is in a scene, but also 
where it is, how is it related to the other elements of the scene, how things change over time, 
what would the effects of a manipulation be, how to achieve a behavior within that scene, etc. 
How do we know where on a table to put down a cup, select the shortest checkout queue in a 
store, look for moving vehicles before we cross a road? These questions require a capacity to 
reason about the scene, a capacity that must be integrated within a system that can detect and 
analyze scene elements in the context of the current task and the agent's world knowledge. This 
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research contributes to this goal in a totally novel manner. Applications in surveillance, 
autonomous mobile robotics, human-robot cooperative assembly, etc. are apparent. 
 
 
 
Summary 
 
This is a virtually identical document to a grant proposal submitted to the NSERC Discovery 
Grant Program in October 2010 (Title: Re-Visiting Ullman's Visual Routines, Appl. #4557-2011).  
The funding request for this research program was fully granted for a 5-year period and work 
began immediately.  
 
As a consequence, in the short-term, we seek answers to:  
 
 1) How do Ullman's VR's fare with a current understanding of human visual processing and  
  attention?   
 2) Can ST play the role of attention as Ballard & Hayhoe describe?  
 3) How must VR's be updated given current understanding of vision and attention?  
 4) What is the best representation for a VR?  
 5) Given the new definition, can useful routines be developed and tested, and shown to have  
  robust properties?  
 6) Can these new VR's be learned and if so how?  
 7) Can the set of new VR's be mapped onto an executive controller for ST?  
 
In the long-term, we seek to impact our understanding of both computational and human vision, 
with new concepts that lead to more general and effective computer vision systems and 
experimental predictions that add to knowledge of human vision. 
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