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ABSTRACT
Customizing software to perfectly fit individual needs is becoming
increasingly important in information systems engineering. Users
want to be able to customize software behavior through reference
to terms familiar to their experience and needs. In this paper, we
present a requirements-driven approach to behavioral customiza-
tion of software. Goal models are constructed to represent alter-
native behaviors that users can exhibit to achieve their goals. Cus-
tomization information is then added to restrict the space of possi-
bilities to those that fit specific users, contexts or situations. Mean-
while, elements of the goal model are mapped to units of source
code. This way, customization preferences posed at the require-
ments level are directly translated into system customizations. Our
approach, which we apply to an on-line shopping cart system,does
not assume adoption of a particular development methodology, plat-
form or variability implementation technique and keeps thereason-
ing computation overhead from interfering with execution of the
configured application.

Keywords
Information Systems Engineering, Goal Modeling, AdaptiveSys-
tems, Software Customization

1. INTRODUCTION
Adaptation is emerging as an important mechanism in engineer-
ing more flexible and simpler to maintain and manage information
systems. To cope with changes in environment or in user require-
ments, adaptive software changes its structure and behavior based
on changes in the environment and requirements [22, 17]. An im-
portant manifestation of adaptivity is the ability of individual orga-
nizations and users tocustomizetheir software to their unique and
changing needs in different situations and contexts.

Consider, for example, an on-line store where users can browse and
purchase items. Normally, an anonymous user can browse the prod-
ucts, view their price information and user comments, add them to
the cart, log-in and check-out. But different shop-owners may want
variations of this process for different users. They may need, for
example, to withhold prices, user comments or other productin-
formation unless the user has logged in, or only if the user’sIP
belongs to a certain set of countries. Or they may wish to rearrange
the sequence of screens that guide the buyer through the check-out
process. Or, finally, they may wish to disable purchasing andallow
just browsing, with only some frequent buyers allowed to addcom-
ments – with or without logging in first. The shop-owner would
like to be able to devise, specify and change such rules everytime
she feels it is necessary and then just observe the system reconfig-
ure appropriately without resorting to expert help. But howeasy is
this?

Satisfying a great number of behavioral possibilities and switching
from one to the other is a challenging systems engineering problem.
While there is significant research on modeling and implementing
variability and adaptation, e.g. in the areas of Software Product-
Lines and Adaptive Systems, two aspects of the problem seem to
still require more attention. Firstly, the need to easily communicate
and actuate the desired customization, using language and terms
that reflect the needs and experience of the stakeholders, such us the
shop owner of our example. Secondly, the need to allow the stake-
holders to construct their customization preferences themselves, in-
stead of selecting from a restricted set of predefined ones, allowing
them thus to acquire a customization that is better tailoredto their
individual needs.

To address these issues, in this paper we introduce a goal-driven
technique for customizing the behavioral aspect of a software sys-
tem. A generic goal-decomposition model is constructed to rep-
resent a great number of alternative ways by which human agents
can use the system to achieve their goals. Then, to address their
specific needs and circumstances, individual stakeholderscan re-
fine this model by specifying additional constraints to the ways by
which human and machine actions are selected and ordered in time.
A preference-based AI planner is used to calculate such admissible
behaviors and a tree structure representing these behavioral possi-
bilities is constructed. Meanwhile, the high-level descriptions of



these actions are connected with code fragments of the software
system, in a way that the tree structure can actually enforcethe de-
sired system behavior. This way, high-level expressions ofdesired
arrangements of user actions are automatically translatedinto be-
havioral configurations of the software system. Amongst thebene-
fits of our approach are both that it brings the customizationprac-
tice to the requirements level and that it allows leverage oflarger
number of customization possibilities in a flexible way, without im-
posing restrictions to the choice of development process, software
architecture or platform technology.

Our proposal constitutes a continuation of our earlier workon ex-
ploiting goal model variability – i.e. alternative ways to achieve
stakeholder goals – to support software customization. In that early
work [19, 20], we have demonstrated the usefulness of specifying
and reasoning about stakeholder preferences in selecting require-
ments alternatives that best fit to the needs of specific users, con-
texts and situations. In this paper, we take this modeling and rea-
soning infrastructure one step further to allow requirements-based,
preference-driven customization of the actual software system.

The paper is organized as follows. In Sections 2 and 3 we present
the core goal modeling language and the temporal extension that we
are using for representing and leveraging behavioral alternatives. In
Section 4 we show how the elements of the goal model relate with
elements of the source code. Then, in Section 5 we show how the
result of alternatives analysis at the goal level enables the appro-
priate customization at the system level. We discuss the feasibility
of our approach in 6. Finally, in Section 7 we discuss relatedwork
and conclude in Section 8.

2. GOAL MODELS
Goal models [11, 29] are known to be effective in concisely cap-
turing alternative ways by which high-level stakeholder goals can
be met. This is possible through the construction of AND/OR goal
decomposition graphs. Such a graph can be seen in Figure 1. The
model shows alternative ways by which an on-line store can beused
for browsing and purchasing products.
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Figure 1: A goal model

The graph consists ofgoalsandtasks. Goals – the ovals in the fig-
ure – are states of affairs or conditions that one or more actors of
interest would like to achieve [29]. ThusBrowse Itemsis a goal.
Tasks on the other hand – the hexagonal elements – describe par-
ticular low-level activity that the actors perform in orderto fulfill

their goals. For exampleView Basic Product Infois a task. To
ease our presentation, next to each task shape, a circular annotation
containing a literal of the formti has been added. In the rest of
the paper, we will often use the literal to refer to the task instead
of mentioning the entire task description; thust7 refers to the task
View Basic Product Info. Goal models can also contain soft-goals
– goals for which there is no clear-cut criterion to decide whether
they are satisfied or not. While soft-goals can play a significant role
in customization [19], for simplicity we omit any referenceto these
in this paper.

Goals and tasks are connected with each other using AND- and
OR-decomposition links. When a goal is OR-decomposed then
satisfaction (performance) of one of the subgoals (resp. subtasks)
suffices for the satisfaction of the parent goal. For example, the
goalProvide Address Infois decomposed intoProvide New Address
Info andUse Stored Address Infoas these are two alternative ways
to specify address information. When a goal is AND-decomposed
into subgoals or subtasks, then all of the subgoals (subtasks) must
be satisfied (resp. performed) in order for the parent goal tobe
considered satisfied. In addition, children of AND-decompositions
can be designated asoptional. This is visually represented through
a small circular decoration on top of the optional goal. In the pres-
ence of optional goals, the definition of an AND-decomposition
is refined to exclude optional sub-goals from the goals that must
necessarily be met in order for the parent goal to be satisfied. For
example, for the goalView Itemsto be fulfilled, the taskView Basic
Product Infois only mandatory – tasksView Prices, Change Or-
dering andView Product Imagemay or may not be chosen to be
performed by the user.

Tasks can be classified into two different categories depending on
what the system involvement is in terms of their performance. Thus,
human-agenttasks are to be performed by the user alone without
the support or other involvement of the system under considera-
tion – an external system outside the scope of the analysis may be
used though. For exampleConsult Printed Catalog(t3) belongs
to this category because it is performed without involvement of the
system. On the other hand,mixed-agenttasks are tasks that are
performed in collaboration with the system under consideration.
ThusAdd Commentis a mixed-agent task as the user will add the
comment and the system will offer the facility to do so. Another
example of a mixed-agent task isView Image: the system needs to
display an image and the user must view it in order for the taskto
be considered performed. All tasks of Figure 1 are mixed-agent
except fort3 andt8 which are human-agent tasks.

By recursively decomposing the root goal into subgoals and even-
tually tasks, we are able to concisely represent alternative ways by
which actors can go about fulfilling the goals. These are simply
solutions of the AND/OR tree; the presence of optional and alter-
native sub-goals allows for solution variability to be represented.

3. ADDING A TEMPORAL DIMENSION

3.1 Indicative Constraints
The order by which goals are fulfilled and tasks are performedis
relevant in our framework. To express constraints in satisfaction
ordering we use theprecedence link(

pre
−→). The precedence link is

drawn from a goal or task to another goal or task, meaning thatsat-
isfaction/performance of the target of the link cannot begin unless
the origin is satisfied or performed. For example the precedence
link from the taskUse Cart(t2) to the goalCheck Outimplies that



none of the tasks underCheck Outcan be performed unless the task
Use Carthas already been performed.

Given the relevance of ordering in task fulfillment, solutions of the
goal model come in the form orplans. A plan for the root goal is a
sequence of leaf level tasks that both satisfy the AND/OR decom-
position tree and possible precedence links. Thus, plans exemplify
possible behaviors that actors can exhibit when trying to achieve
their goals. In plan[t1, t7, t4, t2, t12, t14, t15, t16, t11] for example,
the user logs-in, browses the products with their prices, adds some
of them to the cart and then checks out. In plan[t1, t7, t4, t9, t10, t2,
t12, t14, t15, t16, t11], the user also views and adds comments. How-
ever sequences[t1, t4, t2] and [t11, t7, t2, t12, t15, t14, t1, t16] are
not valid plans for the root goal, the former because it does not sat-
isfy the tree structure and the latter because it violates precedences.

This variability of plans that a goal model implies can be under-
stood as a representation of the variety ofbehaviorsthat an actor
could exhibit in order to achieve their goals. It is important to notice
that these behaviors do not necessarily depend on the system, which
at the point in the lifecylce when goal models are produced has not
yet been defined. For example, an actor may purchase a product
without looking at or adding any user comments. At a different sit-
uation the same or a different actor may actually spend time reading
the comments. In a third scenario she also adds a comment to the
product. These are different behaviors that the user exhibits that do
not necessarily imply any variability in the software system per se:
the comment viewing and addition feature may be available inall
cases, but used only in some of them. Thus, with goal models we
focus on variability at the level of possible human behaviors rather
than software variability, at the level of e.g. allowable component
configurations.

3.2 Adding Customization Constraints
The temporally extended goal model with its precedence links is
intended to be the most unconstrained and behaviorally richmodel
of the domain at hand. Indeed, the goal model of Figure 1 allows
the user to follow a large variety of ways to go about fulfilling the
root goal, as long as they are physically possible and reasonable.

However the shop owner may wish to restrict certain possibili-
ties. For example, she may want to disallow the user to view the
prices unless he logs in first or prevent the user from viewingand/or
adding comments, before logging in or in general. She may even
go on to disallow use of the cart, again prior to logging in or even
for the entire session. In the last case, this would effectively imply
turning the system into a tool for browsing products only.

To express additional constraints on how users can achieve their
goals we augment the goal model with the appropriatecustomiza-
tion formulae(CFs). CFs are formulae in linear temporal logic
(LTL) grounded on elements of the goal model. Different stake-
holders in different contexts and situations may wish to augment
the goal model with a different set of CFs, restricting thereby the
space of possible plans to fit particular needs.

To construct CFs we use 0-ary predicates of the formuseCartand
browseItemsto denote satisfaction of tasks and goals. These pred-
icates are true iff the task or goal they represent is performed or
satisfied, respectively. Furthermore, symbols2,3, ◦ andU are
used to represent the standard temporal operatorsalways, eventu-
ally, nextanduntil, respectively.

Using CFs we can represent interesting temporal constraints that
performance of tasks or satisfaction of goals must obey. Back to
our on-line shop example, assume that the shop owner would like
to disallow certain users from browsing the products without them
having logged in first. This could be written as a CF as follows:

¬ viewBasicProductInfoU login

The above means that the taskView Basic Product Info(t7) should
not be performed (signified by predicateviewBasicProductInfobe-
coming true) before the taskLogin (t1) is performed (thus, predi-
catelogin becoming true). For another class of users there may be
a more relaxed constraint:

¬ viewPricesU login

Universal and existential constraints are also relevant. For example
the shop owner may want to disallow users from adding comments,
thus:

2¬addComment

If, in addition to these, she wants to prevent them from viewing
prices, logging in and using the cart, this translates into alonger
conjunction of universal properties seen in Figure 2. In effect, with
the property of the figure the shop owner allows the users to only
browse the products, their basic information and their images.

(2¬ addComment) ∧ (2¬ viewPrices)∧
(2¬ login) ∧ (2¬ useCart)

Figure 2: A Customization Formula

While CFs, as LTL formulae, can in theory be of arbitrary complex-
ity, we found in our experimentation that most CFs that are useful in
practical applications are of specific and simple form. Thussimple
existence, absence and precedence properties are enough tocon-
struct useful customization constraints. Hence, LTL patterns such
as the ones introduced in ([12]), can be used to facilitate construc-
tion of CFs without reference to temporal operators.

In our application, we used the LTL pattern system through tem-
plates in structured language. Thus, CFs can be expressed informs
such as“ h1 is [not] satisfied before/afterh2 is satisfied”, to express
precedence and response as well as“ h is eventually [not] satisfied”
to express existential properties, whereh, h1, h2 are goals or tasks
of the goal model. A simple interpreter performs the translation of
such customization desires into actual LTL formulae. In this way,
construction of simple yet useful CFs is possible by users who are
not trained in LTL.

3.3 Identifying Admissible Plans
Adding CFs significantly restricts the space of possible plans by
which the root goal can be satisfied. Given a CF, we call the plans
of the goal model that satisfy the CFadmissible plansfor the CF.
Thus, all[t7], [t7, t5],[t7, t10, t6], [t8, t7, t6, t5] and[t3, t7, t10] are
examples of admissible plans for the CF of Figure 2. However,plan
[t1, t7, t4, t9, t2, t12, t14, t15, t16, t11], although it satisfies the goal
model and its indicative precedence constraints, it is not admissible
because it violates the CF – all its conjuncts actually.

To allow the identification of plans that satisfy a given CF, we are
adapting and using a preference-based AI planner, called PPLan
[5]. The planner is given as input a goal model, appropriately and
fully automatically translated to a planning problem specification
as well as a CF and returns the set of all admissible plans for the
CF. Unless interrupted, the planner will continue to immediately



output plans it finds until there are no more such. Details on how
the planner is adapted can be found in [19].
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Figure 3: From Customization Desires to Plans

The overall framework and toolset for identifying sets of preferred
plans can be summarized in Figure 3. The high-level customiza-
tion desires expressed in structured English are interpreted into a
customization formula, which together with the (appropriately for-
malized) goal model are, in turn, given as input to a planner.The
planner returns plans of the goal model and satisfy the givencus-
tomization constraints. This process has been found to be useful
for allowing users to identify solution alternatives of their goals
that best fit their individual needs [19, 20]. In the rest of the pa-
per we show how such preferred requirements alternatives can be
interpreted into preferred customizations of the actual system.

4. CONNECTING GOAL MODELS WITH
CODE

To enable interpretation of preferred plans into preferredsoftware
customizations, a way to connect tasks with elements of source
code needs to be established. The literature offers some proposals
for goal-driven software development methodologies (e.g.[23]),
whereby adoption of a particular implementation technology or ar-
chitectural approach (e.g. agent- or component-orientation) and, of
course, of a particular development process is required. Our goal,
however, is to introduce a framework for enabling requirements-
driven customization that also has the minimal impact to theway
that developers develop their software. Hence we wish to avoid
introducing our own variability implementation or software com-
position technique or restrict ourselves to an existing onefrom the
wealth that has been proposed in the literature [13]. Instead, we
identify a minimum set of principles, which, if applied during de-
velopment, our framework becomes applicable. These principles
refer totask separationandtask instrumentation, explained below.

Task Separation.For every mixed-agent task in the goal model
there exists a set of statements which are dedicated to exclusively
supporting that task – and, thus, serve no other purpose. Further-
more, it should be possible to prevent these statements fromexecut-

ing, preventing in effect the user from performing the task.There
is no requirement that these statements are located in the same part
of the implementation and not scattered across components,mod-
ules, classes etc. – thus the principle is not a suggestion oftask-
oriented modularization. We call this codemapped code (fragment)
to the task. Back in the on-line cart example, the mapped code
for taskLogin is the code for drawing the username and password
text boxes as well as the “Submit” and “Clear” button on the user
screen. This code exists exclusively for allowing the user to per-
form this task. Not drawing those widgets, through conditioning
the mapped code, effectively prevents execution of the task. As we
will see, we found that the mapped code is predominantly codethat
conveniently exists in the view layer of an application.

Task Instrumentation Points.For every mixed-agent task, there is a
location in the source code where the state of the system suggests
that a task has been performed. In theLogin example this might
be the point in which confirmation that the login credentialsare
correct is sent back from the database and the application isready
to redirect control elsewhere. In the taskReview Order, this can be
the point where a summary of the order has been displayed on the
screen – and we assume that the user has successfully performed
the subsequent reviewing task.

The above principles are deliberately general and informalso that
they can be easily refined and applied in a variety of composition
and variability implementation scenarios. In a component-based or
service-oriented design, for example, the mapped code of each task
can be hidden behind an interface, which may or may not be used
by the calling environment [30]. In an aspect-oriented application,
on the other hand, modularization need not follow task separation.
Instead tasks can be written as advice to be weaved (or not) inap-
propriate locations in the source code. Later in the paper, drawing
from our case study with the on-line cart system, we discuss more
on the nature of the mapped code and show how fulfilling the above
principles turned out to be a very natural process.

5. IMPLEMENTING CUSTOMIZATION POL-
ICY

Let us now look at how we can use the above mapping from tasks
to code together with the goal and CF models in order to enablethe
appropriate behavioral result in the software system. We dothis
by: a) constructing a policy tree that represents all available ways
by which a customized behavior can unfold, b) conditioning each
mapped code fragment based on what the policy tree allows, and c)
appropriately instrumenting the source code to sense whichtasks
have been performed and update the policy tree accordingly.We
look these in detail in the following subsections.

5.1 Constructing and Using The Policy Tree
As we saw, the goal model implies a great number of alternative
plans of fulfilling the root goal. The addition of CFs dramatically
decreases the number of those plans into a set of admissible ones
with respect to the CF. The policy tree is simply a concise represen-
tation of those admissible plans – with the difference that it includes
only the mixed-agent tasks. An example can be seen in Figure 4.
In the figure, task literals refer to those of Figure 1. On the right
of the figure, a policy tree is seen that corresponds to a list of ad-
missible plans on the left. Each node of the tree represents atask.
Let plan prefixpk of a planp be the firstk tasks of the sequence
[t1, t2, . . . , tn] that comprisep, wherek ≤ n. Given a set of plans
P for the goal model, a policy tree is a representation ofP such



that: pk is a prefix of a planp ∈ P if and only if there is a node in
the policy tree for which the path from the root to that node yields
pk. Thus, in Figure 4, every plan (or prefix thereof) from the plan
list corresponds to a path from the root to a leaf (resp. intermediate
node) of the policy tree. Conversely, every node in the policy tree
is associated with a plan prefix of the plan list, which can be found
by traversing the tree from the root to that node. If the node is leaf
level then the prefix is a complete plan of the plan list.
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Figure 4: A policy tree and the corresponding list of tasks

The policy tree is also supplied with a pointer that points toone of
the nodes of the tree. We call this thestate pointer. The role of
the state pointer is to maintain information about what tasks have
been performed in a given use scenario at run time. Thus, the state
pointer pointing to a given node means that the plan prefix associ-
ated to that node has already been performed. On the other hand,
the tasks that can possibly be performed from that point are re-
stricted to the children of the node currently pointed at, orany of
the tasks in the associated prefix – in a sense that these taskscan be
repeated.

In the example policy tree of Figure 4 the state pointer points to
node t5 (Change Ordering), meaning that this was the last new
task that was observed to be performed. The node is associated
with prefix [t7, t5] (t7 beingView Basic Product Info) meaning that
these are the tasks that are assumed to have been performed bythe
user so far. Each of them can be repeated by the user. As for new
tasks, the user can performt10 or t6 (the two children oft5), that is
View Commentsor View Product Image. However, the user cannot
add any products to the cart as none of the children oft5 is t2 (Use
Cart).

INPUT: a set of preferred plansP
OUTPUT: a policy tree rooted atroot
root := newnode
label(root) := [empty]
for each new plan /*for each new planp = [t1, t2, ...] ∈ P */

currentNode := root

loop j /*for each tasktj in p*/
if tj is not a mixed-agent task skip to next j
if ∃ child c of currentNode such thatlabel(c) == tj then

currentNode := c

else
c := newnode
label(c) := tj
setc to be the child ofcurrentNode

currentNode := c

end if
end loop /*for each task in planp*/

end for each /*for each new planp */

Figure 5: Building the Policy Tree

An algorithm for constructing a policy tree, from a list of admis-
sible plans that the planner returns, is shown in Figure 5. Observe
that appending a new plan to the tree is linear to the length ofthe
plan. It is important to note that the algorithm can keep augmenting
the tree as new plans are generated by the planner, which allows use
of partial output of the planner and enrichment of the tree asnew
plans arrive.

5.2 Conditioning and Instrumenting the Source
Code

Let us now see how the policy tree can be used to enable behav-
ioral customization of the software system. Recall that thesystem
is build following the principles of task separation and task instru-
mentation. This means that, on one hand, each mixed-agent task
is associated with a set of statements (the mapped code) whose re-
moval can prevent execution of the task, and on the other hand, for
each task there is a well defined location in the code that marks
completion of the task. The policy tree is integrated by condition-
ing access to the mapped code based on the position of the state
pointer, and by adding statements in the instrumentation points that
advance the position of the state pointer accordingly.

More specifically, the former is implemented through the useof
the functioncanBePerformed(t). The functioncanBePerformed(t)
returns true iff taskt is one of the children of the node currently
pointed at by the state pointer or part of the associated prefix. In
other words, the code fragment can be entered only if the new plan
prefix that would result from performing the task that maps tothat
fragment belongs to at least one of the admissible plans. Forex-
ample the mapped code of the taskUse Cartinvolves buttons for
adding items to the cart, text fields for specifying quantities, links
for viewing the cart content etc. All these will be displayedonly
if canBePerformed(useCart)is true, that is the taskUse Cartis in
one of the children of the state pointer, or it is part of the path from
the root to the state pointer. If this is not the case, the mapped code
will not be accessed, preventing rendering of the user interface ele-
ments, which in turn prevents performance of the task by the user.

Advancement of the position of the state pointer, on the other hand,
is implemented through simpleperform(t) statements inserted in
the instrumentation points, wheret is the task that was just per-
formed. The effect of theperform(t) statement is that the state
pointer advances to the child labeled witht or stays where it is
if t is part of the path from the root to the state pointer.

In Figure 6, examples of conditioning and instrumentation are shown
for our PHP-based on-line cart system. The upper frame shows
how displaying the widgets for performing the taskAdd Comment
is conditional tocanBePerformed(addComment)being true. Once
the user presses the submit button, a different file (commentCon-
trol.php) arranges to insert the comment to the database and, among
other workings, a call toperform(addComment)is made, so that the
policy tree advances to the corresponding node. In the lowerframe,
how customization conditions are mixed with run-time conditions
is illustrated. Thus, the “Checkout” button is visible if “Check-
out” is allowed by the current customization policy and the cart is
non-empty, which is something irrelevant of policy tree – below we
discuss more on the extent to which the policy tree can be usedto
influence the details of the actual control flow.

Use of the policy tree is not restricted to the functions discussed
above. For example, as we will see below, the functionhasBeen-
Performed(t), which returns true iff taskt is part of the associated



viewCart.php:

...

<?php

   if(
$tree->canBePerformed("reviewOrder")
 )


   && ($CartControl->getNumOfItem()>0){?>

        <form action="CartControl.php"


method="POST"><p>

        <input type='submit' value='Checkout'


name='continue'/></p>

   <?php } ?>

...


viewDetailedProductInfo.php:

...


<?php 
 if($tree->canBePerformed("addComment"))  
 { ?>

   <p> <font size='5' color='blue'> Writting comment </font></p>


   <form method='POST' action='commentControl.php'>

   <b> Title </b><br>  <input type='text' name='title'><br><br>


    <b>Body</b><br>  <textarea rows="10" cols="30" name='body'></textarea>

    ...


    <input type='submit' name='submitComment' value='Submit'>

    <input type='reset' name='reset' value='Clear'>


    ...


<?php } ?>

...


commentControl.php:

...

$title = $_POST['title'];


$body = $_POST['body'];

$inventoryID = $_POST['inventoryID'];


$userID =$_POST['userID'];

$commentControl = new commentControl();


$commentControl->setComment($title, $body, $userID,

$inventoryID);


$tree->perform("addComment");

header("Location:http://

".$_SERVER['HTTP_HOST'].$clientRoot."productControl/


viewDetailProductInfo.php?inventoryID=$inventoryID");

...


Figure 6: Conditioning and Instrumenting Code

prefix of the node currently pointed, proved to be helpful in han-
dling large numbers of task permutation possibilities.

5.3 In Action
Let us review how the techniques described so far are used in prac-
tice. At the design stage the software system is developed insync
with a goal model. Development is performed in a way that the
code that relates to tasks is activated only if and when this is indi-
cated by the policy tree. The latter is defined based on customiza-
tion formulae given by the users at run-time. This is achieved by
following the analysis process of Figure 3 and by subsequently
processing the bulk of resulting plans to construct the policy tree.
Thus, the system exhibits behavior that is compliant to these plans
by loading and using the resulting policy tree. This way, different
customization formulae yield different policy trees, which are, in
turn, plugged into the system to alter its behavior accordingly.

Back to our on-line shop example, consider the scenario in which
the shop-owner wants to construct CFs for newly identified groups
within her customer base. In Figure 7, two different CF scenarios
she devised can be seen together with screen-shots showing the ef-
fect they have to system behavior. On the scenario on the leftthe
CF prevents the users from – among other things – viewing any
product info before they login. In effect this means that once the
session starts the only user action that is allowed is logging in. In-
deed, in the policy tree, login is the only child of the root. This ex-
plains the bare-bones screen that is offered to the users (upper left
screen-shot labeled [A]). Further, in the same scenario on the left of
the figure, the CF prevents the user to add any comments. Hence,
this facility is absent when viewing detailed product information
(the bottom left screen-shot [B]). At that stage, however, making

use of the cart or logging out is possible as seen in the policytree.
Thus, the button “Add to cart” is visible next to the product and the
button “Logout” on the top left of the screen. The scenario onthe
right side of Figure 7, on the other hand, tailored to e.g. customers
from a particular country overseas, prevents use of the cartbut does
not prevent addition of comments. Thus, at a stage where detailed
product information is viewed, the user cannot add the item to the
cart as before, but she can post a comment or log-out (screen-shot
[C]). This is exactly what the state pointer indicates.

6. APPLYING GOAL-BASED CUSTOMIZA-
TION

Let us now turn our focus to feasibility evidence and other findings
that our case study with the on-line cart system offered to us. Our
focus in the application revolved around: a) application ofthe two
basic implementation principles laid in Section 4 on how to con-
nect tasks of the goal model with source code, b) how feasiblewas
use of the policy tree and its functions for making code levelcus-
tomization decisions and c) how sensible the proposed customiza-
tion practice is once system development has been completed. We
discuss these aspects below.

6.1 The Product and the Development Process
The on-line cart system we built is a 5KLOC application in PHP.
The system follows a common 3-layer architectural style. The sep-
aration between layers happens at the level of PHP files, which
are the basic modularization elements in PHP together with PHP
classes. The view layer contains PHP files that generate HTML/
JavaScript to be rendered at the client’s browser. The intermediate
application logic layer contains control and entity classes with their
member methods or free-standing PHP functions. These classes
use, in turn, classes of the storage layer, located in separate files,
which handle connection with the DBMS (MySQL in our case).

To develop the system an actor played the role of the analyst (the
first author) and two other actors (including the third author) played
the role of the developers. The analyst drew and maintained the
goal model and the developers, who were both new to goal model-
ing at that time, developed the system using the goal model asthe
exclusive tangible representation of the functional requirements.
The approach that the developers followed was to treat each of
the relevant tasks in the goal model as a high-level description of
an acceptance test that the end-system needed to pass. They were
also requested to ensure that optional and alternative tasks maintain
that status in the implementation. No other constraints or rules that
specifically relate to goal-models were enforced other thancompli-
ance to established object-oriented 3-layer design principles.

The goal behind following this development process was to un-
derstand whether the desired connection with the tasks of the goal
model, understood through the mapping principles of Section 4
would emerge naturally in the development of the system, with-
out the need to impose other architectural or process restrictions or
adding burden to the development effort. Our result was positive as
we explain below.

6.2 Applying the Mapping Principles
Examining the artifact after the development process, for each mixed-
agent task in the goal-model we found that there was a set of state-
ments whose exclusive purpose was to support the performance of
the task. This is what we defined as mapped code above. Mapped
code fragments were not necessarily together in the source,but of-
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Figure 7: The effect of Customization Formulae

ten scattered across files or objects. Furthermore, the mapped code
fragments of tasks were most likely found in the view layer. Back
in Figure 6, the taskAdd Commentis mapped to a code fragment in
the view layer that renders the HTML code for constructing the ap-
propriate text-boxes and buttons. Code that supports this task may
exist at the back layers as well, such as, for example, the data access
object for inserting a newly submitted comment in the database –
this code however may not be exclusive to that task.

What is important is that, in all cases, by conditioning (i.e. remov-
ing) the mapped code on the view layer the developers were able
– without problems – to enable (or disable) support for the corre-
sponding task, through availing the users (or not, respectively) to
the interface widgets that allow execution of the task. Thus, in the
above example, conditioning the PHP/ HTML code that draws the
text boxes for adding comments can guarantee that the user shall
not have the means to perform this task. Moreover, in our applica-
tion we did not find such conditioning to have significant undesired
ramifications such as destabilizing or complicating development of
other parts of the code.

In addition, it was not difficult for the developers to define the
places in the source code where completion of each task execution
was signified. In tasks such asView Product Image, that place was
right after the set of statements for displaying the productimage
to the screen. In taskUse Cart, this point was the completion of
a function of the cart at the application logic layer, such asadding
a product to it. This particular example illustrates also that higher-
level tasks may need multiple instrumentation.

Hence, the two principles of task separation and instrumentation
appeared to be applicable in our case. Moreover, task separation
did not require special consideration and effort but ratheremerged
naturally in the result.

6.3 Using the Policy Tree
At a second stage of the development effort the developers went on
to actually enable use of the policy tree for enforcing customiza-
tion decisions implied by it. To achieve this an extra modulewas
introduced in the design that maintained a model of the policy tree
and the position of the state pointer, while exporting thecanBePer-
formed(t)andperformed(t)functions for querying and advancing
the pointer. These functions were used to condition mapped code
or fill instrumentation points, as discussed earlier.

We found that these activities were possible and did not leadto
major revisions or unsolvable issues. We did however have some
occurrences of the predicatecanBePerformed(t)being insufficient
to elegantly arrange a customization decision. Those were cases in
which more knowledge of the plan prefix that had lead to a given
execution point was also helpful. The solution is to introduce ad-
ditional predicates to query the policy tree whenever this is neces-
sary. In our application, the predicatehasBeenPerformed(t), which
returns true if the taskt is part of the current plan prefix – i.e. part
of the path from the root to the state pointer in the policy tree –
proved a sufficient addition.

It is important to note that the policy tree is meant to be a a tool
for facilitating communication and enforcement of customization
decisions taken at a requirements-level, and not for controlling the
overall behavior of the software system. For example, the policy
tree accounts neither for repetitions and loops nor for varying run-
time parameters of various objects. Thus, the tree is unaware of and
unaffected by possibilities such as the user providing wrong log-in
credentials or going back and forth correcting address and credit
card info in the corresponding screens of the check-out process. In
this way, developers can follow their own approach for designing
and implementing the control flow of their application, while using
the policy tree as a tool for only posing customization constraints.

6.4 Dealing with Permutations
The advantage of using the policy tree for enforcing customization
decisions was best exhibited in problems where multiple permuta-
tions of steps are possible to complete a process within the same or
different customization scenarios. Considering the check-out pro-
cess of our on-line shop, for example, credit card and address info
can be acquired in any order (t15 andt13 or t14 respectively), us-
ing two different screens. Although the two tasks can of course be
developed independently, problems arise when each step needs to
redirect to the next step, or provide to the user the history of steps
so far or the steps that can be performed from there. One solution
is to require the developer of each screen to be aware of global cus-
tomization decisions. The space of such possible decisions, how-
ever, quickly explodes as the number of steps and therefore permu-
tations increases, making exhaustive encoding of all possibilities,
for the purpose of communicating customization, impractical.

To avoid this, we can acquire decisions or content pertaining to
global customization from a third “control” module. In our appli-



cation, this role was supported by the policy tree. Thus, arrays
of canBePerformed(ti) and hasBeenPerformed(ti) checks where
used to, for example, appropriately label the “Next” buttons of the
check-out “wizard” of the on-line store and ensure that theyredirect
to the correct next step according the preferred plan.

The benefit of using the policy tree for supporting customization
control is both that the customization logic itself is, as wesaw, de-
rived from a user-centered requirements analysis process and that
the heavy computational work that this derivation normallyimplies
is performed off-line. This contrasts our proposal with twopos-
sible extremes of either hard-coding customization options in an
ad-hoc manner (which seems to be the current state of practice -
[18]) or deferring the overall control of the application toa flexible
yet computationally expensive on-line reasoning procedure.

6.5 Anchoring the Policy Control Process
An important consideration when applying the technique is scoping
behaviors. In our example, a plan prefix reflects the use of the
system by one user at a particular time. The same or a different
behavior may unfold from the beginning in a different clientsystem
(some other customer trying to buy something), or by the same
customer later that day. Further, a plan prefix may never develop to
a complete plan if the user chooses to abandon use of the system.

With the termanchorwe refer to any type of entity, or group thereof,
whose lifetime is bound to a plan prefix. In our example, the an-
choring entity is the simple web session. If, for example, the ses-
sion expires so does the plan prefix that has been constructedto that
point. A new session always means an empty plan prefix (i.e. state
pointer points to the root of the policy tree) waiting to be expanded
through user actions. In different applications differentanchoring
entities can be thought. In an application processing business pro-
cess, e.g. for academic admissions, a student application can be
considered as the anchoring entity. Thus, for each new application
that arrives a new empty prefix is constructed which is then aug-
mented based on tasks that are performed to process that particular
application. In the policy tree, this prefix augmentation isrepre-
sented as progression of the state pointer towards the leafs.

Interestingly, different anchoring entities can be treated by different
policy trees. For example different users of our on-line store (iden-
tified through e.g. a cookie mechanism) may experience different
behavioral customizations, through assigning a separate policy tree
to each of them.

6.6 Using Customization Formulae
Once the prototypical on-line store was up and running we tried a
variety of customization formulae and observed their effect in con-
straining the system behavior via construction of the correspond-
ing policy tree. Our main experimentation revolved around mul-
tiple policies as to when login should be performed with respect
to other tasks, as well as what the allowed sequence of the check-
out screens should be. These were customized though customiza-
tion formulae of precedence (translated through theU operator in
LTL). In combination to these constraints we also added existential
ones dictating: whether comments can be added or viewed, whether
the image should be displayed, whether the cart could be usedor
even whether login was possible. All these constraints werechosen
based on what we thought could be realistic needs of a shop owner.

The formulae would successfully translate into a system that be-
haved accordingly. We strongly believe that the perceived com-

plexity of LTL does not obstruct the process in any way, both be-
cause very simple LTL formulae suffice for achieving interesting
customization results and because the use of templates is always
possible for completely hiding the LTL details.

We, however, found that our framework suggests a customization
practice we have not been accustomed to. The users, instead of
choosing from a set of predefined customization options, which
reflects today’s practice (cf. [18]), are instead asked to construct
and “run” their own customization desires. While this adds sig-
nificant flexibility and allows for defining customizations that are
otherwise impossible in the current paradigm (e.g. arranging com-
plicated permutations), it also implies that extra steps need to be
taken for the users to understand and validate the customization
constraints they pose, before these are enacted in the system. Our
work on preference-based exploration of requirements alternatives
[20] may offer a way by which this understanding can be facilitated.
We however believe that more experimentation with real users is
required to fully understand the practice of preference-driven cus-
tomization.

6.7 Performance and Tool Considerations
The construction of a policy tree is an off-line activity andcan af-
ford longer computation times on separate computing infrastruc-
ture. This practice is to be contrasted with an approach in which
an AI planner or other reasoning machinery is used at run-time, de-
manding unpredictably expensive computational steps to intervene
in the normal control flow. It is important to note that a working
customization can be achieved even if a subset of all admissible
plans is provided, though the resulting policy may prevent behav-
iors that are otherwise desired. The policy tree can keep being up-
dated as the planner returns new plans.

To acquire a sense of the time required for generating a useful set
of plans with the current planner implementation, we tried differ-
ent examples of CFs over the goal model of Figure 1 while varying
the maximum amount of plans. The result can be seen in Table
8. Rows represent different CF scenarios. Thus CFsbrowseand
browse2constraint use of the cart and the check-out system – the
latter constraining, among other things, comments as well.Sce-
nariosloginFirst, checkPricesanduseCartXrequire user login be-
fore browsing, using the cart and checking out, respectively – the
last come in different variations on aspects such as the ordering of
check-out screens. For simplicity we omit the full LTL specifica-
tion of those customization formulae. The cells show how long it
took for an Intel Xeon QuadCore at 2GHz, 6KB Cache and approx.
780MB RAM reserved for the computation to calculate the first20,
40 etc. admissible plans for each of those customization scenarios
– times are in seconds. Note that the conversion of the preferred
plans into a policy tree is computationally insignificant incompar-
ison and thus not the actual concern in this discussion.

Scenario Top 20 40 60 80 100
browse 2 4 10 40 65
browse2 3 23 43 60 130
loginFirst 28 148 420 1302 1777
checkPrices 21 67 165 381 684
useCart 25 108 206 509 859
useCart2 19 56 114 191 286

Figure 8: Time to Generate the first N Plans (in sec)

We definitely anticipate much better performance as the fieldof
preference-based planning is fast progressing. For example, an
HTN-based planner with preferences has been introduced which



offers dramatically better performance through utilization of the
domain knowledge expressed as task hierarchies ([26]). Theprin-
ciples applied in this paper are applicable to that planner as well.
Further, to our knowledge, an efficient preference-based planner
that readily returns a policy rather than a set of plans (lifting thereby
the need to construct the policy tree as a separate step) is yet to be
introduced in the AI planning community.

6.8 Reflection: Advantages and Challenges
Overall, our exploration with the on-line store strongly demon-
strated three basic advantages of our proposal. Firstly, itmakes
software customization a requirements problem, whereby users cus-
tomize the system by talking about their goals and activities rather
than features of the software. Secondly, customization is construc-
tive, meaning that users express their own desires as to how the
system should behave, and not selective, where users would be re-
stricted in a predefined set of choices, which limits the customiza-
tion possibilities. Thirdly, the implementation is impacted to a
minimal degree in a way that application of our approach can be
possible independent of methodological, architectural and platform
choices.

The aspect that we found challenging in our application was that
of quality assurance. In our proposal the space of possible cus-
tomizations dramatically increases, in a way that testing becomes
a more challenging activity. We believe that this is a necessary
consequence of any effort to produce high-variability adaptable de-
signs. Our naive testing practice was based on selecting a set of
characteristic customization formulae and devising test plans for
each. We believe, however, that since the goal model itself is a de-
scriptor of all customization possibilities, it can potentially be used
for producing more educated quality assurance plans.

Finally, the case study per se allows for generalizability arguments
that cannot exceed certain limits. Firstly, our implementation is a
relatively small 5KLOC system and therefore the influence ofscale
to the proposed practice is yet to be empirically explored. It must be
noted, however, that measures of size that seem more applicable to
our case may as well be aspects such as the number and complexity
of user interactions. In that regard, we consider our prototypical on-
line cart system to be a good model of a real working system of this
type.

Secondly, the software we developed is an example of a web-based
system for supporting business processes. Applications indiffer-
ent classes of systems would perhaps offer more evidence on the
breadth of applicability of the proposal. The same is, finally, true
with the platform and architectural style that was chosen, and, par-
ticularly, with the user interface technology and architecture that
was applied. Our follow-up empirical investigation involves dif-
ferent classes of systems that employ alternative and more compli-
cated interactions with the users.

7. RELATED WORK
Our proposal for requirements-driven software customization re-
lates to work on adaptive systems as well as product lines andprod-
uct derivation.

General goal driven adaptation has been proposed by severalau-
thors. Thus, Zhang et al. [32] use temporal logic to specify adap-
tive program semantics. Further, work by Brown et al. [6] uses
goal models to explicitly specify what should occur during adap-
tation. Their approach uses goal models to specify the adaptation

process; in our approach the adaptation is the indirect result of im-
posing customization and precedence constraints on goals.Baresi
and Pasquale [3] model adaptation strategies for service composi-
tion using goal models. While their method applies to service com-
position, our approach is more general and is not tight to a specific
technology or application domain. Finally, strategy treeshave been
used to evaluate alternative reconfigurations of software systems
in the context of QoS and structural changes [25]. Our approach
differs in that it deals with user goals and behavior adaptation.

In product lines the dominant approach for representing variability
are feature models [15, 9] which are appropriately instantiated [10,
31] for the derivation of individual members of the product family
[24]. However, feature models as well as other variability models
used in the area [2, 14], apart from being solution-centeredrather
than user-centered, they also aim at representing a great diversity of
software characteristics and, therefore, they inevitablyhave relaxed
semantics. This prevents them from being the optimal tools for rea-
soning exercises such as the one we use in this paper – e.g. temporal
reasoning. We have indeed not found feature model instantiation
proposals with characteristics similar to the ones we propose here.
The extensive literature on software composition, on the other hand
(e.g. [21] for a taxonomy), is either focusing on component-based
or service-oriented architectures (e.g. [27]) or focuses on specific
technologies, frameworks or techniques by which composition can
be implemented – e.g. the AHEAD framework and its descendants
[4, 1] or Aspect Orientation [16], Domain Specific Languagesand
Generators [8, 9]. Again, we could not find any proposals for ap-
proaching the requirements aspect of the problem, that is how the
desired compositional result can be communicated through refer-
ence to terms related to the experience and the goals of the actual
users, rather than technical details.

As far as the connection between goal models and implementation
is concerned, this problem has been addressed from a varietyof
angles. For example, specific methodologies for generatingagent
oriented or component-based designs have been proposed in the
context of two major goal-oriented frameworks, that is Tropos [7,
23] and, to some extent, KAOS [28]. Our contribution, however,
is not a goal-driven or, in general, model-driven software develop-
ment approach, but instead a proposal for using goal and preference
models for software customization that has the minimum possible
impact to the way the system is architected and developed.

8. CONCLUSIONS
Tailoring the behavior of a software system to the needs of indi-
vidual stakeholders, contexts and situations as these change over
time has emerged as an important need in today’s software devel-
opment. However, it also poses a challenging software engineering
and maintenance problem.

The main contribution of our paper is a technique to exactly al-
low this translation of high-level customization requirements into
an appropriately configured system, in a flexible and accessible
way. Generic goal models are used to concisely represent a large
number of alternative behaviors that actors may exhibit in order to
fulfill their goals. The system is developed in a way that eachsuch
behavior can potentially be supported. After deployment, however,
stakeholders can specify additional customization constraints, in
the form of simple temporal formulae, restricting the spaceof pos-
sibilities to meet their current needs. Using an AI preference-based
planner, a tree representing admissible behaviors is constructed and
plugged in the application, for the latter to adapt its behavior to the



new customization constraints.

The merits of our approach lie in the following features. Firstly,
it offers a direct linkage of software customization with user re-
quirements using goal models and high-level customizationformu-
lae. This way customization is performed through talking about the
user activity and experience rather than features of the system to
be. Secondly, our proposal for constructive customization, where
users express their exact needs, versus selective, where users se-
lect from predefined options, allows for flexibly leveraginga much
larger space of customization possibilities, leading to systems that
are better tailored to the exact needs of users. Thirdly, theproposed
approach implies minimum impact to the implementation process,
being transparent to the architectural, modularization, process and
platform choices the engineers have made, as long as two simple
mapping principles are followed and the ability to maintainand
query the policy tree is arranged. Our application in the on-line
cart system offered us strong evidence that both the customization
practice per se and the engineering and development intervention
that enables it are feasible and exhibit the above advantages.

Our proposal opens a variety of possibilities for future research.
One of them is work on improving the performance of the reason-
ing mechanism. Recent advances in preference-based planning in-
dicate that there is significant room for such improvement. Most
interesting would also be an empirical investigation of theuse of
the goal model and the planner as tools for allowing developers
to better understand and implement the space of behavioral alter-
natives when following various development approaches. Inthe
context of such an empirical effort, our basic implementation prin-
ciples should also be tested for their applicability and generality.
Furthermore, application of the technique in a variety of system
types would allow better understanding of whether the current form
of the policy tree offers the right level of information or whether it
should be enriched into a complete behavioral model for the appli-
cation – and how. While the latter has been deemed impractical and
restricting in this paper, further empirical work can help us actually
confirm that.
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