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Abstract

Computational models of visual processes are of interest in fields such as cyber-

netics, robotics, computer vision and others. This thesis provides an analysis of a

model of attention and of intermediate representation layers in the visual cortex

that have direct impact on the next generation of object recognition strategies in

computer vision. Biological inspiration - and even biological realism - is currently

of great interest in the computer vision community. This thesis includes three

major pieces, explained next.

First, I believe that visual attention is a requirement to perform non-detection

object recognition tasks. In order to test this hypothesis we compare the Selective

Tuning model of attention [Tsotsos et al., 1995] to studies from psychophysics in

visual search tasks involving color and 2D shapes. Second, I define a biologi-

cally plausible model of Shape Representation which incorporates intermediate

layers of visual representation that have not previously been fully explored. I hy-
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pothesize that endstopping and curvature cells are of great importance for shape

selectivity and show how their combination can lead to shape selective neurons.

This Shape Representation model provides a highly accurate fit with neural data

from [Pasupathy and Connor, 2001, Pasupathy and Connor, 2002]. Finally, in

the same way curvature parts may be configured into shapes, spatial gradients

of velocity vectors may be related to optic flow in a hierarchical representation

of visual motion analysis. For my last contribution I provide psychophysical evi-

dence of the role of spatial gradients of velocity in optical flow perception as well

as neurophysiological evidence for neurons tuned for such gradients.

Following previous authors such as [Zucker, 1981] and [Marr, 1982], I have

shown that deeper understanding of visual processes in humans and non-human

primates can lead to important advancements in computational perception the-

ories and systems.
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1 Introduction

One of the main difficulties that arises when designing automatic vision sys-

tems is developing a mechanism that can recognize, or simply find, an ob-

ject with the ease of the human visual system. Humans can recognize ob-

jects effortlessly under variations in location, lighting and viewpoint. The

brain appears to perform a wide variety of complex tasks by means of sim-

ple operations. These seemingly simple operations are applied to several lay-

ers of neurons, the layers representing increasingly complex, abstract interme-

diate processing stages. These intermediate representations have not been ad-

equately studied in computer vision systems. Among these, shapes are im-

portant object descriptors. Recent experiments have shown that medial ar-

eas such as V2, V4 and TEO (Figure 1.1) are involved in analyzing shape

features such as corners [Ito and Komatsu, 2004, Boynton and Hegde, 2004]

and curvatures [Pasupathy and Connor, 1999, Pasupathy and Connor, 2001,
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Pasupathy and Connor, 2002, Brincat and Connor, 2004]. By studying the pro-

cesses that occur in the human brain we may be able to construct a model that

simulates this behaviour.

An important issue for how the human visual system works is attention. The

Encyclopedia Britannica defines attention as “in psychology, the concentration of

awareness on some phenomenon to the exclusion of other stimuli”. Due to the

capacity limitations of the brain, not all the visual information that impinges

our retinas can be processed [Tsotsos, 1990]. Attention is applied to this infor-

mation in order for the visual system to focus on processing salient information,

while filtering or inhibiting other parts of the visual scene. A huge amount of

psychophysical data has been collected over the years in which the task is to find

an element defined by different characteristics among distractors. Many theories

have emerged as well to explain the results obtained from these experiments.

Secondly, it is also important to know how that information, the focus of

our attention, is analyzed. A hierarchy of neuronal layers exists in the visual

cortex, each layer containing neurons that apply different kinds of processing

to their input, depending on the layer they belong to. The receptive field of

these neurons and the complexity of the processing is largely increased at higher

layers in this hierarchy. We still do not know the specifics of how such a system
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works, but many research studies in the last decades have shed some light on the

behavior of neurons in the visual cortex. Attention is found in almost every layer

of the visual cortex, but V4 is the classical area to study the effects of attention

[Moran and Desimone, 1985].

A main component of this thesis is concerned with one of those aspects im-

portant for object recognition and that the brain performs with astoshining ef-

fectiveness, the analysis of shapes. In addition to this, we studied how the Selec-

tive Tuning [Tsotsos et al., 1995] top-down model of attention may explain visual

search tasks that consider shapes and color.

In addition to analyzing objects, another important source of information for

our survival is motion. In the same way that oriented lines can be used to build

curvature and shape, we study how simple translational motion builds higher

order concepts such as rotation or expansion. Spatial gradients of velocity are an

important element. Another aspect of this thesis is the plausibility of selectivity

for such gradients of velocity in area MST.

A brief description of the visual cortex will be provided in section 1.1. Then,

a review regarding visual search and attention is presented in section 1.2. Section

1.3 summarizes the use of shape and curvature in the computer vision literature.

Section 1.4 reviews biological inspired computational models of object recogni-
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Figure 1.1: a) Primate Visual Cortex b) Simplified version of the Visual Cortex.
Modified from [Felleman and Van Essen, 1991]

tion. Finally, section 1.5 summarizes the contributions from this thesis.

1.1 Architecture of the Visual Cortex

Since the foundation of modern neuroanatomy by Ramón y Cajal

[Ramon-Cajal, 1888, Ramon-Cajal, 1894, Ramon-Cajal, 1904, Jones, 2007], who

gave a detailed description of nerve cell organization in the central and peripheral

nervous system, great progress has been achieved in understanding the human

brain.
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The macaque monkey visual cortex occupies 55% of the neocortex (com-

pared with the 11%, 8% and 3% of somatosensory, motor and auditory ar-

eas respectively) [Kandel et al., 2000]. There are at least 32 neocortical ar-

eas involved in vision [Felleman and Van Essen, 1991] (Figure 1.1a), and in-

puts can come from visual, auditory, somatosensory, or visuomotor activity.

[Felleman and Van Essen, 1991] identified 305 pathways, of which 242 have bidi-

rectional connections, although they can vary in strength (e.g. connection V1-V4

is robust, but V4-V1 is weak). Area connections are organized hierarchically with

upwards, downwards and lateral connections.

The visual cortex is organized into different areas (Figure 1.1b). V1 and

V2 are the largest, each having an area of approximately 1100 - 1200 mm2 (11-

12% of the macaque neocortex) [Felleman and Van Essen, 1991]. Physiological

studies show two different pathways with connections between them: The occip-

itotemporal pathway (V1, V2, V4, PIT and AIT) is related with object recogni-

tion features (color, shape, etc.) [Logothetis and Sheinberg, 1996, Tanaka, 1996],

while the occipitoparietal pathway (V1, V2, V3, MT and MST) is associated with

spatiotemporal characteristics of the scene (direction of motion, speed gradients,

etc.) [Webster and Ungerleider, 1998].

Along this hierarchical architecture, neurons become increasingly selective to
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more complex stimuli and less sensitive to stimulus variation as will be explained

next. At the bottom of the hierarchy, neurons in V1 are selective for edges (among

other features), and at the top, AIT neurons respond to complex objects with

significant variation in their orientation, size, illumination and foreshortening.

How is early visual information transformed into whole objects? A summary of

the most influential work in neurophysiology regarding this aspect is provided

here.

1.1.1 Object recognition pathway

Visual Area 1 (V1)

Neurons in area V1 of the cat respond when bars and edges are

present in their receptive field [Hubel and Wiesel, 1959, Hubel and Wiesel, 1962,

Hubel and Wiesel, 1965]. This same characteristic was later found in monkeys

[Hubel and Wiesel, 1968]. V1 neurons are also selective to other features such as

spatial frequency [Valois and De Valois, 1990].

Cytochrome oxidase reveals six layers in V1 and two regions with rich (blob)

and poor (interblob) concentrations of that component, and these regions span

several layers. Among these layers, Layer 4B is associated with stereopsis and

motion (magnocellular pathway), the blob regions analyze color (parvocellular
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neurons) and the interblob region neurons are specialized for lines, some cells are

end-stopped (parvocellular pathway) [Livingstone and Hubel, 1988]. In area V1

(as in all retinotopic areas), the retinal fovea has a much larger area of represen-

tation than the periphery. There is also ocular dominance [LeVay et al., 1978],

which means that there are neurons whose response is dominated either by input

from the left eye or the right eye.

Concerning orientation selection, V1 neurons can be classified into three

types: simple cells, complex cells, and endstopped cells [Hubel and Wiesel, 1959,

Hubel and Wiesel, 1962, Hubel and Wiesel, 1968].

• Simple neurons have small receptive fields (0.1°-1° [Hubel and Wiesel, 1965,

Schiller et al., 1976]), are close to the fovea, and their response is based on

small areas relative to the background [Hubel and Wiesel, 1968]. They re-

spond to bars and edges with different orientations as well as to spatial

frequency [DeValois et al., 1979]. Their behavior may be modeled by Ga-

bor filters [Marcelja, 1980, Rolls and Deco, 2002] or Difference of Gaussians

[Hawken and Parker, 1987].

• Complex neurons are also sensitive to bars and orientations, but

with a lower sensitivity [Hubel and Wiesel, 1959, Hubel and Wiesel, 1965,

Hubel and Wiesel, 1968]. Their receptive fields are larger than those of
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simple neurons (0.2°-2° [DeValois et al., 1982]). Like simple cells, complex

cells are selective for bars presented at a preferred orientation and tuned

for spatial frequency [Hubel and Wiesel, 1968]. In contrast to simple cells,

a complex neuron responds irrespective of the particular position at which

a bar is flashed inside its receptive field [Hubel and Wiesel, 1968].

• Endstopped neurons are sensitive to the termination of an edge or a bar

[Hubel and Wiesel, 1965, Hubel and Wiesel, 1968]. Endstopped neurons

are also known as hypercomplex and have been described in great de-

tail for the cat [Kato et al., 1978, Orban et al., 1979b, Orban et al., 1979a,

Bishop et al., 1980].

[Lee et al., 1998] propose that V1 is a high resolution available to cortex for

calculations which requires high resolution image details and spatial precision.

V1 is arranged into hypercolumns. Columns are tuned to different orientations

in one dimension and alternating ocular dominance in a second dimension and

run perpendicular to the surface of the cortex. One third of V1 neurons can

be activated by the magnocellurar or parvocellular pathways alone. V1 projects

mainly to V2, but also to area MT and V3 [Lennie, 1998]. Columnar units are

linked through horizontal connections [Kandel et al., 2000].
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Visual area 2 (V2)

V2 receives its input mainly from V1 [Felleman and Van Essen, 1991].

Color, form and stereopsis/motion V1 pathways continue into V2

[Livingstone and Hubel, 1988]:

• V1 blobs project into V2 thin stripes (color), they are not orientation selec-

tive and half of them are color sensitive with centre-surround antagonism.

Their receptive fields are larger than their corresponding V1 color pathway

neurons.

• Interblob regions follow into V2 interstripes (orientation and end-stopping),

they have selectivity to orientation but not to direction and half of them

respond to terminations of edges or bars (a much larger number of end-

stopped neurons compared to V1) .

• Layer 4B of area V1 projects into V2 thick stripes (stereopsis substrate).

They are orientation selective and respond occassionally to bars or edge

terminations. They respond poorly when only one eye is stimulated, but

strongly when there is information coming from both eyes. Stereopsis neu-

rons are sensitive to large disparities [Poggio and Fischer, 1977], and for this

reason, these neurons seem to be mainly selective for stereoscopic depth and
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motion.

V2 neurons respond to contours, both real and illusory [von der Heydt et al., 1984].

More recent studies [Ito and Komatsu, 2004, Boynton and Hegde, 2004], have

found that V2 neurons are mainly selective for angles and corners, and that

these neurons also showed submaximal responses for bars.

Visual area 4 (V4)

V4 neurons have receptive fields that range from 2° to 4°

[Felleman and Van Essen, 1991]. Some early studies suggested that V4

is the centre of color processing due to the large number of neurons se-

lective to color [Essen and Zeki, 1978]. Later studies suggested that this

number may not be so high [Schein et al., 1982]. Some of the qual-

ities of V4 neurons may be that they show selectivity to luminance

[Schein and Desimone, 1990, Heywood et al., 1992, Motter, 1994] and color

constancy [Zeki, 1983]. They also manifest sensitivity to length, width,

orientation, direction of motion and spatial frequency [Desimone et al., 1985].

Later experiments in monkeys where area V4 was ablated showed

that V4 is important for the perception of form and pattern/shape

discrimination [Merigan and Pham, 1998]. Neurons in V4 respond to
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those simple shapes and their responses can be fit by a curvature-

position function [Pasupathy and Connor, 1999, Pasupathy and Connor, 2001,

Pasupathy and Connor, 2002]. In this representation, the object’s curvature is

attached to a certain angular position relative to the object center of mass. Most

V4 neurons represent individual parts or contour fragments [Connor et al., 2007].

Area V4 has also been studied with glass patterns [Wilson et al., 1997,

Wilson and Wilkinson, 1998]. Glass patterns are random dot patterns in which

the orientation of each dot pair is tangent to the contours of a global pattern.

Subjects were more sensitive to concentric glass patterns than to radial, hyper-

bolic or parallel ones, meaning that neurons may be organized in a concentric

way. These results have been later supported by a functional magnetic resonance

imaging (fMRI) experiment [Wilkinson et al., 2000].

Inferotemporal Cortex (IT)

The macaque monkey’s inferotemporal cortex (IT) receives inputs mainly

from V2 and V4 [Felleman and Van Essen, 1991]. IT is the main area in-

volved in object recognition and discrimination [Gross et al., 1972, Tanaka, 1996,

Logothetis and Sheinberg, 1996, Brincat and Connor, 2004]. As with V4, the

first studies supporting this claim were based on research on monkeys in which

11



area IT was ablated [Dean, 1976, Gross, 1992]. Ablation resulted in deficits on

tasks that involved visual discrimination or object recognition. IT neurons are

view-independent, translation, space and size invariant and respond mainly to

objects and faces [Rolls and Deco, 2002].

There is more evidence that IT is involved in object recognition. IT is divided

in two main parts [Tanaka et al., 1991]:

• In Posterior IT (PIT or TEO) most of the neurons are activated maxi-

mally by a simple combination of features such as bars or disks varying in

size, orientation and color [Tanaka et al., 1991]. These neurons are called

primary cells. Although in a smaller quantity, another type of cells called

elaborate cells are present in TEO that respond to more complex features.

TEO is responsible for medium complexity features and integrate informa-

tion about the shapes and relative positions of multiple contour elements.

Recent experiments [Brincat and Connor, 2004] support parts-based shape

theories. TEO neuron receptive fields are around 4° average for primary

cells and 10° for elaborate cells [Tanaka et al., 1991].

• Anterior IT (AIT or TE) neurons comprise two-thirds to three-quarters of

the IT area and they require more complex features for maximal activa-

tion. These neurons are called elaborate cells. TE is responsible for high
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complexity features [Tanaka, 1996, Kobatake et al., 1998] including faces,

hands and other body parts. TE neurons have larger receptive fields (av-

erage of around 13°) [Tanaka et al., 1991]. TE receives inputs from V4

and TEO neurons at different retinal positions [Tanaka, 1996], which may

explain its scale, position and view inviariance [Booth and Rolls, 1998].

TE neurons not only respond to fairly complex objects, but also have a columnar

organization [Wang et al., 1998, Tsunoda et al., 2001, Kiani et al., 2007] (Figure

1.2) in a similar way as areas V1 [Fujita et al., 1992] and MT [Albright, 1984].

TE contains 1,300-2,000 columns [Fujita, 2002]. A column may encode a feature

common to similar shapes and the activity of individual neurons may account

for small differences between those objects. Related features overlap creating a

continuum of features [Tanaka, 1996]. This columnar organization has several

properties [Wang et al., 1998]. First, single features activate different groups of

neurons. Secondly, different parts have different selectivities, some regions are

activated by only one stimulus, while other regions are activated by more than

three stimuli. Due to the columnar organization of TE, many TE neurons in a

column may represent a complex feature and slight changes in features may be

the result of differences of neurons with similar but subtle changes in selectivity

in those columns [Tanaka, 1996].
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Figure 1.2: Columnar organization in IT [Fujita, 2002]

By recording IT neurons from anesthesized monkeys we know that primary

neurons are selective for orientation, bars, disks and texture; surprisingly color

was not a very relevant feature [Tanaka et al., 1991]. Elaborate cells only respond

to different shapes (e.g. stars, combination of a disk and a bar, T shape, rounded

tongue, etc.) or to a combination of different features (shape and texture, shape

and color, texture and color, texture and color and shape) [Tanaka et al., 1991].

Among ellaborate cells are neurons that respond only to faces or hands

[Gross et al., 1972, Logothetis and Sheinberg, 1996]. These elaborate neurons

are also sensitive to the orientation and size of the stimulus. An important

observation about elaborate cells is that objects were coded by combinations of

active neurons, each representing a particular feature [Tanaka, 1996]. But a sin-

gle neuron was enough for a face or a hand; this type of neuron did not respond to
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other objects and had different tunings for different faces. Face neurons encode

different faces in a distributed way [Rolls, 1987]. Faces in different orientations

activate partially overlapping regions, and these regions are arranged in a con-

tinuous map of the view angle along the cortical surface. Face recognition was

composed of one component common to all the orientations of the face and a

second component that depends on the view of the face.

Time-course of object recognition

Even though the analysis of visual objects may seem instantaneous, in reality,

traversing the object recognition pathway requires time. Detection and catego-

rization seem to take about 150ms [Thorpe et al., 1996]. This amount of time

is the time required for a single feed-forward pass through the visual system

[Bullier, 2001] and allows us to know if an object is present or not on a first

view as long as stimuli are well separated, are simple and can be easily seg-

regated from the background. In the visual search literature, this is known as

pop-out, in which response time is the same regardless of the number of distractors

[Treisman and Gelade, 1980].

Identification consists of determining aspects such as size, color and

shape. This task needs extra time (65ms, [Grill-Spector and Kanwisher, 2005,
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Evans and Treisman, 2005]). If we are required to localize the object (through

a saccade or pointing), it takes 100mm to 300ms extra time [Becker, 1991].

If the task is under conditions of clutter or difficult conjunctions, it will take

even longer. For within-category-identification and localization, a top-down

traversal must be completed. Identification information is available at inter-

mediate layers in the hierarchy. But localization details are available in ear-

lier layers and requires a deeper traversal of the hierarchy to reach those layers

[Mehta et al., 2000, Rothenstein et al., 2008].

1.1.2 Motion analysis pathway

Neurons in areas V1 and V2 are not only involved in object recognition but also in

motion analysis (Figure 1.1). There are two main paths: magnocellular and par-

vocellular pathways [Hubel and Wiesel, 1968]. An oversimplified interpretation

of the magnocellular and parvocellurar pathways is that the former is involved

in the perception of motion while the second one is involved in color and edges.

In area V1 cells respond to motion in one direction, but motion in the opposite

direction has no effect on them [Kandel et al., 2000]. Layer 4B in V1 and the

pale stripes in V2 trasmit the information regarding motion to upper layers, such

as MT and MST which are described next.
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Middle Temporal Area (MT or V5)

MT receives inputs from visual cortical areas V1, V2, and dorsal V3

[Felleman and Van Essen, 1991, Movshon and Newsome, 1996]. Electrophysio-

logical studies in area MT showed that a large portion of the cells were tuned

to the speed and direction of moving visual stimuli [Dubner and Zeki, 1971,

Maunsell and Van Essen, 1983]. Cortical lessions in area MT impair the per-

ception of dots moving in the same direction [Newsome and Paré, 1988], damage

to area MT then reduces the ability to detect motion. MT computes motion di-

rection for complex patterns [Movshon et al., 1989] and responds to the actual di-

rection of movement, solving the aperture problem [Pack and Born, 2001]. Cells

with similar direction selectivity are organized into columns [Kandel et al., 2000].

Medial Superior Temporal Area (MST)

Studies in primates have found neurons in the dorsal division of the medial su-

perior temporal area that are tuned for spiral direction. MST neurons are not

only tuned to linear motion, but are also tuned to radial or circular motion

[Tanaka and Saito, 1989, Graziano et al., 1994]. These neurons play an impor-

tant role in optic flow perception since they are activated by complex configu-

rations of motion [Britten and van Wezel, 1998]. They can encode expanding
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and contracting spirals [Heuer and Britten, 2004]. In humans, imaging stud-

ies have isolated a region adjacent to the middle temporal area that is selec-

tively activated by spirals [Morrone et al., 1995, Martinez-Trujillo et al., 2005,

Holliday and Meese, 2008], and where lesions produce deficits in complex mo-

tion perception [Vaina, 1998], which would be the equivalent to the behavior of

monkey area MST.

Summary

Along the object recognition pathway, neurons become increasingly selective to

more complex stimuli and more invariant to location, rotation and scale. At the

bottom of the hierarchy, neurons in V1 are selective for edges, and at the top, AIT

neurons respond to complex objects at any orientation. How are edges and other

features combined into whole objects? This is what many studies in neuroscience

have been trying to explain, and a summary of the most influential work has

been provided here. IT cells are not selective to random features, instead, the

extracted features are the ones that are useful for the purposes of the monkey’s

behavior [Tanaka, 1996].

In the motion pathway, the early neurons respond to direction of motion (V1),

then to motion regions (MT) and then to optic flow (MST). The same pattern
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in both paths is seen for analyzing the visual world:

1. Neuron receptive fields become larger, more specific and more abstract in

higher order areas of the hierarchy. Neurons from one area mainly feed into

the area immediately above it, although there are also back-connections

and connections to other areas.

2. Neurons within one area are usually organized into columns or hyper-

columns, and this structure is present in both pathways, object recognition

and motion analysis.

It is important to note, as a subsequent section will show, that computational

models have to this point only exploited the earliest layers of such processes.

1.2 Attention

The visual system can only analyze a limited amount of information that im-

pinges in the retina [Tsotsos, 1988, Tsotsos, 1990, Tsotsos, 1992]. In order to cope

with this computational limitation, attention for non-detection visual tasks (task

priming can also affect detection tasks) is the only solution [Tsotsos et al., 2008].

Attention is directed usually to where we foveate. To bring attended objects

or locations to the fovea, attention usually interacts with eye movements, al-
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though attention can also be activated without the involvement of eye movements

[Bushnell et al., 1981, Hoffman, 1998b].

The nature of attentional influence has been debated for a long time.

[Sutherland, 1998] writes after many thousands of experiments, we know only

marginally more about attention than about the interior of a black hole. At-

tention has been viewed as early selection [Broadbent, 1958], using atten-

uator theory [Treisman, 1964], as a late selection process [Norman, 1968,

Deutsch and Deutsch, 1963], as a result of neural synchrony [Milner, 1974], us-

ing the metaphor of a spotlight [Shulman et al., 1979], within the feature in-

tegration theory [Treisman and Gelade, 1980], as an object-based phenomenon

[Duncan, 1984], using the zoom lens metaphor [Eriksen and St James, 1986],

as a premotor theory subserving eye movements [Rizzolatti et al., 1987], as

biased competition [Desimone and Duncan, 1995], as feature similarity gain

[Treue and Martínez-Trujillo, 1999], and more.

Presently, the main discussion involves bottom-up and top-down atten-

tion. Some authors have argued that attention is mainly a bottom-up process

[Koch and Ullman, 1985, Itti et al., 1998], others propose that attention operates

in two steps [Desimone and Duncan, 1995, Tsotsos et al., 1995]: In a first step, a

top-down bias primes the neurons that encode the object to attend, the second

20



step comprises a competition in which the primed neurons inhibit the effect of

the rest of neurons.

In the top-down attention theories, there is cooperation among differ-

ent neurons that respond to the same stimuli, while the ones that respond

to different stimuli compete [Desimone and Duncan, 1995, Tsotsos et al., 1995].

The final response will depend on the strength of the interactions of neu-

rons that respond to the same stimuli, and the strength of the neurons com-

peting against them. This cooperation-competition occurs across multiple

brain systems [Duncan et al., 1997], meaning that there is no specific loca-

tion for attention in the brain. Attentional effects have been found in every

area of the visual cortex and other areas of the frontal and parietal cortex

[Bushnell et al., 1981, Kastner and Ungerleider, 2000].

A large number of models have an abstract base, being more a theory

than a model [Broadbent, 1958, Broadbent, 1982, Deutsch and Deutsch, 1963,

Treisman and Gelade, 1980, von der Heydt et al., 1984, Koch and Ullman, 1985,

Wolfe et al., 1989, Phaf et al., 1990, Niebur et al., 1993, Grossberg et al., 1994,

Desimone and Duncan, 1995, Schneider, 1995]. Only some of them have a

strong computational base, and even less have been tested computationally

[Sandon, 1990, Olshausen et al., 1993, Tsotsos et al., 1995, Postma et al., 1997,
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Itti et al., 1998, Mozer and Sitton, 1998, Deco and Zhil, 2001,

Heinke and Humphreys, 2003, Lee et al., 2007] and even a smaller number

have been tested in the recognition of basic objects or visual search tasks

[Grossberg et al., 1994, Deco and Zhil, 2001, Rodríguez-Sánchez et al., 2006,

Rodríguez-Sánchez et al., 2007].

1.2.1 Neurobiological evidence for attention

Evidence for attention in physiology was first found in the Superior Col-

liculus [Goldberg and Wurtz, 1972, Wurtz and Mohler, 1976], and later in

other parts such as the posterior parietal cortex [Bushnell et al., 1981],

V2 [Wurtz and Mohler, 1976, Motter, 1993, Luck et al., 1997], V4

[Fischer and Boch, 1981, Moran and Desimone, 1985, Motter, 1993,

Luck et al., 1997, Reynolds et al., 2000] and IT [Moran and Desimone, 1985,

Chelazzi et al., 1993, Chelazzi et al., 1998]. While several studies failed

to find attention effects in V1 [Moran and Desimone, 1985, Motter, 1993,

Luck et al., 1997], others have reported some modulation in this visual area

[Motter, 1993, Press et al., 1994, Kastner et al., 1998]. The large amount

of feedback connections existing in the cerebral cortex would also sup-

port the idea of visual attention from a neurophysiological perspective
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[Moran and Desimone, 1985, Felleman and Van Essen, 1991].

The effects of attention are directly related to the neuron’s receptive field size

[Kastner and Ungerleider, 2001]. That is, smaller effects are found in V1 neurons

than in V4 neurons. In the case of V4, when attention is directed to the ineffective

stimulus, the neurons response is greatly attenuated compared to when attention

is directed to the effective stimulus, even when both - effective and ineffective

- stimuli are in the neuron’s receptive field [Moran and Desimone, 1985]. Sin-

gle unit recordings from IT neurons with objects present in their receptive field

have demonstrated that attention is the result of a competition among neurons

[Chelazzi et al., 1993, Chelazzi et al., 1998].

These studies support top-down theories of attention, such as Selective Tun-

ing [Tsotsos et al., 1995], Biased Competition [Desimone and Duncan, 1995] and

others [Ferrera and Lisberger, 1995]. These models have in common that a neu-

ron is inhibited through competition when an ineffective stimulus is attended

even in the presence of an unattended effective stimulus in the neuron’s receptive

field. Competition is directed by a top-down bias from working memory, where

the information regarding objects are stored [Desimone and Duncan, 1995]. Ev-

idence for atttention has also been found in the visual cortex areas involved in

motion [Treue and Martínez-Trujillo, 1999].
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Attentional effects are also found in lower visual areas. Recent studies with

fMRI (functional magnetic resonance imaging) in humans found effects of at-

tention in human visual areas V1, V2, V4, IT [Kastner and Ungerleider, 2000,

Pessoa et al., 2003] and even as early as LGN [O’Connor et al., 2002]. Also, us-

ing a combination of fMRI and ERP, the modulation of attention was found

to appear in V1 with a delay of 150-250 ms [Martinez et al., 1999], which may

explain why previous studies using single unit recording failed to find such mod-

ulation [Moran and Desimone, 1985, Luck et al., 1997] in this area.

1.2.2 Visual Search

In a visual search experiment, the task is to look for a target defined by one

or more features among a set of distractors that are different from the target,

although it may share one or more features with it. When the feature space is

one dimensional and the distance between target and distractors in that feature

space is large, it is commonly known as feature visual search and the target seems

to pop-out (e.g., a red vertical bar among a set of green vertical bars).

When there are two different kinds of distractors and the target shares a

feature with each one of the two types of distractors, this search is referred to as

conjunction search and it requires more time to find the target (e.g., Look for a
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red vertical bar among red horizontal bars and green vertical ones). Decades of

psychophysical experimentation have analyzed response-time (RT) as a function

of the number of distractors for most of the different features under thousands of

different situations [Wolfe, 1998b, Wolfe, 1998a].

The analysis of RT × set size slopes has been widely used to propose different

theories on how the brain works for such tasks. In feature searches, (Figure 1.3a)

the target is defined by a single feature, and RT × set size slopes are near zero

msec/item. In conjunction searches (Figure 1.3b) the target is defined by the

conjunction of two different features, and slopes are greater than zero msec/item

(e.g. 20-30 msec/item in the case of searching an S among mirror-S’s or L among

T’s) [Wolfe, 1998a].

One of the most influential theories was the Feature Integration Theory

[Treisman and Gelade, 1980], which proposed that feature search was the result

of a parallel process while a conjunction search was the result of a serial search.

More recent models [Wolfe et al., 1989, Duncan and Humphreys, 1989] have re-

jected that hypothesis, proposing a visual search continuum directly related to

the similarity among target and distractors.

25



Figure 1.3: a) Feature search. In feature search the target is defined by a single
feature (color). b) Conjunction search. In conjunction search the target is the
conjunction of two features shared with the distractor (orientation and color in
this case)

1.2.3 Basic features in visual search

Color Color has always been used as one of the basic features in vi-

sual search experiments as well as in the different theories that try to

explain attention [Treisman and Gelade, 1980, Quinlan and Humphreys, 1987,

Humphreys et al., 1989, Wolfe et al., 1989]. Efficient search can be performed

with heterogeneous colors (up to nine distractors) as soon as they are widely

separated in color space [Wolfe, 1998a].

There exist asymmetries in color search [Treisman and Gormican, 1988]: to

search for a magenta target among red distractors is easier than finding a red

target among magenta distractors. It is then argued that it is easier to find

a variation of red than a red target among variations of red. Since magenta
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contains blue, an explanation is that in the first case the target contains blue

among distractors that do not contain this color. On the other hand, finding

a red item among magenta distractors implies finding the reddest item. This

hypothesis has been later studied in greater detail [Nagy and Sanchez, 1990].

V4 seems to be the main area where color is processed [Essen and Zeki, 1978].

But there are other areas where the processing of color occurs, namely V1, V2 and

IT. V1 and V2 are involved in correcting changes in luminance due to variations

in chromaticity as well [Yoshioka and Dow, 1996]. V4 may be a second stage,

where color constancy is computed, the final step is IT where there exist an

association of color with form [Zeki et al., 1999].

Orientation Orientation is another broadly accepted basic feature. V1 neurons

are selective to different orientations of bars and edges [Hubel and Wiesel, 1959,

Hubel and Wiesel, 1962, Hubel and Wiesel, 1968]. Subjects are capable of dis-

criminating lines with as little as 1° or 2° difference in orientation. Although, for

efficient visual search, a minimum of 15° is required. When distractors are het-

erogeneous, search becomes inefficient [Wolfe, 1998a]. Search asymmetries were

also found in orientation: it is easier to find a vertical target among distrac-

tors that are tilted 20° than to find a 20° tilted target among vertical distractors
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[Wolfe et al., 1992]. In that same study, it was shown that search is efficient when

the target is the only vertical, horizontal, left or right-tilted element, even in the

presence of heterogeneous distractors.

Size If the size difference is enough, then a target specified by

one size can be found quite efficiently among distractors of an-

other size [Treisman and Gelade, 1980, Quinlan and Humphreys, 1987,

Duncan and Humphreys, 1992]. Asymmetries are found here as well: it

was harder to find a small target among big distractors than a big target among

small distractors [Treisman and Gormican, 1988].

Shape Shape has been widely used as another feature for visual search. Most

of the time, letters are used for studying shape [Treisman and Gelade, 1980,

Quinlan and Humphreys, 1987, Humphreys et al., 1989]. Some authors support

the idea of letters as basic features [Malinowski and Hubner, 2001], which might

be true if we subtract the meaning of a letter and consider it only as shape. This

hypothesis is further supported by the fact that junctions (as in letters) can be

combined hierarchically [Humphreys et al., 1989].

But shape is still a controversial basic feature, since we tend to think that

a basic feature is a low-level feature (like edges and colors). Some studies have
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shown that it does not have to be case, that basic features are not necessarily

low-level features [Levin et al., 2001]. Curvature and depth are considered basic

features as well [Wolfe, 1998a]. Letters, depth and shape may be related with

object-based attention, or they may be considered high-level features.

Motion Another widely accepted basic feature is motion. It is easy to find

a moving target among static distractors. Spatiotemporal features have been

demonstrated to be the first features developmentally present in humans for rec-

ognizing objects (even sooner than color and orientation) [Xu and Carey, 1996].

Asymmetries exist as well in motion; it is easier to find a moving object among

stationary objects than the opposite [Wolfe, 2001].

Summary

An enormous number of visual search experiments have shown the following:

1. The more the target is similar to distractors, the greater the difficulty for

the visual system to localize it.

2. There is a number of basic features that are important for the visual system

when analyzing a scene, those are color, orientation, shape, motion and

many others. For a complete list refer to [Wolfe, 1998a].
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3. For each of these basic features, there exist asymettries when its role is

changed from target to distractor or viceversa.

1.3 Shape in Computer Vision

As mentioned previously in section 1.1, it has been recently discovered that areas

V4 and TEO are involved in curvature and shape analysis.

Shape and curvature have been popular in computer science and vision sci-

ences for object recognition for decades. Early studies approximated curves us-

ing line segments or chain encoding [Freeman, 1974, McKee and Aggarwal, 1977].

Polygonal approximations [Pavlidis, 1972] were used early as well, where each seg-

ment is considered a graph with branches connecting the nodes corresponding to

segments with overlapping boundaries, various criteria determine the breakpoints

that determine the best polygon.

Other early approximations to shape and curvature are through skeletons

[Blum, 1973], shape descriptors such as area and perimeters [Danielsson, 1978]

or angles and sides [Davis, 1977]. Fourier descriptors have been widely used

since [Persoon and Fu, 1974] for boundary representation; a curve is represented

by the Fourier expansion of a parametric representation of a curve. A simi-

lar approach is the use of principal components which uses the strongest set of
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eigenvectors [Darroch and Mosimann, 1985]. As early as 1967, [Blum, 1967] al-

ready points out the difference between biological and physical representations

regarding shape. In this work he presents the Medial Axis Function (MAF)

that can describe any pattern by the envelope of circles of proper radius as-

sociated with each point. In this paper, Blum discusses about psychological

and physiological implications regarding illusions and cortical cells responses re-

ported by [Hubel and Wiesel, 1962, Hubel and Wiesel, 1965]. In a recent book

[Siddiqi and Pizer, 2008] summarizes many of the later findings that point to a

role of the medial loci (also known as skeletons) in shape perception.

[Ballard, 1981] proposed a method to detect shapes using the Hough trans-

form. The Hough transform is a method for detecting curves by exploiting the

duality between points on a curve and parameters of that curve. A mapping be-

tween image space and Hough transform space through the boundaries of a shape

can be performed, this mapping can be used to detect instances of a particular

shape.

The Curvature Primal Sketch [Asada and Brady, 1984] followed the primal

sketch proposed by [Marr and Nishihara, 1978] for curves. A curve is approxi-

mated using a library of analytic curves, the curvature function is then computed

and convolved with a Gaussian of varying standard deviation. Darboux vectors
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have been used for contour descpritions [Kehtarnavaz and deFigueiredo, 1988]

since they contain information regarding curvature and torsion properties. Hype

[Ayache and Faugeras, 1986] used segmented descriptions of the object con-

tours to generate and recursively evaluate a number of selected hypotheses.

[Mehrotra and Grosky, 1989] also presented a system of hypothesis generation

and testing based on dynamic programming.

Curvature extrema were used by [Richards et al., 1988] which is based on

the codons from human perception [Hoffman and Richards, 1984]. Codons are

sequences of curvature extrema separated by curvature minima and zeroes, whose

combinations provide the type of codon. A list of curvature extrema provides a

“vocabulary” for curves. Not all combinations of codons are possible in a smooth

curve, the possible combinations of codons further constrains the vocabulary

[Richards and Hoffman, 1984]. [Leyton, 1987] exploits curvature extrema and

symmetry structure as descriptors of shape and presents the Symmetry-Curvature

Duality Theorem that proposes a relationship between symmetry and curvature

extrema.

[Horn and Weldon, 1986] proposed the use of the extended Gaussian image

in their Extended Circular Image. The extended Gaussian image of a polyhedron

is obtained by placing a mass at each point equal to the surface area of the
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corresponding face. The circular image of a convex segment encodes information

about the absolute orientation of the segment. In the extended circular image, a

planar contour is parametrized in terms of its tangent with respect to the x-axis

making it invariant to size changes as well as stretching or shrinking. Landmarks

[Ansari and Delp, 1990] are points of interest with important shape attributes

such as points of high curvature. [Ansari and Delp, 1990] used sphericity for

matching. Sphericity is a measure of similiarity between triangles.

A popular strategy for curve-based representations in object recognition are

splines. Splines are piecewise polynomials in an interval [a,b] connected smoothly

by knots (joining points). Smoothed splines have been proposed to parametrize

the curve [Shahraray and Anderson, 1989]. To obtain the optimal degree of reg-

ularization (the smoothing term), cross-validation was used. Cross-validation is

a method where the goodness of a set of parameters is measured in terms of the

ability of the model to predict some of the observations. [Cohen and Wang, 1994]

estimated the best B-spline based on a minimum mean square error estimation

and a Bayesian model for deciding the best order (k+1) and control points (knots,

k) of the spline. B-splines are invariant to affine transformations and they glob-

ally define a curve through a set of knots [Cohen and Wang, 1994]. But splines

fail in what is called “the knot problem”, where splines have more degrees of
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freedom than the objects they represent.

The work of [Shahraray and Anderson, 1989] first presented the idea of ana-

lyzing a shape by a curvature-position histogram, a representation later proposed

for V4 neurons [Pasupathy and Connor, 1999, Pasupathy and Connor, 2001,

Pasupathy and Connor, 2002]. [Marimont, 1984] presented a framework that ex-

tracted curvatures at different scales. CSS [Mokhtarian and Mackworth, 1984,

Mokhtarian, 1995] is a multiscale representation of shape curvatures, a curve is

described at varying levels of detail through features invariant to transformations.

The features used for matching are the maxima of CSS contours. A three-stage,

coarse-to-fine matching algorithm prunes the search space in stage one by apply-

ing the CSS aspect ratio test. The maxima of contours in CSS representations

of the surviving models are used for fast CSS matching in stage two. Finally,

stage three verifies the best match and resolves any ambiguities by determining

the distance between the image and model curves.

A similar approach was presented by [Dudek and Tsotsos, 1997], in which

curvature is represented at multiple spatial scales. Curved objects are described

by a group of segments that encode length, position and curvature. Matches

consist of a sequence of segments along the curve being similar to a sequence

from another curve. Dynamic programming is used to evaluate the quality of
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matching.

Kimia and colleages [Kimia et al., 1992, Kimia and Siddiqi, 1994,

Kimia et al., 1995] proposed a theory of shape based on deformations, parts,

bends and seeds. Contour deformations are characterized by a deformation along

the normal and a deformation that varies in proportion to curvature. A space

of shapes is constructed in which similar shapes are arranged according to the

different axes of deformation. A combination of smoothing and erosion to extract

decompositions of objects show utility for recognition. An infinite sequence of

moments can determine a shape and has been used for shape representation,

moment invariants are invariant under certain transformations such as rotation,

scale and translation [Chen, 1993].

[Belongie et al., 2002] captured the subset of points from object shapes sam-

pled from the internal or external contours. Shape samples are performed through

uniform spacing. A descriptor (shape context) is attached to each point that

captures the distribution of the remaining points relative to it such that sim-

ilar shapes have similar descritptors. [Elder et al., 2003] used prior knowledge

of objects for contour grouping. An approximate constructive search technique

computes the candidate object boundaries. They tested their approach with lake

boundaries from satellite images and human skin boundaries.
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This chapter shows how shape has been considered for object recognition.

Even though this review may look somewhat extensive, there are many other

methods and improvements over the exposed ones that have not been considered

here.

1.4 Biologically inspired models of Object Recognition

The history of computer vision now spans more than half a century and still

there is not a complete satisfactory solution to the problem of object recogni-

ton. In object recognition, the goal is to locate an object in a scene. Classical

object recognition methods generally apply algorithms based on geometrical or

other mathematical methods for finding and recognizing an object in a scene.

There are many successful methods for analyzing a scene and finding an object

as soon as some -or many- restrictions are considered (see [Besl and Jain, 1985,

Bennamoun and Mamic, 2002] for a review). Lately, with the advent of new

breakthroughs in neuroscience, some computational systems are trying the emu-

late the human visual system for object recognition and motion detection. How-

ever the ability of these biologically plausible models in real world scenarios is

still limited. Although this thesis does not address object recognition directly, it

may provide important contributions to elements that may advance the state-of-
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the-art.

The last two decades have seen the resurgence of neural networks, which

originated in 1962 with the Perceptron [Rosenblatt, 1962]. Fukushima’s

neocognitron [Fukushima, 1980] is a self-organizing neural network model that

achieves position invariance and was later proven to perform well on digit

recognition [Fukushima et al., 1983]. Later models that included backprop-

agation [Rumelhart and Mcclelland, 1986] were also successful at this task

[Lecun et al., 1989, Lecun et al., 1998]. Over the last fifteen years, many models

inspired by advances in the anatomy of the visual cortex have been presented.

One of the first such models was proposed by Olshausen and col-

leagues [Olshausen et al., 1993]. They developed a model that is based on

[Anderson and Van Essen, 1987], is position and scale invariant and performs a

transformation from the retinal reference frame to an object-centred frame. To

accomplish this, shifting circuits and control neurons are used. The control neu-

rons dynamically conduct information from lower levels of a hierarchical network

to higher levels of the network. By means of the shifting circuits and the control

neurons, the window of attention changes in size for scale invariance and position.

This model has been extended on the later SIAM [Heinke and Humphreys, 2003].

Visnet [Wallis and Rolls, 1997] consists of a four layer network that achieves
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invariant object recognition. The most crucial part of such a method is a trace

learning rule that is Hebbian based. Lateral inhibition is performed following

[von der Malsburg, 1973], and competition is applied by means of a soft winner

take-all. To achieve translation invariance, the network is trained with inputs

at different positions. A later review includes a top-down attentional strategy

[Rolls and Deco, 2002].

Probably, the most popular model is the one proposed by Riesenhu-

ber and Poggio [Riesenhuber and Poggio, 1999, Riesenhuber and Poggio, 2000,

Riesenhuber and Poggio, 2002]. The model consists of five hierarchical levels of

neurons that are connected through linear and non-linear MAX operations (the

strongest units determine the response of the system). The first level receives

input from the retina and is composed of simple neuron receptive fields that an-

alyze orientations. The next levels account for more complex features (e.g. junc-

tions). The last level is composed of view-tuned neurons that achieve position

and scale invariance. The original model included a Radial Basis Function (RBF)

[Riesenhuber and Poggio, 1999] for classification, and a later update included a

Suppor Vector Machine (SVM) [Serre et al., 2005]. The model has been recently

extended by the inclusion of an unsupervised learning stage [Serre et al., 2007].

[Amit, 2000] presents a parallel neural network for visual selection. This net-
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work is trained to detect candidate locations for object recognition and it con-

tains layers similar to those found in the visual cortex. Objects are represented

as composed of features localized at different locations with respect to an object

centre. Simple features (edges and conjunctions) are detected in lower levels,

while higher levels carry out disjunctions over regions. Detection is accomplished

by first constructing a graph of features and finding the candidate regions on

the image through a Hough transform. The Hough transform also accounts for

size and rotation invariance. Visual attention is accomplished by priming the

locations containing the object features.

Suzuki and colleagues [Suzuki et al., 2004] construct a model of the form path-

way based on predictive coding [Rao and Ballard, 1997, Rao and Ballard, 1999].

Predictive coding hypothesizes that feedback connections from high to lower-

order cortical areas carry predictions of lower-level neural activities. Feedforward

connections carry residual errors between predictions and the actual lower-level

activities. In the model, a fast coarse processing precedes and contraints finely

detailed processing.

[Murphy and Finkel, 2007] implement a set of feature vectors of contours:

mean polar angle, mean curvature of region, mean curvature of adjacent clockwise

region, mean curvature of counter-clockwise region, mean direction of curvature
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region, mean distance from center of mass and indication of inner or outter con-

tour. Recognition is then performed through matching using comparison of seg-

ments, histogram cross-correlations, minimum sum of squared differences, image

cross-correlation, parametric eigenspaces and support vector machines (SVM).

They report their results using Earth Mover’s distance which is motivated by

human perceptual studies [Kahana and Sekuler, 2002].

Summary.

Many biologically inspired object recogntion systems have be proposed over the

years. The performance of biologically plausible models is not yet comparable

to other, more computationally “pure”, systems of object recogniton, such as

[Lowe, 1999, Lowe, 2004, Fidler et al., 2006, Mekuz and Tsotsos, 2007] and oth-

ers. On the other hand, the ultimate object recognition system may be imple-

mented in each of us, no computer system to date can match the primate visual

system.

There is starting to be a large amount of evidence on how the visual system

works, which allows us to establish the basis of future systems that emulate the

human visual system. In addition to this, top-down attention operating on a finer

grain set of intermediate level representation will lead to more powerful computer
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vision recogntion systems.

1.5 Original Contributions

Previous work on object recognition has focussed on biological plausibility for

early processing layers but much less so for later processing. In this thesis,

the biological emphasis is maintained, but we consider intermediate layers of

representation and analysis. We provide several studies concerning those mid-

dle areas in the object recognition pathway (V4/TEO) and the motion path-

way (MT/MST). These middle areas are also well known in studies of attention

[Desimone and Duncan, 1995, Treue and Martínez-Trujillo, 1999].

First, we compare the Selective Tuning model of attention

[Tsotsos et al., 1995] with psychophysical experiments, and the selected

features to test the model were shape and color. We then study in more detail

how shape is analyzed in the visual cortex and we provide a biologically plausible

proposal of how shape analysis may be achieved along a hierarchy of neurons

that mimics areas V1, V2, V4 and TEO. Finally, since Selective Tuning was

tested on a representation of motion [Tsotsos et al., 2005] which included spatial

gradients of velocity vectors, we provide a study that analyzes the processing of

gradients of velocity in area MST.
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1.5.1 Testing the Selective Tuning model in visual search

Visual search is closely related to object recogntion. For [Besl and Jain, 1985],

the problem of object recognition comprises the following steps:

1. Given a set of objects, examine each object and label it.

2. Given an array of pixels from a sensor and a list of objects, those questions

arise:

(a) Is the object present in the scene?

(b) If so, how many times does it appear?

(c) For each occurrence find its location in the scene and determine its

translation and rotation parameters referred to a known coordinate sys-

tem.

A third step would be learning the new unrecognized objects.

It is important to note step 2(a), Is the object present in the scene? this is

exactly what visual search experiments consist of, as explained in subsection 1.2.2.

Our first contribution provides a test of an attentional model [Tsotsos et al., 1995]

with the type of visual search tasks found in psychophysics. The results of several

studies in visual search are replicated through the use of the Selective Tuning

42



model proposed by Tsotsos and colleagues [Tsotsos et al., 1995]. Our experiments

illustrate the biological plausibility of the Selective Tuning model and its relevance

to object recognition.

1.5.2 A biologically plausible model of Shape

Chapter 3 describes a model of shape with a strong biological background.

At the earliest layers of computation in the model there is a set of edge

extractors, corresponding to V1 which includes simple and complex neurons

[Hubel and Wiesel, 1968]. On top of it is a layer composed of endstopped neu-

rons which feeds into local curvature selective neurons, ending into neurons that

respond to shapes. Endstopping is achieved following the work of Dobbins and

Zucker [Dobbins et al., 1987, Dobbins et al., 1989] and is considered by some au-

thors [Pasupathy and Connor, 1999] as a plausible player for the analysis of cur-

vatures in area V4.

Shapes are an important feature for recognizing objects [Wolfe, 1998a].

Shapes are composed of straight lines, corners, junctions and curves.

Curvature has been present in many methods and algorithms that

achieve object recognition (e.g., [Mokhtarian, 1995]). Recent studies

in area V4 have shed some light into the role of curvature in
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shape recognition [Pasupathy and Connor, 1999, Pasupathy and Connor, 2001,

Pasupathy and Connor, 2002, Brincat and Connor, 2004]. These studies are

taken into account for the model in its later areas.

In this thesis, a complete architecture that mimics shape analysis in the

visual cortex is presented as well. In particular, a full hierarchy of neurons

strongly derived from biology in its architecture, neuron function and most im-

portantly, interactions. The model is successfully compared with neural data

from [Pasupathy and Connor, 2001, Pasupathy and Connor, 2002].

In contrast to existing recognition systems described in section 1.4, this work

adds several new layers of shape representation.

1.5.3 The role of spatial gradients of velocity in human behavior and

primate neurons

Finally, chapter 4 describes a set of experiments with humans and monkey re-

garding visual motion. The original presentation of the model of Selective Tuning

[Tsotsos et al., 1995] was tested with motion analysis, making use of spatial gra-

dients of velocity [Tsotsos et al., 2005] in the intermediate layers. Here we study

the role and the presence of sensitivity to spatial gradients of velocity.

In order to do so we constructed a set of psychophysical experiments that
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provides discrimination threshold measurements for the contracting/expanding

and radial (rotating) components. We found psychophysical evidence of a role of

spatial gradients of velocity in optical flow perception.

Through a collaboration with McGill University and the University of Tue-

bingen (Germany), similar experiments were performed, recording neurons from

a macaque monkey in area MST. After performing the corresponding data anal-

ysis from the monkey neurons and the human subjets, when comparing both, in

our study, the single neurons did not perform as well as human subjects, and we

provide several hypothesis that may help understand neural integration of motion

signals in the visual cortex.
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2 Attention and Visual Search

Selective Tuning (ST) [Tsotsos et al., 1995] presents a framework for modeling

attention and in this work we show how it performs in covert visual search tasks

by comparing its performance to human performance. The ST Simple Stimulus

Recognition Model attends to and detects simple stimuli formed by the con-

junction of various features such as color and shape. The validity of the ST

Simple Stimulus Recognition Model was first tested by successfully duplicating

the results of [Nagy and Sanchez, 1990]. A second experiment was aimed at an

evaluation of the model’s performance against the observed continuum of search

slopes for feature-conjunction searches of varying difficulty. The results from the

implementation agreed with the psychophysical data from the simulated experi-

ments. We conclude that ST provides a valid explanatory mechanism for human

covert visual search performance, an explanation going far beyond the conven-

tional saliency map based explanations. Parts of this work was presented at
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ICANN 20061 and completely published in the International Journal of Neural

Systems2.

2.1 Introduction

The breadth of functionality associated with attentional processing can easily be

seen in several overviews (e.g., [Hoffman, 1998a, Itti et al., 2005]). One of the

most studied topics and with a very significant literature is that of visual search.

Visual search experiments formed the basis and motivation for the earliest of the

influential models (e.g. [Treisman and Gelade, 1980, Koch and Ullman, 1985]).

Yet, no satisfactory explanation of how the network of neurons that comprise the

visual cortex performs this task exists. Certainly, no computational explanation

or model exists either.

In a visual search experiment, the task is to look for a target defined by one

or more features among a set of distractors that are different from the target but

may share one or more features with it. When target and distractors are the

same except for one feature, it is commonly known as feature visual search and

1Feature Conjunctions in Serial Visual Search. Rodriguez-Sanchez AJ, Simine E, Tsotsos
JK. Talk at the International Conference on Artificial Neural Networks, 10-14 September 2006,
Athens (Greece). Work of E. Simine is not reported here and consisted in the analysis of the
Selective Tuning for motion visual search.

2Attention and visual search. Rodriguez-Sanchez AJ, Simine E, Tsotsos JK. Int J Neural
Syst. 2007 Aug;17(4):275-88. PMID: 17696292. Work of E. Simine as above
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the target seems to pop-out (e.g. a red vertical bar among a set of green vertical

bars). When there are two different kinds of distractors and the target shares a

feature with each one of the two types of distractors, this search is referred to as

conjunction search and it requires more time to find the target (e.g. Look for a

red vertical bar among red horizontal bars and green vertical ones). Decades of

psychophysical experimentation have analyzed response-time (RT) as a function

of the number of distractors for most of the different features under thousands of

different situations [Wolfe, 1998a].

The analysis of RT × size slopes has been widely used to propose different the-

ories on how the brain works for such tasks. One of the most influential was the

Feature Integration Theory [Treisman and Gelade, 1980], which proposed that

feature search was the result of a parallel process while a conjunction search was

the result of a serial search. More recent models [Duncan and Humphreys, 1989,

Wolfe et al., 1989] have rejected that hypothesis, proposing a visual search con-

tinuum directly related to the similarity among target and distractors.

Some recent models of attention [Itti et al., 1998] have been compared to hu-

man eye movement tracks -overt attention- as validation; but this is not the same

as visual search data which is almost exclusively covert, with no eye movement.

Visual attention involves much more than simply the selection of the next location
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to fixate the eyes or camera system, regardless of the fact that the vast majority

of all computational approaches to attention focus on this issue exclusively. That

humans are able to attend to different locations in their visual field without eye

movements has been known since [von Helmhotz, 1924]. Further, eye movements

require a shift of visual attention to precede them to their goal ([Hoffman, 1998a]

surveys relevant experimental work).

Attentional models have matured sufficiently so that this broader problem

of attention can now be confronted. This chapter makes several steps towards

the development of such an explanation expanding the Selective Tuning model

[Tsotsos et al., 1995, Tsotsos et al., 2005] and comparing performance with exist-

ing visual search psychophysical performance. This is done with simple colored

shape stimuli. The rest of the chapter is organized as follows: Section 2.2 de-

scribes the ST Simple Stimulus Recognition Model with its two main pathways,

shape analysis and color analysis. Section 2.3 provides the results of comparing

Selective Tuning with psychophysical experiments extracted from the literature,

obtaining comparable results to those. Conclusions are presented in section 2.4.
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2.2 A Simple Stimulus Recognition Model

Given a scene with several stimuli, the model’s purpose is to find a particular stim-

ulus that has been presented previously. The model structure is a two-pathway

pyramid with information flowing from the input to the top of the pyramid and

from the top to the bottom providing feedback. Each one of the two pathways

analyze the visual input in a different way, one extracts color information, while

the other extracts information about the shape of the stimuli. The model mim-

ics aspects of the human visual pathway for object recognition, simulating four

visual areas: LGN, V1, V4 and IT. Each area is organized into feature maps and

each feature map encodes the visual field in a unique way.

The model comprises a total of 22 feature maps. Information first flows from

the input to area LGN and V1. LGN extracts three color feature maps (red,

green and blue). V1 is composed of edge detectors organized in 8 feature planes

(each containing neurons tuned to one of 8 directions). Two additional feature

maps in V1 compute center-surround color differences from the LGN color feature

maps. Information from V1 flows to V4, which comprises 8 feature maps for

curvature. Finally, IT neurons encode a representation of the whole object based

on curvature and color differences.

Our testing strategy follows the sequence of events in a human visual search
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Figure 2.1: Visual search time course via Selective Tuning
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experiment, (Figure 2.1), that is, a subject is first shown the target on a blank

display, then is shown the test display to be searched. Similarly, the system is

first shown the target and extracts a representation of it. This representation is

used to bias the subsequent search when the test display is presented. When the

test display is presented, biased shape and color analysis proceed in parallel, then

the Selective Tuning [Tsotsos et al., 1995] feedback attentive process is applied.

The different stages of processing are explained in more detail in the following

sections.

2.2.1 Attention via Selective Tuning

The Selective Tuning Model [Tsotsos et al., 1995, Tsotsos et al., 2005] is a hierar-

chical system with bottom-up and top-down attention (Figure 2.2). Top-down at-

tention is performed by inhibiting the response of neurons at lower levels through

gates at every level. The model works in three main steps:

1. The first set of computations to be performed is related to priming of the

hierarchy of processing areas, by presenting the system with its task. Task

knowledge, such as fixation point, target/cue location, task success criteria,

is applied to tune the hierarchy.

2. Upon presentation of stimuli, a feed-forward, diverging, cone of neural path-
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Figure 2.2: The Selective Tuning model of attention
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ways is activated within the visual hierarchy. At the end of this feed-forward

traversal, sufficient processing has been completed for Detection or Cate-

gorization Tasks.

3. Recurrent (or feedback) traversals through the visual processing hierar-

chy that ‘trace’ the pathways of neural activity that lead to the strongest

responding neurons at the top of the hierarchy that result form the feed-

forward traversal. as the top-down trace proceeds, connections that do not

contribute to the strongest responses are inhibited, resulting in a suppres-

sive surround around the attended stimulus; this suppression is both spatial

and featural.

Some feature types may co-exist while others compete with one another, e.g.

In area V4 neurons are selective for curvature; different curvatures can co-exist

at different locations to represent an object, but they compete if at the same

location.

A detailed description of the model is beyond the scope of this thesis and is

provided in [Tsotsos et al., 1995, Tsotsos et al., 2005].
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Figure 2.3: Architecture of shape pathway
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2.2.2 Shape analysis

The shape processing pathway (Figure 2.3) is inspired by work on

neurophysiology [Pasupathy and Connor, 1999, Pasupathy and Connor, 2001,

Pasupathy and Connor, 2002]. Visual Area V1 contains neurons that perform

edge analysis. Gabor filters [Marcelja, 1980] are used with 8 different orienta-

tions:

G(x, y) = e−(α
2x′+β2y′)e−(j2pfx

′) (2.1)

x′ = xcos(θ) + ysinθ)

y′ = −xsin(θ) + ycos(θ)

where α and β are the sharpness of the Gaussian major and minor axis, with

values of 1 and 0.25 in our case; f is the frequency and θ is the orientation. The

size of the neuron’s receptive field is 16×16 pixels. The output of V1 neurons is

a set of 8 feature planes, representing edges at 8 orientations. The energy from

each Gabor filter is obtained as:

V 1(x, y) =
√
Re(G(x, y))2 +Re(G(x, y))2 (2.2)

Non-maximal suppression [Canny, 1986] is applied in order to reduce the Ga-
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bor filter output to a 1-2 pixel wide images as a pre-processing for the next visual

layer. The output from V1 neurons feeds into V4. V4 neurons compute curva-

ture values based on orientation differences within groups of adjacent V1 neurons.

Their receptive fields comprise 4×4 V1 neurons at 8 orientations. For example,

if a set V1 neurons in a V4 receptive field had their highest response for θ1 = 0

and another adjacent set had their highest responses for θ2 = π
4
, we would have

a corner. If both orientations were equal, it would correspond to a straight line.

Curvature for V4 is then defined as:

curvi = min(|θ1 − θ2|, 2π − |θ1 − θ2|) curvε(0, π] iε{1...8} (2.3)

where θ1 and θ2 are the orientations of two V1 cell sets. A value of π can be

added to θ1 and/or θ2 depending on the neurons’ relative positions inside the V4

receptive field due to the fact that the same Gabor filter orientation can account

for two different angles. The activation value of the V4 neuron is the summed

activations from the V1 neurons used to obtain the curvature:

V 4curvi =
∑
jεθ1

∑
lεθ2

V 1(j, l)

V4 neurons’ output is 8 2D feature maps that encode for the difference of
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curvature among groups of V1 neurons. This output feeds into IT at the very

top of the hierarchy (Figure 2.3). The receptive fields of IT neurons comprise

an area of 32×32 V4 neurons (that is, 128×128 pixels). The center of mass is

calculated for every group of V4 neurons as the mean of the V4 neuron coordinates

where responses are different from zero. Then, at each angular position (in 10 deg

bins), its curvature is computed as in [Pasupathy and Connor, 2001], obtaining

a histogram-like representation for IT neurons where one axis correspond to the

angular position (λ) and the other coordinate is the curvature curv for that

position (Figure 2.4):

λ = round

nbins ∗ tan−1
(
y−centroidy
x−centroidx

)
2π

 IT (λ) = curv (2.4)

The term 18/π is for the angular position to be in 10 deg bins. All neuron

relative sizes were chosen to correspond closely to the neurophysiological mea-

sured sizes [Felleman and Van Essen, 1991] considering a distance of 30 cm (usual

psychophysical distance) to a 1280×1024 display. Neurons’ receptive fields are

overlapped.

Figure 2.4 shows how shape is analyzed. On the left of figure 2.4 is the bottom-

up feedforward analysis. Edges are extracted in V1 at each different orientation,

then in V4 curvatures are calculated, finally IT computes the curvature×position
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Figure 2.4: Shape analysis on target stimulus. See text for explanation

59



representation [Pasupathy and Connor, 2001]. On the right of figure 2.4, shows

the top-down bias stage: From such a representation, in V4 feature planes that do

not have values of curvature corresponding to the stimulus are inhibited (black),

and in these V4 feature planes, neurons that are not at the proper location are

inhibited as well. In V1, neurons that do not contribute to those V4 feature

planes are also inhibited, only allowing the Gabor filters corresponding to the

orientations that feed into the non-inhibited V4 neurons.

2.2.3 Color analysis

The processing of color follows a centre-surround analysis [Rolls and Deco, 2002].

A first layer (LGN) extract 3 feature maps for red (R), green (G) and blue (B)

responses. In the upper layer (V1), surround values for red-green (RG), green-

red (RG), blue-yellow (BY) and yellow-blue (YB) are extracted following most

models (e.g [Itti et al., 1998]):

RG =
R−G

Luminance
BY =

B − Y
Luminance

(2.5)

Luminance = max(R,G,B)

RG feature plane also accounts for GR differences, the same applies to the

BY feature plane. As in the shape analysis, color neurons at every level of the
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hierarchy are also inhibited if they do not share the values corresponding to

center-surround and color activations of the target.

2.2.4 The Bias stage

An important part of the Selective Tuning Model [Tsotsos et al., 1995] is top-

down bias (Fig. 2.2). Given a target stimulus, the features not relevant for

target recognition are inhibited by multiplying an inhibitory bias (greater than

0.0 and less than 1.0) . The target representation is first obtained from the

responses of the IT level neurons on seeing the target stimulus alone in the visual

field.

After the representation of the stimulus shape is obtained, V4 and V1 lay-

ers are biased (Figure 2.4 right). In V4, only neurons that are not in the proper

angular position and in the desired curvature feature planes are completely inhib-

ited. For those V4 neurons that are not completely inhibited, a partial inhibition

will be applied to those ones that are further from the stimulus’ center of mass.

Inhibition in this case is linearly proportional to the Euclidean distance to the

stimulus’ center. At a lower level, the neurons inhibited in V1 correspond to those

whose orientation values were related to the curvature inhibited V4 neurons.
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2.2.5 Recognition

Before the presentation of the test display, the network is biased to expect the

target stimulus. The point of this bias is to speed up search; it has been shown

that advance knowledge of the target indeed speeds up detection in a test display

[Williams, 1966, Gould and Dill, 1969, Viviani and Swensson, 1982]. However,

erroneous knowledge of the target slows down overall search [Allport, 1989]. The

processing is first biased by the presented stimulus or target representation at the

different visual layers of the network so that after the first feed-forward pass of

processing the test display only locations with the desired target features will be

considered. Then, the search begins after a feed-forward activation by considering

the best matching IT neuron from the possible candidates containing non-biased

features.

To determine how close is the shape to the desired shape, distance to the

target IT histogram is computed; for this we used cummulative distance. This

distance is very common for computing distances between histograms and it is

used here due to the similarity of our representation of IT neurons to a histogram:

d(p, q) =

√√√√√L−1∑
i=0

(
i∑

u=0

pu −
i∑

u=0

qu

)2

(2.6)
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IT (act) ∝ 1

d

The activation of the IT model neuron is inversely proportional to d. Both

activation values for color and shapeε [0, 1] and the activation of the candidate

IT neuron is the addition of both values. Even though the target can be in the

receptive field of the highest activated IT neuron, due to its large receptive field,

it may include other stimulus elements as well that may even disturb the firing

values of the IT neuron. Information is further filtered in the lower layers (V4, V1)

by computing winner-take-all in a hierarchical fashion [Tsotsos et al., 1995]. The

WTA processes in V4 are grouped by curvature angle. There is a separate WTA

process for each 10 deg bin (as determined by Equation 2), i.e., a V4 neuron will

only compete with neurons in the same bin. In V1 only those neurons connected

with the V4 winners are considered, and the same process is applied when going

from V1 to the image, finding the contour of the candidate stimulus.

Figure 2.5 shows an example of this process: On the left, layer V1 extracts

edges, V4 neurons compute curvature. Here, inside the IT neuron receptive field

(RF) lays the square and part of an stimulus of no interest (rectangle). On the

right, we have layers V1 and V4 after attention. Layers in the hierarchy are first

biased and information is later filtered through a winner take all process (See
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Figure 2.5: Analysis of a scene (bottom): find the square.

[Tsotsos et al., 1995] for a full explanation). Thanks to this process, informa-

tion is filtered such that the stimulus of interest (square) is the only stimulus

that remains inside the IT neuron RF. Inhibition of return was implemented by

inhibiting the part of the input image corresponding to the analyzed stimulus.
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2.2.6 Results

We tested the model’s behavior for different visual search conditions. For these

tests, we followed different psychophysical experiments and we compared the

results obtained from those works with the results obtained from the model. But

before testing the model for visual search, we performed a study on how the shape

representation works for a simple recognition of silhouettes.

2.2.6.1 Silhouette Search

Simple icons were used to infer how neurons responded to shapes as in

[Pasupathy and Connor, 2001]. In a similar manner, we first tested the shape

analysis component of our model with 2D silhouettes. To test the model the

silhouette database from Sharvit and colleagues was used [Sharvit et al., 1998].

The architecture was fed with different silhouettes, animals, cars, planes, etc.

Then, scenes were constructed with such element silhouettes and the response

corresponding to the scene IT neurons were evaluated. The IT neuron from the

scene with a closest response (in terms of distance) to the neuron’s representation

in the database was recognized as containing the silhouette represented.

The test scene images were 512×512 pixels. IT neuron receptive fields were

128×128 as described previously and there was an IT neuron every ten pixels
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Figure 2.6: Example of silhouette recognition. insided dotted boxes are IT with
highest responses corresponding to searched stimulus (next to it).

starting from the coordinates (64,64) until coordinates (448,448). Figure 2.6a

show different IT neurons and the silhouettes corresponding to their highest re-

sponse (inside dotted boxes). We show how the system performs when the whole

silhouette is present (Figure 2.6a and b) and in conditions when the silhouettes

are partially presented (Figure 2.6c). The system works well in both cases.

Although the silhouette is usually at the center of the neuron when training,

the winning IT neuron does not need to have the silhouette exactly at its center,

but we can see that this is usually the case. Figure 2.6c shows how the system

behaves when there is partial information about the target silhouettes in the

scene. We can see that the model correctly finds every silhouette, even when

information is quite incomplete (e.g. the plane). Note that in these cases the

IT receptive field center is not so close to the silhouette’s center, while if it
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is in its full shape that is usually the case (turtle). In Figure 2.6b we show

how the representation performs for a case with added Gaussian white noise

(µ = 0, σ2 = 0.01). The only case where the winning neuron is not the optimal,

corresponds to the ray, but a neuron very close to it corresponds to the winning

neuron.

2.3 Efficiency in Visual Search

We now proceed with testing the model on visual search tasks. Conjunction

searches [Wolfe, 1998a] may exhibit shallower slopes than those found by Treis-

man and Gelade [Treisman and Gelade, 1980], and there seems to exist a con-

tinuum from efficient to inefficient visual search. Early theories already pos-

tulated that visual search is influenced by the similarity between target and

distractors [Duncan and Humphreys, 1989]. They stated that visual search is

harder when target and distractors are more similar, but it is easier when this

similarity decreases, and this theory has been supported by later experiments

[Nagy and Sanchez, 1990, Thompson et al., 2005]. As a result, we decided to

test the model first with an experiment concerning the similarity hypothesis.

One paper that studies a fundamental basic feature (color) and known in the

psychophysical community is that of [Nagy and Sanchez, 1990], and this is the
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experiment we first replicate.

In our second experiment we test the search continuum and we compare the

performance of the model for feature search, conjunction search and inefficient

search. Feature search is a search where a target is distinguished from the dis-

tractors by a single feature such as color, shape or orientation. In our second

experiment we will use the term feature search to refer to a classical psychophys-

ical feature search experiment defined by its efficiency. As shown in experiment

1, that feature search is efficient is not always the case. In conjunction search a

target is defined by a conjunction of two features.

We use the term inefficient search for those visual search experiments that

are more difficult than the classical conjunction search [Wolfe, 1998a]. Note that,

strictly speaking, inefficient search is also a conjunction search, but we will use a

different notation to distinguish it from the classical conjunction search.

The sample was given as input in a 128×128 pixel image, and the scenes were

640×640 pixels. In our first experiment we will test a known feature: color, and

how the model performs under two different similarities of colored stimuli. Sum-

marizing, we first follow a known study [Nagy and Sanchez, 1990] about color

similarities and compare our results with those of such study. In a second ex-

periment we study more deeply the continuum efficient-inefficient search with
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Selective Tuning. We follow three known experiments and as before, compare

our results with those.

Experiment 1: Color differences

Method In this experiment we study how the model performs in a color sim-

ilarity search. We simulate an experiment from [Nagy and Sanchez, 1990], who

showed that feature search can be inefficient if the differences in color are small.

We used the CIE values from their experiments converted to RGB with a fixed

luminance (Y) of 0.25. The task is to find the redder circle among 5, 10, 15,

20 and 25 distractors for two conditions: small and large color differences. The

target and distractors were randomly positioned on a black background. The

least mean squares method was used to fit the straight line into the set of points.

Results Four examples are shown in Figure 2.7, where, when there are small

differences between the target and the distractors, a large number of attentional

shifts are needed to find the target, this number increases with the number of

distractors. 2 (a), 4 (b), 10 (c) and 19 (d) shifts of attention are required prior to

finding the target. Note that c) is similar to d) but with an extra 5 distractors

to show that the number of wrong attentional shifts is incremented and the
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Figure 2.7: Visual Search Results. Example where the target (green circled)
and distractors have small color differences for 5 (a), 10 (b), 20 (c) and 25 (d)
distractors. Circled in red are distractors attended previous to finding the target,
which is under the green circle.
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distractors attended may be different.

Figure 2.8a shows the results of running three experiments for each condition

and with different number of distractors (5, 10, 15, 20 and 25). Blank dots cor-

respond to the log of the number of covert fixations for each experiment, filled

dots is the average. The data for small color difference is in red and in blue

is shown the results for the large color differences. Here it is shown how the

number of attentional shifts increases as the set size increases for the small color

difference condition but remains stable for the large color difference. This ex-

periment reports similar results to [Nagy and Sanchez, 1990] (Figure 2.8b) where

color search is inefficient if color difference is small between target and distractors,

slope was 0.49 (0.6 in [Nagy and Sanchez, 1990]) and efficient if the difference is

large (slope=0.01, same as [Nagy and Sanchez, 1990]). Note that we plot atten-

tional shifts against numbers of distractors and they plot search time with respect

to number of distractors. Since this was not a data fitting modeling exercise, only

qualitative behavior can be compared. Even so, the comparison is very good.

Experiment 2: Feature, conjunction and inefficient search

[Bichot and Schall, 1999] showed that monkey visual search reaction times

are comparable to human [Nagy and Sanchez, 1990], specifically they show
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Figure 2.8: a) Number of covert fixations as a function of set size from Selective
Tuning. Blank dots are experiment trial results. Filled dots correspond to average
from 3 trials. b) Results from [Nagy and Sanchez, 1990]

that the conjunction of two different features (shape and color) is steeper

than feature search, but shallower than what was obtained by another study

[Treisman and Gelade, 1980]. They report slopes of 3.9 ms/item. On the

other hand, searching for a rotated T among rotated Ls, is quite inefficient

(20 msec/item) [Egeth and Dagenbach, 1995], and less efficient than conjunction

searches. To find a T among Ls is more inefficient than a conjunction search,

which is less efficient than a simple feature search.

Method In this experiment we study how the model performs in a simple

feature search, a conjunction search and an inefficient search. Conjunction search

was similar to that of [Bichot and Schall, 1999]. The stimuli were crosses and
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Figure 2.9: a) Conjunction search with 18 distractors, target is the red circle,
found at the 4th covert fixation. b) Inefficient search: Find the rotated T among
21 Ls, 14 fixations were needed to find the T.
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circles, red or green colored. The task was to find a red circle among green circles

and red crosses, here we used 8, 12, 16, 18, 22 and 24 distractors. Feature search

was a simplification of the previous conjunction search, that is, to look for a

circle among crosses. For inefficient search, a rotated T was to be found among

Ls rotated at 0, 90 and 180 degrees, and in this case we used 6, 9, 12, 15, 18 and

21 distractors. Analysis was the same as for previous experiments.

Results An example of a conjunction search is in Figure 2.9a and searching for

a T among Ls is shown in Figure 2.9b, in this last case more atttentional shifts

are needed to find the target. Figure 2.10a shows the number of attentional

shifts as the set size increases for the feature search (find a circle among crosses),

conjunction search (find a red circle among red crosses and green circles) and

inefficient search (find a rotated T among Ls). The figure shows how the steepest

fitted line is the one corresponding to looking for a T among Ls (inefficient search,

slope of 0.49) experiment, followed by conjunction search (slope of 0.36) and

feature search is practically flat (slope of 0.01). These results are in accordance

with the continuum from efficient to inefficient search psychophysical experiments

have shown (Figure 2.10b see [Wolfe, 1998a] for a review).
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Figure 2.10: a) The number of shifts of attention as a function of set size for fea-
ture search (light gray), conjunction search (gray) and inefficient search (black).
b) Visual search continuum from [Wolfe, 1998a]

2.4 Discussion

The above results show the ability of the Simple Stimulus Recognition Model

to perform visual search. The reaction time is shown based on the num-

ber of attentional shifts. We performed easy feature search, difficult feature

search, conjunction search and inefficient search. The results obtained seem to

agree with the increasing degrees of difficulty reported by psychophysical data

[Nagy and Sanchez, 1990, Bichot and Schall, 1999, Egeth and Dagenbach, 1995],

whose experiments were simulated above. Our experiments seem to agree also

with the proposal that search is more efficient when stimuli are more dissimi-

lar [Duncan and Humphreys, 1989] and the continuum efficient-inefficient search
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found in the literature [Wolfe, 1998a]. Similar comparable results using the model

have been obtained using moving stimuli [Simine, 2006].

The model can differentiate the different types of visual search experi-

ments that have appeared, showing a different efficiency not only between fea-

ture and conjunction searches but also more difficult searches (inefficient visual

search) as the one described by [Egeth and Dagenbach, 1995]. The behavior of

the model agrees with well established models of visual search [Wolfe, 1998a,

Duncan and Humphreys, 1989], accounting for a continuum efficient-inefficient

search related to the similarity between target and distractors.

The contribution here is of mechanisms that can provide an explanation for

visual search performance that have the promise of enhancing performance of

recognition algorithms in complex scenes. However this analysis relied on a Sim-

ple Stimulus Recognition Model since that was not the main point. The next

chapter deals much more deeply into a more sophisticated biologically plausible

model of shape representation. Importantly, the result is completely compatible

with attentive processing.
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3 A Model of 2D Shape

In the past decade we have seen a resurgence of interest in shape representation

and analysis in the object recognition literature. An example of this is the special

section on Shape Analysis in the April 2010 issue of the IEEE transactions on

Pattern Analysis and Machine Intelligence. At the same time, an important

number of influential studies in neuroscience have shed new light into how the

human brain performs the analysis of visual objects. Due to the latter, several

models have appeared which are inspired in a higher or lower degree on how

neurons achieve object recognition. A good example of this knowledge transfer

from neurophysiology to computer science is the compendium of articles edited

by [Dickinson et al., 2009]. By understanding how specific simple objects are

analyzed by the brain, we may construct subsystems that emulate that behavior.

In a not so far away future, by combining those subsystems we may recognize

objects “like” a human.
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Common to most models is a first step that performs edge-detection in a

similar way to some V1 neurons in the brain. But after this first step there is

little consensus. First, it is difficult to interpret results from neurophysiology,

and even when the behavior of cells in one layer may be determined, it is difficult

for modelers to decide how to connect one layer to the next. This is even more

true for the later stages, i.e., how do we achieve object recognition in area TE

with invariance to translation, rotation, scale, illumination, etc. starting from

neurons in V1 that perform edge detection? What if we start with curvatures in

V4?

Second, stimuli used in neurophysiology are simple shapes and objects, with

no clutter, no variation and under much control to avoid other factors that may

influence a cell’s response. But from the computer vision community there is some

pressure in terms of obtaining results from real-world images, meaning invariance

to affine transformations, illumination, clutter, occlussions, etc. As a result some

models must resort to complex computational methods such as classifiers, learning

and others in order to achieve real-world results. Due to this, even though the

starting point is biological plausibility, we find ourselves diverting from it for the

sake of results and sometimes reducing the biological plausibility of the model to

a pool of Gabor filters.
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An interesting study has been recently conducted by [Pinto et al., 2008]. They

constructed a simple V1-like model (edge detectors) and showed that such a

simple system outperforms several existing object recognition systems for the

Caltech 101 database [Fei-Fei et al., 2004]. The model was a neuroscience null

model in the sense that it was a simple thresholded Gabor function over 16

different orientations and 6 spatial frequencies. The model did not contain

a representation of shape and no mechanisms for recognition under position,

size or pose variation. As it was expected, such a simple system performed

poorly when tested on a easy task of differentiating just two categories (planes

from cars) that introduced real-world variability (position, scale, in-plane rota-

tion and depth rotation). But surprisingly this system performed better than

five state of the art systems ([Wang et al., 2006, Grauman and Darrell, 2006,

Mutch and Lowe, 2006, Lazebnik et al., 2006, Zhang et al., 2006]) when using

the popular Caltech 101 database that included those two categories among the

102 categories in that database. The reason behind this is that even though such

a database contains pictures taken from real-world scenarios, it does not include

the random variability found in the real world, while the basic two-category test

did. The authors warn us about the risks of such biased datasets when performing

tests on real-world images.
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Among other influential systems, the Scale Invariant Feature Transform (SIFT)

[Lowe, 1999, Lowe, 2004] consists of a first stage of difference-of-Gaussian images.

After which, distinctive keypoints are constructed from some object of interest

such that they are robust to changes in illumination and affine transformations

(scale, rotation, position). These keypoints are matched with the keypoints from

a scene in order to detect the presence of that object. Hough transforms and least

squares were used for object matching in order to achieve a better robustness.

Widely known is the hierarchy of neuronal layers proposed

by [Riesenhuber and Poggio, 1999, Riesenhuber and Poggio, 2000,

Riesenhuber and Poggio, 2002] with many common aspects to Fukushima’s

Neocognitron [Fukushima, 1980, Fukushima et al., 1983, Fukushima, 1988]. As

described previously, the model consists of five hierarchical levels of neurons.

There are two types of layers, one consist of simple units (S layers) and another

of complex neurons (C layers), simple and complex layers are interleaved in the

hierarchy. At the bottom of the hierarchy there are simple units that achieve edge

detection. In successive layers composed of simple units, a simple unit receives

inputs from the complex units from the layer below in a Gaussian fashion. A

complex unit is fed from simple units at the layer below and at different scales

and positions to achieve some level of 2D invariance, from this set of simple
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units the strongest is selected. Layers are organized in columns, within a column

there are units of the same selectivity but at different scales and positions. The

model has been recently extended with the inclusion of an unsupervised learning

stage and extended to seven layers [Serre, 2006, Serre et al., 2007]. A summary

of the seven layers (S1, C1, S2, C2, S3, C3 and S4) is as follows: S1 contains a

pool of edge detectors (Gabor filters) at 4 orientations, 17 sizes and 2 phases. C1

receives inputs from S1 at the same orientation and slightly different positions

and sizes. A pool of 10 C1 units at different preferred orientations feed S2 units,

the selection of S2 unit parameters is achieved through a learning process from

natural images. Then C2 - as before on C1 - select the strongest S2 units at

slightly different positions and scales. This process is further iterated in the

two new layers (S3 and C3) in order to achieve a higher degree of invariance

according to the authors. Finally, S4 is composed of view-tuned cells whose

input are C3 units. The authors claim that units in layer S2 become selec-

tive to boundary conformations. According to [Pasupathy and Connor, 1999,

Pasupathy and Connor, 2001, Pasupathy and Connor, 2002], neurons in area V4

are selective to shapes, and their data from neuronal recording was best fit with

a function depending on the curvature and angular position of their boundary

conformations. The model of Serre and colleagues does not achieve a shape
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representation through any explicit form of curvature computation. Rather, they

rely on the repeated convergences layer by layer of approximate straight-line fits

to boundaries beginning with edge elements. This strategy does not explicitly

include either curvature or end-stopped units, both well-known to exist in the

visual cortex. Units that may appear similar may be learnerd; however, this is

not necessarily so and depends on the training data selection.

It is fair to conclude that all these models do not fully explore the pos-

sible contributions of intermediate representations as are known in the brain.

In this chapter we present a biologically plausible model for Shape Representa-

tion. Curvature is considered an important component in order to achieve object

recognition in the human brain, along with corners, edges, color, texture and

other important features [Connor et al., 2007, Wolfe, 1998a]. A group of studies

has shown that neurons in visual area V4 in monkeys are involved with an-

alyzing curvature [Pasupathy and Connor, 1999, Pasupathy and Connor, 2001,

Pasupathy and Connor, 2002]. In the hierarchical object recognition pathway,

V4 is the area just before the inferotemporal cortex (IT), where object recognition

is achieved [Felleman and Van Essen, 1991, Tanaka et al., 1991, Tanaka, 1996].

The model presented here has been built with its biological plausibility in

mind, that is, the whole architecture is based on neurons and the computations
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that neurons perform at each layer. Our main motivation was to consider bi-

ological plausibility at every layer as the starting point. For this reason, we

concentrate our efforts on only one part of the object recognition pathway: shape

analysis. The focus is on 2D shapes.

Shapes are an important feature for recognizing objects [Wolfe, 1998a].

Shapes are composed of straight lines, corners, junctions and curves. Cur-

vature has been present in many methods and algorithms that achieve ob-

ject recognition (e.g., [Mokhtarian, 1995, Dudek and Tsotsos, 1997]). But un-

til recently there was no substantial proof that the human visual system an-

alyzes curvature in areas that are involved in the object recognition path-

way, such as V4 [Pasupathy and Connor, 1999, Pasupathy and Connor, 2001,

Pasupathy and Connor, 2002] and IT [Brincat and Connor, 2004, Tanaka, 1996].

In addtition to this, there is evidence that endstopped neurons present in area

V2 [von der Heydt et al., 1984] are selective to contours [Dobbins et al., 1989,

Parent and Zucker, 1989, Dobbins, 1992]. These works provide the intellectual

foundation for the research described in this chapter.

Section 3.1 describes in detail each layer in the model. Section 3.2 shows

the results of testing the model with stimuli used in previous single-cell studies.

The discussion regarding the characteristics of our Shape Representation model
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is presented in section 3.4. Finally, section 3.3 presents the conclusions of the

present work.

3.1 A Model of Shape Representation

This section explains the details of the model. A summary of the architecture is

presented in Figure 3.1 and briefly described as follows: V1 is composed of simple

cells that analyze edges and of complex cells that are the result of the summation

of spatially displaced simple cells. V2 contains endstopped cells which respond

to variations of straightness. Endstopped neurons are the result of the difference

of two simple V1 neurons or one simple and two complex V1 neurons shifted in

position. Endstopped cells are the input for local curvature selective neurons.

Then, Shape-selective neurons respond to curvature configurations with respect

to their position in the neuron’s receptive field.

To test the biological plausibility of our model, in the next section the re-

sponse of our shape-selective neurons are compared with the data from neuronal

recordings in area V4 of the macaque monkey’s brain.

In what follows whenever a neuron is referred to as model neuron it is one

developed for our theory. A neuron referred to without the model adjective is a

biological one.
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Figure 3.1: Architecture of the Shape Representation model
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3.1.1 Simple cells (V1)

Simple neurons of visual area V1 are sensitive to bar and edge orientations.

Gabor filters [Marcelja, 1980] and Difference of Gaussians have been shown

to provide a good fit when modeling simple cells from area V1, although a

better fit to neuronal responses has been found with Difference of Gaussians

[Hawken and Parker, 1987]. We implemented both types but we obtained better

results using Difference of Gaussians as edge detectors in V1 (Figure 3.2), and as

a result, we decided to use exclusively the Difference of Gaussians formulation:

G(x, y) =
1

2πσx1σy
e
− 1

2
(

(
x′
σx1

)2

+

(
u′
σy

)2

)
− 1

2πσx2σy
e
− 1

2
(

(
x′
σx2

)2

+

(
u′
σy

)2

)
(3.1)

x′ = xcos(θ) + ysin(θ)

y′ = −xsin(θ) + ycos(θ)

where σy is the height and σx1 and σx2 are the width of each Gaussian function.

θ is their orientation. The relation between these parameters may be referred to

as the aspect ratio AR = σy
σx1

and the width ratio WR =
σx2
σx1

. Size of filters were

4σy.

Cells in area V1 are heterogeneous, i.e. they are not all uniform. In the
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Figure 3.2: Sample of Difference of Gaussians edge detectors. Four sizes, from
left to right: 40, 60, 88 and 120 pixels

model, four different groups of simple cells were designed, varying sizes and values

of width and length. V1 model cells are organized into hypercolumns. Inside a

hypercolumn, cells are spatially displaced and combined into model complex cells

as described next (Figure 3.1) . For our experiments, we used 12 orientations and

4 different sizes, this gives a total of 48 types of V1 model simple neurons.

3.1.2 Complex cells (V1)

Complex cells have a sensitivity for bars and orientations as well,

but their receptive fields are larger than the ones of simple neu-

rons. Hubel and Wiesel [Hubel and Wiesel, 1959, Hubel and Wiesel, 1962,

Hubel and Wiesel, 1968] found that simple cells have one or more subfields in

which the response is either on or off while complex cells yield both on and

off responses, which suggest that complex cells integrate the responses of simple
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cells.

In addition to this, [Spitzer and Hochstein, 1985] showed that complex cells

may be the result of the addition of simple cells along the axis perpendicular to

their orientation. Following these biological studies, in our model, a complex cell

is the sum of 5 laterally displaced model simple cells within a column. The model

complex cell response is given by [Dobbins, 1992]:

RCX =
n∑
i=1

ciφ(Ri) (3.2)

Ri is the response of the ith cell and ci is its weight. Model cells are Gaussian

weighted with position, with weight inversely proportional to distance to the

center. φ is a rectification function, where any value less than 0 is set to 0. Cells

are proportionally shifted by their Difference of Gaussians parameters, so that

the cell separation is related to the size and aspect ratio of the component model

simple cells along their preferred orientation:

separation =
size

2AR
(3.3)

We compare the response of a model simple neuron with that of a model com-

plex neuron in Figure 3.3 for a stimulus of a 1-pixel wide straight line. Regarding

88



Figure 3.3: Comparison between a model simple neuron response (blue plot) and
a model complex neuron response (green plot) for orientation selection (a) and
location (b)

orientation selectivity (Figure 3.3a), the model complex neuron (green plot) Gaus-

sian function is wider than that of model simple neurons (blue plot). This results

in slightly less sensitivity for orientations and since each integrates five model

simple cells. Their receptive fields are larger as well, these two characteristics fol-

low [Hubel and Wiesel, 1959, Hubel and Wiesel, 1962, Hubel and Wiesel, 1968].

When we compare the receptive field of a model complex neuron with the one of

a model simple neuron (Figure 3.3b), a model complex neuron yields a positive

response for stimuli at more locations inside its receptive field. For both, the

highest response is at the center, but at 5 pixels away, for the model complex

cell we have a higher than mid-response while for the model simple cell is zero
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or close to zero. At ten pixels away, the model complex cell responds with a

half-response, while the response from the model simple cell is negative.

The construction of a model complex neuron is depicted in figure 3.4 (zoomed

top cell). The orientation of its model simple neuronal components in this case

is for 90° (vertical), while the 5 model simple cells are organized perpendicularly

(spatially displaced but overlapping) to this preferred orientation, that is 0°. Due

to this composition, the output from such model complex cells are a smoothed

version of that of model simple cells.

3.1.3 Endstopped cells (V2)

V2 neurons respond to contours, both real and illusory [von der Heydt et al., 1984].

A more recent study [Ito and Komatsu, 2004] has found that although V2 neurons

are mainly selective for angles and corners, these neurons also showed submaxi-

mal responses for bars. Four types of V2 neurons have been implemented in the

model, which respond to local curvatures and corners (Figure 3.1):

Type 1: Model corner neurons are the result of the sum of the responses of

model simple neurons at the same location but with different orientations

[Boynton and Hegde, 2004]: Rc =
∑n
i=1Ri(θ).

Type 2: Model endstopped cells with simple components integrate the differ-
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ence in response of two simple cells of different size at the same location

[Kato et al., 1978].

Type 3: Model endstopped cells with complex components result from

the difference between a simple cell and two displaced complex cells

[Kato et al., 1978] (Figure 3.4).

Type 4: Model direction endstopped cells, add a rotated component to Type 3

such that they can distinguish between curvature directions, extending the

work of [Dobbins, 1992].

We would like to note here that even though neurons of Type 1 and 2 are present

in the model we will only provide a brief description since they will not be used

on the experiments due to their rendundancy for the stimuli used in our analysis.

Model corner neurons may be useful for detecting corners but in our experiments

they showed support for model endstopped cells with complex components (Type

3). The model endstopped cells with simple components responded similarly to

model neurons of Type 3 but were not so selective, so we decided to use the latter

exclusively. In summary, the stimuli used in our experiments were best fitted to

Type 3 and Type 4 neurons.
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Figure 3.4: Model endstopped cell with complex components.
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Endstopped cells - also known as hypercomplex - were fully described

by Orban and colleagues in a series of publications [Kato et al., 1978,

Orban et al., 1979b, Orban et al., 1979a, Bishop et al., 1980]. In that series

of papers, they showed that endstopped cells had different properties from

orientation-selective cells and provided a description of those properties as well

as a detailed study on the end-zone inhibitory areas that were part of such cells.

Model endstopped cells provide us with a coarse curvature estimation so that

we can divide contours into curvature classes. For the design of the model end-

stopped cells we followed the work of [Dobbins et al., 1987, Dobbins et al., 1989,

Dobbins, 1992] which followed Orban and colleagues description and findings

about endstopped cells. The aforementioned authors propose an integration of

simple [Dobbins et al., 1987] and later of simple and complex cells [Dobbins, 1992]

into endstopped cells that are suited for curvature selectivity as well as binocular

disparity and motion analysis. We have extended that work with more experi-

mentation into curvature discrimination and found it to be a valid and biologically

plausible method of analyzing curvatures. We used Difference of Gaussians since

as previously noted we found better fit for the task rather than the orginal use

of Gabor filters.
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We had to include extensive testing in order to select the best type of model

neurons (combination of model’s simple cells or simple and complex) as well as

parameter selection. Our tests helped us not only for the task of proper parameter

selection but we could also compare the selectivity of the type of model neurons for

the job of curvature selectivity. We included a method that would help us on the

task of testing the parameter selection (size, AR, WR, Subsection 3.1.1). That

method will be called Calibration and provided a way of choosing parameters such

that their curvature ranges for discrimination do not overlap and do not include

any undesired behavior. This calibration consisted of testing model endstopped

cells with contours from different curve sizes in order to provide the response of

that model endstopped neuron to a range of curvature values.

From a curvature and object detection point of view, it is usually of interest to

know if a certain part of a curve is convex or concave. The model endstopped cell

receptive fields are small, and thus capture only local information, while in order

to determine if a section of a curve is convex or concave more global information

concerning the whole of the shape is needed.

Through the local information available to endstopping we may know if a

curve is tending to the left, right, upwards or downwards, which may be useful

information to be used for later layers in the hierarchy to compute if a contour
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is convex or concave with respect to the object. Later in this chapter we provide

a means for how this curve orientation may be extracted through endstopping.

We provide next a detailed explanation of the model endstopped cells with

simple components, the model endstopped cells with complex components and

the model endstopped cells for the direction of curvatures.

Endstopped cells with simple components

These cells are the result of the difference in response of two model simple cells

of different size at the same position. Their response to curvature depends on

the relation between the size of the two components and the parameters of the

Difference of Gaussians as well. A model simple endstopped neuron’s response is

given by [Dobbins et al., 1987]:

RES = Φ(cSφ(RS)− cLφ(RL)) (3.4)

φ is a rectification function, where any value less that 0 is set to 0. Φ is another

rectification function of the sigmoid type, and is given by:

Φ =
1− e−R/ρ

1 + 1/Γe−R/ρ
(3.5)
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where cS and cL are the gain for the small and large cells repectively. These

positive constants normalize the area difference between the receptive fields. RS

is the response of the small cell and RL is the response of the large cell. Sensitivity

to curvatures will depend on the sizes of both large and small cells as well as their

gain (cS and cL). The response of these model neurons as with all the model

neurons is band-passed in gain, size and standard deviation (Equations 3.1 and

3.4).

During simulations we found that this type of model endstopped neuron may

be well suited for curvatures of small radius, but its selectivity is smaller than

that of endstopped cells with complex components, which are explained next. As

mentioned previously we had 4 sizes of model simple neurons, we used the smaller

cell with combinations of the other three larger sizes in our tests, which consider-

ing the 12 different orientations, provided a total 36 types of model endstopped

neurons with simple components.

Endstopped cells with complex components

These cells are the result of a difference of neurons like in the previous case. Here,

the difference is between a model simple cell and two displaced model complex

cells of the same size along the preferred orientation (Figure 3.4). This was
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first proposed by [Dobbins, 1992] as a potential curvature estimator, and here

it is extended for contour analysis and used for curvature discrimination. The

response of such a cell is:

RESC = Φ[ccφ(Rc)− (cd1φ(Rd1) + cd2φ(Rd2))] (3.6)

cc , cd1 and cd2 are the gains for the center and displaced cells. Rc, Rd1 and Rd2 are

the responses of the center and the two displaced cells. φ and Φ are rectification

functions as before. In the experiments, for equation 3.5 Γ=0.01 and ρ is the

maximum response of the set of neurons for a given scale divided by 8.5, a factor

that provided a good normalization aproximation for this rectification (Figure

3.5). Displaced cells are shifted 1/2 of their receptive field size. [Dobbins, 1992]

provided a study on the best displacement for the centered model, and 3/4 and

1/2 displacement provided good results on that study. We chose 1/2 because it

gave the best results in our case.

The center cell is a model simple cell and the displaced cells are model complex

cells. An example of this type of model cell is shown in Figure 3.4. The receptive

field of an endstopped complex cell includes a simple and two complex cells along

their preferred orientation. Its output is given by equation 3.6. The center simple

cell has an excitatory effect while the two complex cells (at the top and bottom
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Figure 3.5: Sigmoid-type Rectification function Φ
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Figure 3.6: Response of the model endstopped cells with complex components
to curvatures at preferred (top) and all (bottom) orientations. Simple cell sizes
were a) 40, b) 80, c) 100 and d) 120 pixels. σy=(10,20,25,30). AR (aspect
ratio)=(1.15,2,3,4). WR (width ratio)=2.5 for all cells. Gain c=(0.7,0.8,1,2).
Responses were normalized for the range [0,1]

in this case) have an inhibitory effect. The response of these cells is similar to the

previous type but they show a better selectivity to curvature since their response

is not so high at other orientations to the preferred one. This aspect is due to

the inhibitory effect of the displaced cells, which we may note are wider than

the center cell, following [Orban et al., 1979a]. For this reason, we decided to

exclusively use this kind of cell in our experiments.

An example of this is shown in Figure 3.6, where we have four different model

neurons (columns) and we can see how they respond to curves depending on their
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radius (in pixels) for the preferred (top row) and non-preferred (bottom row)

orientations. In our tests we found that the combination from smaller model en-

stopped neurons is selective for sharper curvatures and the combination of larger

cells responds strongly to broader curvatures. The model endstopped smallest

neuron (Figure 3.6a) is selective for very high curvatures, the largest model en-

stopped neuron (Figure 3.6d) was selective to very broad curvatures. We found

also that the size ratio between model neurons for a proper curvature discrima-

tion must be 1.25-2 (high ratio is better suited for smaller neurons, a small ratio

for larger neurons). The relation between height and width (AR) of the Gaussian

is large for larger cells and small for smaller cells. Figure 3.6 bottom shows the

response of the model cells to all orientations. There is some spurious response

to non-preferred orientations at other curvatures, and this is especially true for

model cells a and b. The smaller the cell the greater the responses to other

curvatures different to the preferred ones, which is no surprise due to the use of

smaller size edge detectors providing more spurious responses.

Figure 3.7 shows the response of model complex displaced cells whose com-

ponents are the model simple neurons from Figure 3.2. V2 model neurons are

twice the size of V1 model neurons; in this example they are 80, 120, 166 and

240 pixels. In order to compute the range of selected curvatures, we measured
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Figure 3.7: Selectivity of endstopped cells with complex components to curva-
tures considering 90% of maximum response (blue range) and 80% of maximum
response (green range). Highest responses are in red circles. AR (aspect ra-
tio)=(0.7,1.4,2.15,3). WR (width ratio)=2.5 for all cells. Gain c=(1.5,1.25,1,3)
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the cell response over different circles ranging from radius of 0 to 300 pixels, and

we obtained the model cell response at its 80 and 90 highest percentile values.

The ranges of selective radius of curvature considering the 90% of the maximum

response (red circles in figure 3.7) for these neurons were: 6-11, 25-52, 48-77,

140-300+ pixels (blue range lines in figure 3.7), the 80% maximum responses ra-

dius were 5-12, 24-54, 36-95, 96-300+ pixels (green range lines). We can see that

there is a high degree of separation regarding curvature responses. If we consider

the 90% percentile there is no overlap; some overlap occurs at the 80% between

b and c model neurons.

Even though the above analysis is based on the percentile of highest responses

from model endstopped neurons, we did not use any threshold or maximum

selection regarding the responses of our neurons. The responses from all model

endstopped neurons are considered in our model. For example consider a radius

of 80 pixels. The response from the model neuron 3.6c would be 80-90% of its

maximum response, the response from neuron 3.6d, 70-80% its maximum value,

and the responses from neuron 3.6a would be close to zero and from neuron 3.6b,

around 50% its maximum response. By using all this information we can have a

pattern of responses from our model endstopped neurons that is characteristic of

that radius of curvature.
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Direction endstopped neurons

We refer to direction as the path of a curve that is steering upwards vs downward

or left vs right respect to the center of the curve. To evaluate the direction, the

same model endstopped cells with complex components are used adding a rotated

component on each displaced complex cell with opposite directions (e.g. 45° and

135° for the 0° model endstopped neurons). A hint regarding this concept was

first proposed by [Dobbins, 1992], which is extended here to all orientations and

used on curvatures (Figure 3.8).

Two types of model direction cells are used, and we will use the term sign to

specify if the curvature is in one direction or the opposite, positive or negative.

These different directions are obtained by changing the order of the displaced

subtracted neurons.

R+ = φ[ccφ(Rc)− (cd145φ(Rd145) + cd2135φ(Rd2135))] (3.7)

R− = φ[ccφ(Rc)− (cd1135φ(Rd1135) + cd245φ(Rd245))] (3.8)

where cc , cd1 and cd2 are the gains for the center and displaced cells as before.

Rc, Rd1and Rd2 are the responses of center and displaced cells. The difference

here is that the displaced cells are at different orientations of the preferred center

simple cell, for the positive sign model endstopped neuron, the displaced model
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Figure 3.8: Direction selection. Endstopped configuration of cells whose curva-
ture is moving downwards (a), to the right (b), left (c) and upwards (d), e) An
example of a circle where only a and d are applied, positive sign selects model end-
stopped neurons whose direction is downward (blue). Negative sign is curvature
upwards (red)
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complex neuron d1 is at 45°, while the model complex component d2 is at 135°.

For the negative sign model endstopped cell, the order is the opposite. Figure 3.8e

shows the response of direction selective cells over a circular shape for direction

upwards vs downwards.

3.1.4 Local curvature cells (V2)

Curvature cells are obtained due to the neural convergence of model endstopped,

corner and orientation-selective cells:

By combining model endstopped cells with complex components and model

direction endstopped cells responses, we obtain twice the number of curvature

classes than the number of model endstopped cells. For example, if we have four

types of model endstopped cells, through the use of the direction of curvature of

those cells we obtain eight curvature classes.

Rcurvi = RESCi

⋂
(R+ > R−)

Rcurvi+n = RESCi

⋂
(R− > R+)

(3.9)

where n is the number of model endstopped cell types, RESCi is the response of

the model endstopped cell i and R+, R− are the responses of the model direction

selective endstopped neurons.

For the case where the response from endstopped cells and corner cells was
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small, a high response from a model orientation simple cell meant the contour

was a straight line, so its curvature was set to 0.

3.1.5 Shape-selective neurons (V4/TEO)

Recent experiments in area V4 [Pasupathy and Connor, 2002] and TEO

[Tanaka, 1996, Brincat and Connor, 2004] (Posterior inferotemporal cortex)

of the macaque monkey seem to agree in a recognition of objects

by parts. In the case of V4 and TEO, those parts would be

local curvatures [Pasupathy and Connor, 1999, Pasupathy and Connor, 2001,

Pasupathy and Connor, 2002, Brincat and Connor, 2004]. The response to a

shape would correspond to the response of the local curvatures of the object.

In TEO, some components of local curvatures excite the neuron, and others in-

hibit its response [Brincat and Connor, 2004].

We consider here a Shape neuron to be in area V4 or TEO. Neurons

in areas V4 and TEO share similar characterisctics regarding shape anal-

ysis [Pasupathy and Connor, 2001, Brincat and Connor, 2004] and selectivity

[Boussaoud et al., 1991]. Although similar, TEO neurons show a higher degree of

complexity than V4 neurons [Brincat and Connor, 2004]. Our Shape neurons are

slightly more complex than just the curvature × angular position coding proposed
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by [Pasupathy and Connor, 2001] for V4 neurons since they are not only selective

to curvatures at angular positions but also to the distance to the center of the

neuron or shape. The reason for this added dimension is that the curvature × an-

gular position representation alone was too simple for our shape representation.

On the other hand they do not show the full complexity of a TEO neuron since

they do not include inhibition from local curvatures and nonlinearity regarding

curvature combination.

Our Shape cells integrate the responses from model endstopped neurons in

area V2, that is, local curvatures. The proposed response of a model’s Shape

neuron is:

Rshape =
n∑
i=1

ciRcurvi(λ) λ = maxmj=1(λj) (3.10)

ci =
1

2π
e−(x

2+y2)

where Rcurvi is the response of the ith model curvature neuron from the set of

all possible n model curvature neurons at the preferred curvature direction (λ)

inside the Shape neuron receptive field, and ci is a Gaussian weight that would

account for partial excitation depending on the selective curvature in distance -

angular position (Figure 3.9a).
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Figure 3.9: a) Shape-selective neurons respond to different curvatures at different
positions. The response is maximal when those curvatures are present at their
selective positions (red). If they are in nearby positions the neuron provides
some response as well (orange and yellow) b) The curvatures at those positions
are organized into hypercolumns.
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A model Shape neuron will respond to a shape, and depending on how close

the stimulus is to its selectivity, its response will be stronger or weaker. The

features used here are simple curvatures at different positions and model Shape

neuron responses depend on their combination.

Shape neurons are organized into hypercolumns

We propose that Shape cells are organized into a hypercolumn as seems to be com-

mon in many other areas of the visual cortex (see [Ts’o et al., 2009] for a review),

such as V1 [Hubel and Wiesel, 1968], V2 [Ts’o et al., 2009], IT [Tanaka, 1996] or

MT [Deangelis and Newsome, 1999]. [Tanaka, 1996] already proposed an organi-

zation into columns in area TE, even though it has not been demonstrated for

areas V4 and TEO (the areas preceding TE), it would be no surprise that these

areas were organized into columns as well. TE has 1,300-2,000 columns which

puts a limit on the number of combinations that can be represented [Fujita, 2002].

We propose that in one dimension of the shape hypercolumn, curvature classes

are represented, while the other dimension may enconde a shape as the result

of the location of their curvature components (Figure 3.9b) since these are the

main features to which V4 neurons are selective [Pasupathy and Connor, 2001,

Pasupathy and Connor, 2002]. Next, we describe how a Shape neuron respond
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to those features: curvatures and their locations.

Response of a Shape neuron in Curvature space In addition to being

sensitive to location inside the Shape’s neuron receptive field, a Shape neuron

has a response depending on how close the stimulus is to its curvature selectivity.

For example, consider a model neuron selective to a sharp curvature at the top

left. This neuron would respond maximally when that feature is present at that

specific location, but it would respond also to a broader curvature at that location

with a lower value and would have a small response to a very broad curvature or

a straight line.

Shape neurons exhibit band-pass tuning for curvature information. Their

responses achieve a peak at a specific curvature, then decay providing a decreasing

response for curvature values of increasing distance. No response is provided

for curvatures very far from the optimal. The Shape neuron in our example

is then selective for those model endstopped neurons that respond strongly to

sharp curvatures at that position. Since a model endstopped neuron with a

high response to a sharp curvature has also some response to a slightly broader

type of curvature (Figures 3.6 and 3.7), Shape neurons will not provide a binary

response but a range or responses depending on the distance between curvatures
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in curvature space.

Response of a Shape neuron based on Curvature locations Features

(curvatures) inside the Shape neuron are weighted with respect to a factor ci

(equation 3.10) depending on how close the desired curvature is to the desired

position. Let’s continue with our example of a Shape neuron selective for a sharp

curvature at the top left. This model neuron will have a high response to any

stimuli that contain such sharp curvature at that position, but some response will

still be elicited in a nearby position, e.g. a sharp curvature at the top mid-left, but

no response will be obtained for a sharp curvature present at far away positions

(e.g. the sharp curvature is at the bottom).

The curvatures that fall into the preferred cell’s positions are considered in

their full value (red in Figure 3.9a), but if they fall close, they are weighted

in a Gaussian manner depending on how far from the preferred position they

are (orange and yellow in Figure 3.9a). For this task we used polar coordinates

[Pasupathy and Connor, 2002], that is, the radial distance to the center of the

Shape neuron and its angular position. In order to reduce the complexity of

computing pixel by pixel and degree by degree, we created bins that are variable

in size, depending on the step radial distance and the step angular position. For
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our experiments we found 10 pixels for the former and 4° for the latter to provide

good results.

In the words of Pasupathy and Connor [Pasupathy and Connor, 2002]: The

population code for shape has to accomodate the virtual infinity of possible ob-

jects as well as the variability of a given object’s retinal image. Our model Shape

neuron has the capability of representing that virtual infinity of objects: If we

consider that our stimuli are inside 400 × 400 pixel images, for the bin size selec-

tion given above this gives a total of 1,800 possible curvature parts inside a Shape

neuron receptive field. Since we use 8 curvature classes, when we consider any

possible combination of curvature/location, our model can represent a maximum

of 14,400! possible configurations of stimuli. If we take into account Gestalt prop-

erties such as continuity, closeness and others, that number can be reduced to

reflect only realizable configurations. The point here is that this representation is

sufficiently rich to enable coding of a wide variety of shapes and task knowledge

or experience will help determine the relevant subset.

3.1.6 Size of neurons

Here we comment about the relative sizes of our model neurons and compare them

to neurobiological measures. In a similar way to the visual cortex hierarchy, in
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the model as we go higher in the hierarchy, model neuron receptive field sizes

are larger. We consider that an absolute value may be not very useful since they

are always dependent on the screen resolution. For a classical psychophysical

distance of 30 cm at a typical resolution of 1280 × 1024 pixels, a 0.1° V1 neuron

would correspond to 3 pixels, a Gabor filter of size 3 pixels will not return any

useable values. Studies with monkeys usually make use of larger distances, which

would change the number of pixels.

We think that the pixel-degree equivalence is important for psychophysical

and neurobiological studies in order to make sure a stimulus shown on a digital

screen covers a specific size of receptive field. But from a modelling point of view,

it is more interesting to study the sizes of model neurons relative to each other.

In our case, receptive fields for the Shape neurons (V4/TEO) are 400 ×

400 pixels. V4 neurons comprise a receptive field of 2 to 4° in diameter

[Felleman and Van Essen, 1991]. TEO neurons receptive field sizes range from

4° for primary cells to 10° for elaborate cells [Tanaka et al., 1991]. Our shape

neurons may be considered primary cells or regular V4 cells. As a result, 400

pixels would correspond to 4° in our case.

V2 neurons receptive fields are 0.2 to 2°. Our V2 model neurons are 80 ×

80 pixels to 240 × 240 pixels, which in relation to our Shape-selective cells,
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would correspond to 0.8 to 2.4°. V1 neurons receptive fields are 0.1 to 1°

[Hubel and Wiesel, 1965, Schiller et al., 1976]. In our case, our model V1 neurons

would expand 0.4 to 1.2° (40 × 40 pixels to 120 × 120 pixels).

We can summarize that the relative sizes in our hierarchy are quite similar to

the ones in the visual cortex.

3.1.7 Summary of the architecture

A summary of the architecture is presented in Figure 3.10: Model simple neurons

perform edge analysis. In the experiments, 4 sizes and 12 orientations are used.

Responses from model simple neurons are integrated into model complex neurons

receptive fields. By combining model simple and complex neurons we achieve end-

stopping. Responses of model endstopped cells are used to get different curvature

classes (8 in the experiments).

The main element in this architecture is that of Shape-selective neurons, they

represent curvature parts in a curvature × position (radial and angular) domain.

The possible number of shapes that may be represented by our model Shape

neurons is very large, given the limited type of neurons at each level of the

architecture. A Shape neuron has a response depending on the position and

curvature of the stimulus component parts as explained in the previous section.
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Figure 3.10: The hierarchy of 2D shape processing. See text for explanation
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Figure 3.11: Shape-selective neuron tuning profile for location and curvature

The response to a shape from a Shape-selective neuron depends on how similar

a stimulus is to a prefered stimulus. An example of this is shown in figure 3.11a

that shows the tuning profile of a neuron selective for the stimulus on the left.

The responses to other stimuli is plotted relative to their curvature and location

distance. Figure 3.11b shows several examples for this model neuron, the closer

the stimulus is to its prefered stimulus, the higher its response is.
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3.2 Experiments

We performed two sets of experiments in which we compare the performance of

the model Shape neurons with neurons in area V4 of the macaque’s visual cortex.

In the first set we study the capability of our model Shape-selective neurons to

represent complete shapes as aggregates of boundary fragments in curvature ×

angular position domain.

Our second set of experiments compares the normalized responses of the model

Shape neurons with those of neurons in area V4 over a set of 366 stimuli. For

most cells in area V4 of the macaque, shapes evoking strongest responses are

characterized by a consistent type of boundary configuration at a specific position

within the stimulus [Pasupathy and Connor, 2001]. We show that this behavior

is compatible with the model Shape-selective neurons constructed as explained

in the previous chapter.

3.2.1 The curvature × angular position representation

Motivation

We wanted to first test the capability of our model to encode curvature in the

Curvature × angular position representation proposed by Dr. Pasupathy and
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colleages. From the results of their experiments, Pasupathy and Connor proposed

that the representation of shapes in V4 are curvatures as parts of boundary

patterns relative to their position in the object.

Pasupathy and Connor recorded from neurons in area V4 of the macaque

monkey. The response pattern was quantified by using a 2D Gaussian tuning

function. Figure 3.12 shows an example extracted from their work. Figure 3.12a

shows a Gaussian shape tuning function for a cell whose selectivity is a sharp

convex curvature at the top (90°). The horizontal axis represents angular position

of the boundary fragment relative to the object’s center of mass, the vertical axis

represents boundary curvature. Negative values correspond to concavity and

positive values to convexities. Each stimulus was decomposed into four to eight

contour fragments of relatively constant curvature. This is exemplified in Figure

3.12b, the stimulus is in the center, the white line surrounding it shows the

curvature values relative to angular position.

Here we compare our model’s performance against the results from

[Pasupathy and Connor, 2002]. In order to construct the stimuli, a Matlab pro-

gram was kindly provided by Dr. Pasupathy. The stimuli were constructed com-

bining convex and concave boundary elements to form closed shapes. Boundary

elements include sharp convex angles, and medium and high convex and concave
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Figure 3.12: a) Pasupathy and Connor’s Gaussian shape tuning function de-
scribing the response pattern of a neuron b) Pasupathy and Connor’s proposal,
the object’s white line shows the different values of curvature relative to angular
position for a squashed raindrop stimulus (icon at the center).

curvatures. The combination of these boundary elements gave rise to 49 different

stimuli. Stimuli were composed of white edges against a black background, the

inside was black as well but it is shown from now on in our figures as white-filled

for illustration purposes.

The data corresponding to V4 neurons for our comparison was provided as

well by Dr. Anitha Pasupathy to perform this study.

Methods

Experiments were run in Matlab in a Mac G5 PowerPC computer with a screen

resolution of 1280×1024 pixels. The input to the model is a gray-value image.
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Images used are 400×400 pixels, a shape would span 300×300 pixels and corre-

spond to the stimuli used in the aforementioned study. Size of V1 model simple

neurons are 40, 60, 88 and 120 pixels, their corresponding values for AR are 0.7,

1.4, 2.15 and 3 respectively, WR is 2.5 for all model neurons. 12 orientations

were implemented.

For the integration into model endstopped neurons, the values of gain c were

from the smaller to the larger cell: 1.5, 1.25, 1, 3. For the chosen parameters,

cells respond (90% of their maximum value) to the following ranges of curvature

radius: 6 to 11, 25 to 52, 48 to 77 and 140 to 301 pixels.

Obtaining convexity and concavity As explained in Section 3.2 we pro-

vide model endstopped neurons that can distinguish the direction of curva-

ture but these neurons cannot specify if a contour belongs to the convex or

concave part of a shape. On the other hand, responses to the stimuli from

[Pasupathy and Connor, 2002] are reported using convex and concave curvatures

(see Motivation). In order to perform our comparison, we must transform the

output from our direction endstopped cells into convex and concave responses.

Using local detectors only there is not enough information to know when a

contour is concave or convex, and we need some global information to achieve this
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task. [Pasupathy and Connor, 2002] use the center of the object as an important

quality in the representation of curvature in V4 neurons and we will follow their

lead. We only use that information together with our model direction selective

endstopped neurons to obtain a value of concavity and convexity.

The method to compute convexity/concavity uses our model endstopped di-

rection neurons and the centroid of the object i.e., the center of mass of the

region. To obtain convexity, the centroid of the shape is first obtained for the

reasons explained above. Even though local curvature detectors have no infor-

mation regarding the shape, a V4 model Shape neuron contains that information

and local curvatures can then be transformed into actual curvatures with re-

spect to the center of the object. This solution is similar to how MT neurons

solve the aperture problem in order to respond to the actual direction of motion

[Pack and Born, 2001].

Following this strategy, 8 polar regions are considered in increments of 45°.

The first area (0° to 45°) is convex provided model direction neurons are to the

left, any other condition means it is concave. The second area (45° to 90°) is

convex, provided model direction neurons are downwards, for any other condition,

is concave. For each area, the direction of its model neuron is considered in order

to be convex or concave and a map of convexity and concavity is obtained based
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on the model neurons directions and the polar area they belong relative to the

centroid of the object.

Curvature classes The 4 types of model endstopped neurons and the cur-

vature direction selective neurons lead to eight curvatures. In order to compare

with [Pasupathy and Connor, 2002] we transformed the curvature radius pixels to

which our model endstopped neurons were selective into the squashed curvature

values used by Pasupathy and colleagues.

Pasupathy and Connor’s stimuli use higher values for convexities than con-

cavities (their range of curvatures is 1 (convex) to -0.3 (concave)), for this reason

we took the higher values of the ranges for the convex contours provided before

(radius=11, 52, 77, 301 pixels), and the lower values for the concave contours

(radius=6, 25, 48, 140 pixels). We transformed the pixel values into curvature

values considering the resolution of the screen and that the definition of cur-

vature is 1/radius. We finally used the squashed curvature equation found in

[Pasupathy and Connor, 2001]:

c′ =
2.0

1 + e−ac
− 1.0 (3.11)

After performing the previous transformations, eight curvature classes were
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considered:

1. Very high curvatures/corners, c′ = 1

2. High convex curvatures, c′ = 0.74

3. Medium convex curvatures, c′ = 0.45

4. Low convex curvatures, c′ = 0.17

5. Straight lines, c′ = 0.0

6. Low concave curvatures, c′ = −0.1

7. Medium concave curvatures, , c′ = −0.3, and

8. High concave curvatures, c′ = −0.4.

To consider a curvature as class 5 (Straight lines), its response to any of curva-

ture or corner cell is to be less than 20% the maximum response for any curva-

ture/corner cell and have a high response to an edge detector, that is, a V1 model

simple neuron.

The maximum curvature responses from model enstopped neurons was inte-

grated at different angular positions (in 12° steps) with respect to the center of

the object and data was fitted using a spline in order to obtain a function to

compare with [Pasupathy and Connor, 2002].
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Figure 3.13: a) Response to curvature from the model endstopping to the
squashed raindrop stimulus (Figure 3.12b), dark red corresponds to very high
curvature, red to medium-high curvature, blue to medium curvature and yellow
to broad curvature b) Population response from Pasupathy and Connor (colored
surface), curvature × position veridical function (white line) and the model’s
function (gray line), arrows mark the difference between the veridical function
and our model.

Results

Figure 3.13a provides an example of curvature discrimination with the outputs

from endstopped cells integrated into a Shape neuron. The stimulus is a squashed

raindrop shape (Figure 3.12b). Figure 3.13b shows the a comparison between

Pasupathy and colleagues work and the output of the model for that stimulus.

The figure includes the Gaussian shape-tuning function describing the response

pattern (colour surface). The vertical axis represents boundary curvature and the

horizontal axis represents angular position of boundary fragments with respect to
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the shape’s center of mass. The white line plot corresponds to veridical curvature

function, which fits with high accuracy the neural population data. Our results

are shown in the grey line plot. Note that it fits the neural data well and it is

very close to the veridical plot (in white).

Figure 3.14 shows the results to all the stimuli from

[Pasupathy and Connor, 2002]. For each stimulus (left column of each

panel), Pasupathy and Connor’s results (colored graphs with white plots, center

column of each panel) are compared against our results (white background plots,

right column of each panel). It can be seen that the results are quite similiar to

those obtained for neurons in area V4 of the visual cortex.

There are some slight differences between our and Pasupathy and Connor’s

curves and those will be discussed here. The first is that peaks for very high

curvatures are narrower on their fits than ours (e.g. stimulus 39). The reason for

this is that although our model small endstopped neurons respond very strongly

to very high curvatures and corners, the spline fit may smooth the responses.

Another difference may be due to convexity and concavity for some of the sitim-

uli (e.g. stimulus 1). As mentioned before, we perform an easy transformation

from our direction-selective neurons to convex/concave selection by just using the

centroid. Even though this transformation works for most cases, addtional global
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Figure 3.14: For every stimulus (left image), Pasupathy and Connor’s fit (white
plot, center) and summed population neural responses (colored values, center)
was compared to our model’s response (right).
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information may be needed.

Some concavities are higher than the ones reported from our model (e.g. stim-

uli 4 and 5). Consider that our model neurons are not curvature detectors in the

sense of providing a numeric value but discriminators among sharp, medium-

sharp, medium and broad curvatures. These abnormalities may be due to the

transformation into specific curvature values, and as such, is prone to slight dif-

ferences (see methods). Finally, we can see that our plots are not as smooth as

the real plots corresponding to the stimuli. At some angular positions our plots

show small bumps this is an effect of sampling (we use only 12 orientations), in

fact those bumps occur at those orientations and provides a limitation on shape

representation.

Nevertheless, we observe here that the model performs closely to neuronal

data, fitting very well in almost every case the Gaussian shape response pattern

(colored graph). The peaks of our model are highly correlated to the cells response

patterns. Another important observation of these results is that the shapes of the

model plots are very close to the ones from [Pasupathy and Connor, 2002]. This

fact is further supported by the quantitative analysis provided next, where we

measured the difference between the results from the model and the data from

neurons that Pasupathy and colleages used to draw their plots.
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The original data provided included the angular position and curvature for

four to eight different angular positions. For such a task we averaged the Eu-

clidean distance between these four to eight angular position values (Figure

3.12b arrows) and the results from our model in curvature and angular posi-

tion. Both terms were normalized to 1. That is, for those position values pro-

vided in Dr. Pasupathy’s data we measured how far our values were in terms of

curvature and position (arrows in Figure 3.13b), these distances were averaged

over the total number of values. The worst case scenario would be one where

the plot provided by the model would be completely the opposite from the plot

in [Pasupathy and Connor, 2002] (distance=1). The case were our results com-

pletely overlap Pasupathy’s plot would mean that Shape neurons have the same

exact response pattern as real cells (distance=0).

Normalized distances for each one of the 49 stimuli in figure 3.14 (left column)

are shown in the blue bars of figure 3.15. The maximum error is 1 and a perfect

match is 0. Total average error for all stimuli was 0.074 (stdev = 0.037). In

order to further test the vailidity of the analysis, we compared the results from

our model to each stimulus with those data corresponding to all the other stimuli

different to the selected one (e.g., stimulus 1 model values vs data from the other

2-49 stimuli), if the analysis is correct, we should obtain much higher error alues
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Figure 3.15: Euclidean distance from the model to Pasupathy and Connor’s data.

than the ones reported. When we performed this analysis between each stimulus

and the other 48 different stimuli, values were much higher (average = 0.218,

stdev = 0.087). When comparing both populations (stimulus paired correctly vs

stimuli paired wrongly) they are statistically different (t-test=1, p<0.0001 ).

These results show that the proposed hierarchichal representation based on

endstopping to achieve curvature provides very similar data to data from neurons,

only 5 out of the 49 stimulus distances were over 10% error (or 0.10 distance),

and all of them were below 19%. Most errors are on the range 0.02-0.08.
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Figure 3.16: Stimuli used in [Pasupathy and Connor, 2001] (Copyright © 2001
The American Physiological Society)
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3.2.2 Comparison with V4 neuron’s responses to shape stimuli

Motivation

Now that we have shown how endstopping may be used for curvature discrimi-

nation we want to study how similar the behavior of our Shape neurons are to

V4 neurons in the brain.

In a detailed study, [Pasupathy and Connor, 2001] recorded the responses of

109 neurons to 366 different shapes. The stimuli were the same 49 shapes used

in the previous experiment but rotated 8 orientations (some only 2 or 4 due to

redundancies) in 45° increments (Figure 3.16). Each cell in the sample responded

to a variety of very different shapes. No cell displayed a response pattern that

could be characterized in terms of a single type of global shape. However, for

most cells the effective stimuli showed some degree of shape consistency at one

position. In other words, these cells were tuned for boundary configuration in

one part of the shape.

In order to prove the plausibility of our Shape neurons, we study the behavior

of the model Shape neurons by comparing their responses against real neuron

responses. If model Shape neurons provide similar responses to those of neurons

in area V4, we can summarize that they faithfully mimic the behavior of real
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cells.

Method

Correspondence between simulated and real neurons The experiments

we will conduct involve the response of our Shape neurons to different types of

stimuli used in neurophysiological experiments. We use the database provided

by [Pasupathy and Connor, 2001], who recorded from 109 neurons in area V4 of

the macaque’s visual cortex for the stimuli shown in Figure 3.16. Based on the

responses of those neurons to that stimulus set they could infer the selectivity of

specific neurons, e.g. a neuron that responds strongly to any stimuli containing

a sharp curvature on the top left would be selective for that feature.

We perform two sets of experiments, a first set performed a comparison with

the four figures from [Pasupathy and Connor, 2001]. For comparing with Pasu-

pathy and Connor’s figures we followed their descriptions regarding the selectivity

of their neurons (more detail in Results), such as “the most effective stimuli con-

tained not just a convexity at the bottom left but also a concavity at the bottom”

(page 2510 from [Pasupathy and Connor, 2001]).

Since the results from the first set of experiments were satisfactory, in a second

set of experiments we compared with the responses from 75 of the 109 neurons
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Figure 3.17: How the features for isolating a Shape neuron are obtained for our
second set of experiments. See text.

recorded by Pasupathy and Connor’s group. Data from real neurons to achieve

these set of experiments was kindly provided by Dr. Anitha Pasupathy. To per-

form this more extensive comparison, we needed to extract the curvature-position

features for which those 75 neurons were selective. In order to do this for each

real neuron from Pasupathy’s data we considered stimuli with neuronal responses

on the 70% maximum percentile. These stimuli eliciting high responses from a

real neuron are added into an image. The resulting image gives us an idea of

that neuron’s curvature selectivities. An example of this is shown in Figure 3.17:

Neuron a) is selective to a sharp convexity on the top left, a broad concavity

adjacent to it and a medium-sharp convexity on the right, neuron b) is selective

to a broad convexity that spans from left to right, neuron c) is selective for a
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sharp convexity on the right, adjacent to a broad concavity leading to a sharp-

medium convexity on the top left and/or a medium convexity at the bottom. On

the other hand, neuron d) shows a high response to too many different stimuli to

find the appropiate curvature features for that neuron. The reason why we used

75 neurons out of the 109 provided is because 34 of them fell into this last case.

As explained in the previous section, the possible representation of shapes

with the model Shape-selective neurons is enormous. But in order to per-

form the comparison between our model Shape neurons and real neurons we

have to select a subset of four neurons corresponding to the four figures from

[Pasupathy and Connor, 2001] for the first set and then 75 model neurons to

match the real 75 neurons for the second set of experiments.

In order to establish an equivalence between our Shape neurons and those

real neurons in area V4 we follow a process we call model neuron isolation, since

it would be the equivalent to recording from a specific neuron in the visual cor-

tex. The process of model neuron isolation consists of the presentation of specific

curvature features - e.g. sharp curvature at the top left - to the hierarchy pre-

sented here and then storing this representation in working memory. In more

detail, the process of isolation is composed of two steps. A first step consists of

creating an image with the selective curvature features corresponding to a real
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neuron. To do this we follow [Pasupathy and Connor, 2001] descriptions for the

first set of experiments (e.g. “the most effective stimuli contained not just a con-

vexity at the bottom left but also a concavity at the bottom”) and the extracted

curvature-position selective features for the second set of 75 neurons as has been

described earlier (Figure 3.17). Then, we extract the representation correspond-

ing to that set of curvature features. A feed-forward pass through the hierarchy of

layers is performed and then its Shape-selective neuron representation is stored in

working memory. The weights ci (Equation 3.10) are derived from the responses

from the eight curvature classes model neurons at their different positions or

bins as explained before (Figure 3.9a). Now, we have isolated a model Shape-

neuron and we are ready to study how it responds to the 366 stimuli used by

[Pasupathy and Connor, 2001] as explained next.

Response of an isolated Shape neuron to a presented stimulus Real

neurons provide a response which is measured in spikes per second, the higher

this value the higher the selectivity of the real cell to the presented stimulus. In

order to compare our Shape neurons to real cells we are interested in obtaining

a value from the Shape neuron that reflects its excitation when presented that

same stimulus. The process is as follows:
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1. Isolate a model Shape neuron selective for a set of curvature feature(s) as

explained earlier.

2. Once a model Shape neuron is isolated, its response to the most selective

stimulus is computed. This value will be matched to the real cell value for

that stimulus and used to normalize the responses of our Shape-selective

neurons to each stimulus.

3. The model Shape neuron response to each one of the different 366 stimuli

is recorded with responses normalized by the factor obtained in step 2.

4. The absolute difference in response between the model’s Shape-selective

neuron and the real V4 cell is computed for each stimulus. Mean and

standard deviation are obtained for each case.

The input and setup are the same as before as well as the model neurons pa-

rameters. Shape neuron’s receptive fields were organized into angular-radial bins

(Figure 3.9a) of 10 pixels for radial values and π
45

for angular values.

Results

Comparison with Figures from [Pasupathy and Connor, 2001] In each

Figure (Figures 3.18 to 3.21), columns a and c (stimuli within circles) correspond
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to the four figures extracted from their work (their Figures 2, 4, 5 and 8), which

represent the responses from four neurons. The model equivalences are in columns

b and d (stimuli within squares) respectively. Each row and column contains up

to 8 stimuli, which totals the 49 shapes rotated in steps of 45°. For example, the

first row in column a is the response of a neuron from Pasupathy and Connor’s

work, its equivalent from our model Shape neuron is in that same row, column

b. Green shading identifies a stimulus with high response or that is of interest to

the study.

For real neurons (columns a and c), each stimulus is represented by a white

icon drawn within a circle representing the unit receptive field, the darker the

background behind the icon, the higher the response rate of the neuron is to

that shape. This is also true for our Shape cells (columns b and d), with the

distinction that the icon is within a square. For the model to perform correctly

for a shape-stimulus response, the squared background must be similar to real

cells circled background, that is, the background at columns b and d (model’s

Shape neurons) must be similar to the ones from real cells at columns a and c

respectively.

We first compared the responses from our Shape-selective neurons with Figure

2 from [Pasupathy and Connor, 2001] (Figure 3.18). For this cell, stimuli with a

137



Figure 3.18: Comparison to Figure 2 of [Pasupathy and Connor, 2001] (Copy-
right © 2001 The American Physiological Society). Cells responses are on
columns a) and c) and their respective model responses are on columns b) and
d). Green shading is for stimuli with high response or stimuli that Pasupathy
and Connor considered of interest
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sharp convex angle at this position were particularly effective (e.g. stimuli 1 and

2 in the middle column, bottom block; these stimuli are labeled with superscript

numbers). Stimuli with a medium convex curve evoked moderate responses (e.g.,

stimuli 3 and 4). Thus this cell appears to encode information about the bottom

left boundary region, responding well to sharp convexity at this location and

poorly to broad convexity or concavity. Based on the response of this cell to the

stimuli, this neuron was selective to a sharp convexity at the bottom left and a

concavity adjacent to it. The results from the model are in columns b and d to

their corresponding cell responses in columns a and c.

A first examination shows that the responses of the model’s Shape neurons are

very similar to those of real cells. Our Shape-selective neurons respond strongly

to a sharp convexity at the botton left and a concavity at the bottom as well. If

the curvature adjacent to the sharp convexity at the bottom left is convex, real

cells responses are much weaker, our Shape-selective neurons show also weaker

responses as well but not as weak as for real cells. We think that such feature may

have an inhibitory effect in a similar way as in TEO [Brincat and Connor, 2004].

Our model as it is presently does not consider inhibitory responses.

There are some other differences between our model and the responses from

real cells, e.g. elements g1 and g2 in column a and b. The reason behind this
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difference is that the stimulus used as a base to isolate our Shape neuron was

stimulus 1, which apart from the concave curvature at the bottom has a concave

curvature on the left. It can be seen that such stimuli may be closer to the stimuli

in subcolumn d than g, so our model responds stronger for subcolumn d than

g, while for real cells, the opposite happens. There are other small differences

which may be accounted for with the same reasoning. But in general it appears

that the model performs well in comparison to neuronal data.

Another example provided by Pasupathy and Connor is on Figure 4 of their

article (Replicated in Figure 3.19a and c). This cell was sensitive to boundary

configuration on the right side of the object, responding best to concave curvature

at that position. This is exemplified by stimuli 1 and 2; stimulus 1, with a

concavity at the right, evoked a stronger response. Stimulus 2 is almost identical,

but with a convexity at the right, and it evoked no response. The cell also appears

to be tuned for sharper convexities at the counter-clockwise-adjacent position and

medium convexities at the clockwise-adjacent position. Pasupathy and Connor

note that this is exemplified by stimulus 3 providing a strong response, while for

stimulus 4, its response is weak (opposite combination: sharp curvature clockwise

and medium curvature counter-clockwise). The results for the model in this case

is almost equal for these stimuli as well as the other cases mentioned in Dr.
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Figure 3.19: Comparison to Figure 4 of [Pasupathy and Connor, 2001] (Copy-
right © 2001 The American Physiological Society). Cells responses are on
columns a) and c) and their respective model responses are on columns b) and
d). Green shading is for stimuli with high response or stimuli that Pasupathy
and Connor considered of interest
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Pasupathy’s work: compare shapes 5 and 6, and 7 and 8. As previously, there

are some small differences, the model providing stronger responses than the cells

for a few stimuli.

The two final examples are even more similar and appear in Figures 5 and 8

of [Pasupathy and Connor, 2001]. The first one is replicated in figure 3.20, the

neuron was sensitive to a sharp convexity at the top right flanked by a concavity

on one side or the other. In this case too, the behavior of the Shape-selective

neurons is very similar. As it is the case for figure 8 of that same article, that cell

was selective for broad convex curvature at the top. Their results are replicated

here in Figure 3.21.

Quantitative comparison with [Pasupathy and Connor, 2001] After suc-

cessfully comparing our model with the examples provided in Pasupathy and

Connor’s paper, we decided to test our model against raw neuronal data. For

this, Dr. Pasupathy kindly provided the data corresponding to the 109 cells they

recorded in area V4. Cells responses were normalized to 1 (although 1 was not al-

ways the highest value), the responses to the mentioned 366 stimuli (Figure 3.16)

were recorded. We followed the steps explained before in the Method subsection

and we used 75 out the 109 of neurons (recall Figure 3.17d).
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Figure 3.20: Comparison to Figure 5 of [Pasupathy and Connor, 2001] (Copy-
right © 2001 The American Physiological Society). Cells responses are on
columns a) and c) and their respective model responses are on columns b) and
d). Green shading is for stimuli with high response or stimuli that Pasupathy
and Connor considered of interest
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Figure 3.21: Comparison to Figure 8 of [Pasupathy and Connor, 2001] (Copy-
right © 2001 The American Physiological Society). Cells responses are on
columns a) and c) and their respective model responses are on columns b) and
d). Green shading is for stimuli with high response or stimuli that Pasupathy
and Connor considered of interest
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The difference between our model responses and V4 cells responses is com-

puted as explained before, that is, the absolute difference between the responses

of our Shape neurons and that of real cells is first obtained. For each cell, mean

and standard deviation were computed and results will be provided next as error

percentages, meaning mean difference between our Shape neurons and real cells.

The results for all the 75 cells considered in this study are shown in Fig-

ure 3.22. We did two subsets of experiments, the first one, model neuron re-

sponses were recorded using the curvature parts with respect to the center of

the neuron (blue bars). For the second subset, model neuron responses were

with respect the centroid of the shape (green bars). Note that the stimuli from

[Pasupathy and Connor, 2001] are not always at the receptive field center (Figure

3.16). We did not find difference from using curvature parts with respect to the

center of the model neurons or the centroid of the object.

For both cases we can see that there are only a few Shape neurons with over

20% error, most of the differences between the model and that of real cells fall in

the range 10-20%. Average error for all Shape neurons was 16.95% for the center

of the model neuron (stdev=12.61) and almost the same when using the centroid

of the shape (error=16.98%, stdev=12.25). This shows that even for such a large

number of neurons the model performs successfully and the difference between
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Figure 3.22: Difference between the model’s Shape-selective neurons and 75 real
cells responses from area V4
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the response of the Shape-selective neurons and that of real cells is small.

3.3 Discussion

We first have shown the capabilities of our model at curvature selection, our

first experiment successfully showed the validity of endstopping in a curvature

discrimination task. Before there was a clear proof that V4 and TEO neurons

performed curvature analysis, some authors considered that endstopping could be

important for such analysis [Dobbins et al., 1987, Dobbins et al., 1989]. Pasupa-

thy and Connor also consider that - among other hypothesis - endstopping may be

a way to achieve curvature selection in the brain [Pasupathy and Connor, 1999].

Here, we tested this hypothesis and have shown how a hierarchy starting from

basic simple edge detectors, which combine into complex neurons and further

endstopped neurons provide local curvature neurons that are selective for shape

stimuli.

Our model local curvature neurons do not provide an exact value of curva-

ture but can discriminate between degrees of curvature. This was done using a

starting point where V1 is composed of neurons of different sizes. Through the

use of different neuronal sizes and the integration of model simple neurons into

model complex neurons we obtained model endstopped neurons able to bandpass
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between degrees of curvature, from very sharp to very broad (Figure 3.6).

It is important to note as well that these neurons do not provide a binary

response for a given curve, that is, a 1 for the curvature to which is selective and

0 to the others. Model local curvature neurons provide a band-pass curvature

filtering, with the highest response to the selective curvature and a decaying

response that is inversely proportional to the curvature distances in curvature

space. The response of model endstopped and curvature neurons over a range of

curvatures have a Gaussian shape (Figure 3.6), as well as a model Shape neuron

(Figure 3.11), which is the classical fit for neuron responses.

These characteristics of the model added to the relative sizes between neurons

in V1, V2 and V4/TEO makes the proposed architecture biological plausible in

every layer of the hierarchy. We compared the selectivity of our model neurons

for curvatures with the selectivity of neurons in area V4 from a known study

[Pasupathy and Connor, 2002] and we showed that their behavior for curvature

selection was very similar to those of neurons in the visual cortex.

We have gone even further and compared the response of our Shape neu-

rons with real neurons from [Pasupathy and Connor, 2001] with the examples

provided in that article and 75 more neurons used for that work (data kindly

provided by Dr. Pasupathy). The results obtained by the model are very simi-
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lar to those of the neurons, and accomplished without any learning or classifier

method and no maximum selection.

It is important when comparing to real neurons to extract the proper features

from the stimuli in order to obtain similar responses to those neurons. Even

though the way in which the selective features were obtained was somewhat

primitive (Figure 3.17), the results are very promising.

All responses from model neurons are summed for the response of a Shape-

selective neuron, but cells in area TEO of the brain have shown to integrate

information in a more complex way [Brincat and Connor, 2004], in which some

curvatures have a subtractive effect and there can be a nonlinear interaction

between the elements as well. The way the brain works is still more complex than

what we have proposed here and it would be interesting to study also inhibitory

features and provide a more heterogeneous model of the Shape-selective neurons

whose behavior would be even closer to real neurons than the one proposed here.

There are a number of factors that could be included into the present model for

a more faithful and similar performance to neurons in areas V4 and TEO of the

brain.

Finally, our Shape neurons can represent a very large number (14,400!) of

possible shapes required by neuroscientists [Pasupathy and Connor, 2002], but
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this poses the problem of combinatorial explosion as a computer vision system.

Even though the primate visual system and our model has the capability to

represent a virtual infinity of shapes, the way to handle the large but finite number

of shapes in our world may be thanks to experience achieved through learning,

selecting those configurations of curvatures and corners relevant to recognize the

shapes around us. Since the representation has the capability to represent any

shape, a new shape can be easily incorporated into the system.

3.4 Conclusions

We have presented a model of 2D Shape Representation that follows the structure

and behavior of the visual cortex. In our aim was to implement a model with a

high degree of biological plausibility. We would like to stress next the differences

with other existing models.

Most models use a set of Gabor filters or Difference of Gaussians at the lowest

level and then, incorporate a learned classifier at the top. In those models, the in-

between layers are non-existent or their biological plausibility is questionable. In

our case, from a starting point of edge detectors, we provide a set of endstopped

neurons to obtain sets of neurons that are sensitive to different curvatures and

their direction to finally obtain Shape-selective neurons.
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Due to the nature of the representation there is a transformation from a

pure retinotopic representation in V1 and V2 to a non-cartesian representa-

tion in V4 as proposed in the literature [Gallant et al., 1996], which may be

the intermediate stage to the less retinotopic representation found in later areas

[Tanaka, 1996]. In V4, representation is based on neurons depending on distance

from the center of the neuron and angular position following recent studies in that

area [Pasupathy and Connor, 2001]. The model supports a recognition by parts

strategy, in which the parts are curvature values at different positions, whose

support comes from Connor’s group as well [Brincat and Connor, 2004].

The differences between our model and other recent models, e.g. [Serre, 2006,

Serre et al., 2007] are several. Whereas Serre and colleagues define their cell

types as combinations of edge cenit responses successively over 7 hierarchical

layers, here our neurons in each layer compute quite different quantities. The goal

was to include curvature computations directly, and not indirectly as Serre does

through the conjunctions of edges. How the visual cortex might accomplish this

has been extensively investigated, endstopped cells play a major role. However,

except for the notable exception of [Dobbins et al., 1987], they have not been

adequately investigated computationally. This is where our approach and that of

Serre diverges. This is also what enables our true representation of curvature and
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2D shape. The success of the approach in modeling the neural levels involved

is evident in the matches to neural recordings which surpasses those shown in

[Serre, 2006, Serre et al., 2007].

3.5 Appendix

Here the parameters used for the reported experimentation are provided.
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Simple cells Parameter Value Endstopped Parameter Value

Simple 1 σy 10 ESC 1 cc 1.5

AR 1.75 cd1 1

WR 2.5 cd2 1

Simple 2 σy 15 ESC 2 cc 1.25

AR 3.5 cd1 1

WR 2.5 cd2 1

Simple 3 σy 22 ESC 3 cc 1

AR 5.325 cd1 1

WR 2.5 cd2 1

Simple 4 σy 30 ESC 4 cc 3

AR 7.5 cd1 1

WR 2.5 cd2 1

Complex cells Parameter Value Direction Parameter Value

CX 1 separation 11 ESC+/- 1 displacement 16

CX 2 separation 8 ESC+/- 2 displacement 15

CX 3 separation 8 ESC+/- 3 displacement 22

CX 4 separation 8 ESC+/- 4 displacement 24
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4 Discrimination of spiral angles in optical flow

patterns

As we move, the projection of moving objects on our retinas generates an ar-

ray of velocity vectors known as optic flow. Several action recognition systems

use such flow information. However, here as for object recognition, other inter-

mediate motion representations can be investigated. One class of optic flow is

spiral motion, defined by the angle between a local vector direction and the di-

rection of the steepest increase in local speed. By discriminating amongst such

angles, an organism could discern between different flow patterns and effectively

interact with the environment. In primates, spiral selective neurons in medial

superior temporal (MST) area are thought to provide the substrate for this abil-

ity. We found that these cells show higher discrimination thresholds than found

behaviorally in humans, suggesting that when discriminating spiral motions the

primate brain integrates information across many of these neurons to achieve its
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high perceptual performance. Parts of this work (Chapters 4.1 and 4.3 to 4.6)

have been published in Neuroreport3.

4.1 Introduction

When we move through the environment, a spatial pattern of velocity vectors,

commonly known as optic flow, is projected onto our retinas [Gibson, 1950]. One

family of optic flow patterns, the spirals, can be described by a single parameter:

the angle between the local motion direction and the direction of the steepest

increase in local speed [Graziano et al., 1994]. This angle, or spiral direction,

is 0 degrees in an expanding spiral, 180 degrees in a contracting spiral, and 90

and 270 degrees in clockwise and counterclockwise rotating spirals respectively

(Figure 4.1).

Previous studies in primates have found neurons in the dorsal divi-

sion of the medial superior temporal area that are tuned for spiral di-

rection [Tanaka and Saito, 1989, Graziano et al., 1994], in a similar manner

as middle temporal neurons are tuned for the direction of linear motion

3Comparing neuronal and behavioral thresholds for spiral motion discrimination. Rodríguez-
Sanchez AJ, Tsotsos JK, Treue S, Martinez-Trujillo JC. Neuroreport. 2009 Dec 9;20(18):1619-
1624. PMID: 19957382. Psychophysical experiments and neuronal data analysis were conducted
by the author of this thesis. Neural recordings are thanks to JC Martinez-Trujillo performed
at the University of Tubingen (Germany).
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Figure 4.1: Spiral space is a coordinate system that interprets expansion (0°), con-
traction (180°) and rotations (clockwise: 90°, counterclockwise: 270°) as cardinal
directions with in- and outward spiraling movement patterns placed in between.
Gray arrows show local motion direction.
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[Snowden et al., 1992]. These neurons may play an important role in optic flow

perception [Britten and van Wezel, 1998]. They can encode expanding and con-

tracting spirals with similar accuracy as the animals [Heuer and Britten, 2004].

However, it is unclear whether this ability is restricted to coarse differences be-

tween these spiral types (Figure 4.1), or if it also generalizes to fine discrimination

between spiral directions.

In humans, imaging studies have isolated a region adjacent to the mid-

dle temporal area that is selectively activated by spirals [Morrone et al., 1995,

Martinez-Trujillo et al., 2005, Holliday and Meese, 2008], and where lesions pro-

duce deficits in complex motion perception [Vaina, 1998]. It is reasonable to

assume that this region is the human homologue to the medial superior tempo-

ral (MST) area in macaques, and that in both primate species spiral-selective

neurons within the region have similar physiological properties. Based on this

assumption we asked the question of how the ability of humans to discriminate

spirals compares to the one of medial superior temporal neurons in the monkey.

The goal of this study was to inform our computational model of attentive visual

motion processing [Tsotsos et al., 2005].
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4.2 Selectivity for spatial gradient of velocities

First we investigated the hypothesis that the visual system possesses mechanisms

sensitive to the spatial gradient of velocity direction relative to the motion direc-

tion in optical flow patterns which has also been previously investigated by others

(e.g. [Graziano et al., 1994]). We used different combinations of spatial gradient

of velocity directions and motion directions as adapting stimuli and examined the

effect of adaptation on the perception of a set of test patterns containing fixed

combinations of spatial gradient of velocity direction and motion directions. We

hypothesized that if there exist a mechanism that is sensitive to the spatial gradi-

ent of velocitiy direction relative to motion direction, the effect of adaptation on

the test patterns should differ for the different combinations of adapting patterns.

4.2.1 Material and Methods

Seven healthy human males (age 28-40), with normal or corrected to normal

vision participated in the experiments, conducted at York University (Toronto,

Canada) and preapproved by the University Institutional Ethics Review Board.

All participants were trained in the task for two to three sessions before the

experiments. Subjects sat in front of a 22” CRT computer monitor (LaCie Inc,

Oregon, USA), using a chin rest at a viewing distance of 57cm. Stimuli were
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generated using an Apple Power PC and custom made software.

Stimuli and task Stimuli consisted of 100%-coherence moving Random Dot

Patterns containing only one motion direction. The shape of the patterns was

square (side = 9.01°) and they were shown at 7.57° eccentricity to the right of

a central fixation point during 0.5 sec (Figure 4.2). Dots were black on a white

background. A given trial consisted of the presentation of an adapting Random

Dot Pattern (RDP, e.g., accelerating at 3.03°/sec2) during 20 seconds followed

by a short interval (0.5 sec) in which no stimulus, except the fixation point,

appeared on the screen, and finally followed by the presentation of a test pattern

during 0.5 sec. The test stimuli consisted of RDPs moving upwards with different

spatial gradient of velocity values ranged from –3.03°sec2 to +3.03°/sec2, where

“–“ indicates deceleration and “+” indicates acceleration (in steps of 0.25°/sec2).

The average speed of all the stimuli was 2.14°/sec.

We performed the experiment under four different conditions differing in the

direction of spatial gradient of velocity relative to the motion direction of the

adapting pattern. In the first condition, the adapting stimulus was moving up-

wards and accelerating, i.e., the spatial gradient of velocity direction was parallel

to the motion direction (0°–0°). In the second condition the adapting stimulus
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Figure 4.2: Trials consisted on the presentation of an adapting pattern lasting 20
sec followed by a test pattern lasting 0.5 sec. Variation of the adapting pattern
gave four different conditions (staircase method): a) Moving and accelerating
upwards, b) Moving rightwards and accelerating upwards, c) Moving and accel-
erating rightwards, and d) Moving upwards and accelerating rightwards.
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spatial gradient of velocity direction was upwards, but the direction of motion

was to the right (0°–90°). In the third condition, the adapting stimulus spatial

gradient of velocity was oriented to the right but the stimulus moved upwards

(90°–0° angle). In the fourth and final condition the adapting stimulus spatial

gradient of velocity was oriented to the right and the pattern moved to the right

(90°–90°). The test pattern was always moving upwards, after each trial, subjects

decided whether the test pattern was accelerating or decelerating. Eight subjects

ran each of the four different blocks. Each block consisted of 33 trials and in-

volved one of the four conditions. Two control blocks were run. Each control

condition corresponded to two of the different adapting conditions.

Control blocks had the same design as the corresponding adapting blocks with

the difference that spatial gradient of velocity was removed from the adapting

stimuli. The adapting stimulus in one block was moving upwards at a constant

speed of 2.14°/sec, this would correspond to removing the spatial gradient of

velocity from conditions (1) and (3). For the other control block, the adapting

stimulus was moving rightwards at the same constant speed, this would corre-

spond to removing the spatial gradient of velocity from conditions (2) and (4).

We used a multiple staircase procedure [García-Pérez, 1998] in order to deter-

mine the point of subject equality (PSE), i.e., the value of the spatial gradient of
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Figure 4.3: Example results from one subject.

velocity at which subjects perceived neither acceleration nor deceleration in the

test pattern. The point of physical equality (PPE) corresponds to an acceleration

of the test pattern of 0°/sec2, i.e., no acceleration/deceleration.
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Results and discussion

Figure 4.3 shows data from an example subject. The filled dots and dark lines

represent the conditions where the adapting pattern contained spatial gradient

of velocity and the blank dots and light lines represents the control conditions in

which the adapting pattern did not contain spatial gradient of velocity. For each

condition we used three different staircases (solid line, long dashed lines and short

dashed lines) with different starting points. The symbols represent the direction

of motion and the spatial gradient of velocity direction (Note: Blank dots and

light lines sometimes occluded by filled dots and dark lines).

Figure 4.3a is for the case in which the adapting pattern was moving up-

wards and accelerating (0°–0°). Averaged among the three staircases, the PSE

was at 1.72°/sec2, i.e., after adaptation, the subjects perceived as not accelerat-

ing/decelerating a pattern that accelerates at a rate 1.72°/sec2. As a control, we

show in the same Figure 4.3a the data corresponding to an experimental session

in which the adapting pattern did not contain spatial gradient of velocity and

moved upwards (0°). In this case, the PSE was 0.06°/sec2, a value very close to

the PPE (0°/sec2).

Figure 4.3b shows the results for the case an adapting pattern moving to

the right but with a spatial gradient of velocity oriented upwards (0°–90°). The
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Figure 4.4: a) Mean and SD values averaged across the eight subjects. b) Ra-
tio PSESG/PSEcontrol (ordinate) as a function of the adapting stimulus type
(abscissa).

PSE was 1.4°/sec2. Again, control data for an adapting pattern without spatial

gradient of velocity are shown in the same graph (gray lines). The mean PSE for

these control data was very close to 0°/sec2 indicating that adaptation shifted

the PSE significantly. Figure 4.3c and Figure 4.3d show the data for the two

remaining conditions, motion up and spatial gradient of velocity oriented to the

right (90°–0°) and motion to the right and spatial gradient of velocity oriented

to the right (90°–90°). The PSE in the former case was –0.15°/sec2 compared to

0.06°/sec2 for the control and in the latter 0.62°/sec2 compared to 0.35°/sec2 for

the control. Thus, in both cases the PSE was very similar to the control data

suggesting that adaptation did not have an effect in these conditions.
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In order to examine the results across our sample of different subjects we

repeated the previous analysis in each one of the eight subjects and averaged the

PSE values across them. Figure 4.4 shows the results. In figure 4.4a, the abscissa

indicates the direction of the spatial gradient of velocity and direction of the

adapting pattern and the ordinate the acceleration of the test pattern. The lines

indicate the 95% confidence interval for the mean. The dark line and filled dots

correspond to the with spatial gradient of velocity condition, the light line and

blank dots correspond to the controls. When adapting with the stimulus moving

upwards and the spatial gradient of velocity oriented upwards (0°–0°), the average

PSE was 1.88°/sec2 (±SD = 0.1°/sec2). When the adapting stimulus moved to

the right and the spatial gradient of velocity was oriented upwards (0°–90°), the

average PSE was 0.97°/sec2 (±SD = 0.09°/sec2). When the stimulus moved

upwards but the spatial gradient of velocity was oriented to the right (90°–0°),

the average PSE was 0.15°/sec2 (±SD = 0.13°sec2).

Finally, when the stimulus moved to the right and the spatial gradient of ve-

locity was oriented to the right (90°–90°), the average PSE was 0.31°/sec2 (±SD

= 0.1°/sec2). Control data for adapting stimuli without spatial gradient of ve-

locities are shown on the same graph (gray lines). Since in our four conditions,

the adapting pattern moved in two different directions, only two control experi-
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ments were conducted (i.e., when the adapting stimulus moved upwards and to

the right). Therefore, each control data is plotted two times to illustrate the dif-

ferences with the spatial gradient of velocity data. The PSE for the first control

(motion upwards) was 0.18°/sec2 (±SD = 0.03°/sec2), and 0.43°/sec2 (±SD =

0.09°/sec2) for the second control (motion rightwards).

In order to compare the results among different groups we used the experi-

mental and control data to compute a ratio measurement for each subjects and

condition.

ratio =
PSESG
PSEcontrol

∗ 100% (4.1)

In the above formula PSESG indicates the PSE for the adapting patterns

with spatial gradient of velocity and PSEcontrol indicates the PSE for the control

data. If the value is higher or lower than 100% it means that the spatial gradient

of velocity in adaptadapting pattern had an effect on the perception of the test

stimulus. A value of 100% signifies no effect of the spatial gradient of velocity.

The average values for the four conditions were (278.93%, 146.58%, 113.85%,

93.11%). Figure 4.4b shows these values as well as their 95 % confidence intervals.

When the spatial gradient of velocity was oriented upwards (first two cases), the

mean ratios were significantly different from 100% (i.e., confidence interval - CI
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- do not overlap with the horizontal line at 100%). When the spatial gradient of

velocities was oriented to the right, the ratios were not different from one (i.e.,

the CI overlap with the horizontal line at 100).

An analysis of variance showed that the effect of the first adapting stimulus

(90°–90°) was significant (p<0.001). Between any other pair of groups we found

no significant differences (p>0.05). However it was a clear trend toward ratio

values higher that 100 when the adapting stimulus moved to the right with a

spatial gradient of velocity oriented upwards (0°–90°). Summarizing, we found a

clear effect when the direction of the spatial gradient of velocity in the adapting

stimulus was upwards and the direction of the stimulus was parallel to that direc-

tion. This effect clearly decreased when the direction of the stimulus changed and

disappeared when the direction of the spatial gradient of velocity also changed.

4.3 Spiral discrimination in humans and single neurons

4.3.1 Human Subjects

Seven healthy human males (age 28-40, with normal or corrected to normal vision

participated in the experiments, conducted at York University (Toronto, Canada)

and preapproved by the University Institutional Ethics Review Board. All par-
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ticipants were trained in the task for two to three sessions before the experiments,

some of them participated in the previous experiment. Subjects sat in front of

a 22” CRT computer monitor (LaCie Inc, Oregon, USA), using a chin rest at a

viewing distance of 57cm. Stimuli were generated using an Apple Power PC and

custom made software.

Apparatus and task

Subjects sat in front of a 22” CRT computer monitor (LaCie Inc, Oregon, USA),

using a chin rest at a viewing distance of 57cm. Stimuli were generated using

an Apple Power PC and custom made software. We measured spiral direction

discrimination thresholds near the cardinal directions in spiral motion space (i.e.

rotation, expansion and contraction) in seven human subjects using the method

of constant stimuli. In one set of trials, the standard stimulus was an expanding

spiral (0°), and the test stimuli were expanding spirals with clockwise or coun-

terclockwise rotation components (350°, 352°, 354°, 356°, 358°, 2°, 4°, 6°, 8°, 10°).

In a second set of trials, a contracting stimulus served as the standard (180°),

and the test stimuli were contracting stimuli with clockwise or counterclockwise

rotation components (170°, 172°, 174°, 176°, 178°, 182°, 184°, 186°, 188°, 190°).

Subjects reported whether the stimulus moved clockwise or counterclockwise.
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In a third set of trials clockwise or counterclockwise rotating stimuli served

as standard. The test stimuli were: a) clockwise rotating spiral stimuli with

different amounts of expansion or contraction (80°, 82°, 84°, 86°, 88°, 92°, 94°,

96°, 98°, 100°) for the clockwise standard stimulus (90°), and b) counterclockwise

rotating stimuli with different amounts of expansion and contraction (260°, 262°,

264°, 266°, 268°, 272°, 274°, 276°, 278°, 280°) for the counterclockwise standard

stimulus (270°). Subjects reported whether the stimulus contracted or expanded.

Trials started when the subjects foveated the fixation point and pressed the

space bar on a computer keyboard. This initiated the appearance of a random

dot pattern for 500 ms to the right of the fixation point. In trials with expand-

ing/contracting patterns, subjects pressed the “3” (clockwise), or “1” (counter-

clockwise) key. In trials with rotating patterns, subjects pressed “3” (expansion)

or “1” (contraction). The experiment was run in two blocks of 240 trials, one

block of expanding/contracting trials and the other of rotating trials. After two

to three training sessions, each subject performed 6 blocks (three of each type) in

a randomized order. We instructed subjects to fixate and monitored eye move-

ments using a video-camera. A session was excluded from the analysis if the

experimenter detected that a subject broke fixation in at least 10% of trials by

visually inspecting the videorecordings. Since our subjects were trained in the
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task, no session met this criterion.

Stimuli

Stimuli were black random dots on a white background, moving coherently behind

a circular aperture (diameter: 10.2°), and centered 7.6° to the right of a central

fixation point. The dot density was 5 dots/deg2, the monitor resolution was 33

pixels/deg and the monitor refresh rate was 75 Hz. The dot size was 3x3 pixels.

The dot speed formed a linear gradient with zero at the center and 6.9°/sec at

the edge.

Data analysis

We computed a psychometric function for each subject and block type by fit-

ting equation 4.2 to the proportion of times P(s) that the subjects reported: a)

the stimulus rotating clockwise, for contracting/expanding spirals with rotating

components, and b) the stimulus expanding, for rotating spirals with expand-

ing/contracting components. Data from blocks of the same spiral type were

pooled.

P (s) =
1

1 + e(−(a+bs))
(4.2)
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The discrimination threshold was the distance (in degrees) between the point

of subjective equality (spiral direction at which P(s)=0.5) and the point where

P(s)=0.25.

4.3.2 Single cell recordings

Subject

We recorded the responses of spiral-selective neurons to moving random dot pat-

terns, in the dorsal subdivision of the medial superior temporal area in the su-

perior temporal sulcus of one rhesus monkey (4-year old, 6.5 kg male Macaca

mulatta) while the animal performed a detection task. Prior to the recordings

and the final training a head holder and recording chamber were implanted un-

der general anesthesia (see [Martinez-Trujillo and Treue, 2004] for more details).

Recordings were conducted at the University of Tuebingen, Germany. All the

procedures were in agreement with the German local and national rules and reg-

ulations, and were approved by the Regierungspraesidium Tuebingen.

Apparatus and task

The experimental procedures have been described in more detail elsewhere

[Martinez-Trujillo and Treue, 2004]. Stimuli were white random dots on a dark
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background (luminance: 55 cd/m2, background luminance: 0.1 cd/m2), with dot

size and density similar to the ones used in the human experiments. The dots’

average speed was optimized to match the preferred speed of the neurons. The

pattern eccentricity varied from 5° to 12° from the fixation point, and the pattern

size was approximately equal to that eccentricity. Most neurons had preferred

speeds between 4 and 16°/sec. We adjusted the speeds of the dots at the aper-

ture’s border depending on that preferred speed. To successfully complete a trial,

the animal had to maintain fixation within 0.5° from the fixation spot.

A trial consisted of the following sequence of events: a) a fixation spot and a

static random dot pattern appeared inside the cell’s receptive field, b) the monkey

fixated the spot and pressed a lever, c) 200ms later the pattern began to move, d)

the animal was rewarded with a drop of juice for releasing the lever in response

to a transient speed change in the dots (200 ms duration) occurring between 200

and 2000 ms after motion onset. We recorded the responses to 8 different spiral

directions (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°).

Data analysis.

We determined the spiral tuning of each cell (n=26) by fitting the mean responses

in correctly performed trials averaged over the time period from 300 ms to 800 ms
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after stimulus onset with a Gaussian function (equation 4.3). We only included

neurons in which we recorded at least one correctly performed trial per direction.

A cell was considered spiral-selective if the fit provided by the function yield

a correlation coefficient ≥ 0.9, and if responses to spirals were better fit than

responses to random dot patterns moving in 8 different directions of linear motion.

Usually, spiral-selective neurons had large receptive fields that extended into the

hemifield ipsilateral to the recording site [Treue and Martínez-Trujillo, 1999].

response = rmin+ rmax • e−0.5(
direction−center

σ )
2

(4.3)

rmin represents the cells response to the anti-preferred spiral direction, rmax

the difference between rmin and the response to the preferred direction (sen-

sitivity), center represents the preferred direction, and σ the standard devi-

ation of the Gaussian (selectivity) [Snowden et al., 1992, Graziano et al., 1994,

Treue and Martínez-Trujillo, 1999].

Using the fit parameters we simulated responses to 600 trials of each one

of 46 different spiral directions (spaced every 4°). We assumed that the re-

sponse variance of a spiral-selective neuron follows a Fano factor of 1.0, (i.e.

variance = mean firing rate), as a frequently reported property of cortical neu-

rons [Shadlen and Newsome, 1998].
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From the responses we computed neurometric functions for 7 different re-

sponse levels around the flanks of the tuning curves [Snowden et al., 1992], with

in the range of 0.7*(maximal response) and 1.3*(minimal response). For each

level, we calculated the probability that more than a given number of spikes would

be elicited for each stimulus. These data were fitted with equation (4.3) resulting

in the criterion level neurometric function. The discrimination threshold for each

function was considered as the distance in degrees of spiral direction between the

0.5 and 0.25 probability values.

P = γ − (γ − ∂)e−( dα)
β

(4.4)

d is the spiral angle, α the direction at which a criterion probability is reached,

β is the parameter governing the slope of the function, ∂ is the asymptotic value of

P (when d = 0) and γ is the probability of reaching criterion for the least preferred

direction. These functions are similar to the psychometric functions in that they

describe the cell’s ability to encode spiral direction [Snowden et al., 1992].
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Figure 4.5: Averaged psychometric functions (upper row, clock-
wise/counterclockwise rotation; lower row, expansion/contraction) for human
subjects.
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4.4 Results

4.4.1 Human discrimination thresholds for spiral stimuli

We measured spiral discrimination thresholds in 7 human subjects. Figure 4.5

shows psychometric functions corresponding to each subject. The abscissa rep-

resents the amount of variation in the spiral direction and the ordinate the pro-

portion of a given response type. The lines represent the fits through the data.

All fits yield correlation coefficients (r) larger than 0.9. On the top row for

expanding and contracting spirals with changes in the amount of clockwise or

counterclockwise rotational components and on the bottom row, for rotating spi-

rals with changes in the expanding or contracting components. In all subjects,

a sigmoid function (see methods) provided an excellent fit to the data (r>0.9).

For changes in the rotational component, the lowest discrimination threshold was

1.58° and the largest 4.1°. For changes in the expanding-contracting components

the lowest threshold was 1.54° and the largest was 2.49°.

In order to test whether the thresholds for rotation were systematically dif-

ferent from the ones for expansion/contraction, we compared the thresholds ap-

pearing on the top row of Figure 4.5 against the ones appearing at the bottom.

The differences were not statistically significant (p>0.8, Wilcoxon sign-rank test
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Figure 4.6: Comparison between expansion/contraction and rotations a) Spiral
discrimination thresholds for every subject b) Point of Subjective Equality cor-
responding to each of the subjects.

for paired data) suggesting that in general subjects were equally accurate at

discriminating clockwise vs. counterclockwise and contracting vs. expanding spi-

rals. This result are visualized in Figure 4.6 where thresholds for each one of

the subjects in the two tasks are plotted and joined by lines. Although in two

subjects thresholds for rotation seem to be substantially larger than the expan-

sion/contraction, at the level of the group these differences were not statistically

significant (p>0.8, Wilcoxon sign-rank test for paired data).

In order to investigate possible biases in the subjects’ ability to perceive one

type of spiral we compared the point of subjective equality (PSE) of these func-

tions (Figure 4.6b). We found that for the case of rotation they were not statisti-

cally different from zero or point of physical equality (p=0.49, Wilcoxon rank-sign
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Figure 4.7: Gaussian fit for a spiral selective neuron (a) and a neuron tuned to
linear motion (b)

test for a single group). For expansion/contraction, we found a small bias (less

than 1°) for the subjects to report the stimulus as contracting (p<0.03, Wilcoxon

rank-sign test for a single group).

4.4.2 Neurometric analysis of single cell responses

The distribution of the tuning curves parameters for a spiral selective neuron

is displayed in Figure 4.7a. The abscissa represents spiral direction and the

ordinate the response (spikes/s). Error bars represent standard errors. In order to

compare spiral selectivity of MST neurons against the selectivity of MT neurons

for linear motion direction, we computed the distribution of the same parameters

for a subsample of 26 MT neurons randomly selected amongst a population of 69

MT recorded neurons (Figure 4.7b shows a linear selective neuron). The mean

parameters values for the spiral stimuli in MST neurons were: rmin = 10.3,
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rmax = 42, center = 201, and σ = 50. The mean values for the sample of MT

neurons tested with linear moving RDPs were: rmin = 3.5, rmax = 65.8, center

= 143, and σ = 44.6. The mean rmin was significantly higher while the mean

rmax was significantly lower for the spiral selective neurons (p<0.05, unpaired t-

test in both cases). The parameter center was widely distributed in both samples

demonstrating that we recorded from neurons tuned to different spiral angles and

motion directions. The mean of the parameter sigma was somewhat larger for the

spiral selective neurons, but this difference did not reach statistical significance

(p>0.05, unpaired t-test). These parameter values for both samples of neurons

are very similar to the ones reported by other authors [Snowden et al., 1992,

Graziano et al., 1994, Treue and Martínez-Trujillo, 1999].

We computed neurometric thresholds for the different neurons using the pro-

cedure described in the methods section. Neurometric functions were produced

by selecting a criterion, e.g. 50 spikes/s and calculating the probability that the

cell fired at or greater than this rate for each direction of motion (46 directions).

7 different criteria were used producing 7 neurometric functions. The data were

then fitted by the integral of a Weibull function. From these neurometric func-

tions, discrimination thresholds were obtained (Figure 4.8, lower panels).

The left top panel in figure 4.8 shows neurometric functions for spiral discrim-

179



ination of one MST neuron. The lower panel shows the threshold values for the

different criterion levels as a function of spiral type (see methods). This curve has

a U-shape and its minimum represents the neuron’s best performance at discrim-

inating between two directions (best discriminability or threshold). The spiral

selective neuron on the left could discriminate between stimuli that differed by

5.7° of spiral angle along the slope of the tuning curve (i.e., rotating stimuli).

For comparison purposes, the right panel in Figure 4.8 shows similar data for

the responses of an example MT unit to linear motion. The neurometric func-

tions and the neuron’s best discriminability produced similar values as the ones

of the spiral selective neuron. The same analysis was repeated for each one of

the remaining units in both groups and corresponding samples of neurometrics

thresholds were obtained.

Figure 4.9a shows the distribution of the spiral selective neurons performance

(lower discriminability or threshold values). The abscissa represents the thresh-

old values and the ordinate the number of units. The circles represent spiral

angle discrimination thresholds from the human subjects (see Figure 4.5). Green

dots correspond to human data for expansion/contraction, red dots are human

data corresponding to rotations. In general, humans show lower threshold values

than the neurons (p<0.05, Wilcoxon ranksum test). Figure 4.9c shows a similar
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Figure 4.8: a) Neuron tuned for spirals b) Neuron tuned for linear motion.

181



histogram for the sample of 69 MT neurons selective for the direction of linear

motion. In this case we did not measure the human discrimination thresholds

but we indicate with the arrow the values reported by Snowden and coworkers

[Snowden et al., 1992] (1.1°). Again, human thresholds are lower than neuronal

ones (p<0.05, Wilcoxon ranksum test). In addition, neuronal thresholds for lin-

ear motion direction discrimination were lower than the ones for spirals (p<0.05,

unpaired t-test).

The mismatch between the discrimination thresholds of single neurons and

humans may be due to several possibilities. One straightforward interpretation

is that human MST neurons may be more tuned for spirals that in the monkeys

(higher rmax and lower width). Another possibility is that since the animal was

not doing a spiral discrimination task, as human did, the tuning curve profiles

do not reflect how these neurons react to the task. During discrimination, tuning

curves may become higher (larger rmax ) and narrower (smaller width). A third

possibility is that the neurometric performance of MST neurons does not directly

determine the subjects’ performance. But this is done downstream from MST in

areas where neurons are more tuned to spirals.

It is difficult with our data set to distinguish between these possibilities. How-

ever, we could quantify the changes in rmax or width needed for the cell’s neuro-
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Figure 4.9: Distribution of the population of neurons based on their discrimi-
nation thresholds (blue histograms). a, b) Neurons tuned for spirals. c) and d)
Neurons tuned for linear motion. Human threshold for this kind of motion is
1.1°. [Snowden et al., 1992]. Gray histograms correspond to the same neurons
but after changes in the width (a, c), and height (b, d) (see main text).
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metric thresholds to reach human behavioral thresholds. By increasing the gain

of the spiral selective neurons by 3.9 the best neuron in our sample achieved a

neurometric threshold similar to the average human behavioral threshold (Fig-

ure 4.9a, gray histogram). Also, by decreasing the width to 55% of its original

value, our best unit performed similar to the average human (Figure 4.9b, gray

histogram). We performed a similar computation on the direction data and the

needed increase in Rmax and decrease in width were 7.6 and 65% (Figure 4.9c,d,

gray histograms). Thus, in both scenarios the histograms have shifted toward

the human threshold values.

4.5 Discussion

The main contributions of the present study are:

1. To demonstrate that the presence of non-zero spatial gradient of velocity

in optical flow patterns influences optical flow perception,

2. To quantify the ability of human individuals and monkey MST spiral se-

lective neurons to discriminate spiral angles and demonstrated that under

our experimental conditions, humans outperformed monkey MST units,

3. We have also shown that MT neurons selective for the direction of linear
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motion also perform poorly at discriminating the direction of linearly mov-

ing RDPs relative to the behavioral thresholds reported by previous studies

in humans, and

4. Changes in the gain or width of the neurons tuning curves could decrease

neurometric thresholds in both, MT and MST units to a level similar to

behavioral thresholds in humans.

A summary of our methods and findings is provided in Figure 4.10.

4.5.1 Selectivity for spatial gradient of velocities

The first main result of the current study was a selective effect of adaptation

to a particular combination of spatial gradient of velocity direction and motion

direction on the perception of spatial gradient of velocities. This result suggests

that coding of spatial gradient of velocity direction is closely linked to the coding

of motion direction in the visual system. This agrees with results from single

cells studies in area MT of macaques describing neurons selective for the angle

between the spatial gradient of velocity direction and the direction of linear mo-

tion [Treue and Andersen, 1996, Xiao et al., 1997]. The former authors reported

that about 60% of the neurons they recorded from showed this kind of selectivity

to a certain degree.
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Figure 4.10: (a) Tuning curve of a medial superior temporal neuron to spiral
motion. The abscissa represents spiral direction and the ordinate the response
(spikes/s). Error bars represent standard errors. (b) Thresholds, and (c) Neu-
rometric functions (symbols). (d) Minimum threshold (ordinate) of each neuron
(black), and for each participant (gray). For the cells, the data are grouped
according to the preferred direction of the neuron in spiral space (symbols in
abscissa). For the human participants, the data were divided according to the
discrimination task.
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Interestingly, a recent fMRI study in humans has reported a stronger

activation within human area MT/V5 by moving patterns containing spa-

tial gradient of velocities oriented parallel to the patterns’ direction relative

to when the spatial gradient of velocity is removed from the same patterns

[Martinez-Trujillo et al., 2005]. The same authors have suggested that similar

spatial gradient of velocity direction selective mechanisms, as the ones described

in the monkey [Treue and Andersen, 1996, Xiao et al., 1997], are present in hu-

man area MT/V5 and therefore they can explain this result. This could also

explain the selective effect of adaptation reported in the present study.

We hypothesized that adaptation to a particular combination of spatial gra-

dient of velocity direction and motion direction would affect neurons selective

for that combination while favors neurons selective for the opposite combination

(i.e., an antiparallel oriented spatial gradient of velocity and the same motion

direction). This effect, however, is attenuated when the motion direction of

the adapting stimulus does not match the one of the test stimulus. This may

suggest that within the population of neurons encoding the same motion direc-

tion, interactions between units depend on their selectivity for spatial gradient

of velocity direction. Future physiological studies may provide more insight into

the mechanisms of these interactions, which likely underlie the behavioral effects
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demonstrated here.

The same spatial gradient of velocity direction selective mechanisms could

play a role in the perception of expanding, contracting and rotating flow fields.

This may explain why when removing the contribution of such mechanisms –

by removing spatial gradient of velocities from the optical flow – optical flow

perception in tasks such as the one describe in the first experiment of this study

is affected.

4.5.2 Neuronal and behavioral thresholds

The neurometric thresholds in our study were significantly larger than human

behavioral thresholds. This result apparently disagrees with a previous report of

medial superior temporal neurons having sensitivities equal or superior to mon-

key’s thresholds for expanding and contracting spirals [Heuer and Britten, 2004].

However, in that study the authors used a task in which animals performed a

coarse discrimination between expanding and contracting stimuli embedded in

noise. In contrast, our task required a fine discrimination judgment, and we

used 100% coherence random dot patterns. Given their tuning properties, the

neurons in our study should be highly capable of discriminating spiral direc-

tions 180° apart. Previous studies in the medial superior and middle tempo-
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ral area of monkeys have reported similar results as ours [Osborne et al., 2004,

Purushothaman and Bradley, 2005, Gu et al., 2008].

A plausible explanation for our results is that in our study the stimulus feature

(spiral angle) was not behaviorally relevant to the animal, as it performed a fix-

ation task, leading to underestimation of the neurons sensitivity and selectivity

[Spitzer et al., 1988, Dubin and Duffy, 2007, Treue and Martínez-Trujillo, 1999,

Mcadams and Maunsell, 1999]. We, however, estimated that the tuning curve

height (sensitivity) would need to increase by at least 400%, or the width (se-

lectivity) decrease by 55% for the mean threshold value across units to reach

the average human threshold. These effects are disproportionally larger than the

ones reported in previous studies, making this explanation unlikely.

A recent study examined the ability of single neurons in the middle temporal

area of monkey to discriminate linear motion direction [Cohen and Newsome, 2009]

using a coarse discrimination task and similar response integration times as

us (500 ms). They concluded that at such short integration times (but not

at longer times) neurometric thresholds were higher than behavioral thresholds

[Spitzer et al., 1988, Cohen and Newsome, 2009]. This suggests that the integra-

tion time used in the neurometric analysis plays a role in computing neuronal

thresholds.
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Finally, several studies in monkeys have shown that medial superior temporal

neurons receive inputs from different sources, such as vestibular and eye move-

ments signals [Thier and Erickson, 1992, Gu et al., 2008]. Under conditions in

which the information from those sources becomes available, the performance of

some of these neurons correlates better with behavior [Gu et al., 2008]. Thus,

it may be that medial superior temporal units perform best when integrating

signals from multiple sources.

To summarize, our results revealed a mismatch between the performance of a

sample of individual neurons in area MST of one macaque monkey and the one of

human subjects at discriminating different types of spiral stimuli. This suggest

that although the activity of spiral selective neurons in this area provide useful

information about spiral stimuli, this information is not sufficient to account

for the performance of human subjects at discriminating different spiral types.

Other areas located higher in the hierarchy of processing such as VIP and 7a

may contain neurons with higher selectivity for these types of stimuli that better

correlate with the subjects’ performance.
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4.6 Conclusion

We found psychophysical evidence of a role of spatial gradient of velocities in

optical flow perception as well as of the existence of mechanisms selective for the

relationship between spatial gradient of velocity direction and motion direction in

moving stimuli. Our results show that neurometric spiral direction-discrimination

thresholds of primate medial superior temporal neurons to discriminate spirals

are significantly higher than behavioral thresholds. This suggests that the com-

putations underlying this discrimination are either conducted by these units using

population codes [Shadlen and Newsome, 1998], and/or by other neurons located

in different brain areas with higher selectivity and/or sensitivity for spirals.

This is important for modeling since the theoretical definition of affine motion

involves these derivatives, the velocity vector at each point (x, y) of an image is

given as the temporal derivative of spatial position, i.e., (u, v) = (dx/dt, dy/dt).

Spatial derivatives are then taken of each velocity component u and v in the x and

y directions (ux, uy, vx, vy). The inclusion of the derivatives form an important,

biologically realistic, intermediate layer of representation for motion -in a manner

similar to curvature for shape- which is present in the model of Selective Tuning

model for motion [Tsotsos et al., 2005].
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5 Discussion and Future Work

Recognition of objects and of actions is not an easy task for any computer vision

system, and most current systems seem to be good at solving a specific task

but less good at solving more general or more complex ones. After decades of

research it remains an open problem to design systems that perform well with

the efficiency, efficacy and invariance to changes of the human brain. This thesis

explored several aspects of visual processes that will have an impact in future

generations of object recognition and motion analysis.

This thesis first shows that an attentive recognition model perform visual

search tasks. While most of the popular models present currently in the literature

seem to neglect attention, e.g. [Riesenhuber and Poggio, 1999], we have shown

that Selective Tuning [Tsotsos et al., 1995] performs in covert visual search tasks

similarly to human performance. In fact, the feed-forward max-like mechanism

prevents any effective top-down traversal since decisions regarding relevance for
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elements of a neuron’s receptive field are made too early (note Marr’s principle

of least commitment in this context [Marr, 1982]).

Secondly, we provide a biologically plausible model of 2D Shape. Our Shape

Representation model makes several contributions to research in computer vi-

sion and computational neuroscience. First, it provides a biologically plausible

hypothesis on how to achieve shape representation in a hierarchy of layers of

neurons. Second, it demonstrates the importance of endstopping for curvature

and shape. We have shown how a hierarchy starting from basic simple edge de-

tectors, which combine into complex neurons and further endstopped and local

curvatures neurons can obtain neurons that are selective for shape stimuli. And

third, it validates the design of the Shape-selective neurons by matching their

response to that of real neurons in area V4 of monkey with high accuracy.

Finally, we provide evidence for sensitivity to spatial gradients of ve-

locity in the visual cortex. This is important in computer vision

since the theoretical definition of affine motion involves these derivatives

[Longuet-Higgins and Prazdny, 1980]. We found psychophysical evidence of a

role of spatial gradients of velocity in optical flow perception. Additionally, such

gradient cells in monkey show higher discrimination thresholds than found behav-

iorally in humans, suggesting that when discriminating spiral motions the brain
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integrates information across many of these neurons to achieve its high perceptual

performance.

5.1 Future work

5.1.1 Extension of the Shape Representation Model

An improved TEO representation

A first natural extension for shape representation would be to consider the work

of [Brincat and Connor, 2004] and include more variability in a layer above our

shape-selective neurons. TEO - the layer above V4 - integrates not only infor-

mation regarding contours and their positions in the object but their integration

may be linear or nonlinear or even have an inhibitory effect. This may be impor-

tant in order to differentiate objects that having a similar shape are considered

as different classes of objects in the brain.

3D and area TE

Several researchers have have reported selectivity for 3D shape

in IT [Janssen et al., 2000, Janssen et al., 2001, Durand et al., 2007,

Verhoef et al., 2010]. The lower bank of STS (superior temporal sulcus -
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a subarea of TE) was selective to 3D shape, while lateral TE were selective to 2D

shape [Janssen et al., 2000]. This is a natural extension of our model, from curves

to surfaces and from shapes in a plane to shapes in 3D space. Could this area be

modeled using differential geometry? The work of this same group proposes the

extraction of 3D shape from disparity [Orban et al., 2006, Theys et al., 2009].

Connor’s group have been working on 3D images as well. An

interesting study has been published recently [Yamane et al., 2008]

that follows the strategy regarding shape in areas V4 and

TEO [Pasupathy and Connor, 1999, Pasupathy and Connor, 2001,

Pasupathy and Connor, 2002, Brincat and Connor, 2004] but more complex

for stimuli generation due to the higher variability that involves an added new

dimension. The way to create the stimuli was quite ingenious, first, 50 random

3D stimuli were generated. This stimuli would evolve to different ones over a

number of generations (8, 10, ...) through an evolutionary morphing algorithm,

selecting the 3D shapes for the next generation based on the neuron’s responses.

They measured neuronal responses in the inferotemporal cortex and

found neurons selective for surface fragments in a three-dimensional curva-

ture/orienation/position domain in a similar way as in area V4 neurons were

selective to curvature at different positions. [Yamane et al., 2008] findings are
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consistent with theories of configural representations where parts are complex

volumetric components or geons [Marr and Nishihara, 1978, Biederman, 1987].

Although, neurons in area IT do not just represent single object parts but mul-

tiple parts similarly to what happened with 2D shapes. Another interesting con-

clusion from their study is that neural representations were different depending

on viewpoint, thus partially supporting view-centered approaches.

Attention

A third extension to the model of Shape Representation would be to include

it within a model of attention. Since Selective Tuning [Tsotsos et al., 1995]

has already been successfully tested in tasks such as visual search with a

previous more simple version of the Shape Representation model (chapter 2)

[Rodríguez-Sánchez et al., 2007], it is a firm candidate for a final extension to

the model. Once the hierarchy is complete, attention would be an elegant strat-

egy to find a specific shape given a clutterred scene.

Additional experimentation

Additional stimuli for TEO layer The stimuli used in

[Brincat and Connor, 2004] were created in a similar way to Pasupathy’s.
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Figure 5.1: Stimuli used in [Brincat and Connor, 2004]

Convex, straight and concave contour elements were created at specific orien-

tations and object-relative positions. These geometric elements were crossed

in a large permutation matrix of smooth, closed 2D shapes. These stimuli was

slightly more complex than the stimuli used by [Pasupathy and Connor, 1999]

and shown in Figure 5.1.

It would be interesting to - once a TEO layer of neurons is com-

pleted into the model - evaluate how similar those TEO neurons would
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be to real neurons from [Brincat and Connor, 2004] in a similar way as the

study was performed comparing V4 neurons and [Pasupathy and Connor, 2001,

Pasupathy and Connor, 2002].

Experiments with real-world images The final goal of any shape recogni-

tion system is to find objects in the real world. After our shape representation has

been extended with attention, our system would be ready to accomplish recog-

nition in cluttered scenes, at least those defined by shape. Even with the sort of

images with the target partially occluded as soon as part of the main information

is available. Once other features are added to the system, the system would be

able to perform in more complex situations.

In addition to attention for finding an object in the real world, the system

could incorporate a learning method that would extract the configuration of cor-

ners, edges and curvatures of those real world objects.

5.1.2 Extended testing via Selective Tuning

As mentioned in the previous chapter, a last extension to the Shape model would

be the inclusion of Selective Tuning for shape search for cluttered scenes, other

features are important as well from a visual search point of view such as colors,
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orientation or sizes [Wolfe, 1998a].

The Selective Tuning model of attention should be able to perform a search

for objects of a specific color or texture or the largest object. Size is related

to shape. Size visual search finds the element that has a unique size. If

the size difference is enough, then a target specified by one size can be found

quite efficiently among distractors of another size [Treisman and Gelade, 1980,

Quinlan and Humphreys, 1987, Duncan and Humphreys, 1992].

Color is a very important feature as visual search experiments have shown, a

future addition to the model should be this feature, but not in its simplistic form

of just color-opposite cells, but a more complex cells with double-color opponency

in V1/V2 and color constancy in V4. Future addtions should include texture as

well.

As explained in Chapter 1, there exist a number of asymettries in visual search.

[Treisman and Gormican, 1988] found an asymmetry in size: it was harder to find

a small target among big distractors than a big target among small distractors. It

would be also interesting to see how the Selective Tuning model perform in search

asymettries such as the search for a target magenta among red distractors versus

a red target among magenta distractors or find a vertical target among distrac-

tors that are tilted 20° than versus a 20° tilted target among vertical distractors
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and compare it with psychophysical data in the same way as the experiments

performed in chapter 2.
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