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ABSTRACT

Customizing software to perfectly fit individual needs istming
increasingly important in information systems enginegritJsers
want to be able to customize software behavior through eafar
to terms familiar to their experience and needs. In this pape
present a requirements-driven approach to behaviorabmiza-
tion of software. Goal models are constructed to repredésit a
native behaviors that users can exhibit to achieve theilsg@us-
tomization information is then added to restrict the spdqeossi-
bilities to those that fit specific users, contexts or sitweti Mean-
while, elements of the goal model are mapped to units of sourc
code. This way, customization preferences posed at thereequ
ments level are directly translated into system custoriaizat Our
approach, which we apply to an on-line shopping cart systiems
not assume adoption of a particular development methoglobbast-
form or variability implementation technique and keepsrdeason-
ing computation overhead from interfering with executidrttee
configured application.

Keywords
Information Systems Engineering, Goal Modeling, AdapByes-
tems, Software Customization

1. INTRODUCTION

Adaptation is emerging as an important mechanism in enginee
ing more flexible and simpler to maintain and manage infoionat
systems. To cope with changes in environment or in user requi
ments, adaptive software changes its structure and beHzased
on changes in the environment and requirements [22, 17].mAn i
portant manifestation of adaptivity is the ability of indlual orga-
nizations and users ustomizeheir software to their unique and
changing needs in different situations and contexts.

Consider, for example, an on-line store where users canderawd
purchase items. Normally, an anonymous user can browsedte p
ucts, view their price information and user comments, addtko
the cart, log-in and check-out. But different shop-owneay nvant
variations of this process for different users. They maydnéer
example, to withhold prices, user comments or other prothict
formation unless the user has logged in, or only if the udér’s
belongs to a certain set of countries. Or they may wish taaege
the sequence of screens that guide the buyer through thk-oéc
process. Or, finally, they may wish to disable purchasingadiogy
just browsing, with only some frequent buyers allowed to eolth-
ments — with or without logging in first. The shop-owner would
like to be able to devise, specify and change such rules ¢waey
she feels it is necessary and then just observe the systemfigc
ure appropriately without resorting to expert help. But reagy is
this?

Satisfying a great number of behavioral possibilities amiiching
from one to the other is a challenging systems engineerioigigm.
While there is significant research on modeling and impleéingn
variability and adaptation, e.g. in the areas of SoftwadBct-
Lines and Adaptive Systems, two aspects of the problem seem t
still require more attention. Firstly, the need to easilynoounicate
and actuate the desired customization, using languageeant t
that reflect the needs and experience of the stakeholdetsusuhe
shop owner of our example. Secondly, the need to allow thesta
holders to construct their customization preferences siedras, in-
stead of selecting from a restricted set of predefined otlesjiag
them thus to acquire a customization that is better tailtoeteir
individual needs.

To address these issues, in this paper we introduce a guahdr
technique for customizing the behavioral aspect of a soéwsgs-
tem. A generic goal-decomposition model is constructeceps r
resent a great number of alternative ways by which humantsgen
can use the system to achieve their goals. Then, to addreiss th
specific needs and circumstances, individual stakeholtharsre-
fine this model by specifying additional constraints to theysvby
which human and machine actions are selected and ordefietein t
A preference-based Al planner is used to calculate suchsaioie
behaviors and a tree structure representing these behbpassi-
bilities is constructed. Meanwhile, the high-level degtions of



these actions are connected with code fragments of the a@ftw
system, in a way that the tree structure can actually enfbecee-
sired system behavior. This way, high-level expressiordesired
arrangements of user actions are automatically transiatede-
havioral configurations of the software system. Amongsbeee-
fits of our approach are both that it brings the customizapiac-
tice to the requirements level and that it allows leveragifer
number of customization possibilities in a flexible way, vaitit im-
posing restrictions to the choice of development procesftyare
architecture or platform technology.

Our proposal constitutes a continuation of our earlier wamkex-
ploiting goal model variability — i.e. alternative ways tohieve
stakeholder goals — to support software customizatiorhdnearly
work [19, 20], we have demonstrated the usefulness of gpegif
and reasoning about stakeholder preferences in sele@gre-
ments alternatives that best fit to the needs of specific usens
texts and situations. In this paper, we take this modelirdyraa-
soning infrastructure one step further to allow requiretsdrased,
preference-driven customization of the actual softwastesy.

The paper is organized as follows. In Sections 2 and 3 we prese
the core goal modeling language and the temporal extertsaome
are using for representing and leveraging behavioralredtefes. In
Section 4 we show how the elements of the goal model relate wit

their goals. For exampl®iew Basic Product Infas a task. To
ease our presentation, next to each task shape, a circulatagion
containing a literal of the form; has been added. In the rest of
the paper, we will often use the literal to refer to the tasiteéad

of mentioning the entire task description; thiisrefers to the task
View Basic Product InfoGoal models can also contain soft-goals
— goals for which there is no clear-cut criterion to decidesthler
they are satisfied or not. While soft-goals can play a significole

in customization [19], for simplicity we omit any referenicethese

in this paper.

Goals and tasks are connected with each other using AND- and
OR-decomposition links. When a goal is OR-decomposed then
satisfaction (performance) of one of the subgoals (resptasis)
suffices for the satisfaction of the parent goal. For exambe
goalProvide Address Infts decomposed intBrovide New Address
Info andUse Stored Address Infis these are two alternative ways
to specify address information. When a goal is AND-decoragos
into subgoals or subtasks, then all of the subgoals (subjtasist

be satisfied (resp. performed) in order for the parent godleto
considered satisfied. In addition, children of AND-decosifions

can be designated aptional This is visually represented through

a small circular decoration on top of the optional goal. la pines-
ence of optional goals, the definition of an AND-decompositi

is refined to exclude optional sub-goals from the goals thagtm

elements of the source code. Then, in Section 5 we show how thenecessarily be met in order for the parent goal to be satisked

result of alternatives analysis at the goal level enablesafipro-
priate customization at the system level. We discuss theitisy

of our approach in 6. Finally, in Section 7 we discuss relateck

and conclude in Section 8.

2. GOAL MODELS

Goal models [11, 29] are known to be effective in concisely-ca
turing alternative ways by which high-level stakeholdealgacan
be met. This is possible through the construction of AND/Q@Rlg

example, for the goaliew Itemdo be fulfilled, the task/iew Basic
Product Infois only mandatory — taskgiew Prices Change Or-
dering and View Product Imagenay or may not be chosen to be
performed by the user.

Tasks can be classified into two different categories ddpgnah
what the system involvement is in terms of their performadwis,
human-agentasks are to be performed by the user alone without
the support or other involvement of the system under corside

decomposition graphs. Such a graph can be seen in Figureel. Th tion — an external system outside the scope of the analysisma

model shows alternative ways by which an on-line store carsbd
for browsing and purchasing products.

Provide
CC Info

Printed
Catalog
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View Product
Image
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O
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Figure 1: A goal model

O
@ Change
Ordering

The graph consists @foalsandtasks Goals — the ovals in the fig-
ure — are states of affairs or conditions that one or moreractb
interest would like to achieve [29]. ThiBrowse Itemss a goal.

used though. For exampleéonsult Printed Catalodts) belongs

to this category because it is performed without involvenoéthe
system. On the other handjixed-agentasks are tasks that are
performed in collaboration with the system under consititema
ThusAdd Commenis a mixed-agent task as the user will add the
comment and the system will offer the facility to do so. Arath
example of a mixed-agent task\&ew Image the system needs to
display an image and the user must view it in order for the task
be considered performed. All tasks of Figure 1 are mixediage
except forts andts which are human-agent tasks.

By recursively decomposing the root goal into subgoals aed-e
tually tasks, we are able to concisely represent altematays by
which actors can go about fulfilling the goals. These are kimp
solutions of the AND/OR tree; the presence of optional ater-al
native sub-goals allows for solution variability to be regpented.

3. ADDING A TEMPORAL DIMENSION

3.1 Indicative Constraints

The order by which goals are fulfilled and tasks are perforised
relevant in our framework. To express constraints in sadttgfn
ordering we use thprecedence link2=5). The precedence link is
drawn from a goal or task to another goal or task, meaningstitat
isfaction/performance of the target of the link cannot bagiless

Tasks on the other hand — the hexagonal elements — describe pa the origin is satisfied or performed. For example the preneee

ticular low-level activity that the actors perform in orderfulfill

link from the taskUse Cart(¢2) to the goalCheck Ouimplies that



none of the tasks und&heck Outan be performed unless the task
Use Carthas already been performed.

Given the relevance of ordering in task fulfillment, solasmf the
goal model come in the form q@lans A plan for the root goal is a
sequence of leaf level tasks that both satisfy the AND/ORfec
position tree and possible precedence links. Thus, plaes iy
possible behaviors that actors can exhibit when trying tuexe
their goals. In plarty, t7, ta, t2, t12, t14, t15, t16, t11] for example,
the user logs-in, browses the products with their priceds adme
of them to the cart and then checks out. In dlantz, ta, te, t10, t2,
t12,t14, t15, t16, t11], the user also views and adds comments. How-
ever S(:.“C]UE.‘I'ICEB17 ta, t2] and [1‘1117 tr,t2,t12,t15, 14, t1, tlﬁ] are
not valid plans for the root goal, the former because it datsat-
isfy the tree structure and the latter because it violatesqatences.

This variability of plans that a goal model implies can be emd
stood as a representation of the varietypehaviorsthat an actor
could exhibit in order to achieve their goals. Itis impott@mnotice
that these behaviors do not necessarily depend on the systech
at the point in the lifecylce when goal models are producesinoa

Using CFs we can represent interesting temporal consiréatt
performance of tasks or satisfaction of goals must obey.k Bac
our on-line shop example, assume that the shop owner wdd li
to disallow certain users from browsing the products witttbem
having logged in first. This could be written as a CF as follows

- viewBasicProductInfd/ login

The above means that the tadilkew Basic Product Infdt7) should
not be performed (signified by predicatiewBasicProductinfde-
coming true) before the tadlogin (¢1) is performed (thus, predi-
catelogin becoming true). For another class of users there may be
a more relaxed constraint:

- viewPricesU login

Universal and existential constraints are also relevamtekample
the shop owner may want to disallow users from adding comsnent
thus:

O-addComment

If, in addition to these, she wants to prevent them from ungwi
prices, logging in and using the cart, this translates intonger

yet been defined. For example, an actor may purchase a productonjunction of universal properties seen in Figure 2. leeffwith

without looking at or adding any user comments. At a diffesn
uation the same or a different actor may actually spend t@ading

the comments. In a third scenario she also adds a commerg to th

product. These are different behaviors that the user eshiit do
not necessarily imply any variability in the software systger se:
the comment viewing and addition feature may be availabkllin

cases, but used only in some of them. Thus, with goal models we

focus on variability at the level of possible human behaviather
than software variability, at the level of e.g. allowablemmonent
configurations.

3.2 Adding Customization Constraints

The temporally extended goal model with its precedenceslisk
intended to be the most unconstrained and behaviorallymiatiel

of the domain at hand. Indeed, the goal model of Figure 1 allow
the user to follow a large variety of ways to go about fulfijithe
root goal, as long as they are physically possible and reden

However the shop owner may wish to restrict certain possibil
ties. For example, she may want to disallow the user to view th
prices unless he logs in first or prevent the user from viewimgyor
adding comments, before logging in or in general. She may eve
go on to disallow use of the cart, again prior to logging inzere
for the entire session. In the last case, this would effeltimply
turning the system into a tool for browsing products only.

To express additional constraints on how users can achimie t
goals we augment the goal model with the appropriattomiza-
tion formulae(CFs). CFs are formulae in linear temporal logic
(LTL) grounded on elements of the goal model. Different stak
holders in different contexts and situations may wish tonaeigt
the goal model with a different set of CFs, restricting thgréhe
space of possible plans to fit particular needs.

To construct CFs we use 0-ary predicates of the fos@Cartand

browseltemso denote satisfaction of tasks and goals. These pred-

icates are true iff the task or goal they represent is perdrior
satisfied, respectively. Furthermore, symbols>, o and U are
used to represent the standard temporal operalorays, eventu-
ally, nextanduntil, respectively.

the property of the figure the shop owner allows the users lp on
browse the products, their basic information and their iesag

(O0— addCommeng A (O— viewPricegA
(O=login) A (O—- useCar}

Figure 2: A Customization Formula

While CFs, as LTL formulae, can in theory be of arbitrary céemp
ity, we found in our experimentation that most CFs that asful$n
practical applications are of specific and simple form. Téingple
existence, absence and precedence properties are enoagh-to
struct useful customization constraints. Hence, LTL pateuch
as the ones introduced in ([12]), can be used to facilitatesitac-
tion of CFs without reference to temporal operators.

In our application, we used the LTL pattern system through-te
plates in structured language. Thus, CFs can be expresfauris
such as h; is [not] satisfied before/aftel, is satisfied’; to express
precedence and response as well/ag eventually [not] satisfied”
to express existential properties, whére , ho are goals or tasks
of the goal model. A simple interpreter performs the tratisteof
such customization desires into actual LTL formulae. Iis tluay,
construction of simple yet useful CFs is possible by users are
not trained in LTL.

3.3 Identifying Admissible Plans

Adding CFs significantly restricts the space of possibleplay
which the root goal can be satisfied. Given a CF, we call thespla
of the goal model that satisfy the Gieimissible plangor the CF.
ThUS, all[t7], [2577 t5],[t7, tio, ta], [ts, tz, te, t5] and[tg,, tr, t10] are
examples of admissible plans for the CF of Figure 2. Howedan
[tl, tr,ta, te, 2,112, t14, 15, t1s, t11], although it satisfies the goal
model and its indicative precedence constraints, it is dotissible
because it violates the CF — all its conjuncts actually.

To allow the identification of plans that satisfy a given CIg are
adapting and using a preference-based Al planner, callégiPP
[5]. The planner is given as input a goal model, appropryaaeld
fully automatically translated to a planning problem sfieation
as well as a CF and returns the set of all admissible planséor t
CF. Unless interrupted, the planner will continue to imragely



output plans it finds until there are no more such. Details@m h
the planner is adapted can be found in [19].

Customization Desires
(des1) Add Comment is never satisfied.

(des2) Provide CC Info is satisfied after Provide Address
Info is satisfied.

(des3) View Prices is not satisfied before Login is satisfied.

il

{3 Interpreter

Customization Formula

O-addComment
N
- provideCCInfo U provideAddressInfo
AN
- viewPrices U login

=

[tl‘ & 6y Gy s
t,t,t,t,t ,t

(LI 90 S0 S P PR PR |

Figure 3: From Customization Desires to Plans

The overall framework and toolset for identifying sets aéferred
plans can be summarized in Figure 3. The high-level custmiz
tion desires expressed in structured English are intexgrietto a
customization formula, which together with the (approjaiafor-
malized) goal model are, in turn, given as input to a planiiée
planner returns plans of the goal model and satisfy the givsa
tomization constraints. This process has been found to éfilus
for allowing users to identify solution alternatives of ithgoals
that best fit their individual needs [19, 20]. In the rest of fia-
per we show how such preferred requirements alternativebea
interpreted into preferred customizations of the actusiesy.

4. CONNECTING GOAL MODELS WITH
CODE

To enable interpretation of preferred plans into prefeseftiware
customizations, a way to connect tasks with elements ofcsour
code needs to be established. The literature offers sonpogpats
for goal-driven software development methodologies (¢28]),
whereby adoption of a particular implementation technplogar-
chitectural approach (e.g. agent- or component-orientpand, of
course, of a particular development process is required.g0al,
however, is to introduce a framework for enabling requiretse
driven customization that also has the minimal impact tovtag
that developers develop their software. Hence we wish tidavo
introducing our own variability implementation or softweacom-
position technique or restrict ourselves to an existing foom the
wealth that has been proposed in the literature [13]. ldstee
identify a minimum set of principles, which, if applied dogi de-
velopment, our framework becomes applicable. These plei
refer totask separatiomndtask instrumentatiorexplained below.

Task Separation.For every mixed-agent task in the goal model
there exists a set of statements which are dedicated tosixely
supporting that task — and, thus, serve no other purposehdfur
more, it should be possible to prevent these statementsdxegut-

ing, preventing in effect the user from performing the taSkere

is no requirement that these statements are located in e [gart

of the implementation and not scattered across componeois;
ules, classes etc. — thus the principle is not a suggestioask#
oriented modularization. We call this cod@pped code (fragment)

to the task. Back in the on-line cart example, the mapped code
for taskLoginis the code for drawing the username and password
text boxes as well as the “Submit” and “Clear” button on therus
screen. This code exists exclusively for allowing the usepér-
form this task. Not drawing those widgets, through conditig

the mapped code, effectively prevents execution of the taskve

will see, we found that the mapped code is predominantly toate
conveniently exists in the view layer of an application.

Task Instrumentation Point&or every mixed-agent task, there is a
location in the source code where the state of the systenestg)g
that a task has been performed. In thagin example this might

be the point in which confirmation that the login credentiate
correct is sent back from the database and the applicati@ady

to redirect control elsewhere. In the tdRkview Orderthis can be
the point where a summary of the order has been displayedeon th
screen — and we assume that the user has successfully pedform
the subsequent reviewing task.

The above principles are deliberately general and infosuoahat
they can be easily refined and applied in a variety of comjoosit
and variability implementation scenarios. In a comporizasged or
service-oriented design, for example, the mapped codecbfteak
can be hidden behind an interface, which may or may not be used
by the calling environment [30]. In an aspect-oriented ajaion,
on the other hand, modularization need not follow task stjmar.
Instead tasks can be written as advice to be weaved (or nap-in
propriate locations in the source code. Later in the papawyidg
from our case study with the on-line cart system, we discuz®m
on the nature of the mapped code and show how fulfilling theebo
principles turned out to be a very natural process.

5. IMPLEMENTING CUSTOMIZATION POL-
ICY

Let us now look at how we can use the above mapping from tasks
to code together with the goal and CF models in order to eribble
appropriate behavioral result in the software system. Wehito

by: &) constructing a policy tree that represents all abglavays

by which a customized behavior can unfold, b) conditioniaghe
mapped code fragment based on what the policy tree allowls;)an
appropriately instrumenting the source code to sense wihils
have been performed and update the policy tree accordivygy.
look these in detail in the following subsections.

5.1 Constructing and Using The Policy Tree

As we saw, the goal model implies a great number of alter@ativ
plans of fulfilling the root goal. The addition of CFs drancatly
decreases the number of those plans into a set of admissibte o
with respect to the CF. The policy tree is simply a conciseasgn-
tation of those admissible plans — with the difference thiatiudes
only the mixed-agent tasks. An example can be seen in Figure 4
In the figure, task literals refer to those of Figure 1. On ilétr

of the figure, a policy tree is seen that corresponds to afliate
missible plans on the left. Each node of the tree represetatska
Let plan prefixp,. of a planp be the firstk tasks of the sequence
[t1,t2,...,tn] that comprise, wherek < n. Given a set of plans
P for the goal model, a policy tree is a representatiorPo$uch



that: p, is a prefix of a plarp € P if and only if there is a node in
the policy tree for which the path from the root to that nodelds
pr. Thus, in Figure 4, every plan (or prefix thereof) from thenpla
list corresponds to a path from the root to a leaf (resp. inéeliate
node) of the policy tree. Conversely, every node in the gdliee

is associated with a plan prefix of the plan list, which candagnfl
by traversing the tree from the root to that node. If the nedeaf
level then the prefix is a complete plan of the plan list.

Policy Tree t 13
Plan List

t, b, to,

Ottt
t th’ g
t7' Lo ter L5
t, te tsv to
t t oo te

Figure 4: A policy tree and the corresponding list of tasks

The policy tree is also supplied with a pointer that pointstie of

the nodes of the tree. We call this thtate pointer The role of
the state pointer is to maintain information about what saskve
been performed in a given use scenario at run time. Thustate s
pointer pointing to a given node means that the plan prefigcss
ated to that node has already been performed. On the othdr han
the tasks that can possibly be performed from that point ere r
stricted to the children of the node currently pointed atawy of

the tasks in the associated prefix — in a sense that thesectaske
repeated.

In the example policy tree of Figure 4 the state pointer otnt
nodets (Change Orderiny meaning that this was the last new

An algorithm for constructing a policy tree, from a list ofrais-
sible plans that the planner returns, is shown in Figure Se@le
that appending a new plan to the tree is linear to the lengtheof
plan. Itis important to note that the algorithm can keep agiging
the tree as new plans are generated by the planner, whietsalke
of partial output of the planner and enrichment of the treaeag
plans arrive.

5.2 Conditioning and Instrumenting the Source
Code

Let us now see how the policy tree can be used to enable behav-
ioral customization of the software system. Recall thatsysem

is build following the principles of task separation andktasstru-
mentation. This means that, on one hand, each mixed-aggnt ta
is associated with a set of statements (the mapped codepwbos
moval can prevent execution of the task, and on the other, iand
each task there is a well defined location in the code that snark
completion of the task. The policy tree is integrated by dtort-

ing access to the mapped code based on the position of tiee stat
pointer, and by adding statements in the instrumentatiamntpthat
advance the position of the state pointer accordingly.

More specifically, the former is implemented through the ake
the functioncanBePerformed(t) The functioncanBePerformed(t)
returns true iff task is one of the children of the node currently
pointed at by the state pointer or part of the associatedxpréfi
other words, the code fragment can be entered only if the texv p
prefix that would result from performing the task that mapthtt
fragment belongs to at least one of the admissible plans.e¥or
ample the mapped code of the tdske Cartinvolves buttons for
adding items to the cart, text fields for specifying quaesitilinks
for viewing the cart content etc. All these will be displayely

if canBePerformed(useCaif true, that is the taskdse Cartis in
one of the children of the state pointer, or it is part of thehgeom
the root to the state pointer. If this is not the case, the dgode
will not be accessed, preventing rendering of the userfanterele-
ments, which in turn prevents performance of the task by see. u

task that was observed to be performed. The node is assbciate Advancement of the position of the state pointer, on therdthad,

with prefix[t7, t5] (¢z beingView Basic Product Infomeaning that
these are the tasks that are assumed to have been perforrifesl by

is implemented through simpleerform(t) statements inserted in
the instrumentation points, whetds the task that was just per-

user so far. Each of them can be repeated by the user. As for newformed. The effect of theerform(t) statement is that the state

tasks, the user can perforimy, or ts (the two children ofs), that is
View Commentsr View Product ImageHowever, the user cannot
add any products to the cart as none of the childrer & t> (Use
Cart).

INPUT: a set of preferred plan8
OUTPUT: a policy tree rooted abot
root := newnode
label(root) := [empty]
for each new plan /*for each new plan= [t1, to, ...
currentNode := root
loop j /*for each task; in p*/
if ¢; is not a mixed-agent task skip to next j
if 3 child ¢ of currentNode such thatabel(c) == t; then
currentNode := ¢
else
¢ :=newnode
label(c) == t;
setc to be the child oturrentNode
currentNode := ¢
end if
end loop /*for each task in plap*/
end for each /*for each new plan*/

Figure 5: Building the Policy Tree

le P*

pointer advances to the child labeled wittor stays where it is
if ¢ is part of the path from the root to the state pointer.

In Figure 6, examples of conditioning and instrumentati@sfaown
for our PHP-based on-line cart system. The upper frame shows
how displaying the widgets for performing the tas#d Comment
is conditional tocanBePerformed(addCommebging true. Once
the user presses the submit button, a different file (com@mnt
trol.php) arranges to insert the comment to the databaseamahg
other workings, a call tperform(addCommeni$ made, so that the
policy tree advances to the corresponding node. In the loaere,
how customization conditions are mixed with run-time cdiodis

is illustrated. Thus, the “Checkout” button is visible if h€ck-
out” is allowed by the current customization policy and thaet ¢s
non-empty, which is something irrelevant of policy tree {olewe
discuss more on the extent to which the policy tree can be tesed
influence the details of the actual control flow.

Use of the policy tree is not restricted to the functions ased
above. For example, as we will see below, the functiaeBeen-
Performed(t) which returns true iff taskis part of the associated



viewDetailedProductinfo.php:

<?php if($tree->canBePerformed("addComment"))
<p> <font size='5' color="blue'> Writting comment </font></p>
<form method="POST" action="commentControl.php'>
<b> Title </b><br> <input type="text' name="title"><br><br>
<b>Body</b><br> <textarea rows="10" cols="30" name="'body"></textarea>

(2>

<input type="submit' name="submitGomment' value="Submit'>
<input type=reset' name="reset' valus='Clear'>

Tolor Tk
o — \
e N v |

ter
fpos  Witing comment

<?php } 7>

Tite

commentControl.php:
Budy

Stitle = $_POST[title];

S$inventorylD = $POST[‘inve‘m
$userlD =$_POST['userID’;

$body = $_POST['body;

$commentControl = new commentControl();
$commentControl->setComment($title, $body, $|
$inventoryID);
$tree->perform("addComment”);
header("Location:http://
".$_SERVER[HTTP_HOST1].$clientRoot."productControl/
viewDetailProductinfo.php?inventorylD=$inventoryID");

Copyright ® Vork University. AL Rights Recerved.

ﬁm? etk Stom BlckBeny 60 Emkrm’z
viewCart.php: " - =
icture ti it Qty [Up
<?php g lnspiton  Dell |none fblack 52000 ‘E
if( $tree->canBePerformed("reviewOrder") ) ——
&& ($CartControl->getNumOfitem()>0){?> \(

<form action="CartControl.php"
method="POST"><p>
<input type='submit' value='"Checkout
name="continue'/></p>
<?php}?>

Tolalmmber of tems: 4
Total Cost before tax: $4598
Tax:$59774

Total Cost after tax §519574
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Figure 6: Conditioning and Instrumenting Code

prefix of the node currently pointed, proved to be helpful amh
dling large numbers of task permutation possibilities.

5.3 In Action

Let us review how the techniques described so far are useda p
tice. At the design stage the software system is developsgna
with a goal model. Development is performed in a way that the
code that relates to tasks is activated only if and when shiisdi-
cated by the policy tree. The latter is defined based on custem
tion formulae given by the users at run-time. This is acldelve
following the analysis process of Figure 3 and by subsedyent
processing the bulk of resulting plans to construct thecgdiiee.
Thus, the system exhibits behavior that is compliant toehptans
by loading and using the resulting policy tree. This wayfeddnt
customization formulae yield different policy trees, wiiare, in
turn, plugged into the system to alter its behavior accaiglin

Back to our on-line shop example, consider the scenario iatwh
the shop-owner wants to construct CFs for newly identifiedigs
within her customer base. In Figure 7, two different CF sdesa
she devised can be seen together with screen-shots shdweiedy t
fect they have to system behavior. On the scenario on théhieft
CF prevents the users from — among other things — viewing any
product info before they login. In effect this means thatetiwe
session starts the only user action that is allowed is lagginIn-
deed, in the policy tree, login is the only child of the roohig ex-
plains the bare-bones screen that is offered to the usepgi(Ugft
screen-shot labeled [A]). Further, in the same scenaribeteft of

use of the cart or logging out is possible as seen in the pukeey
Thus, the button “Add to cart” is visible next to the producntiahe
button “Logout” on the top left of the screen. The scenaridten
right side of Figure 7, on the other hand, tailored to e.gtarasrs
from a particular country overseas, prevents use of thébocadoes
not prevent addition of comments. Thus, at a stage wherdatbta
product information is viewed, the user cannot add the itetné
cart as before, but she can post a comment or log-out (sesteEn-
[C]). This is exactly what the state pointer indicates.

6. APPLYING GOAL-BASED CUSTOMIZA-
TION

Let us now turn our focus to feasibility evidence and othetifigs
that our case study with the on-line cart system offered tdQug
focus in the application revolved around: a) applicatiothef two
basic implementation principles laid in Section 4 on how ¢a-c
nect tasks of the goal model with source code, b) how feagiate
use of the policy tree and its functions for making code |es-
tomization decisions and c) how sensible the proposed iizie
tion practice is once system development has been compMted
discuss these aspects below.

6.1 The Product and the Development Process
The on-line cart system we built is a 5KLOC application in PHP
The system follows a common 3-layer architectural styles 3ép-
aration between layers happens at the level of PHP files,hwhic
are the basic modularization elements in PHP together witR P
classes. The view layer contains PHP files that generate HTML
JavaScript to be rendered at the client’s browser. Therrediate
application logic layer contains control and entity classith their
member methods or free-standing PHP functions. Theseeslass
use, in turn, classes of the storage layer, located in siepfiles,
which handle connection with the DBMS (MySQL in our case).

To develop the system an actor played the role of the analyst (
first author) and two other actors (including the third au}iptayed

the role of the developers. The analyst drew and maintained t
goal model and the developers, who were both new to goal model
ing at that time, developed the system using the goal modeleas
exclusive tangible representation of the functional resents.
The approach that the developers followed was to treat efich o
the relevant tasks in the goal model as a high-level degoniutf

an acceptance test that the end-system needed to pass. &hey w
also requested to ensure that optional and alternative taakntain
that status in the implementation. No other constraintsil@srthat
specifically relate to goal-models were enforced other tramnpli-
ance to established object-oriented 3-layer design jpiesi

The goal behind following this development process was to un
derstand whether the desired connection with the tasksecjdhl
model, understood through the mapping principles of Secfio
would emerge naturally in the development of the systemh-wit
out the need to impose other architectural or process cgstrs or
adding burden to the development effort. Our result wasipesas
we explain below.

6.2 Applying the Mapping Principles
Examining the artifact after the development process,dohenixed-
agent task in the goal-model we found that there was a seataf-st

the figure, the CF prevents the user to add any comments. Hencements whose exclusive purpose was to support the perfosmanc

this facility is absent when viewing detailed product imf@tion
(the bottom left screen-shot [B]). At that stage, howeveakimg

the task. This is what we defined as mapped code above. Mapped
code fragments were not necessarily together in the sobutef-
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Figure 7: The effect of Customization Formulae

ten scattered across files or objects. Furthermore, the edagule
fragments of tasks were most likely found in the view layeacB
in Figure 6, the taslhdd Commenis mapped to a code fragment in
the view layer that renders the HTML code for constructirgah-
propriate text-boxes and buttons. Code that supportsdhisrhay
exist at the back layers as well, such as, for example, tteeadaess
object for inserting a newly submitted comment in the dagaba
this code however may not be exclusive to that task.

What is important is that, in all cases, by conditioning. (r&mov-
ing) the mapped code on the view layer the developers weee abl
— without problems — to enable (or disable) support for theezo
sponding task, through availing the users (or not, resgagji to
the interface widgets that allow execution of the task. Tlushe
above example, conditioning the PHP/ HTML code that drawes th
text boxes for adding comments can guarantee that the ualr sh
not have the means to perform this task. Moreover, in ouriegpl
tion we did not find such conditioning to have significant usickd
ramifications such as destabilizing or complicating degpeient of
other parts of the code.

In addition, it was not difficult for the developers to defifet
places in the source code where completion of each task &Execu
was signified. In tasks such ¥&ew Product Imagethat place was
right after the set of statements for displaying the produonatge
to the screen. In tasWdse Cart this point was the completion of
a function of the cart at the application logic layer, sucladding
a product to it. This particular example illustrates alsat thigher-
level tasks may need multiple instrumentation.

Hence, the two principles of task separation and instruatiemt
appeared to be applicable in our case. Moreover, task sapara
did not require special consideration and effort but radreerged
naturally in the result.

6.3 Using the Policy Tree

At a second stage of the development effort the developens ave
to actually enable use of the policy tree for enforcing comsta-
tion decisions implied by it. To achieve this an extra modués
introduced in the design that maintained a model of the potee
and the position of the state pointer, while exportingchrBePer-
formed(t)and performed(t)functions for querying and advancing
the pointer. These functions were used to condition mapped c
or fill instrumentation points, as discussed earlier.

We found that these activities were possible and did not tead
major revisions or unsolvable issues. We did however hameeso
occurrences of the predicatanBePerformed(theing insufficient
to elegantly arrange a customization decision. Those wasescin
which more knowledge of the plan prefix that had lead to a given
execution point was also helpful. The solution is to introglad-
ditional predicates to query the policy tree whenever thisdces-
sary. In our application, the predicdtasBeenPerformet)( which
returns true if the taskis part of the current plan prefix —i.e. part
of the path from the root to the state pointer in the policye tre
proved a sufficient addition.

It is important to note that the policy tree is meant to be adh to
for facilitating communication and enforcement of custoation
decisions taken at a requirements-level, and not for cbinigcthe
overall behavior of the software system. For example, tHeyo
tree accounts neither for repetitions and loops nor forimgryun-
time parameters of various objects. Thus, the tree is urea@fand
unaffected by possibilities such as the user providing grog-in
credentials or going back and forth correcting address aaditc
card info in the corresponding screens of the check-outgasdn
this way, developers can follow their own approach for deisig
and implementing the control flow of their application, vehilsing
the policy tree as a tool for only posing customization craists.

6.4 Dealing with Permutations

The advantage of using the policy tree for enforcing custation
decisions was best exhibited in problems where multiplenpéa-
tions of steps are possible to complete a process withiratme ©r
different customization scenarios. Considering the clrmdkpro-
cess of our on-line shop, for example, credit card and addnés
can be acquired in any ordef; § andt3 or t14 respectively), us-
ing two different screens. Although the two tasks can of seure
developed independently, problems arise when each stejs nee
redirect to the next step, or provide to the user the histbstaps
so far or the steps that can be performed from there. Onei@olut
is to require the developer of each screen to be aware ofigtaba
tomization decisions. The space of such possible deciskmvs-
ever, quickly explodes as the number of steps and thereéorewp
tations increases, making exhaustive encoding of all piisigs,
for the purpose of communicating customization, impradtic

To avoid this, we can acquire decisions or content pertgimbin
global customization from a third “control” module. In oypi-



cation, this role was supported by the policy tree. Thusayarr
of canBePerformed() and hasBeenPerformetl) checks where
used to, for example, appropriately label the “Next” bustarf the
check-out “wizard” of the on-line store and ensure that tieeljrect
to the correct next step according the preferred plan.

The benefit of using the policy tree for supporting custortiira
control is both that the customization logic itself is, assagv, de-
rived from a user-centered requirements analysis progebshat
the heavy computational work that this derivation normatiplies

is performed off-line. This contrasts our proposal with tpas-
sible extremes of either hard-coding customization ogtionan
ad-hoc manner (which seems to be the current state of peactic
[18]) or deferring the overall control of the applicationadlexible
yet computationally expensive on-line reasoning prooedur

6.5 Anchoring the Policy Control Process
An important consideration when applying the techniquedpig

plexity of LTL does not obstruct the process in any way, bath b
cause very simple LTL formulae suffice for achieving intéres
customization results and because the use of templatewaysl
possible for completely hiding the LTL details.

We, however, found that our framework suggests a custoinizat
practice we have not been accustomed to. The users, instead o
choosing from a set of predefined customization optionsclwhi
reflects today’s practice (cf. [18]), are instead asked tustract
and “run” their own customization desires. While this adds s
nificant flexibility and allows for defining customizationisat are
otherwise impossible in the current paradigm (e.g. arrangom-
plicated permutations), it also implies that extra stepsdn® be
taken for the users to understand and validate the custtoriza
constraints they pose, before these are enacted in thersySter
work on preference-based exploration of requirementsratees
[20] may offer a way by which this understanding can be feat#id.
We however believe that more experimentation with realsuger

behaviors. In our example, a plan prefix reflects the use of the required to fully understand the practice of preferendeedr cus-
system by one user at a particular time. The same or a differen tomization.

behavior may unfold from the beginning in a different clispstem

(some other customer trying to buy something), or by the same 6.7 Performance and Tool Considerations

customer later that day. Further, a plan prefix may neverldpie
a complete plan if the user chooses to abandon use of thersyste

With the termanchorwe refer to any type of entity, or group thereof,
whose lifetime is bound to a plan prefix. In our example, the an
choring entity is the simple web session. If, for example, sbs-
sion expires so does the plan prefix that has been constriodieat
point. A new session always means an empty plan prefix (ia¢e st
pointer points to the root of the policy tree) waiting to b@amded
through user actions. In different applications differanthoring
entities can be thought. In an application processing lessipro-
cess, e.g. for academic admissions, a student applicatiorbe
considered as the anchoring entity. Thus, for each newgtjn
that arrives a new empty prefix is constructed which is thegy au
mented based on tasks that are performed to process thatifzart
application. In the policy tree, this prefix augmentatiorrdpre-
sented as progression of the state pointer towards the leafs

Interestingly, different anchoring entities can be trddtg different

policy trees. For example different users of our on-lineestalen-

tified through e.g. a cookie mechanism) may experiencerdifte
behavioral customizations, through assigning a sepaddiwyree

to each of them.

6.6 Using Customization Formulae

Once the prototypical on-line store was up and running veslita
variety of customization formulae and observed their ¢ffecon-
straining the system behavior via construction of the cpoad-
ing policy tree. Our main experimentation revolved around-m
tiple policies as to when login should be performed with exsp
to other tasks, as well as what the allowed sequence of thekche
out screens should be. These were customized though castomi
tion formulae of precedence (translated throughWheperator in
LTL). In combination to these constraints we also addedentsl
ones dictating: whether comments can be added or viewedhehe
the image should be displayed, whether the cart could be arsed
even whether login was possible. All these constraints wieosen
based on what we thought could be realistic needs of a shoprown

The formulae would successfully translate into a systern tiba
haved accordingly. We strongly believe that the perceivem-c

The construction of a policy tree is an off-line activity aceh af-
ford longer computation times on separate computing itfuas
ture. This practice is to be contrasted with an approach iichvh
an Al planner or other reasoning machinery is used at rup;tta-
manding unpredictably expensive computational stepstémviane
in the normal control flow. It is important to note that a wani
customization can be achieved even if a subset of all adohssi
plans is provided, though the resulting policy may prevesitdv-
iors that are otherwise desired. The policy tree can keamghg-
dated as the planner returns new plans.

To acquire a sense of the time required for generating a lusefu

of plans with the current planner implementation, we trigted

ent examples of CFs over the goal model of Figure 1 while vayyi
the maximum amount of plans. The result can be seen in Table
8. Rows represent different CF scenarios. Thus @Bs/seand
browse2constraint use of the cart and the check-out system — the
latter constraining, among other things, comments as witle-
nariosloginFirst, checkPriceanduseCartXrequire user login be-
fore browsing, using the cart and checking out, respegtivehe

last come in different variations on aspects such as theiagdef
check-out screens. For simplicity we omit the full LTL sgea-

tion of those customization formulae. The cells show howgldn
took for an Intel Xeon QuadCore at 2GHz, 6KB Cache and approx.
780MB RAM reserved for the computation to calculate the fifst

40 etc. admissible plans for each of those customizationasimes

— times are in seconds. Note that the conversion of the peefer
plans into a policy tree is computationally insignificantmmpar-
ison and thus not the actual concern in this discussion.

Scenario Top20 | 40 | 60 80 100
browse 2 4 10 40 65

browse2 3 23 | 43 60 130
loginFirst 28 148 | 420 | 1302 | 1777
checkPrices 21 67 | 165 | 381 | 684
useCart 25 108 | 206 [ 509 | 859
useCart2 19 56 | 114 | 191 | 286

Figure 8: Time to Generate the first N Plans (in sec)

We definitely anticipate much better performance as the féld
preference-based planning is fast progressing. For exanapl
HTN-based planner with preferences has been introducedhwhi



offers dramatically better performance through utiliaatiof the
domain knowledge expressed as task hierarchies ([26]).piihe
ciples applied in this paper are applicable to that plansevell.
Further, to our knowledge, an efficient preference-basadngr
that readily returns a policy rather than a set of plansrtifthereby
the need to construct the policy tree as a separate step)tis e
introduced in the Al planning community.

6.8 Reflection: Advantages and Challenges
Overall, our exploration with the on-line store stronglynum-
strated three basic advantages of our proposal. Firstimakes
software customization a requirements problem, whereéssi@is-
tomize the system by talking about their goals and actwit&her
than features of the software. Secondly, customizationnstruc-
tive, meaning that users express their own desires as to hew t
system should behave, and not selective, where users weukt b
stricted in a predefined set of choices, which limits the auia-
tion possibilities. Thirdly, the implementation is impadtto a
minimal degree in a way that application of our approach can b
possible independent of methodological, architecturdl@atform
choices.

The aspect that we found challenging in our application has t
of quality assurance. In our proposal the space of possiide c
tomizations dramatically increases, in a way that testiecpmes
a more challenging activity. We believe that this is a neagss
consequence of any effort to produce high-variability adale de-
signs. Our naive testing practice was based on selecting af se
characteristic customization formulae and devising témtspfor
each. We believe, however, that since the goal model itselfde-
scriptor of all customization possibilities, it can potafly be used
for producing more educated quality assurance plans.

Finally, the case study per se allows for generalizabiliguanents
that cannot exceed certain limits. Firstly, our impleméatais a
relatively small 5KLOC system and therefore the influencscale

to the proposed practice is yet to be empirically exploredhust be
noted, however, that measures of size that seem more applica
our case may as well be aspects such as the number and camplexi
of user interactions. In that regard, we consider our pypioal on-

line cart system to be a good model of a real working systerisf t

type.

Secondly, the software we developed is an example of a webdba
system for supporting business processes. Applicatiomfffier-
ent classes of systems would perhaps offer more evidenckeon t
breadth of applicability of the proposal. The same is, findtue
with the platform and architectural style that was chosed, par-
ticularly, with the user interface technology and architee that
was applied. Our follow-up empirical investigation invedsdif-
ferent classes of systems that employ alternative and noonglé
cated interactions with the users.

7. RELATED WORK

Our proposal for requirements-driven software custorionate-
lates to work on adaptive systems as well as product linepat
uct derivation.

General goal driven adaptation has been proposed by seueral
thors. Thus, Zhang et al. [32] use temporal logic to spedaifypa
tive program semantics. Further, work by Brown et al. [6]suse
goal models to explicitly specify what should occur durirdap-
tation. Their approach uses goal models to specify the atapt

process; in our approach the adaptation is the indirecttresun-
posing customization and precedence constraints on gBalesi
and Pasquale [3] model adaptation strategies for servicgaosi-
tion using goal models. While their method applies to serciem-
position, our approach is more general and is not tight tceaifip
technology or application domain. Finally, strategy treage been
used to evaluate alternative reconfigurations of softwgstems
in the context of QoS and structural changes [25]. Our amproa
differs in that it deals with user goals and behavior adapiat

In product lines the dominant approach for representingbidity
are feature models [15, 9] which are appropriately inssedi [10,
31] for the derivation of individual members of the produatnily
[24]. However, feature models as well as other variabilitydels
used in the area [2, 14], apart from being solution-centeaéuer
than user-centered, they also aim at representing a greasity of
software characteristics and, therefore, they inevitablye relaxed
semantics. This prevents them from being the optimal taolssfa-
soning exercises such as the one we use in this paper — egpram
reasoning. We have indeed not found feature model instatia
proposals with characteristics similar to the ones we @Bef®re.
The extensive literature on software composition, on themhand
(e.g. [21] for a taxonomy), is either focusing on componieased
or service-oriented architectures (e.g. [27]) or focusespecific
technologies, frameworks or techniques by which compmsitan
be implemented — e.g. the AHEAD framework and its descesdant
[4, 1] or Aspect Orientation [16], Domain Specific Languages
Generators [8, 9]. Again, we could not find any proposals fBr a
proaching the requirements aspect of the problem, thatvisthe
desired compositional result can be communicated throafgr-r
ence to terms related to the experience and the goals of thalac
users, rather than technical details.

As far as the connection between goal models and impleni@mtat
is concerned, this problem has been addressed from a vafiety
angles. For example, specific methodologies for generaiigmt
oriented or component-based designs have been proposéé in t
context of two major goal-oriented frameworks, that is T®7,

23] and, to some extent, KAOS [28]. Our contribution, howeve
is not a goal-driven or, in general, model-driven softwageedop-
ment approach, but instead a proposal for using goal andnerate
models for software customization that has the minimum iptess
impact to the way the system is architected and developed.

8. CONCLUSIONS

Tailoring the behavior of a software system to the needs dif in
vidual stakeholders, contexts and situations as thesegehawver
time has emerged as an important need in today’s softwad-dev
opment. However, it also poses a challenging software eeging
and maintenance problem.

The main contribution of our paper is a technique to exadtly a
low this translation of high-level customization requiremts into
an appropriately configured system, in a flexible and acokessi
way. Generic goal models are used to concisely represemgea la
number of alternative behaviors that actors may exhibitrédeoto
fulfill their goals. The system is developed in a way that esath
behavior can potentially be supported. After deploymeoiyéver,
stakeholders can specify additional customization caigs, in
the form of simple temporal formulae, restricting the spaicpos-
sibilities to meet their current needs. Using an Al prefeeshased
planner, a tree representing admissible behaviors isratetl and
plugged in the application, for the latter to adapt its bébraw the



new customization constraints.

The merits of our approach lie in the following features. s#y;
it offers a direct linkage of software customization witheuse-
quirements using goal models and high-level customizdtonu-
lae. This way customization is performed through talkinguthihe
user activity and experience rather than features of theeisyso
be. Secondly, our proposal for constructive customizatidmere
users express their exact needs, versus selective, where ses
lect from predefined options, allows for flexibly leveragaguch
larger space of customization possibilities, leading tstesys that
are better tailored to the exact needs of users. Thirdlyptbposed
approach implies minimum impact to the implementation pss¢
being transparent to the architectural, modularizatiooc@ss and

platform choices the engineers have made, as long as twdesimp

mapping principles are followed and the ability to maintaimd
query the policy tree is arranged. Our application in thdioa-
cart system offered us strong evidence that both the cuzédiomn
practice per se and the engineering and development intéae
that enables it are feasible and exhibit the above advasitage

Our proposal opens a variety of possibilities for futureesrsh.

One of them is work on improving the performance of the reason

ing mechanism. Recent advances in preference-based migimAi
dicate that there is significant room for such improvemenbstvi
interesting would also be an empirical investigation of tise of
the goal model and the planner as tools for allowing devetpe
to better understand and implement the space of behavilbeal a
natives when following various development approachesthén
context of such an empirical effort, our basic implemenotarin-
ciples should also be tested for their applicability andegatity.
Furthermore, application of the technique in a variety dftegn
types would allow better understanding of whether the ciifiam
of the policy tree offers the right level of information or ather it
should be enriched into a complete behavioral model for ppdi-a
cation —and how. While the latter has been deemed imprhatick
restricting in this paper, further empirical work can hefpactually
confirm that.
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