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Abstract

This report presents a computational framework for the enhancement of

magnitude magnetic resonance (MR) images of the heart. It addresses two

sources of degradation of image quality from the perspective of an algorith-

mic procedure that seeks to recover the anatomical structures of the organ

of interest: (1) the effect of image noise and other confounding features

that obscure the relevant information of these structures and (2) inadequate

image contrast. An analysis of the signal properties of these confounding

features leads to the wavelet-based approach presented in this report. An en-

hancement framework, that is adaptive to both image structures and signal

intensity, is developed to attenuate image noise, to remove the confounding

features present in the low-intensity regions and to enhance image contrast.

The framework is implemented and evaluated on both synthetic and medical

test cases with strong supporting evidence for the hypothesis of this report.

The experimental findings also demonstrate that the scope of application of

the framework can be extended to the class of non-cardiac images.
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Chapter 1

Introduction

Cardiovascular disease1.1 (CVD) remains the leading cause of mortality and

hospitalization in North America. The prevalence of CVD is not restricted

to any particular age groups. Indeed it ranks among the top three causes

of death for children under the age of 15 in the USA. Early diagnosis and

treatment are effective means in reducing the prevalence of CVD. It ac-

counts for 25% of the decline in mortality from ischemic heart disease in the

USA. The advances in cardiac imaging technology play an important role in

visualizing the pathology and physiology of the cardiovascular system and

therefore allow for early detection of CVD, improvement of the accuracy of

diagnoses, measuring the effects of treatments, and determination of CVD-

related risks. In this regard, cardiac magnetic resonance imaging (CMRI)

is one of the most flexible and sophisticated imaging techniques with which

to examine the heart. It provides a set of images for visualizing the cardio-

vascular system as well as for reliably measuring the anatomical structures

1.1For the social consequences of the disease, see American Heart Association [5] and
Heart and Stroke Foundaton of Canada [55].
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of the organ and the patterns of its deformation over the cardiac cycle1.2.

1.1 The Problem of Adaptive Enhancement of Car-

diac Magnetic Resonance (MR) Images

The purpose of this report is to present a computational framework for

signal enhancement of magnitude Magnetic Resonance Imaging (MRI) for

medical visualization and analysis. Although developed in the context of

Cardiac Magnetic Resonance (CMR) image analysis, the framework finds a

much broader scope of application in other (non-cardiac) classes of clinical

images. Nevertheless, CMR image analysis remains the natural context that

motivates and defines the problems for this thesis.

The task of CMR image analysis is to transform a set of cardiac MRI

data1.3 into diagnostically-relevant information about the imaged heart. Di-

agnosis of cardiac disease relies upon an accurate assessment of the mor-

phology and function of the patients’ hearts. Recovery of the morphology

of the heart and its anatomical structures is critical to the reliable modeling

of the heart and the measurement of the diagnostic parameters of the heart.

1.2A complete period of contraction and relaxation of the heart with the electrical and
mechanical events that control the opening and closing of the valves and the flow of blood
in and out of the organ constitutes a cardiac cycle.

1.3A set of CMRI data consists of a number of temporal sequences, each representing
a dynamic view of a cross-section of the thorax which contains the heart over a cardiac
cycle†. These sequences are ordered by spatial location of the cross sections along an axis
of imaging. In a typical CMR image, the heart appears as a configuration of structures
located within the bony structures of the thoracic wall, on the diaphragm, above the
liver and stomach, and against the background of the thoracic cavity; See Fig. 1.1. This
image sequence provides a discrete, volumetric representation of the heart and its internal
anatomical structures over time.

† see footnote 1.2.
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The detection of structure in medical images usually relies on the differ-

ence in the signal intensity of different tissues. These signal intensity differ-

ences determine image contrast; see Weishaupt et al. [121]. Compared with

the image contrast along the interfaces of the anatomical parts of the organ,

the appearance and signal intensity of tissue in a clinical MR image is, in

general, relatively insignificant because signal intensity depends on imaging

techniques and scanning parameters employed. Under different paramet-

ric set-ups, the same scanner may produce varying intensity profiles of the

same scene. Depending upon the information acquired for clinical diagnosis

and analysis, signal intensity of different tissues as well as their visibility

is a function of intrinsic (tissue-related) and extrinsic (instrument-related)

parameters of data acquisition. The range of choices over these parameters

partially attributes to the versatility of MRI for clinical analysis. It allows a

sufficient contrast for discriminating many tissues which are indistinguish-

able on computer-aided tomography (CT). These choices are however made

under competition among many imaging requirements, such as imaging time,

spatial and temporal resolution, and reduction of imaging artifacts, under

resource constraints, such as magnetic field strength, choice of transmitters

and receiver coils, and the others. This research explores a solution to en-

hance image contrast along those interfaces of anatomical structures that

carry diagnostic information in magnitude MR images. These structures

are hereafter referred to as target structures.

In general, the quality of clinical MRI does not allow an easy inter-

pretation of the data for extracting diagnostic information. Recovery of the

boundary contours/surfaces of target organs remains a non-trivial endeavor.

3



This burden would be greatly simplified if these interfaces were embedded

in less ambiguous configurations of structures, that is, if those features at-

tributable to the target structures were not significantly obscured by similar,

but irrelevant, structures in their proximity. In the context of CMR images,

for instance, two factors contribute to obscure target structures and reduce

the image contrast: image noise and dynamic structures cluttering the tho-

racic cavity; see Fig. 1.1. They are hereafter referred to as confounding

factors.

Figure 1.1: A Cardiac Magnitude MR Image.

The noise of a magnitude MR image, generally modeled by a Rician dis-

tribution, is signal dependent with a distribution that tends to a Rayleigh

distribution1.4 over the low intensity regions and to a Gaussian distribution

1.4Both the Rician and the Rayleigh distribution arise in the context of signal detec-
tion with narrowband‡ noise processes. Given in Eq. (2.2.2) is the probability density
function of the Rayleigh distribution, that is defined only over the positive values of the
random variable with a positive (non-zero) mean. The magnitude of a complex addition
of Gaussian real and imaginary noise components resulting from a collection of small,
independent wave disturbances due to scattering of transmitted signals follows a Rayleigh
distribution. The superimposition of the signal and these disturbances gives rise to the
Rician distribution, the probability density function of which is given in Eq. (2.2.1). For
details, see Goodman [49]; Minkoff [78, 79] and Whitaker and Benson [123]. This model
of noise disturbance provides an appropriate description of the noise processes in the for-
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over the high intensity regions; see Gudbjartsson and Patz [52]; Macovski

[73] and Kisner et al. [68]. In a magnitude CMR image, the low-intensity

signal is usually present along the interface of the anatomical parts and over

the background of the heart. The bias introduced by the Rician noise signif-

icantly reduces the image contrast essential for extracting the information

about the boundaries of the heart and its anatomical parts. Furthermore,

this noise effectively reduces the lossless compression ratio, which is impor-

tant to image transmission; see Wu et al. [127].

Noise is not the only confounding factor that obscures the target struc-

tures. The thoracic cavity appears as a low intensity region where the lungs,

blood vessels and other tissues create patterns of dynamic structures in the

immediate periphery of the heart. It is usually not easy to discriminate

these networks of structures from the target organ. These fibrous structures

lack a definite shape. Like the heart, many of them are dynamic structures

in periodic motion. Both characteristics represent a challenge to modeling

them for identification and discrimination. These low-intensity structures

in the proximity of the target organ are hereafter referred to as background

structures. The interactions between these background structures and the

Rician noise further confound the tasks of boundary detection and anatom-

ical reconstruction both spatially and dynamically.

mation of magnitude MR images. The details are covered in Section 2.2 in the following
chapter and Appendix B.

‡ A process with no signal energy distributed outside a frequency interval (ω1, ω2)
is called a bandpass process. If the bandwidth, ω2 − ω1, is small compared with
the center frequency, the process is called a narrowband or quasi-monochromatic
process. See Papoulis [86] and Qian [95].
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In this light, this thesis seeks an efficient computational framework to

offset the confounding effects of these factors, and to provide a data set

with enhanced image contrast, especially that attributable to the target

structures. To be precise, its objectives are as follows : (1) to recover from

the image noise the signals of the anatomical structures of the heart; (2) to

enhance the image contrast attributable to these signals and (3) to suppress

the background structures. The problem so defined seeks a solution which

is inherently adaptive to both signal gradient as well as intensity. It will be

referred to hereafter as the problem of adaptive enhancement.

1.2 Background and Related Research

Enhancement of medical images has been an active research area; specif-

ically, reduction of image noise has been a major focus of attention. To

the best knowledge of the author, however, no existing research directly

addresses the problem of adaptive enhancement in its full scope. To put

this report in perspective, this section provides a brief review of the major

research approaches to the problem. Signal enhancement by way of noise

reduction has been developed for MRI applications with the assumption of

Gaussian noise as the working model. Diffusion based filtering in the spa-

tial domain and selective reconstruction by series expansion in the wavelet

domain have been widely adapted for biomedical image application. Both

are useful approaches for enhancing the target organs and their anatomical

structures.

6



Non-linear diffusion filtering1.5 is developed to overcome the blurring ef-

fect of classical Gaussian smoothing techniques. Its diffusion mechanism

preserves image structures, especially edges. Signal oscillations are reduced

with a diffusion kernel, which adapts its smoothing operators to local oscil-

lating structures, steering the direction of diffusion in such a way so that

it preserves geometric structures of the data, such as edges and contours.

These techniques provide good results for image enhancement in a variety

of applications. In the present context, however, diffusion-based techniques

pose some problems. First, diffusion preserves local averages of signal in-

tensity and therefore provides no natural mechanism to eliminate the bias

introduced by Rician noise. This is especially true for low intensity regions.

Second, the goal of adaptive enhancement is not to enhance every geometric

structure. Enhancement of target structures is desired whereas confounding

factors, such as background structures, should be suppressed. This idea of

enhancement is not intrinsic to the diffusion model. Furthermore, diffusion

is an iterative process which brings with it a cost in terms of computational

complexity.

The wavelet domain denoising technique introduced in Weaver et al. [117]

with a user-defined threshold1.6 is among the earliest application of wavelet

analysis to image denoising. Briefly, wavelet analysis1.7 maps image signals

1.5This approach is introduced in the work of Perona and Malik [87] and extended
subsequently; for a review see Weickert [118, 120].

1.6It is worth pointing out the conceptual similarity between the coring and the wavelet
approaches to noise reduction. Coring is essentially a nonlinear approach to noise reduction
by means of selecting signal components according to thresholding rules in terms of their
absolute intensity level. This similar idea underlies the technique proposed in Weaver
et al. [117] and the subsequent approaches of wavelet shrinkage. For more details, see
Carlson et al. [16]; Simoncelli and Adelson [103] and Portilla et al. [93].

1.7For details on the mechanics of wavelet analysis, see Appendix A.
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to a set of coefficients by signal decomposition in terms of a set of analyzing

functions (or basis functions). This set of coefficients constitutes a compact

representation that provides a localized measurement of signal oscillations

in both scale and space. The operation is invertible, that is, a corresponding

inverse mapping, which achieves signal synthesis, exists to generate a loss-

less reconstruction of finite-energy signals with the coefficients. If analysis is

simple-mindedly followed by synthesis without changing the coefficients, the

operation is of course a trivial endeavor producing no better output than the

input. Image processing seeks a new representation of input data. By the

multiscale properties of a wavelet system, there is a set of coefficients that

yields a perfect synthesis of this target representation. The whole problem

of image transformation is thus turned into a search for the mapping from

the decomposition of the input representation (i.e., the input coefficient set)

to a set of coefficients (i.e., the target coefficient set) that supports the gen-

eration of the target representation. Wavelet domain image transformation

can therefore be summarized as an analysis→transformation→synthesis op-

erator sequence:

Analysis : Compute the coefficients from a spatial domain data set.

Transformation : Apply transformation operators to the coefficients.

Synthesis : Compute the spatial-domain representation with the coeffi-

cients generated in the transformation step.

Multiresolution decomposition of a signal into its constituent waveforms

is fundamental to wavelet analysis. A technical note on the mechanics of

wavelet analysis that are relevant to this research is provided in Appendix A.

It is sufficient at the moment to say that a set of image data can be expressed

8



as a superimposition of a coarse scale approximation and the details captur-

ing spatial oscillations at successive finer scales. The coarse scale approx-

imation generated by wavelet decomposition represents smoothly varying

signals. The rapidly oscillating components and the transient elements due

to meaningful structures are captured in a small number of large coefficients,

the spikes towering over a sea of small coefficients due to the fluctuations

caused by random (Gaussian white) noise. This stark contrast in signatures

between coherent oscillations and random fluctuations provides useful infor-

mation for discriminating these two important classes of image features for

noise suppression and structure preservation. This observation provides the

point of departure for the classical approach of wavelet shrinkage. Signals

due to coherent structures are recovered from a subset of the largest coef-

ficients selected according to some decision rules. Hard thresholding and

soft thresholding are exemplars. Given a threshold, hard thresholding sup-

presses all coefficients smaller than the threshold. Soft-thresholding shrinks

coefficients toward zero so that it does not only suppress small coefficients,

but also attenuates the components due to random fluctuations of those

surviving coefficients.

While Gaussian noise remains a tacit, working assumption used in many

applications, recent findings suggest that a Rician noise model provides a

more accurate account for the stochastic behavior of the noise commonly

found in the magnitude MRI used in the clinical setting; see Andersen [6]

and Macovski [73]. In the general context of clinical MRI, there are two ma-

jor approaches to the problem of Rician noise. The distinction between them

can be traced back to the very process which brings about the Rician noise

in MRI analysis. Rician noise does not occur in signal acquisition, but arises

9



from the process of constructing magnitude MR images. A complex-valued

spatial-domain representation is generated from the frequency-domain data

read out from an MRI machine through an inverse Fourier transform. The

magnitude image is the square root of the sum of square of the complex

pair. The real and imaginary data after the inverse transform remain Gaus-

sian distributed with means of zero and equal variance σ2. The non-linear

operator in the last step of image construction, however, transforms the dis-

tribution from Gaussian to Rician - a distribution which is signal dependent.

Rician noise is present in the magnitude image, but not in the complex

images from which the magnitude image is generated. One approach to noise

enhancement is to eliminate the Gaussian noise from the complex images

before the construction of magnitude images. This approach gives rise to

a number of methods: Wood and Johnson [125, 126] use wavelet packets,

Alexander et al. [4] derive a wavelet-domain Wiener-type filter and Bao and

Zhang [11] apply multi-scale product thresholding to denoising the complex

image pair.

The problem of Rician noise in a magnitude MR image is addressed

almost exclusively within the framework of wavelet analysis. The implica-

tions of the non-Gaussian nature of image noise in the context of machine

understanding of visual data are raised in Gregg and Nowak [51] and Nowak

[83] which start with a demarcation of two MRI regimes according to the

signal-to-noise ratio (SNR) of the acquired images: (1) low resolution and

high SNR and (2) high resolution and low SNR. As a result, a magnitude

MR image is deemed as either a high SNR image or a low SNR image. A

wavelet-domain filter derived for the high SNR images is a set of weights
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which shrink the wavelet coefficients toward zero in such a way that the

shrinkage factors approximately minimize the mean squared errors (MSE)

of the estimates. This filter relies on the assumptions that (1) noise in the

high SNR image is signal independent, and (2) the wavelet coefficients are

unbiased. Obviously these conditions fail to hold for the low-SNR images.

For the low SNR (below 10dB) MRI, Gregg and Nowak [51] and Nowak [83]

apply the framework of noise filtering to squared magnitude images with

two additional steps: (1) to provide an unbiased estimator of noise variance

using the discrete wavelet squared transform of the squared image and (2)

to remove the bias from the approximation coefficients of the image. This

second algorithm with the additional steps, however, fails to outperform the

first one for any MRI with the SNR > 15 dB, a condition that clinical appli-

cations of MRI can usually meet; see Nowak [83]. The technique of removing

bias from the squared image was adapted in some later algorithms, such as

the algorithm developed by Xue et al. [128].

The division of images into two categories ignores the fact that even a

so-called high-SNR image is composed of both high and low intensity re-

gions. Over these low intensity regions, however, this filtering framework

fails to remove the Rician noise satisfactorily. Wu et al. [127] are concerned

with the noise in the signal-free regions of the image. An additional step

is proposed to identify the background noise for removal with a map which

indicates the locations of signal-free regions according to a threshold scheme.

The issue of general relevancy of the effects of Rician image noise is raised

in Wood and Johnson [126]. While an image may attain an overall high SNR,

important image features may fall within an intensity region where a skewed
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Rayleigh distribution may dominate. As a result, Rician noise degrades edge

and contrast resolution. A wavelet packet denoising technique1.8 is applied

to both complex image pair and magnitude images for the purpose of noise

reduction. A compact basis is selected for decomposing the image data so

that Gaussian noise is distributed evenly throughout the coefficients in the

hierarchical representation in different subspaces. Shrinkage procedures are

then applied to the coefficient of the resulting decomposition. Compared

to magnitude denoised images, complex denoised images are found to have

better noise suppression, resulting in a sharper definition of the anatomical

structures of the target organs. These results indicate for our purpose that

Rician noise in the high signal intensity regions can be smoothed out by

Gaussian approximation techniques, if given an accurate estimate of vari-

ance of the Rician noise, but the problem of noise suppression in the Rician

situations is at best partially solved.

A spatial domain technique is proposed in Sijbers et al. [100] to address

the problem of Rician noise. The noise reduction is achieved by a diffusion

process using a Gaussian kernel which is pointwise adaptive to local struc-

tures. The shape of the kernel is controlled by the local gradient strength

along the main direction of the patterns in a local neighborhood. These

local gradients are estimated through maximization of the likelihood func-

tion based on the assumption of a signal which is locally piecewise linear

over a neighborhood with additive Rician noise. The Rician-based filter

is found to perform better than the Gaussian-based filter in terms of con-

trast restoration; the difference is most apparent in regions of low SNR. The

1.8Wavelet packet decomposition can be seen as a generalized wavelet decomposition.
For details, see Ogden [84] and Walnut [112].
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signal dependent nature of Rician noise requires a diffusion kernel which is

adaptive to both local structures and signal intensity. The performance gain

comes mainly from the improved estimation of local structures.

Other techniques are also proposed. Woo and Yang [124] propose using

additive, student t-statistics to model the Rician noise under a Bayesian

framework using a Markov Chain Monte Carlo (MCMC) technique to de-

noise low SNR MR images. This alternative noise model which maintains

the assumption of signal independence and a symmetric shape of the distri-

bution does not go much farther than the Gaussian model in addressing the

Rician nature of noise behavior. The iterative nature of the MCMC used for

parameter estimation also incurs a very high cost in terms of computational

resources. A generic framework of noise reduction in the wavelet-based do-

main is proposed in Pizurica [88] and Pizurica et al. [92] based on the method

of joint signal detection and estimation. Each wavelet coefficient is modeled

as a representation of a signal of interest with a probability defined in terms

of the global coefficient histogram and the local measure of spatial activity.

In the absence of the prior knowledge, the probability densities are estimated

from the empirical histogram. An MR image is taken as one of its potential

applications, but no detailed analysis is provided for magnitude MR images.

Indeed, it is not even clear how the noise parameters are estimated.

1.3 Contribution

The approaches presented in the previous section provide important clues

about the nature of the noise effect and its possible solution. Rician noise

properties degrade the quality of magnitude MR images. Regardless of the
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general intensity level or SNR, the effects of noise behavior have a practical

impact on the low intensity regions which are not only restricted to signal-

free regions, but also include those low contrast structures with diagnostic

significance.

One common theme running through all these approaches is noise reduc-

tion. The objectives of the techniques are defined in terms of two consider-

ations: how to (1) remove the noise and (2) at the same time preserve the

integrity of the signal. This is a classic problem with medical image enhance-

ment. The definition of the problem, however, ignores other confounding

factors in medical images, that may obscure the diagnostically significant

information, such as background structures mentioned in the foregoing dis-

cussion. These factors may interact with each other. No previous work

addresses these problems, even tangentially, in the context of medical image

enhancement.

The objective of this thesis is to explore the problem of adaptive en-

hancement where Rician noise occurs. This approach to the problem of

data quality is largely motivated by the problem of image analysis in the

context of cardiac magnitude images, a class of MR images, which, unlike

brain images, receives relatively little attention in research on medical im-

age enhancement. There are two major components of inquiry. First, Rician

noise remains a major concern in an adaptive enhancement. This report pro-

vides a detailed, statistical analysis of the effect of the statistical behavior of

Rician noise in magnitude MRI. It clarifies the theoretical underpinnings of

some assumptions used in the existing literature. In particular, the analysis

leads to a meaningful demarcation between high intensity and low intensity
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regions of a magnitude MR image in terms of the qualitative difference in

noise effect. The latter are the active zones where non-Gaussian behavior

is active and therefore impacts negatively upon the image quality. In these

regions Gaussian-based techniques are inadequate to noise attenuation and

are therefore inadequate for the task of image enhancement.

This analysis leads to an approximation model of Rician noise in terms

of its behavior and its impact upon an image. Accordingly a computa-

tional framework is developed for the task of adaptive enhancement. Apart

from the signal-dependent behavior of Rician noise, the task of achieving

these objectives simultaneously is a challenge for a number of reasons. Con-

trast enhancement and attenuation of noise are two major components of

adaptive enhancement. It is a long-standing problem to remove noise and

enhance contrast gradients in a jointly optimal way. This report seeks a bet-

ter solution to the problem of contrast and structure enhancement within

the constraints defined by the objectives of adaptive enhancement that it

suppresses not only random noise, but also the background structures while

preserving the target structures of the organ in their proximity.

This research shows that an optimal decomposition of the signal in the

wavelet domain and the signal-varying behavior of confounding factors al-

lows an adaptive scheme to achieve the objectives of adaptive enhancement:

1. Gaussian random noise manifests itself as high frequency components

of a signal. Noise attenuation therefore means attenuation of these

components either by smoothing, shrinkage or other means. This same

idea plays the guiding principle underlying the existing approaches to

the problem of Rician noise. In contrast, this research works on the
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hypothesis that the non-Gaussian noise active in low intensity regions

of an image and background structures may be captured in the coarse

scale approximation.

2. Image contrast is always a concern for image enhancement. In the

context of image denoising, contrast improvement is usually achieved

as a by-product of noise reduction and signal preservation. This re-

port postulates that intensity gradients can be much better enhanced

by adaptively attenuating the average intensity of the smooth parts

of the image while preserving the rapidly oscillating components of

image signals. The wavelet decomposition of the signal provides the

mechanism for the task.

It is a hypothesis of this thesis that the adaptive enhancement framework

can jointly achieve the objectives of adaptive enhancement. The perfor-

mance of the adaptive enhancement framework is systematically evaluated

in comparison with both wavelet-based and diffusion-based techniques on a

variety of images, both cardiac and non-cardiac. Not only does the evalu-

ation support the hypothesis of the report and find its performance signifi-

cantly better than the other techniques, but also it shows that its scope of

application can be extended outside the scope of cardiac images. For the

performance evaluation, this report provides an analysis of the measurement

metrics for measuring and comparing system performance in terms of image

contrast improvement. It shows the source of bias in the metric used in pre-

vious research and proposes a solution to correct the problem. Performance

measured in terms of both metrics – the original and the improved version –

are reported for comparison purposes. In general, the framework presented

in this report provides an efficient solution to the problem of adaptive en-

hancement.
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1.4 Summary

The purpose of this report is to explore the problem of adaptive enhance-

ment in a Rician situation, a problem that is first motivated in the context

of cardiac MR image analysis. The problem of adaptive enhancement is de-

fined in terms of its threefold objectives as removal of confounding factors,

preservation of target structures and enhancement of image contrast. A

brief review of previous research reveals a growing awareness of the effects

of the signal-dependent noise on the image quality of magnitude MR images

and on the performance of algorithmic approaches to image analysis. The

image noise of magnitude MR images, especially over their low-intensity

regions, remains a challenge to the currently available techniques of noise

removal. This report suggests seeking a better solution to the problem of

image enhancement in the broader context of adaptive enhancement. Chap-

ter 2 starts with an analysis of the signal properties of the confounding

factors, that leads to a wavelet-based framework devised to jointly achieve

the objectives of adaptive enhancement. Experimental results are presented

in Chapter 3, which shows strong support for the adaptive enhancement

framework in terms of its objectives and in comparison with other tech-

niques. Chapter 4 concludes the report with some general comments on the

approach and suggestions for further research. A number of appendices are

included for reference on technical details and a systematic presentation of

experimental results.

17



Chapter 2

Computational Framework

This chapter lays out a computational framework, referred to hereafter as

the smoothing - enhancement (SE) framework, for adaptive enhancement

of magnitude MR images. Conceptually, the framework has three compo-

nents: (1) multiresolution analysis of the image signal; (2) analysis of signal

properties of confounding features; and (3) an adaptive scheme for image

enhancement. I will discuss each component in turn.

The first component provides a powerful tool for signal analysis, trans-

formation, and synthesis. This chapter begins by outlining the general ideas

underlying multiresolution (or multiscale) analysis of an orthogonal wavelet

system and its role in noise enhancement. The goal of doing so is to intro-

duce the notations in use throughout the thesis. A more detailed discussion

of the mechanics of wavelet analysis as it relates to the framework can be

found in Appendix A.

The focus of Section 2.2 on the second component of the SE framework

is an analysis of the signal properties of confounding features. The first
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part of the analysis provides an analytic description of noise in a magnitude

MR image, and is followed by a discussion on the transformed behavior of

the confounding factors in the squared magnitude images. These analyses

lead to the key observations of this report. First, Rician and Gaussian noise

behave differently in regions of low signal intensity where features along the

interface between the anatomical parts and background structures reside.

Second, the wavelet representation of squared data captures the effects of

the confounding factors in the coarse scale sub-image. Third, wavelet decom-

position provides a natural means of contrast enhancement by manipulating

the average intensity over the regions of smoothly varying signals.

The last part of this chapter discusses the implications of these observa-

tions, showing that an effective enhancement scheme is possible to achieve

the dual goal of contrast enhancement and confounding feature suppression.

This is done in two steps: (1) the smoothing (S) step preprocesses the im-

age data to remove the fine scale signal fluctuations due to random noise

according to an approximation to its behavior in high intensity regions; and

(2) the enhancement (E) step applies an adaptive enhancement scheme to

the squared magnitude data of the pre-processed image generated from the

previous step to attenuate the effects of confounding features and enhance

image contrast( see Fig. 2.1).

In order not to distract attention from the main line of reasoning, the

details of each of these sections are covered in a set of technical notes in

Part I of the Appendix.
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Figure 2.1: Major Components of the SE Framework

Analysis Synthesis

AnalysisSynthesis

S

E

Output

Input

M → M
2

M
2 → M

Legends
S Fine Scale Smoothing.
E Coarse Scale Enhancement.
M → M2 Construction of a squared magnitude image.
M2 → M Construction of a magnitude image.
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2.1 Signal Representation in the Wavelet Domain

In the wavelet domain, the observed data I is projected onto a multi-

resolution analytic space; for a review of the mechanics of wavelet analysis,

see Appendix A. Image structures can then be analyzed in terms of a hi-

erarchy of sub-images, each capturing signal oscillations at different scales

and orientations. An orthogonal wavelet system is defined in terms of an

orthogonal basis which consists of a set of scaling functions {φj0,µ}, each

localized around the location (µ) at a selected scale (j0) and their corre-

sponding wavelet functions {ψκ
j,µ}, each capturing the signal oscillations in

the neighborhood around locations µ, at successively finer scales (j) and

along orientations2.1 (κ). An image can be expanded in terms of this basis

by the following analytical form:

I =
∑

µ

Sj0,µ φ
2D
j0,µ +

∑

j

∑

µ

∑

κ∈Ψ

ωκ
j, µ ψ

κ
j,µ. (2.1.1)

Wavelet analysis is a mapping from image data in the spatial domain into a

set of coefficients in the wavelet domain, given a basis of analysis. The set of

scaling (or approximation) coefficients {Sj0,µ} in the first term in Eq. (2.1.1)

fully characterizes the coarse scale approximation up to a selected scale j0

whereas the set of wavelet coefficients {ωκ
j, µ} in the second term represents

a superimposition of sub-images each capturing the detail of image struc-

tures visible at successively finer scales. In the subsequent discussion, it is

sometimes convenient to use a more compact form, i.e.,

I =
∑

µ

Sj0,µ φ
2D
j0,µ +

∑

η

ωη ψη , (2.1.2)

2.1 κ ∈ Ψ = {H,V,D} is the set of orientations – horizontal, vertical, and diagonal
respectively – of the basis functions of a detail space.
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where η = {j}j>j0 × {µ} × {κ} is an index set over j (the scale), µ (the

location), and κ (the orientation). The representation generated in this

analytical framework provides a number of useful properties for adaptive

enhancement including the property of locality, multiresolution, statistical

independence (or decorrelation), energy compaction, exponential decay and

others. For a review of these properties, see Appendix A.

2.2 Signal Properties of Confounding Features in

Magnitude MR Images

This section seeks an analytical description of the signal properties of con-

founding features such as noise and background structures. A number of con-

ceptual questions are addressed in connection with adaptive enhancement.

Specifically, adaptive enhancement is concerned with the non-Gaussian be-

havior of image noise, the role of a Gaussian noise model as an approximation

to this specific class of image noise, and the signal properties of confounding

features such as the background structures in magnitude and squared mag-

nitude image data. This analysis not only leads to the enhancement scheme

presented in the last part of this chapter, but also helps to clarify and assess

the validity of many assumptions made in the literature. In many cases

different assumptions are made based on practical experience or intuition2.2

without adequate analytical groundwork2.3.

2.2In addition, Gaussian noise models are usually adopted implicitly simply for conve-
nience or assumed by default.

2.3At least an adequate analysis is not reported.
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2.2.1 Noise Behavior in Magnitude MR Images

A magnitude MR image, a representation used in clinical settings, is con-

structed from the measurement of an MRI scanner in the frequency-domain.

The measurement is subject to a variety of random noise sources related to

imaging hardware and the physiology of imaged subjects. The resulting

noise can be modeled as a set of random variables that follow a multivariate

normal distribution; for details, see Wang and Lei [115] and Wang [114].

The non-linear operation of (magnitude) image construction does not pre-

serve the Gaussian nature of image noise. Instead, it creates Rician noise.

A squared magnitude image results from pixel-wise squaring of a magnitude

Figure 2.2: MR Image Data Transformation. The major components in the
construction of a magnitude image is inside the dotted box.

image. This process further transforms the Rician noise into non-central χ2
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noise2.4. These image and noise transformation processes are summarized

in the schematic diagram in Fig. 2.2.

2.2.1.1 Rician Noise Model of Image Signals

A signal read out from an MRI scanner contains a real and an imaginary

component. Each component can be modeled with additive Gaussian noise

with a zero mean and the same variance; see Wang and Lei [115] and Wang

[114]. A pair of real and imaginary images, referred to as complex im-

ages or a complex pair, in the spatial domain are generated by the inverse

Fourier transform. Because the transform is a linear operator that preserves

Gaussian properties, the stochastic characteristics of image noise are not

qualitatively altered.

For the convenience of display and to remove phase artifacts, it is com-

mon in clinical medicine to use magnitude images. A magnitude image is

generated after a magnitude (root-sum-squared) operation is performed on

the complex images. The resulting data, I, are characterized by the con-

ditional probability density function given the (noise-free) signal S and the

variance σ2 of the noise in the complex images as the following

f(I|S, σ) =
I

σ2
exp

{
− I2 + S2

2σ2

}
Io

(
IS

σ2

)
1{x≥0}(I) (2.2.1)

where Io is the modified Bessel function of the first kind of zeroth order2.5,

2.4For details, see Appendix F.

2.5For the details of the modified Bessel function of the zeroth order I0, see Abramowitz
and Stegun [2] and Arfken and Weber [9].
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and 1A the indicator function2.6 over the set A; see Andrews and Phillips

[7]; Minkoff [79], and Sijbers [99]. Eq. (2.2.1) represents the Rician distri-

bution. Since the term S2

σ2 measures the signal-to-noise ratio (SNR), the

distribution depends on the SNR or on the signal intensity if the noise pa-

rameter σ is known. This analytical result is verified in both clinical and

experimental settings; for an example, see Kisner et al. [68].

In the absence of signal, the density given in Eq. (2.2.1) can be rewritten

as

F =
I

σ2
exp

{
− I2

2σ2

}
1I>0(I), (2.2.2)

which is a Rayleigh distribution2.7; for details, see Appendix B.1. As SNR

increases, the probability density function takes on a more and more sym-

metric shape. As the SNR approaches infinity, Rician noise,

lim
S
σ
→∞

F ∼ 1√
2πσ

exp

{
− 1

2σ2
(I − S)2

}
, (2.2.3)

is approximately a Gaussian distribution N (S, σ2); for details, see Ap-

pendix B.2. Let us call this distribution the limiting distribution of infinite

signal intensity or the limiting distribution for short.

At infinite signal intensity, a Rician distribution converges to a Gaussian

distribution with mean S and variance σ2. This result leads to the conjecture

that the stochastic behavior of a Rician variable may be reasonably approx-

imated by the limiting distribution defined in Eq. (2.2.3) over the range of

2.6An indicator function is defined as 1A(w) =


1, if w ∈ A,
0, if w 6∈ A.

2.7For the details of the Rayleigh distribution, see Goodman [49]; Evans et al. [41] and
Kay [66].

25



high SNR. We refer to this subrange of signal intensity as the convergence

range (or the range of convergence). The point of convergence SC of a Ri-

cian distribution is the point of lowest signal intensity of the convergence

range. The limiting distribution given in Eq. (2.2.3) may be a reasonable

approximation model for the noise behavior over those regions where the

signal falls within the convergence range. On the other hand, the behavior

of a Rician variable does not follow closely any Gaussian distribution over

the range of signal intensity lower than this point; this range of low signal

intensity is referred to as the “lower than convergence” range or for short the

low-intensity range. Over this range, considerable error of approximation is

expected if a Gaussian noise assumption is imposed upon the data. Noise

active in this range is referred to as the non-Gaussian part of Rician noise or

non-Gaussian-like noise. It is crucial to determine the point of convergence

for the relevant members of the Rician family, since it defines the intensity

range where an approximation model, which takes the limiting distribution

defined in Eq. (2.2.3) as its approximation distribution, remains reasonable.

2.2.1.2 Convergence Range of Rician Signals

The probability distribution of a random variable is described by its sta-

tistical moments and the corresponding cumulants, if they exist. The first

four members of these sequences measure the location and the shape of a

distribution in terms of the mean, variance, skewness and kurtosis of the

distribution in that order. Distributions with a finite number of lower mo-

ments or cumulants in common are expected to bear resemblance to each

other. In practice, distributions with the first four moments equated result

in a remarkably good approximation of one another; see Kendall et al. [67].
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The convergence analysis detailed in Appendix D takes this approach

to find the convergence range of Rician noise. The major results of the

analysis are summarized as follows. Let κi be the ith cumulant of random

variable X. For a Gaussian variate where X ∼ N (µ, σ2), the following is

true2.8: κ1 = µ; κ2 = σ2; κ3 = 0; and κ4 = 0. Thus, a Gaussian distribution

is completely characterized by its first two cumulants with its third and

fourth cumulants set to zero. For any random variable, the distance of its

higher cumulants from the origin provides a measure of how close it is to

normality. Standardized cumulants are proposed for this purpose to attain

scale invariance of the measurement. The standardized skewness given by

κs
3 = κ3κ

− 3
2

2 (2.2.4)

and the standardized kurtosis

κs
4 = κ4κ

−2
2 (2.2.5)

are thus important for our purpose. Given that skewness, κ3, and kurtosis,

κ4, of a Gaussian distribution are zero, so are their standardized counter-

parts. Therefore the distances of the standardized skewness and kurtosis of

a distribution from zero measure how much the distribution departs from

normality; see Davison [33].

The corresponding cumulants, κ1, κ2, κ
s
3, and κs

4 of Rician variables are

required to locate the point of convergence. Appendix D shows that the

2.8For details, see Appendix D.
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rth moment of a Rician variable can be expressed in terms of the Gamma

function Γ(·) and the confluent hypergeometric function2.9
1F1(·, ·; ·) as the

following

m(r) = (2σ2)
r
2 Γ
(r
2

+ 1
)
1F1(−

r

2
, 1; − S2

2σ2
). (2.2.6)

The cumulants can be evaluated numerically from the moments; the details

are discussed in Section D.1 of the appendix. It is obvious from Eq. (2.2.6)

that the cumulants are functions of both S and σ. To be practically use-

ful, the analysis must be applied to the relevant range of σ for a typical

MR image. This range has been estimated2.10 from empirical data of clini-

cal MR images to fall between three and ten. It will be taken as the reference

range for convergence analysis.

The cumulants of a Rician distribution associated with the signal inten-

sity S over the convergence range should approach their Gaussian distribu-

tion counterparts. The distances between the corresponding cumulants of

these distributions shrink toward zero2.11 as the signal intensity approaches

the point of convergence from below and stays at zero over the range of

convergence. The major findings2.12 are summarized as follows. As shown

in Fig. 2.3, over the reference range2.13 of σ, the function of the point of

2.9For details see Appendix D.

2.10For details of the estimation procedure, see Appendix C.

2.11The situation is more complicated than what this statement appears to suggest. For
details, see Appendix D.

2.12The details of numerical evaluation, the method used to measure the convergence of
distribution and the results are covered in Appendix D.

2.13For a discussion of the reference range of noise parameter σ relevant to MR images,
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convergence SC is linear2.14 in σ. The convergence analysis based on the

cumulant comparison places the upper bound of the point of convergence at

roughly 50 above the point at which the approximation distribution can be

used to model the noise behavior.

(A) SC of Noise-free Signal (B) Upper bound of S̃C in Noisy Data

Figure 2.3: Points of Convergence over the Relevant Range of σ.

That the two distributions converge over a substantial range of signal

intensity has important implications for our purpose: that is, over signifi-

cant stretches of image sites, the stochastic behavior of image noise can be

modeled by the limiting distribution. Because this distribution is a member

of the Gaussian family, enhancement techniques built upon Gaussian noise

models can be recruited for noise attenuation over these regions. The impact

of these techniques depends on the signal intensity of the image. In practice,

see Appendix C.

2.14The linearity does not hold for σ close to zero. For our purpose, this low range is
irrelevant.
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this varies from application to application. At one (hypothetical) end of the

continuum, an image in its entirety falls within the convergence range, and

thus a Gaussian approximation would be practically adequate for signal re-

covery. On the other hand, there is no role for Gaussian approximation if

the target signals lie outside this range. A typical medical MR image falls

in between these hypothetical cases.

It is helpful to explore empirically the role of Gaussian approximation in

medical image enhancement. By the very nature of our problem, the noise-

free signal S is not known a priori. A decision rule is needed to determine

the point of convergence in a set of empirical data. As the signal approaches

the point of convergence, the distribution of image noise becomes more and

more Gaussian-like. Thus, it is reasonable to assume that the observed data

lie within the range of 3σ about the noise-free signal. As a consequence, we

can put an upper bound on the point of convergence in a set of noisy data

at S̃C ≤ SC + 3σ, where S̃S denotes the noisy realization of the point of

convergence.

In general, the target organ is positioned in the region of signal within

the convergence range against a background of features within the low in-

tensity range. An appropriate model of image noise assuming the limiting

distribution can be useful for recovery of the target structures internal to

the organ. Accuracy of localization of the external boundaries of the organ

may be compromised due to the low intensity signals along its interface with

the background structures. Yet, images with relatively low average image

intensity or high σ are not exceptional. These less-convenient, but still typ-

ical circumstances are illustrated in the examples shown in Fig. 2.4. The
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color labels code the range of signal intensity at each image site. The red

and yellow regions represent signals falling outside the convergence range –

with red labels coding for data below SC and yellow labels coding for data

within 3σ above the point of convergence. For both cardiac and non-cardiac

images, the tissues of internal structures are represented by image features

outside the convergence range (labeled as red and yellow regions in the im-

ages). Images (A) - (D) are examples of cardiac MRI. In the last image,

the yellow region close to the center of the image represents the apex of the

heart in its entirety. Image (E) is a brain image while image (F) is an MRA

of carotid arteries. The small blue patches fringed with a red and yellow

border are the arteries to be recovered. In all these cases, the target features

are partially embedded in the low-intensity regions where non-Gaussian-like

noise is active.

In general, many of the target features related to the internal structures

of the organ fall within the convergence range. As a consequence, these

components of the target signal can easily be enhanced using the limiting

distribution of image noise. However, this approximation remains a partial

solution to adaptive enhancement for three important reasons. First, even

under the most favorable circumstance, the interface of the target structures

with its background is usually embedded in low-intensity regions outside the

convergence range. Second, in the immediate periphery of the target organ

there are complex patterns of low intensity structures over a background

where the non-Gaussian-like behavior of Rician noise is most active. As

a consequence, the signatures of the external boundaries of the organ are

obscured and their observability is reduced. Third, under less favorable cir-

cumstances, signal intensity of some internal structures is too low for an
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(A) (B)
Cardiac MRI: σ = 8.22

(C) (D)
Cardiac MRI: σ = 9.06

(E) (F)
Brain MRI : σ = 9.09 Cartoid Arteries MRA: σ = 7.16

Figure 2.4: Signal Intensity Distribution in MR images. Red regions: S ≤
SC . Yellow regions: SC < S ≤ SC + 3σ. Blue regions: S > SC + 3σ.
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approximation model that assumes the limiting distribution to be a valid

model of the image noise active in those regions. Finally, most of the image

background is characterized by a signal of very low intensity. This is also a

region where the non-Gaussian behavior is most active. Given these general

properties of medical MR images, it seems reasonable to use the approxima-

tion distribution to smooth out the noise components of the image signal.

This smoothing step is however not adequate for our purpose. An additional

enhancement operation must follow to clean up the remaining noise, remove

the irrelevant structures of the background and enhance the image contrast.

2.2.2 Signal Properties of Squared Magnitude Representa-

tions

This section seeks a transformation of the image data that provides a better

representation for our purpose. Consider a squared magnitude representa-

tion of the image data generated from the output of an MR scanner. A

squared magnitude image can be generated under the pixel-wise squaring

transformation on a magnitude image: I −→ IS . Since a magnitude image

is generated by a root-sum-square operation on a complex pair of images,

the construction of squared magnitude images is mathematically equivalent

to performing a sum-of-squares operation on a pair of images each with

additive Gaussian noise with mean zero and variance σ2. It is a special

case of a sum-of-squares transformation of Gaussian variates, where the

conditional distribution of IS can be modeled as a noncentral χ
′2 distribu-

tion2.15: f(IS |S, σ) ∼ σ2χ
′2
ν (λ) with two degrees of freedom (ν = 2) and the

2.15The sum of squares of random samples from a Gaussian distribution, i.e.,
νP

i=1

(ui +λi),

where u1 . . . uν ∼ N (0, 1) are independent standard normal random variables, follows
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non-centrality parameter λ = S2

σ2 ; for details, see Gudbjartsson and Patz

[52]; Gregg and Nowak [51]; Nowak [83] and Appendix F. In the spatial

domain, the expected value of the signal intensity is given by2.16

E(IS) = S2 + 2σ2 (2.2.7)

which is biased, departing from the (noise-free) signal S2. As the bias term

is no longer dependent on noise-free signals, a simple correction scheme has

been suggested2.17 for the spatial domain representation:

ĨS = IS − 2σ2, (2.2.8)

where ĨS is the bias-corrected estimate of squared signals, S2. A similar

scheme2.18 can be applied in the wavelet domain.

Given an orthogonal wavelet basis, the squared magnitude image is de-

composed into a coarse scale sub-image and a set of detail representations

at successive scales of increasing resolution:

IS =
∑

µ

SIS

j0,µφ
2D
j0,µ

︸ ︷︷ ︸
+
∑

η

ωIS

η ψη

︸ ︷︷ ︸
, (2.2.9)

= PvI
S + RwI

S (2.2.10)

a central χ
′2
ν (λ) distribution, with ν degrees of freedom and non-centrality parameter

λ =
νP

i=1

λi; for details, see Evans et al. [41]; Johnson et al. [62]; Stuart et al. [106] and

Appendix F.

2.16See Appendix F.

2.17See Gudbjartsson and Patz [52].

2.18See Gregg and Nowak [51] and Nowak [83].
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where SIS and ωIS are the approximation coefficients of the squared mag-

nitude image and the wavelet coefficients respectively. The coarse-scale pro-

jection, PvI
S , of the squared magnitude image onto the approximation space

is the polynomial approximation of the image whereas the detail representa-

tion is the projection, RwI
S , of the residues of the approximation onto the

detail spaces. Given an orthogonal wavelet basis, the expected value of the

wavelet coefficients in the detail sub-images equal the noise-free coefficient

and therefore is unbiased; whereas, the expected value of the scaling coeffi-

cients is biased2.19. Thus, the bias term in its entirety is projected onto the

coarse scale approximation.

A crucial observation for our purpose is made regarding the variance of

surviving noise in the squared image. The variance of χ
′2 noise in a squared

image is given by2.20

varIS |S2, σ = 4σ2S2 + 4σ4 (2.2.11)

As the variance of noise is quadratic in S, signal fluctuations due to image

noise are small over the low-intensity regions but their magnitude will rapidly

increase with signal intensity. This property is illustrated in Fig. 2.5. A

pair of identical synthetic images corrupted by Gaussian noise with zero

mean and a standard deviation (σ = 10) are used to generate a squared

image. The noise-free images are shown in the second row. Shown in the

left column is a binary image with a white circle against a black background,

while on the right is an image with fading intensity, constructed from 256

2.19See Gregg and Nowak [51] and Nowak [83].

2.20See Appendix F.
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Signal Fluctuations Due to Gaussian noise

Noiseless Image

Signal Fluctuations Due to χ2 Noise

Figure 2.5: Signal Fluctuations Due to Noise: A pair of identical synthetic
images corrupted by additive Gaussian noise are used to generate a squared magni-
tude image. The results of two synthetic images are shown: a binary image on the
left and an image with fading intensity on the right. Shown on the first row is the
signal fluctuation caused by the Gaussian noise, on the second row the noise-free
image with the line of reference and on the third row the fluctuation caused by the
noise in the squared magnitude image.
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equi-luminous columns with signal intensity increasing from 0 (i.e., black)

on the far left to 255 (i.e., white) on the far right. As expected, signal

fluctuations due to Gaussian noise (shown in the first row) are random but

self-similar over the entire line of reference. In contrast, the χ
′2 noise in

a squared magnitude image causes signal fluctuations that depend on the

signal intensity, as shown in the bottom row. Over the low-intensity interval

of the reference line, image noise contributes only negligible perturbations

around the noise-free signal. Oscillations of increasingly greater magnitude

may be created outside this interval. The larger the signal intensity is, the

larger the fluctuations that are caused by the image noise.

This result gives rise to the conjecture that the Rician noise outside the

convergence regions is transformed in the construction of squared magni-

tude images into some low-frequency signal oscillation. The construction of

a squared magnitude image does not remove noise, but rather it transforms

noise behavior in a non-linear way. Wavelet representation allows perfect

reconstruction. Signal oscillations are captured somewhere in the hierarchy

of the wavelet decomposition. In the wavelet domain, low-frequency signal

oscillations are captured in the coarse scale representation. According to the

conjecture, image noise of squared magnitude images over the low-intensity

regions does not contribute to the wavelet coefficients in any significant way.

Shown in Fig 2.6 and Fig. 2.7 are the wavelet decompositions of the

squared magnitude representation of the noisy image with a ring and that

with fading intensity. Wavelet coefficients capture signal discontinuities. In

the case of the binary image with a ring, in the absence of any noise, as shown

in Fig. 2.6(A), the significant coefficients represent the silhouette of the ring.
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(A) Decomposition of Noise-free Image

(B) Decomposition of Noisy Image

Figure 2.6: Wavelet Decomposition of the Squared Magnitude Representa-
tion of a Binary (Ring) Image.
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(A) Decomposition of Noise-free Image

(B) Decomposition of Noisy Image

Figure 2.7: Wavelet Decomposition of the Squared Magnitude Representa-
tion of an Image with Fading Intensity.

39



Under the effect of image noise, as shown in Fig. 2.6(A), however, signifi-

cant coefficients cover the entire ring but remain absent or almost absent

in the low-intensity background. The image of fading intensity is created

without abrupt signal transition. As a result, in the absence of noise, there

are no significant wavelet coefficients anywhere in the wavelet domain rep-

resentation. The coarse scale approximation gives back the original image.

On the other hand, the effect of noise in the squared magnitude image is

expressed as a gradual transition of increasingly greater amounts of signif-

icant coefficients over the higher intensity regions (on the left). As in the

case of the binary ring, in all the detail sub-images in Fig 2.7(B), the low in-

tensity regions are characterized by an absence of any significant coefficients.

The foregoing discussion gives rise to an assumption of this report. That

is, apart from bias, the surviving noise causes small perturbations around

the noise-free signal over the low intensity regions. Apart from this noise

effect, the structures in the background may be assumed to be some slow

oscillations over regions prevailed by low intensity signals. From this per-

spective, these coarse-scale oscillations, due to both the surviving noise and

background structures, are similar to the effect of the long-term noise used

in chemometrics to model the background interference (or drifting signals)

arising in the experimental data of analytical chemistry. Noise of this class,

in contrast to the well-known classes used in conventional settings, is charac-

terized by lower frequencies than those of the analyzed signal2.21. This noise

component or drifting signal can be removed by attenuating the approxi-

mation coefficients with experimentally determined factors. The estimated

2.21See Chau et al. [22].
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coefficients S̃ are obtained according the the following scheme:

S̃ = S − γζ (2.2.12)

where ζ is an experimentally determined component attributable to the

drifting signals and γ is the dampening factor which controls the force of

noise suppression. This report will follow a similar path in setting up the

enhancement scheme to solve the problem defined in the foregoing discus-

sion.

2.3 Smoothing-Enhancement (SE) Approach to Adap-

tive Enhancement of MMR images

The SE framework addresses the problem of adaptive enhancement in two

steps – the smoothing (S) step and the enhancement (E) step. The first

step (smoothing) preprocesses the image data in its magnitude representa-

tion to remove the fine scale signal oscillations according to the approxi-

mation model of the noise behavior active in high intensity regions. The

second step implements an adaptive enhancement scheme on the squared

magnitude representation of the preprocessed data to achieve the objectives

of adaptive enhancement. The computational structure of the framework is

illustrated in Fig. 2.1. This section sets out the computational details of the

transformation rules of these two steps.
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2.3.1 Smoothing Step: Attenuation of Fine Scale Signal Os-

cillations due to Gaussian-like Noise

The smoothing step preprocesses image data to attenuate noise using an ap-

proximation model which approximates the noise distribution by its limiting

distribution. Because the limiting distribution is a member of the Gaussian

family, the model allows for many existing enhancement techniques for this

purpose. The choice depends on the requirement of the given application.

A survey of these techniques2.22 is beyond the scope of this section. The

remainder of this section focuses on the basic ideas of the wavelet shrinkage;

these ideas play a significant role in many of these techniques, as well as the

implementation of the smoothing step in the performance evaluation of the

framework, the subject matter of Chapter 3.

Many of the wavelet-based techniques are variants based on the idea of

selective reconstruction2.23. These approaches start with the properties of

wavelet decomposition – namely the properties of localization and energy

compactness2.24 of multiresolution analysis. The wavelet representation is

characterized by a small number of large coefficients exclusively at the lo-

cations of rapid signal (function) oscillations and discontinuities that define

coherent image structures. The presence of noise changes the empirical co-

2.22A brief review is provided in Appendix E.

2.23The idea can be traced back to the first wavelet-based approaches proposed by Weaver
et al. [117] to reducing random noise in MR images. The wavelet shrinkage framework of
signal approximation from a rigorous statistical point of view is developed independently
in Donoho and Johnstone [37] and DeVore et al. [34].

2.24The property of locality refers to the space-scale localization of the structure of the
signal in its wavelet expansion, whereas the property of energy compaction refers to the
energy concentration of wavelet representation of the signal in a sparse number of scale-
location coordinates where signal singularities occur within the support of the wavelet
basis; see Appendix A.
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efficients: a large number of non-zero, but small coefficients that contribute

noise and a few large coefficients that contribute signal2.25. The Gaussian

noise model allows a variety of coefficient selection policies proposed for dif-

ferent applications. Despite its diversity, most of these policies are variants

based on the general idea: assuming that the low energy coefficients rep-

resent noise, the image is reconstructed with only a subset of the largest

coefficients according to a threshold set.

Wavelet shrinkage refers to the reconstruction of noise-free signal (or

function) from the shrunk coefficients, based on the idea that the magni-

tude of wavelet coefficients is related to the measure of smoothness of a

signal (or function)2.26. The key question in this process is the decision

rules which determine the amount of shrinkage for each wavelet coefficient.

The choice of decision rules used in this step depends on the approximation

requirements and the application. The rest of this section covers three fam-

ilies of decision rules used in the implementation of performance evaluation

– namely, the SU, MSE, and SSR decision rules. A more detailed discussion

of these rules and other techniques can be found in Appendix E.

2.3.1.1 SU Decision Rule: Wavelet Shrinkage with the Universal

Threshold

Decision rules of wavelet shrinkage usually comprise of (1) a shrinkage (or

estimation) rule and (2) threshold selection. The classical exemplars of

shrinkage rules with global thresholds are the hard thresholding rule and

2.25See Donoho and Johnstone [37], and Chang et al. [20].

2.26See Vidakovic [111].
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the soft thresholding rule. The ‘keep-and-kill’ procedure leads to a hard

thresholding estimator. Given a threshold λT , the estimator of the noise-

free coefficient is given by

ω̃η

∣∣∣
λT

=

{
ωη if | ωη | > λT

0 if | ωη | ≤ λT
(2.3.1)

On the other hand, the soft thresholding rule reduces noise by attenuating

the wavelet coefficients for all coefficients larger than the threshold. The

coefficient estimator ω̃η

∣∣∣
λT

is given by

ω̃η

∣∣∣
λT

=





ωη − λT if ωη ≥ λT
ωη + λT if ωη ≤ −λT
0 if | ωη | < λT

(2.3.2)

(a) Hard Thresholding (b) Soft Thresholding (c) Semi-soft Shrinkage

Figure 2.8: Shrinkage Functions: The horizontal axis represents an empirical
wavelet coefficient and the vertical axis represents its estimated value after
a shrinkage rule is applied. A diagonal line maps the empirical coefficient to
itself. The distance between the functions and the diagonal line represents
the amount of wavelet shrinkage.

The performance of shrinkage rules depends on the choice of threshold.
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Consider the following threshold selection rule:

λUniv
T = σ

√(
2 lnN

)
, (2.3.3)

where σ is the standard deviation of the Gaussian noise and N is the number

of wavelet domain coefficients. λUniv
T is known as the universal threshold;

see Donoho and Johnstone [37], [38]. If it is assumed that the signal is cor-

rupted by white Gaussian noise, the risk2.27 of the soft threshold rule, given

in Eq. (2.3.2), with a universal threshold, defined in Eq. (2.3.3), approaches

the minimum risk up to a logarithmic factor; this minimum risk would be

attainable only with an oracle that provides the critical information about

which coefficients are close to zero; see Donoho and Johnstone [37, 38]; Mal-

lat [74] and Vidakovic [111]. Moreover, the resulting approximation is no

more rough than the underlying signal and much of the noise is removed

from the observed data, while sharp signal discontinuities remain sharp in

the approximation; see Donoho and Johnstone [37, 38] and Donoho et al.

[39].

2.27 Consider an observation
I = S + ǫ (2.3.4)

where S is the unknown, noise-free signal, and ǫ the additive noise. Consider an approx-
imation (estimator) bS ∈ F , where F is the class of candidate estimates of S . The risk

of approximation (or estimation) is the average loss that will be incurred if bS is used to
approximate the signal S

R(S , bS) = ESL(S , bS). (2.3.5)

A loss function is assumed to be a nonnegative real-value function such as mean-squared-
loss L(S , bS) =‖ bS − S ‖2

L2
; see Korostelev and Tsybakov [69]; Krim et al. [70] and Yang

[129].
The value of noise-free signal S is unknown, and an estimator is sought to approximate the
signal. It is preferable to use an estimator bS with a small value of R(S , bS) for all values of

S ; that is, for any noise-free signal from the signal space, the estimator bS incurs a small
expected loss. By the same token, among the estimators {bS1 . . . bSn}, the estimator bSi is

preferred to bSj , if R(S , bSi) < R(S , bSj), for 1 ≤ j ≤ n. For details, see Barnett [12]; Casella
and Berger [17]; Korostelev and Tsybakov [69]; Stuart et al. [106] and Efromovich [40].
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In practice, the variance σ2 is usually unknown. In this case, the stan-

dard deviation σ can be estimated from the wavelet coefficients at the finest

scale. Assume that most of the signal oscillations captured by the observed

wavelet coefficients at these subbands are noise. The standard deviation σ of

noise may be estimated2.28 using the median absolute deviation2.29(MAD)

of the coefficients at the finest level2.30. Let η̂ be the subset of indices for

the finest level of wavelet expansion, the estimated noise standard deviation

σ̃ =
MAD({ωbη})

0.6745
(2.3.8)

2.3.1.2 MSE Decision Rule: Wavelet Shrinkage with Minimum

Mean Squared Error (MSE)

A mean squared error (MSE) approach2.31 estimates the noise-free com-

ponent of each wavelet coefficient by minimizing the mean squared error

2.28For details, see Donoho [36] and Donoho and Johnstone [37].

2.29 Given a sequence X = {Xi}n
i=1 where for all i and j, 1 ≤ i < j ≤ n,Xi ≤ Xj , Let

eX =

(
X

( n+1

2
)

if n is odd
1
2

`
X( n

2
+X(1+ n

2
)

´
if n is even

(2.3.6)

be the median of X . The median absolute deviation of sequence X is defined as MAD(X ) =
eY, where Y = {Yi = |Xi − eX|}n

i=1.

Now consider a set of N independent Gaussian random variables, Z = {zn} i.i.d.∼
N (0, σ2). Let Φ be the cumulative normal distribution. A robust estimate of the standard
deviation is given by

eσ =
1

Φ−1(0.75)
MAD(Z) (2.3.7)

where Φ−1(0.75) = 0.6745. See Huber [56].

2.30For details, see Mallat [74]; Pizurica [88].

2.31see Gregg and Nowak [51], and Nowak [83].
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(MSE) of estimation of the coefficients. Each coefficient is shrunk toward

zero according to a shrinkage factor2.32:

ω̃η = αηωη. (2.3.9)

The optimal shrinkage factor2.33 in the minimum MSE sense is given by

αη
MSE =

Υω2
η

Υω2
η + var(ωη)

. (2.3.10)

In practice, this optimal shrinkage factor is unknown without the prefect

knowledge of the noise-free component Υωη and the variance var(ωη) of the

empirical coefficient. Gregg and Nowak [51], and Nowak [83] propose an

approximation2.34 of the optimal shrinkage factor:

α̃η
MSE =





ω2
η−var(ωη)

ω2
η

if ω2
η > var(ωη);

0 otherwise.
(2.3.11)

The shrinkage factor given in Eq. (2.3.11), bounded over the interval between

zero and one, attenuates the absolute magnitude of the empirical coefficients

toward zero. The variance of the coefficient can be estimated by τσ2 where

τ ≥ 1 and σ can be estimated from the image background as detailed in

Appendix C.

2.32These factors are called filtering weights in Gregg and Nowak [51], and Nowak [83].

2.33For details, see Appendix E.

2.34For details, see Appendix E.
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2.3.1.3 SSR Decision Rule: Semisoft Shrinkage with Rician based

Thresholds

The estimator of the noise parameter σ plays an important role in both the

SU and the MSE decision rules. While the latter decision rule estimates

the noise parameter σ based on the Rician properties of image noise, the

former adopts the robust estimator of the parameter given in Eq. (2.3.8)

that assumes Gaussian noise in the data. However, in the case of magnitude

MR images, noise captured in the finest scale {ωbη} is a signal-dependent

Rician variable. For this reason, the assumption of Gaussian noise made by

this estimator is violated. The application of the SU decision rule on an

MR image for noise enhancement indeed represents an extreme case where

the Rician nature of image noise is completely ignored. For comparison

purposes, the rest of this section presents an alternative decision rule with

global thresholds that addresses the Rician properties of image noise. The

details can be found in Appendix E. The variance of image noise is signal

dependent, and therefore the assumption that standard deviation is constant

is violated. Given the signal-dependent nature of image noise, it is infeasible

to determine the variance of the noise component of the observed signal at

a particular image site. However, it is possible to estimate the range over

which the variance of image noise may fall. This idea motivates the SSR

decision rule based on semisoft shrinkage.

The semisoft shrinkage rule2.35 is a generalized shrinkage scheme:

2.35For details, see Appendix E and Gao and Bruce [46].
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ω̃η

∣∣∣
λT 1,λT 2

=





0, if ωj,µ ≤ λT 1,

sgn(ωj,µ)
λT 2(|ωj,µ|−λT 1)

λT 2−λT 1
, if λT 1 < ωj,µ ≤ λT 2,

ωj,µ, if ωj,µ < λT 2.

(2.3.12)

where sgn is the signum function2.36.

This scheme reduces to hard thresholding with λT 1 = λT 2 and to soft thresh-

olding with λT 2 = ∞. In general, semi-soft shrinkage does not attenuate

every coefficient, as shown in Fig. 2.8. The distance of a coefficient from

the origin measures its significance. Any coefficient at a distance within one

λT 1 from the origin is shrunk to zero. Conversely, large coefficients with an

absolute magnitude greater than λT 2 from the origin are not shrunk.

As Appendix E shows, noise variance is bounded approximately over the

interval: [
σ

√
2 − π

2
, σ

√
2

]
.

These theoretical bounds motivate the following decision rule referred to as

the SSR decision rule, or SSR rule for short. It is a variant of the semisoft

shrinkage rule defined in Eq. (2.3.12) with the the following threshold selec-

tion rules:

λT k
= σ̂k

√
2 ln N for k = 1, 2. (2.3.14)

2.36The signum function is defined as the following:

sgn(z) =

8
<
:

−1 : z < 0
0 : z = 0
1 : z > 1

(2.3.13)

see Borowski and Borwein [13].
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where

σ̂1 = σ̂

√
2 − π

2
; (2.3.15)

σ̂2 = σ̂
√

2. (2.3.16)

Eq. (2.3.14) can be seen as a modified version of the universal threshold

selection rule in Eq. (2.3.3), but incorporating the theoretical properties of

Rican noise as discussed in the foregoing. The motivation behind this for-

mulation is to compare the performance of this rule and the SU rule – both

of which are shrinkage rules using a global threshold set but that differ in

a significant way with regards to the assumption of noise class. The pa-

rameter σ from Eq. (2.2.1) and Eq. (2.2.3) is in general unknown, but an

accurate estimate, σ̂, can be obtained from the signal-free data in the image

background2.37.

2.3.2 Enhancement Step: Adaptive Coarse Scale Signal En-

hancement

The smoothing step attenuates the noise-component captured in the detail

images according to the approximation model. The image reconstructed

from the coefficients given by this step is called the smoothed image. It

should have the target features over the high SNR regions significantly en-

hanced due to noise suppression. Over the low SNR regions, however, the

approximation model fails to provide a reliable approximation of the data.

Surviving noise, along with other confounding features such as background

structures, remains active over these regions. The discussion in Section 2.2.2

2.37For details see Appendix C.
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suggests that these features may be modeled as coarse-scale signal fluctua-

tions in a squared magnitude image. The tasks of the enhancement step are

not only to remove these signal fluctuations due to surviving confounding

features, but, of equal importance, to enhance image contrast.

A medical image is usually characterized by a number of piece-wise

smoothly varying regions separated by sharp discontinuities. In a multires-

olution analysis, the coarse approximation represents the smooth part of

the image whereas the discontinuities are captured by the wavelet coeffi-

cients. Rapid shifts in intensity across regions contribute to image contrast

essential for feature detection and structure finding. In the wavelet domain,

these shifts contribute to the energy in the detail levels of representation;

see Appendix A. Enhancement of the contrast can therefore be achieved

by amplifying these intensity gradients. One way to accomplish this is to

reduce the magnitude of the smooth parts while preserving the energy in

the oscillating content captured in the detail spaces. This idea is illustrated

in Fig. 2.9 with a 1D example without loss of generality.

In order to suppress background structures as well as remaining noise in

the low-signal intensity proximity of the heart, the enhancement scheme in

this step is necessarily adaptive to the signal intensity. The adaptive factor

which controls the amount of magnitude to be reduced should be a contin-

uous function of signal intensity to avoid creating spurious gradients.

Consider the following operator parameterized by a threshold T on an
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(A) (B) (C)

Figure 2.9: Contrast Improvement by Means of Gradient Amplification: A
1D Illustration of the Concept. (A) shows a signal as a superimposition
of a smooth part and a high frequency component. A reduction of the
average magnitude of the smooth part in (B) results in a higher gradient
difference and consequently better contrast between the two components in
(C). Multiresolution analysis of the signal provides a means to achieve this
effect.

image I:

ΦI =





√
I−T
I+T (I + T ) if T > 0

I if T = 0.
(2.3.17)

The square root term is an adaptive factor. Fig 2.10 illustrates the general

behavior of the operator. The operator returns the original image, ΦI = I,

with a threshold T = 0. Given a positive threshold, i.e., T > 0, the operator

reduces the signal intensity of I. The numerator of the adaptive factor is

reduced to zero when I = T and to a negative value over the regions where

I < T . Due to the non-linearity of the square root operator, the adaptive

factor rises rapidly for signal intensities that exceed the threshold and tends

to 1 as I ≫ T .

Let (ΦI)S denote the squared image of ΦI and IS the squared image of

I. The adaptive scheme given by Eq. (2.3.17) under the non-linear trans-
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Figure 2.10: Behavior of Operator Φ on Signal I: Each line in the diagram
represents the real part of ΦI associated with a threshold τ set from 0 to
120 in a step of 10. The value of T can be recovered from the intersection
with the horizontal axis. The dashed line represents ΦI = I, i.e., T = 0
where the original signals I are returned.

formation becomes

(ΦI)S = IS − T 2 for T > 0 (2.3.18)

In the wavelet domain, (ΦI)S is projected onto the approximation and detail

spaces:

(ΦI)S =
∑

µ

S(ΦI)S

j0,µ φ2D
j0,µ

︸ ︷︷ ︸
+
∑

η

ω(ΦI)S

η ψη

︸ ︷︷ ︸
(2.3.19)

= Pv(ΦI)
S + Rw(ΦI)S (2.3.20)

where S(ΦI)S and ω(ΦI)S are the approximation coefficients and the wavelet

coefficients of (ΦI)S respectively. Raising the data to a higher power ampli-

fies the image oscillation; consequently, image features in a squared image are
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projected onto a subspace at the scale at least as high as the corresponding

scale in the decomposition of the magnitude image. The wavelet represen-

tation of (ΦI)S preserves the image features in the detail spaces in the sense

that those features in RwΦI stay in the detail spaces in the decomposition

of the squared image Rw(ΦI)S . Because the approximation coefficients rep-

resent the average intensity in their local neighborhoods within the compact

support, the “micro-features” of an image can be preserved and enhanced

by reducing the average intensity of the image while preserving the integrity

of the details.

The problem with the enhancement step may be solved by applying

the signal adaptive operator on only the coarse scale approximation of the

image without altering the detail representation of the squared image. This

approach has been emerging from various threads of the foregoing analysis

leading to the following working assumptions:

1. Both the surviving noise and the background structures can be mod-
eled as some coarse scale (or long term) oscillations. From the per-
spective of adaptive enhancement, both are seen as noise captured in
the coarse scale representation.

2. Image contrast can be enhanced by reducing the average intensity in
the local neighborhoods of the coefficients.

Consider applying the enhancement operator specified in Eq. (2.3.18) to

S(ΦI)S , the set of approximation coefficients, exclusively. The resulting rep-

resentation yields the following modified (squared) image:

ĨS = Pv(ΦI)
S + RwI

S . (2.3.21)

The first term PvΦI
S =

∑
µ
SΦIS

j0,µ φ
2D
j0,µ is the projection of ΦIS on the ap-

proximation space. In an orthonormal wavelet system, each approximation
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coefficient in a J-scale decomposition can be expressed using Eq. (2.3.18)

as follows:

S(ΦI)S

J,µ =

〈
(ΦI)S , φ2D

J,µ

〉
(2.3.22)

=
∑

µ

(IS − T 2)φ2D
J,µ (2.3.23)

=
∑

µ

ISφ2D
j0,µ −

∑

µ

T 2φ2D
J,µ. (2.3.24)

= SIS

J,µ −
∑

µ

T 2φ2D
J,µ, (2.3.25)

where SIS
· is the corresponding approximation coefficient of the squared

image. Using the fact that
∑
µ
φJ,µ = 2J for a J-scale decomposition2.38, Eq.

(2.3.25) is therefore

S(ΦI)S

J,µ = SIS
J,µ − 2JT 2 (2.3.26)

Define the attenuation factor

τ = 2JT 2, (2.3.27)

For every approximation coefficient SIS
J,µ, the attenuated coefficient is

S(ΦI)S

J,µ = SIS
J,µ − τ (2.3.28)

The attenuation operation given in Eq. (2.3.28) reduces the average intensity

over the local neighborhoods in the squared smoothed image. The attenu-

ated approximation is re-integrated in the synthesis step with the details at

each scale to yield an enhanced squared image ĨS , according to Eq. (2.3.21).

2.38See Burrus et al. [15].
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Attenuation applied to a squared coarse-scale approximation achieves in-

tensity adaptive dampening of signal oscillation. As a result, the signal

energy over high intensity regions is preserved, whereas the low intensity

oscillations are attenuated. The non-positive parts of the modified image

represent those image features being suppressed, such as those features in

the very low intensity regions under the full force of attenuation. The en-

hanced magnitude image is therefore obtained by the following thresholding

operation:

Ise =

√
ĨS1{fIS>0} (2.3.29)

The enhanced image depends on the threshold set for the adaptive en-

hancement rule. As mentioned, the scheme adaptively reduces signal inten-

sity of the coarse scale approximation over low-intensity regions. With a

threshold set at a level which discriminates these structures and the bound-

aries of the heart, the adaptive scheme suppresses most of these structures

in the proximity of the heart. This critical range is a characteristic of MRI

scanning. It does not change significantly over a temporal sequence.

The remaining noise after the smoothing step contributes to some small

fluctuations in the approximation and wavelet coefficients of the squared

magnitude image. A study2.39 of the distribution of the scaling function

coefficients of squared magnitude images suggests that a threshold be set

at (2J+1 + 6)σ2 to discriminate between coefficients with the support of

the scaling functions in the signal regions and those in the Rayleigh (low-

intensity) regions. To suppress the spurious fluctuations in the coefficients

over low intensity regions, we set a threshold, which should be proportional

2.39See Wu et al. [127].

56



to the variance of the noise, at or above this level. Consider a threshold set

to ζσ. Where ζ =
√

2, attenuation factor τn = 2J+1σ2 is equivalent to the

threshold set for removing bias from the approximation coefficients2.40. For

most practical choices of J , setting ζ to two is adequate to discriminate be-

tween the approximation coefficients with support inside signal-free regions

and those with support over signal regions of the image. A higher ζ raises

the thresholding level to offset larger fluctuations in the coefficients. Our

experimental findings indicate that the background noise can be more thor-

oughly cleaned up with ζ set to three. In general, the result is not sensitive

to minor variations in the range between two and five.

2.4 Summary

This chapter, with the details covered in the accompanying appendices,

presents an analysis of the problem of adaptive enhancement of magni-

tude MR images, providing the essential observations and hypotheses that

guide the computational mechanism developed to achieve the objectives of

the SE framework. Rician noise deviates in behavior from Gaussian noise

over low signal intensity ranges, but, as the SNR increases, its distribution

converges to a limiting distribution, which belongs to the Gaussian family.

A meaningful distinction can be made between image areas of high signal

intensity and those of low signal intensity regions in terms of the signal be-

havior of confounding features in these areas. Over high signal intensity

regions, signal fluctuations due to noise can be attenuated using Gaussian-

based enhancement techniques, whereas the confounding structures in the

low intensity regions are captured in the coarse scale approximation of the

2.40This is the wavelet domain equivalence of the bias correction scheme given in
Eq. (2.2.8). See Gregg and Nowak [51]; Nowak [83].
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squared representation in the wavelet domain. Moreover image contrast can

be significantly enhanced by attenuating the average signal intensity of the

smoothly varying component of the signal while preserving the integrity of

its fine scale structures. In the light of this observation, the solution to

the problem of adaptive enhancement is necessarily adaptive to both signal

intensity and image structures. An orthogonal wavelet system provides a

convenient and efficient framework of signal analysis, transformation, and

synthesis to achieve the objectives of adaptive enhancement.

The wavelet-based framework, called the SE framework, summarized in

Fig. 2.1, achieves adaptive enhancement of an MR image in two steps, each

of which applies the basic procedures of analysis−transformation−synthesis

to different image representations. The smoothing step attenuates the high-

frequency fluctuations due to Gaussian-like noise in a magnitude image.

Noise reduction techniques based on a Gaussian noise model can be adopted

for this purpose; the choice of technique is not dictated by the framework

but rather by the requirements that arise in the application domain. For

a performance evaluation of the framework, three decision rules of wavelet

shrinkage, namely the SU, MSE, and SSR rules, are implemented in this

study. The enhancement step applies the adaptive enhancement procedures

on the squared smoothed signal to suppress the confounding structures in the

coarse scale approximation, as well as to enhance image contrast. The trans-

formation rule described in Eq. (2.3.28) and the synthesis rule in Eq. (2.3.29)

in this step achieve the essential transformation required for the adaptive

enhancement of magnitude MR images.

58



Chapter 3

Experimental Results

3.1 Methodology of Performance Evaluation

This chapter provides experimental evidence for the performance of the

smoothing-enhancement (SE) scheme applied to magnitude MR images. The

aspects of performance under scrutiny should be closely related to the ob-

jectives of adaptive enhancement, that is, (1) reduction of image noise; (2)

attenuation of background structures in the immediate periphery of the tar-

get organ; (3) preservation of target features; and (4) enhancement of image

contrast. Meaningful performance evaluation3.1 of the algorithm can be ob-

tained through a comparison of its output with (1) the original input and

(2) with the output of other enhancement procedures in both quantitative

and qualitative terms.

To address the questions raised in this study, seven different enhance-

3.1Another method is to compare the results of the test algorithms with some “gold
standard” or “the ground truth”. In the case of medical images of animal/human tissues
and organs, the “ground truth” is usually defined by experts of the field. Due to the
unavailability of expert-defined data at the time of experiments, this research does not
follow this avenue for the test cases that involve medical images.
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ment procedures falling into three main groups are applied to a set of

test images for comparative evaluation of performance. Three SE proce-

Table 3.1: Enhancement Procedures Implemented for Performance Evalua-
tion

* Noise model used for σ estimation.

dures, collectively referred to as the SE-group, shown in the first row in

Table 3.1, are implemented. They follow the two-step enhancement scheme

(see Fig. 2.1) but differ in the wavelet-based smoothing techniques used in

the first step. (1) The SE-MSE procedure filters the wavelet coefficients of

signals with an MSE shrinkage rule as defined in Eq. (2.3.9) with the shrink-

age factor given by Eq. (2.3.11). (2) The SE-SSR procedure employs the

semisoft shrinkage rule given in Eq.(2.3.12) with thresholds λT 1
and λT 2

as defined in Eq. (2.3.14)-Eq. (2.3.16). Both of these shrinkage rules use a

Rician-based estimator3.2 of the image noise parameter σ. (3) The SE-SU

3.2For details, See Appendix C.
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implements the wavelet shrinkage rule3.3 with the universal threshold as de-

fined in Eq. (2.3.3). The threshold is based on the MAD estimator of σ as

given in Eq. (2.3.8) under the assumption of Gaussian noise. The inclusion

of the last algorithm provides some empirical evidence for the performance of

an algorithm which completely ignores the Rician nature of MR image noise.

A major focus of this study is the contribution of the enhancement step

to the adaptive enhancement of a magnitude MRI. The S-group of proce-

dures implements only the smoothing step without further enhancement,

that is, the second step of the SE framework is turned off. The S-SU al-

gorithm implements the wavelet shrinkage rule with a universal threshold

and the S-MSE algorithm with the MSE shrinkage rule. As its counterpart

in the SE-group, the S-SU algorithm represents the smoothing procedure

working under the assumption of Gaussian noise.

The performance of the SE-procedures is also compared with that of spa-

tial domain enhancement algorithms. Two widely-employed enhancement

algorithms of this class, Gaussian filtering and anisotropic diffusion filter-

ing, are chosen, constituting the third group of procedures – collectively

referred to as the Diffusion Group. Gaussian filtering3.4 smooths signal

oscillations through linear diffusion of signal intensity with a Gaussian ker-

nel. This is a classical smoothing technique widely used explicitly for image

enhancement or implicitly embedded in higher-level processing procedures.

3.3Both hard and soft thresholding rules are used in the experiments. Since the results
are not sensitive to the choice of the rules, only the results from the implementation using
the soft thresholding rules are reported.

3.4For details, see Trucco and Verri [108].
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To better preserve coherent features, the second algorithm3.5 employs an

anisotropic diffusion kernel to guide the diffusion process so that the full

force of smoothing is directed along the edges and is kept from crossing the

intensity gradients of image features.

The output images of these procedures are compared according to both

quantitative and qualitative criteria with respect to the objectives of the

problem of adaptive enhancement. Quantitatively, the output images are

evaluated with respect to (1) contrast enhancement and (2) the fidelity

(goodness) of approximation. Contrast enhancement refers to the improve-

ment of image contrast resulting from an enhancement procedure applied

to an image. Visual contrast is defined as the ratio max−min
max +min where max is

the maximum of the grading intensity and min the minimum of two testing

gratings; see Pratt [94]. Let F be the foreground and correspondingly B the

background of a region of interest – a region selected for comparison. The

contrast of an image Ξ is measured by

CΞ =
L̄Ξ,F − L̄Ξ,B
L̄Ξ,F + L̄Ξ,B

(3.1.1)

where L̄Ξ,Ω is the average pixel intensity of the region Ω. Given the input Iin

and the output Iout of an enhancement procedure, enhancement improve-

ment resulting from an operation may be measured in terms of a contrast

improvement ratio (CIR) defined as follows:

CIR =
Cout − Cin

Cout
× 100%, (3.1.2)

3.5For the details on anisotropic diffusion filtering, see Weickert [118, 119].
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where Cin measures the image contrast of an input image Iin and Cout that

of the corresponding output Iout. This is a measurement metric used in the

literature.

Implicit in Eq. (3.1.1) and Eq. (3.1.2) is the assumption of comparison

that the operation preserves the average image intensity of the image over

the region of interest. The measurement may be misleading when this as-

sumption does not hold. In an extreme case, a reduction in the average

signal intensity of an image may create a spurious contrast improvement

due to a smaller normalization factor L̄.,F + L̄.,B in the denominator of

Eq. (3.1.1) without any significant change in the intensity difference across

the boundary of the foreground objects. In the case where the scaling coeffi-

cients are attenuated in any fashion such as bias correction, CIR as defined

in Eq (3.1.1) - Eq. (3.1.2) is biased in favor of the output. To correct

this bias, an alternative measurement metric is employed – called adjusted

contrast measurement where both input and output images use the same

normalization factor:

Cadj

Ξ =
L̄Ξ,F − L̄Ξ,B
L̄in,F + L̄in,B

Ξ ∈ {in, out} (3.1.3)

and correspondingly the adjusted contrast improvement ratio

CIRadj

=
Cadj

out − Cadj

in

Cadj

out

× 100%, (3.1.4)

Both CIR and CIR
adj

are reported. The interpretation of the empirical

findings primarily focuses upon the latter metric. The former, however, is
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useful as a reference for comparison since previous research3.6 uses this met-

ric to study performance.

Both CIR and CIR
adj

measure the improvement in terms of the differ-

ence in image contrast between images. Note that the term “improvement”

in this context does not necessarily imply that the contrast of the output

image is better than that of the input image. As summarized in the fol-

lowing table, a negative value indicates a worsened contrast in the output

image, and zero improvement indicates no change.

Contrast of output
relative to input

Better No Change Worse

CIR ; CIR
adj

> 0 0 < 0

Let IS be the noise-free image. The goodness of approximation is mea-

sured in terms of two metrics: the absolute error measurement with respect

to the l1-norm Pratt [94]

∥∥IS − Iout

∥∥
l1

=
1

N

∑
|IS − Iout

∣∣, (3.1.5)

where N is the data size, and the Signal-to-Noise Ratio (SNR) with respect

to the l2-norm Pratt [94]

SNR = −10 log(ξl2 ) where ξ
l2

=

∑ |IS − Iout|2∑ |IS |2
(3.1.6)

According to Eq. (3.1.5) and Eq. (3.1.6), errors of approximation are mea-

3.6For example, Gregg and Nowak [51] and Nowak [83].
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sured with respect to the noise-free signal IS which is in general an unknown

quality of a real cardiac image. Instead, synthetic images are used to eval-

uate this aspect of performance3.7.

Qualitatively, the output image may be evaluated by human inspection

with respect to the major performance criteria: (1) attenuation of noise;

(2) preservation of the target structures; and (3) reduction of background

structures. For this purpose, three representations (or views) of a set of im-

age data, either an input image or an output of an enhancement procedure,

are presented to make these image qualities discernible. Fig. 3.1 shows an

example for a cardiac image. Referred to as the ‘data view’ in (A) is an

(A) Data View (B) Contrast Adjusted View (C) Edge Map

Figure 3.1: Image Representations for Performance Evaluation.

image obtained from the image acquisition processes (in the case of input)

or from the enhancement procedures (in the case of output) without any fur-

ther processing. With this representation, many features visible to computer

algorithms, including noise, become indiscernible to a human viewer; thus,

3.7To isolate errors of approximation from the enhancement improvement, the output of
the SE-group is adjusted for the intensity shift that contributes to the enhancement mea-
surement. This intensity shift is computed from the output resulting from the application
of the enhancement step to the signal-free image. This adjustment is not necessary for
the output of other groups of procedures which do not change the average intensity of the
image.
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this view does not facilitate judgment on the difference in quality between

two images. To illustrate the problem, consider the seemingly homogeneous

black region at the top and the regions on either side of image (A) in Fig. 3.1.

Unlike the signal-free background at the top, the dark regions on both sides

are not part of the image. This difference is indiscernible since image noise is

invisible. Contrast adjustment, such as histogram equalization3.8, is applied

to the data view to produces a ‘contrast adjusted image’ or ‘adjusted image’

for short – as illustrated in image (B) of Fig. 3.1. This image provides a

better view of image features such image noise, the texture of organs and the

background structures behind the heart in the thoracic cavity. Illustrated

in image (C) of the figure is a map of edges superimposed on the data view

of the input image. This map represents the structures (including spurious

ones) detectable by edge operators based on the zero crossings of an edge

Laplacian3.9 of image data.

3.2 Performance Evaluation

The test algorithms are run on both synthetic images and medical images.

The evaluation metrics are computed from both the input and output of the

test algorithms. In the case of medical images, a contrast adjusted image

and an edge map are also generated for both the input and output of the

test algorithms. In order not to distract attention from the discussion of

major findings, these images are presented in Part II of the appendix.

3.8For details, see Pratt [94], and Watt and Policarpo [116].

3.9For details, see Pratt [94].
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3.2.1 Synthetic Images

Each synthetic image used in the experiments is a magnitude image con-

structed from a pair of identical (noise-free) images corrupted by Gaussian

noise with zero mean and identical variance across images. As shown in

Figure 3.2: Noise-free Image with Region Indices.

Fig. 3.2, the noise-free image is a piece-wise step function in the form of

concentric rings, each with homogeneous signal intensity. To facilitate dis-

cussion, the homogeneous regions of the image are numbered in increasing

order from the center of the concentric rings to the background of the image

as shown in Fig. 3.2. This is designed to simulate the essential parts of a

CMR image, (a) region 1 represents the region inside a heart chamber; (b)

region 2 the heart wall; (c) region 3 the thoracic cavity; (d) region 4 the

thoracic wall; and (e) region 5 the background outside the human body. A

sequence of experiments is carried out on noisy input generated with differ-

ent realizations of Gaussian noise with different values of σ selected from
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Data Views Contrast Adjusted Views

Magnitude Input Image Corrupted by Noise (σ = 10)

Figure 3.3: Synthetic Image: A Specimen of Noisy Input.

the reference range3.10. An example of noisy input is shown in Fig. 3.3.

First, fifty noisy input images are generated with noise parameter σ = 10

for performance evaluation. Consider the improvement on image contrast.

The findings are consistent across different regions selected from various

parts of the images for comparison. The findings shown in Fig. 3.4 result

from experiments using a region across Ring 1 and Ring 2, a region of ob-

vious significance since its background represents the heart wall and the

foreground the cardiac chamber. The image in Fig. 3.4(A) is an example of

a noisy input image superimposed with the selected region. The diagrams

on the right of the figure display the performance of the algorithms with

respect to the performance metrics; each bar represents the range of mea-

surement obtained from fifty repeated trials, bounded at the top and bottom

3.10The reference range is between 3 and 10; for details, see Appendix C.
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(A) (B)

(C)

Figure 3.4: Synthetic Image with Noise (σ = 10). (A) The region of in-
terest (ROI) selected for comparison, (B) Contrast improvement ratio CIR

and (C) Adjusted contrast Improvement ratio CIR
adj

. The height of the
bars represents the distance between the maximum and minimum of the
measurement.
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respectively by the maximum and minimum contrast improvement ratio.

Significant differences are observed between SE-group algorithms and

the other groups of algorithms. All SE-procedures provide significant (posi-

tive) improvement in the contrast over those without the enhancement step.

Signal smoothing in the other groups, however, reduces noise only at the ex-

pense of image contrast. The negative ratios attained by both the diffusion

and S-groups attest to this trade-off. The intra-group difference indicates

that the anisotropic diffusion filtering and MSE filtering provide the best

results in their respective groups.

Similar inter-group differences are observed in approximation error with

respect to the l1 norm between the SE-group and the other two groups.

The procedures in the first group, as shown in Fig. 3.5(A), produce much

lower absolute error than those in the other groups. It is however the per-

formance comparison in terms of signal-to-noise ratios with respect to the

l2-norm that provides informative evidence about the role of the Rician

noise model in adaptive enhancement. The SE-MSE and SE-SSR procedure

out-perform all the other algorithms whereas the output from the SE-SU

algorithm achieves the lowest SNR. Unlike the MSE and SSR scheme, the

SU scheme completely ignores the stochastic properties of Rician noise. The

threshold based on the median of absolute deviation (MAD) estimate of σ

leads to suboptimal shrinkage of coefficients, causing a higher discrepancy

between the smoothed image and the noise-free signal.

The foregoing results represent the general pattern that holds for a broad

spectrum of noise with σ ranging from 3 - 10. Fig. G.1 and Fig. G.2 in
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(A)

(B)

Figure 3.5: Synthetic Image with Noise (σ = 10) : Absolute Error with
respect to the l1 norm and SNR with respect to the l2 norm.
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Part II of the appendix summarize the results of experiments using noise

with different values of σ. The SE algorithms stand out as the only group

that achieves significant improvement in image contrast. Estimation errors

increase with the noise parameter σ. In terms of the l1-norm, the absolute

error of the SE-group is significantly lower than the error of the other groups.

The inter-group difference from these other groups widens as σ is increased.

Over the whole range, the SE-MSE and SE-SSR scheme achieve a higher

SNR than the other algorithms.

3.2.2 Clinical Magnitude MR images

Different sequences of medical images3.11 are used for performance evalua-

tion. The results are consistent over all test cases. This section presents

the findings from a subset of test cases to highlight the important aspects of

the comparative performance of the algorithms. Summarized in Table 3.2

Selected Test Cases Parameters Associated Output Figures
ID Type σ T in Part II of the Appendix

SRS0000-10 Cardiac 5.85 30 Fig. H.1 – Fig. H.3
SRS0000-70 Cardiac 5.85 35 Fig. H.4 – Fig. H.6
Eman Cardiac 8.70 26 Fig. H.10 – Fig. H.12
SRS0006-24 Cardiac 4.21 50 Fig. H.13 – Fig. H.15
BG-3 Brain 8.80 44 Fig. H.16 – Fig. H.18
CA-2 Cardiovascular 7.34 51 Fig. H.19 – Fig. H.21

Table 3.2: Selected Test Cases for Performance Evaluation

is a set of six test cases selected for discussion. The first four test cases

are cardiac images from three different sequences. The first two cases se-

3.11The cardiac and the brain data sets, acquired using a GE Medical Systems Genesis
Signa MRI system, with all the information about the identities of the patents removed,
were provided by the Hospital for Sick Children in Toronto.
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lected from the SRS0000 sequence represent two cross-sections of the heart:

SRS0000-10 captures the upper section (toward the base) of the heart and

SRS0000-70 the middle section (at the level of the ventricles). The Eman

sequence and SRS0006 sequence represent two extreme cases. Among all the

test image sequences, the Eman sequence is characterized by its low average

signal intensity with the highest noise parameter σ whereas the SRS0006

sequence consists of images with high mean signal intensity and relatively

low σ. While the test images from the SRS0000 sequence are captured at

the beginning of systole (contraction phase), the other two are the snapshots

in the diastole (relaxing phase) of the cardiac cycle. To show the applica-

bility of the scheme to other classes of medical MR images, this section also

includes two non-cardiac images: BG-3 is an MRI scan of a brain and CA-2,

an MRA3.12 image of carotid arteries, is a cross-section of a neck.

Test Cases Selected Regions Reference Figures

SRS0000-10 Heart: atria, aortic root, & arteries Fig. 3.6
SRS0000-70 Left ventricle Fig. 3.7
Eman Heart: ventricles with papillary muscles Fig. 3.8
SRS0006-24 Heart: atria, aortic root, & arteries Fig. 3.9
BG-3 Superior colliculus Fig. 3.10
CA-2 Carotid artery Fig. 3.11

Table 3.3: Performance Evaluation: Improvement in Image Contrast.

As previously mentioned, improvement in image contrast is measured

in terms of two metrics, namely, CIR and CIRadj , over selected regions of

3.12Magnetic resonance angiography (MRA) is a branch of MRI technology that provides
detailed images of blood vessels. It provides an important diagnostic tool for detection
and diagnosis of heart disorder, stroke and blood vessel diseases.
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interest. Table 3.3 lists the regions of interests and the output reference

figures of the test cases. Evaluation over other regions provides similar and

consistent results. Each of the reference figures consists of four parts. The

configuration of sub-figures on the left shows the region of interest in the

data view in part (A) and the foreground and background partition created

manually over the window of selection. The foreground and background of

the image are displayed in part (B) and part (C) respectively in each fig-

ure. To allow easy interpretation, the foreground of the image in part (B) is

superimposed over a completely “blacked-out” background. Similarly, the

foreground is set to white in part (C) to reveal the background of the image.

Figure 3.6: Cardiac Image: SRS0000-10. (A) region of interest; (B) fore-
ground partition; (C) background partition; and (D) contrast improvement
comparison.

Part (D) on the right shows the results of the performance evaluation

with respect to the improvement of image contrast. Both CIR (the gray

bars) and CIRadj (the black bars) are reported. Scanning from right to left,

one can see the improvement in the performance of the algorithms: the three
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Figure 3.7: Cardiac Image: SRS0000-70. (A) region of interest; (B) fore-
ground partition; (C) background partition; and (D) contrast improvement
comparison.

Figure 3.8: Cardiac Image: Eman-83. (A) region of interest; (B) foreground
partition; (C) background partition; and (D) contrast improvement compar-
ison.
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Figure 3.9: Cardiac Image: SRS0006-24. (A) region of interest; (B) fore-
ground background partition; (C) background partition and (D) contrast
improvement comparison.

algorithms on the right, namely, the SE-SSR, the SE-MSE, and the SE-SU

algorithm, are the SE-group, the next two algorithms are the S-group, and

the two on the left are spatial-domain diffusion-based algorithms, namely

Gaussian and anisotropic diffusion filtering. Qualitatively, CIR and CIRadj

agree on the comparative performance of the algorithms. Algorithms in the

SE-group are the only ones capable of generating images with better im-

age contrast over the corresponding input image. The other groups remove

noise at the expense of image contrast. In general, wavelet-based algorithms

show better performance than the spatial domain algorithms in spite of the

fact that anisotropic diffusion filtering adapts to image structure to preserve

essential signal discontinuities.

Differences in performance are also evident from the qualitative evalu-

ation of the output image3.13 of the algorithms. The reference figures are

3.13The input and output images are shown in Part II of the appendix.
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Figure 3.10: Brain Image: BG-3. (A) region of interest; (B) foreground
partition; (C) background partition; and (D) contrast improvement com-
parison.

listed in Table 3.2. The SE-group by virtue of its enhancement scheme is

capable of removing much of the noise and low-intensity features of the im-

ages. Fig. 3.12 provides an example. To highlight the cross group difference

in performance, the figure shows the contrast adjusted view and the edge

map of the output of representative algorithms from each group.

Consider the bottom row (C) of images: both views attest to the effi-

cacy of the SE-group in removing most of the low-intensity features around

the heart and outside the body. In contrast, a substantial portion of these

features survive the smoothing processes in the other two groups. This ob-

servation represents a general difference in the capability of enhancement of

the target organ across groups, a difference that is found in all test cases in

the experiments (See Part II of the appendix.)
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Figure 3.11: Cardiovascular Image: Carotid Arteries 2. (A) region of inter-
est; (B) foreground partition; (C) background partition; and (D) contrast
improvement comparison.

Non-cardiac images are selected to demonstrate the applicability of the

enhancement framework. CA-2 is a cross-section of a human neck. Carotid

arteries constitute the target organs of the cardiovascular MR image. There

are four carotid arteries (Fig. 3.13), one pair on each side of the neck, that

deliver oxygen carrying blood from the heart to the head and the brain.

These carotid arteries are represented by the high-intensity circular objects

in a very noisy background. It can be easily observed from the contrast

adjusted images in Fig. H.19 - Fig. H.21 in Appendix II that the arteries

are embedded and concealed in the background features of the neck. All

but the SE-group fail to enhance the image in any significant way. For a

quick reference, Fig. 3.14 shows the input and output images, one from each

enhancement scheme group. The arteries are much enhanced by the SE-

SSR scheme (the output of which is shown in Part (D) of the figure) which

removes most of the background structures (also compare the edge maps in
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Contrast Adjusted Views Edge Map

(A) Anisotropic Diffusion Filtering

(B) S-MSE Procedure

(C) SE-MSE Procedure

Figure 3.12: Cardiac Image: Eman-70. Comparative Performance.
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Figure 3.13: Carotid Arteries

Appendix II.)

One major motivation behind the computational framework of adaptive

enhancement is the preservation of target structures – in the context of clini-

cal diagnosis, that means anatomical structures of target organs. Techniques

based on wavelet analysis and those based on (anisotropic) diffusion repre-

sent two of the major approaches that aim at signal recovery with minimum

loss of relevant feature information. Both the SE-MSE and SE-SSR scheme

provide the best approximation to the noise-free synthetic images in terms

of error measures with respect to the l1 and the l2 norms. The two examples

shown in Fig. 3.15 and Fig. 3.16 illustrate this quantitative difference in the

quality of the enhanced images generated by the test algorithms. The ‘R’

and ‘L’ at the bottom of BG-3 are marked by the scanner to indicate the

orientation of the image. In a sense, each of them is comprised of salient and

coherent structures of high signal intensity against a signal-free but noisy

background. It is natural to expect that the enhancement scheme would
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(A) Input Image (B) Anisotropic Diffusion Filtering

(C) S-MSE Procedure (D) SE-SSR Procedure

Figure 3.14: Cardiovascular Image: Carotid Arteries 2. Given data from
input and output images.

preserve these structures. In this case, as shown in Fig. 3.15, wavelet-based

schemes preserve these characters in an obviously much better way than

their diffusion-based counterparts. While the markers stay sharp in the out-

put image of schemes in the S-group and the SE-group (as shown in Part

(C) and (D) of the figure), the diffusion-based operations blur the marker

significantly as shown in Part (B) of the figure. Comparing the different

views of the outputs presented in Appendix II, it is easy to see that the SE-

group performs much better than the other group in removing noise from

the image, enhancing the image contrast and preserving coherent structures
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(A) Input Image (B) Anisotropic Diffusion Filtering

S-MSE Procedure (D) SE-SSR Procedure

Figure 3.15: Brain Image: BG-3. Input and output images (contrast ad-
justed).
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(A) Input Image (B) Anisotropic Diffusion Filtering

(C) S-MSE Procedure (D) SE-SSR Procedure

Figure 3.16: Cardiac Image: SRS0006-24. Given data of input and output
images. The arrow in (A) points to a valve of the heart.

of the image.

Fig. 3.16 presents the target region of interest in the input and outputs

image of SRS0006-24. Image contrast of the target structures of the heart is

much improved by the SE-SSR scheme (part (D)) over the input image (part

(A)) as well as the output of the scheme in other groups. The image captures

part of a heart valve (indicated by the arrow in part (A) of the figure) in

motion. The structure is preserved under the S-MSE scheme (Part (C))

and the SE-SSR scheme (Part (D)). The latter indeed achieves some slight
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enhancement of the structure over the input data. In contrast, the valve is

almost entirely smoothed out by the anisotropic diffusion filter (Part (B)).

These examples provide telling evidence as to how well different schemes

retain important information of coherent structures.

3.3 Summary

This chapter presents the major findings of comparative evaluation of the

enhancement schemes. A set of algorithms in three groups is applied to

gain some insight into the performance of the framework proposed in this

research. All the experimental findings agree with the hypothesis of this re-

port that the SE-framework of adaptive enhancement achieves the combined

effect on the input image: that is, it reduces both image noise and other

confounding features outside the organs of interest, preserves the integrity of

target structures and enhances their image contrast. For the algorithms in

other test groups, this task set imposes conflicting objectives, one can only

be achieved at the expense of the others. The non-cardiac test cases demon-

strate that the scope of applicability of the framework is not restricted to

this special class of images that motivated it.

84



Chapter 4

Conclusion

4.1 Discussion

This report presents a computational framework of adaptive enhancement of

magnitude MR images for clinical diagnosis. It seeks an algorithmic solution

which is capable of reducing image noise and low-intensity structures that

obscure relevant information about the anatomical structures of the organ

and to enhance image contrast of the target structures. Empirical evalua-

tion of performance produces strong support for the theoretical hypothesis

concerning the effect of the scheme on input data. In both quantitative

and qualitative terms, the adaptive enhancement schemes implemented in

the SE-group are capable of producing a significantly enhanced image in

comparison to the output of other schemes. Image noise and low-intensity

structures in the proximity of target organs are significantly attenuated and

image contrast is enhanced. Turning off the enhancement step fails to pro-

duce this effect; thereby strongly supporting the major hypothesis of this

report that the improvement of image quality is unquestionably a unique

contribution of the adaptive strategy of the framework.
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Underlying the enhanced image quality is the synergy of two kinds of

adaptivity built into the enhancement scheme. The signal dependence of

image noise and its interaction with low intensity structures necessitate the

adaptivity of the first kind, namely, the adaptivity to signal intensity, which

is a focus of our preceding discussion. Preservation and enhancement of the

integrity of coherent structures relies upon the adaptivity of another kind –

that is, adaptivity to coherent structures.

The wavelet-domain enhancement schemes are capable of maintaining

the coherence of the structures of an image – even in the case where these

structures are vaguely visible to the human eye such as a partial heart valve

caught in a snapshot of a beating heart. The preservation of coherent struc-

tures starts from the first step of the enhancement scheme. An efficient

representation of image structures in terms of the scale-based hierarchy of

orthonormal decomposition of signal allows better discrimination between

random and coherent signal fluctuations. As a consequence, wavelet shrink-

age retains the integrity of these structures while neutralizing the effect of

spurious signal fluctuations. The adaptive enhancement is realized in the

second step through the mechanics of directing the force of signal attenu-

ation toward the low-intensity regions and emphasizing the image gradient

along the structural boundaries. Wavelet analysis provides a necessary de-

composition of image data to achieve both purposes simultaneously.

A question naturally arises in this context: what is the optimal choice of

the basis, i.e., the set of signal expansion functions, for adaptive enhance-
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ment. Empirically the scheme of adaptive enhancement is almost basis-

independent. The output reported in Chapter 3, being itself generated from

different wavelet bases, represents a subset of experiments where different

wavelet bases are tested on each case. The results of performance evaluation

do not significantly vary with the choice of wavelet bases. It is, however,

worth commenting on the Gibbs phenomenon. Like its Fourier counterpart,

the wavelet expansion of a signal tends to overshoot near the discontinuities

– an observation termed the Gibbs phenomenon. The phenomenon causes

reasonable concern for adaptive enhancement, because signal discontinuities

are crucial for image enhancement and analysis. It has been shown that

wavelet expansion with different orthogonal basis exhibits this phenomenon

– the Haar wavelet basis is a rare exception; see Walter and Shen [113].

This property of the Haar wavelet basis, along with its being the only truly

symmetric basis for orthonormal expansion, may serve as an explanation

for empirical observations reported in many previous studies that the Haar

wavelet basis produces a better denoised image than other orthonormal bases

do. Evidence also suggests that this set of base functions also allows a better

recovery of high-intensity signal.

The framework of adaptive enhancement arises from the context of spatial-

temporal analysis of cardiac image sequences. As each input data sequence

may involve hundreds of images, computational complexity of processing

and analysis is an important concern in algorithmic design in each step of

the way of extraction of interesting information from the data set. The

computational load of the adaptive enhancement scheme presented in this

report is shared by four major components. These are (1) wavelet analysis

and synthesis, (2) transformation of representations, (3) enhancement based
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on the approximation model in the smoothing step, and (4) the adaptive en-

hancement scheme in the second step. All but the smoothing step are linear

in the input data, i.e., the number of pixels in the image. The complexity of

the smoothing step varies with the choice of Gaussian-based enhancement

scheme. Wavelet shrinkage techniques such as the SU, MSE and SSR scheme

used in the performance evaluation and comparison in this research are lin-

ear in the data, and so are the implementations of the schemes as a whole.

Thus, in terms of computational load, the schemes in the SE-group have an

advantage over the techniques based on an iterative procedure of intensity

diffusion, such as anisotropic diffusion filtering. In general, the complexity

of the scheme is determined by the smoothing scheme. The choice of the

techniques used in this step should therefore balance between the computa-

tional requirement and the quality of enhancement it can attain.

4.2 Future Work

The adaptive scheme achieves image enhancement by simultaneous atten-

uation of confounding features and improvement of image contrast. The

complexity of the data set is greatly reduced in a way that signals of coher-

ent structures, in particular those corresponding to the anatomical parts of

target organs, become more visible – in terms of detectability and recogniz-

ability – for the subsequent algorithmic operations. This research provides

both quantitative and qualitative measurements of these effects. How this

newly gained data quality is translated into better performance of these

algorithmic operations – particularly segmentation and localization of the

target organs – is an important issue for further exploration.
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The focus of this research is that of adaptive enhancement and the feasi-

bility of a solution to the problem. It raises a number of interesting questions

to be explored. First, the smoothing technique plays an important role in

the scheme of adaptive enhancement. The comparative performance evalu-

ation restricts its choice of techniques used in the smoothing step to a class

of shrinkage techniques that is not adaptive to the geometrical structures

of image signal. An interesting issue for future exploration is the role of

(geometrical) structure adaptivity of smoothing techniques in adaptive en-

hancement. The gain in performance with the structure adaptive smoothing

step must be analyzed in conjunction with its price in extra computation

load, since the existing techniques of this class are mostly non-linear in their

complexity. Second, the performance of the SE framework is shown to be

almost basis independent with respect to the standard orthonormal wavelet

bases. The general framework of wavelet analysis still affords other choices

for the purpose of adaptive enhancement, such as the translation invariant

wavelet basis, non-decimal wavelet decomposition, wavelet packets and the

structure adaptive bases such as curvelet and contourlet.

The tuning parameter T of the enhancement step should be set in rela-

tion to the critical range of intensity which discriminates the boundaries of

the target object with the background structures in its low-intensity prox-

imity. As pointed out in Section 2.2.2, this critical range does not change

dramatically across images both spatially and temporally. Few thresholds

are required for a sequence of cardiac images. This report leaves this param-

eter to be experimentally determined. Estimation of this factor from image

data may be an interesting issue for further research. It is advantageous to

release human experts from the task of threshold selection. However, this
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advantage must be weighted against the requirement for optimality of pa-

rameter selection. The critical range that separates the structure signal from

its surround may be too small to be correctly gauged without some idea of

the boundary. Nevertheless, semi-automated estimation of this parameter

may still be desirable if it can suggest a neighborhood for the starting point

for of the optimal estimate for human experts.
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Appendix A

Mechanics of Wavelet

Analysis

Wavelet analysis, a branch of applied mathematics, gives rise to a reper-

toire of tools for signal/function analysis with application to almost every

discipline of computational science. The formal aspects of the system are

however beyond the scope of this report. For the clarity and convenience of

exposition, this appendixA.1 intends to provide a brief review of some essen-

tial concepts of the framework with the sole purpose to fix notation and to

allow a minimum understanding of the mechanics of the techniques used in

this report.

A wavelet system decomposes a signal into a hierarchically organized

representations in terms of a set of basis functions called wavelets, each of

which is generated from a prototype waveform, called the mother wavelet,

ψ, under dilation and translation. A real function admissible to be a wavelet

A.1The discussion is based on the following reference, which will not be cited separately,
including [28; 97; 8; 31; 25; 75; 76; 77; 130; 50; 109; 105; 107; 15; 104; 74; 24; 3; 32; 95].
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must have finite energy and a zero mean. A “dyadic system” generates the

basis functions with a power-of-two logarithmic scaling of dilation and trans-

lation of the mother-wavelet, leading to a construction of an orthonormal

wavelet basis, {ψj,k},

ψj,k(τ) =
1√
2j
ψ(
τ − 2jk

2j
) where j, k ∈ Z (A.0.1)

Wavelet analysis maps a signal S to a set of wavelet coefficients given by

ωj,k =< S, ψj,k >=

+∞∫

−∞

S(τ)ψj,k(τ)dτ. (A.0.2)

Each member of the coefficient set denoted by {ωj,k} provides a measurement

of the local variations of the signal S in a neighborhood of size proportional

to the scale indexed by j around the location indexed by k.

Given an orthonormal basis {ψj,k} = {ψj,k|j, k ∈ Z}, wavelet synthesis

provides the inverse mapping which allows the reconstruction of the signal

S in terms of the wavelet coefficients:

S(τ) =
∑

j

∑

k

ωj,kψj,k(τ) (A.0.3)

This inverse mapping “pieces together” all the structural details of the image

under the double summation operators across scales and locations. A trun-

cated series
∑

j>j0

∑
k ωj,kψj,k yields a coarse-scale approximation, denoted

by Sj0, by removing all the details recoverable at finer scales less than j0. A

hierarchy of approximations {Sj} at successively coarser scales can be rep-

resented in terms of a set of basis functions, called scaling functions, {φj,k},

each of which is generated from a father scaling function φ under dilation
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and translation φj,k(τ) = 2
−j
2 φ
(

τ−2jk
2j

)
. The coarse-scale representation Sj

of the signal at a scale j is defined as [3]

Sj(τ) =
∑

k

Sj,kφj,k(τ) (A.0.4)

where the approximation coefficients are given by

Sj,k =< S, φj,k >=

+∞∫

−∞

S(τ)φj,k(τ)dτ. (A.0.5)

Signal synthesis given by Eq. (A.0.3) can be rewritten as

S =
∑

k

Sj0,kφj0,k

︸ ︷︷ ︸
Approximation

+

∞∑

j<j0

∑

k

ωj,kψj,k.

︸ ︷︷ ︸
Details at scale j︸ ︷︷ ︸

Details at scales j<j0

(A.0.6)

The first term is the coarse scale approximation Sj0 at scale j0 and the last

term represents the details at scales j < j0. A sequence of approximations

{Sj} can be generated recursively by adding to the approximation of level

j the details captured at the corresponding level, i.e.,

Sj−1 = Sj +
∑

k

ωj,kψj,k. (A.0.7)

The coefficients Sj0,k at scale j0 in Eq. (A.0.6) can thus be interpreted as

an aggregate measurement of the variations captured at the coarsest scales

j ≥ j0. On the other hand, any signal structure measurable at a scale j < j0

is recoverable from the wavelet coefficients at the corresponding scale. The

second term of the left member of Eq. (A.0.6) is a compact expression of

the operation which collects all these details in the reconstruction.
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Orthonormal wavelet analysis partitions signal energy in multi-scale rep-

resentations. Signal energy in a scale j, denoted by Ej, is contained in the

coefficients at that scale, i.e.,

Ej =
∑

k

|ωj,k|2. (A.0.8)

The total energy of a signal, given byA.2
E =‖ S ‖2, is preserved in the

decomposition, that is,

E =
∑

j

Ej (A.0.9)

=
∑

k

|Sj0,k|2 +
∑

j<j0

∑

k

|ωj,k|2. (A.0.10)

Consider an orthonormal wavelet basis with compact support. Each

wavelet coefficient depends only on the local structures of the signal, captur-

ing signal activities over the local neighborhood within the compact support

of the corresponding basis function. Suppose that over the neighborhood of

τ0, the signal may be approximated by the polynomial expansion:

S = P + Re (A.0.11)

where P is the polynomial approximation of S, and Re the remainder. Given

a wavelet with n vanishing moments, i.e.,
∫∞
−∞ τnψ

(
τ
)
dτ = 0, the associ-

ated wavelet coefficients capture only the residual term of the polynomial

A.2Given x, ‖ x ‖ denotes the norm of x.
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approximation of degree n − 1. Let Pvf be the projection of the function

f to the discrete approximation spaces V spanned by the scaling functions,

and Rwf be the projection to the detail signal space W spanned by the

wavelets. Then Eq. (A.0.6) can be interpreted as

S = PvS + RwS (A.0.12)

The coarse-scale approximation is the projection of the polynomial approx-

imation of the signal to the approximation space, and the details represen-

tation is the aggregate of the projections of those fine-scale oscillations that

cannot be represented by the polynomial approximation. Projected into this

detail space spanned by the wavelets are rapidly oscillating structures and

signal singularities.

A separable wavelet orthonormal basis for the space of two dimensional

signal with finite energy can be constructed from tensor products of a scaling

function φ associated with one-dimensional discrete spaces of signal decom-

position and the corresponding wavelet function ψ. Generated by a two-

dimensional separable scaling functionA.3, φ2D(τ), is a basis of discrete ap-

proximation space V2D
j = Vj ⊗Vj. The corresponding wavelet functionsA.4,

{ψH
j,µ, ψ

V
j,µ, ψ

D
j,µ}, where µ is the equivalence of k in Z

2, constitute an or-

A.3The separable basis functions associated with a 1D scaling function φ is defined as
the followings. Let τ = [τ1, τ2] and µ = [µ1, µ2] be vectors of a 2D spatial location.
The scaling function is given by

φ
2D(τ ) = φ

2D(τ1, τ2) = φ(τ1)φ(τ2), (A.0.13)

and the corresponding set of basis functions that span the approximation space is given
as the following:

φ
2D
j,µ = 2−j

φ
2D(2−j(τ − 2j

µ)) (A.0.14)
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thonormal basis of the 2D discrete detail signal space. Let Ψ = {H,V,D}

be the index set for the orientations – horizontal, vertical, and diagonal re-

spectively – of the basis functions that span the detail spaces. Every 2D

signal with finite energy, S, may be represented in terms of the separable

basis

S =
∑

µ

Sj0,µ φ
2D
j0,µ +

∑

j<j0

∑

µ

∑

κ∈Ψ

ωκ
j,µ ψ

κ
j,µ (A.0.19)

where

Sp,q =

〈
S, φ2D

p,q

〉
=

∫
S(τ)φp,q(τ)dτ ; and (A.0.20)

ωr
p,q =

〈
S, ψr

p,q

〉
=

∫
S(τ)ψr

p,q(τ)dτ. (A.0.21)

The separable basis {ψκ
j,µ, } captures the signal structures of an image at

different scales, locations, and orientations. The details of an image at each

scale is therefore represented in three sub-representations or sub-images,

each generated by a wavelet of a specific orientation. The energy of the

horizontal wavelet, ψH, is largely localized at low horizontal frequency and

high vertical frequency; that of the vertical wavelet, ψV, at high horizontal

frequencies and low vertical frequencies; that of the diagonal wavelet, ψD,

at high frequencies in both directions. These sub-images capture different

A.4The separable basis function associated with a 1D scaling function φ and its
associated wavelet function ψ is defined as the following:

ψ
H(τ ) = φ(µ1)ψ(µ2); (A.0.15)

ψ
V(τ ) = ψ(µ1)φ(µ2); (A.0.16)

ψ
V(τ ) = ψ(µ1)φ(µ2); (A.0.17)

Let κ ∈ Ψ = { H, V, D }.
Let τ = [τ1, τ2] and µ = [µ1, µ2] be vectors of a 2D spatial location. The set of basis
functions that span the detail signal space is given by

ψ
κ
j,µ = 2−j

ψ
κ(2−j(τ − 2j

µ)). (A.0.18)
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types of signal signatures in terms of variations along different directions.

Figure A.1 shows a wavelet pyramid of a medical image. The diagrammatic

figure shows how the sub-images are arranged. The one at the upper-left cor-

ner is the approximation generated by the φ2D at a selected coarsest scale,

where the others are the image decompositions in various spaces spanned

by the separable wavelets at different scales and orientations.

Multiresolution analysis results in a set of hierarchically related represen-

tations given by orthogonal projections of an image onto the approximation

and detail spaces. A number of useful properties of wavelet representations

are relevant for image analysis. More important ones include the followings:

Locality Each wavelet coefficient represents the localized infor-

mation about the structure of the signal in both scale

and location.

Multi-resolution Wavelet coefficients represent information about the

structures of the signal in a nested set of scales.

Statistical independence Wavelet coefficients of a real-world image tend to be

uncorrelated. For obvious reason, this property is also

called decorrelation.

Energy compaction The energy of the wavelet representation of the signal

is concentrated in a sparse number of scale-location

coordinates where signal singularities occur within the

support of the wavelet basis.

Exponential Decay The magnitude of wavelet coefficients tends to decay

exponentially across scales.
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(A)

(B) (C)

Dκ
J : Detail image generated by wavelets {ψκ

J,µ} at scale 2J , and

AJ0: Approximation image generated by scaling functions {φ2D
J0,µ} at scale

2J0 , where κ ∈ {H, V, D }

Figure A.1: Multiresolution Decomposition using Haar Transform. (A) illus-
trates the pyramidal organization of sub-images generated by a 2D wavelet
decomposition.The sub-image at the upper-left corner is the approximation
AJ+5. (B) is the spatial domain representation of an image. (C) is the
wavelet decomposition of the image.
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Proven to be pivotal for our purpose is that signal representations in the

wavelet domain are characterized by a sparsity of non-negligible wavelet

coefficients which are largely uncorrelated. As shown in figure A.2, the

spiked peak for zero-valued coefficients is conspicuous from the histogram

of the empirical coefficients of a selected MRI at the four finest scales using

the Haar Transform. This sparsity of non-negligible coefficients reduces the

computational load of analysis. More importantly, small groups of non-

negligible coefficients allow a distinct signature for the salient features of

the scene.
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(e) Coarse

Figure A.2: Histogram of Wavelet Coefficients using Haar Transform. There
are four histograms of the coefficients at each level of resolution — the top-
left histogram describes the distribution of the approximation coefficients
and the other three histograms describe that of the wavelet coefficients as-
sociated with the basis functions of different orientation. Signal analysis in
the wavelet domian is characterized by the histograms of wavelet coefficients
that are closely clustering around spikes at zero at the fine scales.
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Appendix B

Statistical Properties of

Rician Noise

This appendix provides some further details on the SNR-dependent distri-

bution of Rician noise. Let I be magnitude image data, S noise free signal,

and σ2 the noise parameter, which is the variance of noise in the complex

images. Given the (noise-free) signal and the noise parameter, observed

data are distributed Rician with the condition density function given in

Eq. (2.2.1):

f(I|S, σ) =
I

σ2
exp

{
− I2 + S2

2σ2

}
Io

(
IS

σ2

)
1{x≥0}(I)

where Io is the modified Bessel function of the first kind of zeroth order,

and 1A the indicator function over the set A.

103



B.1 Rician Noise in Signal Free Regions

First consider I0, the modified Bessel function of the first kind of zeroth

order is given by [2; 9]:

I0(x) =
1

π

π∫

0

e±x cosθdθ =
1

π

π∫

0

cosh(x cosθ)dθ, (B.1.1)

where cosh(η) = 1
2 (eη + e−η). Observe that cosh(0) = 1. Thus,

I0(0) =
1

π

π∫

0

1dθ =
1

π

[
θ

]π

0

=
1

π
π = 1 (B.1.2)

Thus in the absence of signal, S = 0 =⇒ IS
σ2 = 0. Rician Distribution given

in Eq. (2.2.1) can be rewritten as

F =
I

σ2
exp

{
− I2

2σ2

}
1I>0(I),

that is Eq. (2.2.2), which is a Rayleigh distribution[41; 66].

B.2 Rician Noise in Infinity Signal Regions

Observe that the asymptotic behaviorB.1of the modified Bessel function for

large x

In(x) ∼ ex√
2πx

[
1 − µ− 1

8x

]
(B.2.1)
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where µ = 4n2; see [60]. Thus,

I0(x) ∼
ex√
2πx

[
1 +R0(x)

]
. (B.2.3)

where R0(x) is the higher order terms in Eq. (B.2.3), that is,

R0(x) =
1

8x
. (B.2.4)

For a signal significantly stronger than noise, i.e, S >> σ, the distribution

of noise of Rician type can be approximated by substituting Eq. (B.2.3) in

(2.2.1)

F ∼ I

σ2
exp

{
−
(
I2 + S2

2σ2

)}
1√

2π IS
σ2

exp

{
IS

σ2

}(
1 +R0

(
IS

σ2

))

=
I

σ2

σ√
2πIS

exp

{
− I2 + S2 − 2IS

2σ2

}(
1 +R0

(
IS

σ2

))

=

{√
I +

√
IR0

(
IS

σ2

)}
1√

2πSσ2
exp

{
− (I − S)2

2σ2

}
. (B.2.5)

It is obvious from Eq. (B.2.4) and Eq. (B.2.3) that as x approaches infinity,

lim
x→∞

R0(x) = 0, (B.2.6)

and thusB.2

lim
x→∞

In(x) ∼ ex√
2πx

. (B.2.7)

B.1A series Sn(z) is an asymptotic expansion series of a function f(z) over the interval
of arg z, and denoted by f(z) ∼ Sn(z) if

lim
|z|→∞

z
n
Rn(z) = 0, (B.2.2)

where Rn(t) = f(t) − Sn(t). Intuitively, the sum of a finite number of terms of the series
Sn(z) provides a good approximation to f(z). For details, see [61] and [60].

B.2For similar result, see [82].
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With the high order terms vanished, the asymptotic approximation of the

Rician distribution in Eq. (B.2.5) can be written as the followings:

lim
S
σ
→∞

F ∼
√
I

S

1√
2πσ2

exp

{
− (I − S)2

2σ2

}
.

As the SNR goes to infinity, I
S approaches 1, and the distribution of Rician

noise,

lim
S
σ
→∞

F ∼ 1√
2πσ

exp

{
− 1

2σ2
(I − S)2

}
. (B.2.8)

This is Eq. (2.2.3) which is referred to as the limiting distribution of Rician

noise.
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Appendix C

Noise Parameter σ:

Estimation and Relevant

Range

C.1 Estimation

The statistical behavior of image noise in a magnitude MR image can be

modeled by a Rician distribution. The distribution is a function of the SNR

of the noisy data. Signal/noise analysis based on a Rician model assumes

the knowledge of the noise parameter σ in Eq. (2.2.1). In practice, however,

it is an unknown quantity. Estimates from empirical data are usually re-

quired. For our purpose, we need a reliable estimator for the parameter in

our implementation. Secondly, we also need to estimate the typical range of

σ for clinical MR Images in general, and cardiac images in particular.

A common approach takes advantages of the signal-free regions of air in

medical images. Let NM denote a subset of the data selected from these

107



regions. In absence of signal, signal fluctuation in NM represents pure noise.

As shown in Appendix B, its statistical behavior follows a Rayleigh distri-

bution with a mean given by[41]

E(I) = σ

√
π

2
, (C.1.1)

This implies an estimator for σ as follows:

σ̃R = NM

√
2

π
. (C.1.2)

The sample mean NM is defined over the set the signal-free data in NM as

NM =

∑
X∈NM

X

Card NM
, (C.1.3)

where Card X denotes the cardinality of the data set X . A similar estimator

is defined over the signal-free background of a squared magnitude image.

Let NS denote a set of signal-free data of a squared image. According to

Eq. (2.2.7), the mean of χ2 noise is twice the σ2. This relation yields an

estimator

σ̃χ2 =

√
0.5NS . (C.1.4)

where the term

NS =

∑
X∈NS

X

Card NS
, (C.1.5)

represents the sample mean of signal-free data in NS.
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Figure C.1: Estimated σ from Selected Clinical MRI sequences. • : σ̃R. �

: σ̃χ2. Seq. 1 - 10: cardiac image sequences; Seq. 11: brain images; and
Seq. 12: angiographic images.

C.2 Relevant Range

Performance analysis with stimulated data generated from a broad range

of σ’s show that both σ̃R and σ̃χ2 yield similar result within small neigh-

borhoods of the true values. To identify the relevant range of σ for clinical

MR images, estimation is performed using both estimators on different im-

age sequences, both cardiac and non-cardiac. As shown in Fig. C.1, the

noise parameter σ falls within the range between three and ten. This is the

reference range that this report uses for the analysis of noise behavior.
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Appendix D

Moments, Cumulants and

Convergence Analysis of

Rician Noise

D.1 Statistical Moments and Cumulants

The moments and cumulants of a distribution are two sequences of descrip-

tive constants that measure the properties of the distribution[67]. The first

four members in the sequences provide a useful description about the loca-

tion and the shape of a distribution. Distributions with a finite number of

lower moments or cumulants in common are expected to bear resemblance

to each other. In practice, distributions with the first four moments equated

result in a remarkably good approximation of one another [67].

Let fX be the probability distribution of a random variable X. The rth
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statistical moment from the origin is given by [41]

m(r) = E(Xr) =

∫ ∞

−∞
xrfX(x)dx. (D.1.1)

The moments of a distribution can be derived from the moment generat-

ing function of the distribution. The moment generating function of fX is

defined as [33; 41]

M(t) = E(exp{tX}) =

∫ ∞

−∞
exp{tx)fX(x)dx for M(t) <∞ (D.1.2)

The rth moment of a distribution fX can be defined in terms of its moment

generating function as the follows [33; 41]

m(r) = M (r)(0) =
d(r)M(t)

dt(r)

∣∣∣∣
t=0

r = 1, 2, 3, · · · · · · (D.1.3)

Cumulants are mathematically related to moments. Let κr denote the se-

quence of cumulants of a distribution. The cumulant-generating function

of a distribution [33; 41] can be defined in terms of its moment-generating

function given in Eq. (D.1.2) as K(t) = lnM(t), and the sequence of the

cumulants are given by [33; 41]

κr = K(r)(0) =
d(r)K(0)

dt(r)

∣∣∣∣
t=0

. (D.1.4)

There is a close relation between the rth cumulant of a distribution and the

moments of the distribution. The first four cumulants are given by [67]

κ1 = m1; (D.1.5)

κ2 = m2 − (m1)
2; (D.1.6)

κ3 = m3 − 3m2m1 + 2(m1)
3; (D.1.7)

κ4 = m4 − 4m3m1 − 3(m2)
2 + 12m2(m1)

2 − 6(m1)
4 (D.1.8)
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With respect to each of these four cumulants, a comparison between the

cumulant of a Rician distribution and the corresponding one of a Gaussian

distribution helps to determine the effective range of signal intensity where

the behavior of image noise can be reasonably approximated by the limiting

distribution associated with infinite signal intensity.

D.2 Moments and Cumulants of the Gaussian Fam-

ily

The distribution of a Gaussian random variable X ∼ N (µ, σ2) is given by

[41]

fX(x) =
1

σ
√

2π
exp

{
− 1

2

(x− µ)2

σ2

}
(D.2.1)

The moment generating functionD.1 of a Gaussian distribution is given by

M(t) = exp

{
µt+

σ2t2

2

}
. (D.2.2)
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Thus the moments can be derived by taking the derivatives of the mo-

ment generating function given by Eq. (D.2.2).

dM

dt
= (µ+ σ2t) exp

{
µt+

σ2t2

2

}
(D.2.3)

m1 =
dM

dt

∣∣∣∣
t=0

= µ (D.2.4)

According to Eq. (D.1.5), the first cumulant κ1 = µ gives the mean.

Now take the derivative of Eq. (D.2.3).

d2M

dt2
= σ2 exp

{
µt+

σ2t2

2

}
+ (µ+ σ2t)2 exp

{
µt+

σ2t2

2

}

=

{
(µ+ σ2t)2 + σ2

}
exp

{
µt+

σ2t2

2

}
(D.2.5)

m2 =
d2M

dt2

∣∣∣∣
t=0

= µ2 + σ2 (D.2.6)

According to Eq. (D.1.6), the second cumulant κ2 = σ2 gives the variance.

D.1Combining Eq. (D.1.2) and Eq. (D.2.1) yields the moment generating function of a
Gaussian distribution

M(t) =
1

σ
√

2π

∞Z

−∞

exp
˘
tx

¯
exp


− (x− µ)2

2σ2

ff
dx

=
1

σ
√

2π

∞Z

−∞

exp


− 1

2σ2

„
x

2 − 2(µ+ σ
2
t)x+ µ

2

«ff
dx

=
1

σ
√

2π

∞Z

−∞

exp

 −1

2σ2

»
(x2 − µ+ σ

2
t)2 − (µ+ σ

2
t)2 + µ

2

–ff
dx

=
1

σ
√

2π

∞Z

−∞

exp


− (x2 − µ+ σ2t)2

2σ2

ff
exp


− µ2 − (µ+ σ2t)2

2σ2

ff
dx

= exp


2µσ2t+ σ4t2

2σ2

ff
1

σ
√

2π

∞Z

−∞

exp


− (x2 − µ+ σ2t)2

2σ2

ff
dx

= exp


µt+

σ2t2

2

ff
.
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Repeating this procedure produces the higher moments. The third mo-

mentD.2 and the fourth momentD.3 are given by

m3 = 3σ2µ+ µ3 (D.2.9)

m4 = 3σ4 + 6σ2µ2 + µ4 (D.2.10)

According to Eq. (D.1.7) and Eq (D.1.8), both the third cumulantD.4 κ3

and the fourth cumulantD.5 κ4 of a Gaussian distribution are zero.

D.2Now take the derivative of Eq. (D.2.5).

d3M

dt3
= 2σ2(µ+ σ

2
t) exp


µt+

σ2t2

2

ff

+


(µ+ σ

2
t)3 + σ

2(µ+ σ
2
t)

ff
exp


µt+

σ2t2

2

ff

=

„
3σ2(µ+ σ

2
t) + (µ+ σ

2
t)3

«
exp


µt+

σ2t2

2

ff
(D.2.7)

m3 =
d3M

dt3

˛̨
˛̨
t=0

= 3σ2
µ+ µ

3 (D.2.8)

D.3Now take the derivative of Eq. (D.2.7).

d4M

dt4
=


3σ4 + 3σ2(µ+ σ

2
t)2

ff
exp


µt+

σ2t2

2

ff

+

„
3σ2(µ+ σ

2
t)2 + (µ+ σ

2
t)4

«
exp


µt+

σ2t2

2

ff

=

„
3σ4 + 6σ2(µ+ σ

2
t)2 + (µ+ σ

2
t)4

«
exp


µt+

σ2t2

2

ff
(D.2.11)

m4 =
∂4M

∂t4

˛̨
˛̨
t=0

= 3σ4 + 6σ2
µ

2 + µ
4 (D.2.12)

D.4According to Eq. (D.1.7), the third cumulant
κ3 = 3σ2

µ+ µ
3 − 3(µ)(µ2 + σ

2) + 2µ3

= 3σ2
µ+ µ

3 − 3µ3 − 3σ2
µ+ 2µ3

= 0 (D.2.13)

D.5According to Eq. (D.1.8), the fourth cumulant
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A Gaussian distribution is completely described by its first two cumu-

lants which give its mean and variance. The third and fourth cumulants of

a Gaussian random variable are zero. For any random variable, the distance

of its higher cumulants from the origin provides a measurement of how close

it is to normality. Standardized cumulants are proposed for this purpose to

attain scale invariance of the measurement. The standardized skewness and

standardized kurtosis are given by

κs
3 = κ3κ

− 3
2

2 (D.2.15)

and
κs

4 = κ4κ
−2
2 (D.2.16)

respectively [33].

Along this line of reasoning, this report compares the first four cumu-

lants, namely, κ1, κ2, κ
s
3 and κs

4, to determine the range of signal intensity

where a Gaussian distribution can be used for approximation to the distri-

bution of a Rician variable.

κ4 = m4 − 4m3m1 − 3m2
2 + 12m2m

2
1 − 6m4

1

= 3σ4 + 6σ2
µ

2 + µ
4 − 4(3σ2

µ+ µ
3)(µ)

−3(µ2 + σ
2)2 + 12(µ2)(µ2 + σ

2) − 6µ4

= 3σ4 + 6σ2
µ

2 + µ
4 − 12σ2

µ
2

−4µ4 − 3µ4 − 6σ2
µ

2 − 3σ4 + 12µ4 + 12σ2
µ

2 − 6µ4

= 3σ4 + 6σ2
µ

2 + µ
4 − (3σ4 + 6σ2

µ
2 + µ

4)

= 0 (D.2.14)
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D.3 Moments and Cumulants of the Rician Family

According to Eq. (2.2.1) and Eq. (D.1.1), the rth statistical moment of a

Rician variable given S and σ is given by

m(r) =

∞∫

−∞

Ir I

σ2
exp

(
− I2 + S2

2σ2

)
Io

(
IS

σ2

)
1{x≥0}(I)dI

=
1

σ2
exp

{
− S2

2σ2

} ∞∫

0

Ir+1 exp

{
− I2

2σ2

}
Io

(
IS

σ2

)
dI (D.3.1)

The series expansion of the modified Bessel function of the first kind of ν

order is given by [2]

Iν(z) = (
z

2
)ν

∞∑

k=0

(z
2 )2k

k!Γ(ν + k + 1)
.

Set ν = 0 and z = IS
σ2 .

I0(
IS

σ2
) =

∞∑

k=0

( IS
2σ2 )2k

k!Γ(k + 1)
. (D.3.2)

Thus,

m(r) =
1

σ2
exp

{
− S2

2σ2

} ∞∫

0

Ir+1 exp

{
− I2

2σ2

} ∞∑

k=0

( IS
2σ2 )2k

k!Γ(k + 1)
dI.

=
1

σ2
exp

{
− S2

2σ2

} ∞∑

k=0

[
( S
2σ2 )2k

k!Γ(k + 1)

∞∫

0

Ir+2k+1 exp

{
− I2

2σ2

}
dI

]
.
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Let ζ = I√
2σ

. Then dζ = dI√
2σ

. Each of the integrals inside the summation

can be rewritten as

∞∫

0

Ir+2k+1 exp

{
− I

2σ2

}
dI =

∞∫

0

(
√

2σ)r+2k+1ζr+2k+1 exp
{
− ζ2

}√
2σdζ

= (
√

2σ)r+2k+2

∞∫

0

ζr+2k+1 exp{−ζ2}dζ

= (
√

2σ)r+2k+2 1

2
Γ(
r

2
+ k + 1) (D.3.3)

The last step uses the Euler’s form [9] of the Gamma function, that is,

Γ(z) =
∫∞
0 e−ttz−1dt. Define ζ =

√
t. Then dt = 2ζdζ. The Gamma

function acquires an alternative form

Γ(z) =

∫ ∞

0
e−ζ2

ζ2(z−1)2ζdζ.

= 2

∫ ∞

0
e−ζ2

ζ2z−1dζ

It follows immediately that the integral is

∞∫

0

ζr+2k+1 exp{−ζ2}dζ =

∞∫

0

ζ2( r
2
+k+1)−1e−ζ2

dζ =
1

2
Γ(
r

2
+ k + 1) (D.3.4)

D.5The modified Bessel function of the first kind of ν order is given by [2]

Iν(z) = (
z

2
)ν

∞X

k=0

( z
2
)2k

k!Γ(ν + k + 1)
.
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Thus, the rth statistical moment of a Rician distribution is expanded as

follows

m(r) =
1

σ2
exp

{
− S2

2σ2

} ∞∑

k=0

[
( S
2σ2 )2k

k!Γ(k + 1)
(
√

2σ)r+2k+2 1

2
Γ(
r

2
+ k + 1)

]
.

=
1

σ2
exp

{
− S2

2σ2

}
1

2
(2σ2)

r
2
+1

∞∑

k=0

[
1

k!Γ(k + 1)

(
S

2σ2

)2k

(2σ2)kΓ(
r

2
+ k + 1)

]

= (2σ2)
r
2 exp

{
− S2

2σ2

} ∞∑

k=0

[
1

k!Γ(k + 1)

(
S2

2σ2

)k

Γ(
r

2
+ k + 1)

]

= (2σ2)
r
2 exp

{
− S2

2σ2

} ∞∑

k=0

[
1

k!Γ(k + 1)

(
S2

2σ2

)k

Γ(
r

2
+ k + 1)

Γ
(

r
2 + 1

)

Γ
(

r
2 + 1

)
]

= (2σ2)
r
2 Γ

(
r

2
+ 1

)
exp

{
− S2

2σ2

} ∞∑

k=0

[
Γ
(

r
2 + k + 1

)

Γ(k + 1)Γ
(

r
2 + 1

) 1

k!

(
S2

2σ2

)k
]
(D.3.5)

The product of the last two terms in the right member of the equation

is the confluent hypergeometric function defined [9] as

1F1(a, c; z) = ez
∞∑

k=0

Γ(c− a+ k)

Γ(c+ k)

Γ(c)

Γ(c− a)

(−z)k
k!

(D.3.6)

Set a = − r
2 , c = 1 and z = − S2

2σ2 . Eq. (D.3.6) yields

1F1(−
r

2
, 1,− S2

2σ2
) = exp

{
S2

2σ2

} ∞∑

k=0

Γ( r
2 + 1 + k)

Γ(k + 1)

Γ(1)

Γ( r
2 + 1)

(
S2

2σ2

)k

k!

= exp

{
S2

2σ2

} ∞∑

k=0

Γ( r
2 + 1 + k)

Γ(k + 1)Γ( r
2 + 1)

(
S2

2σ2

)k

k!
(D.3.7)

Combining Eq. (D.3.5) and Eq. (D.3.7) yields a function form which gives

rth moments of a Rician distribution associated with S and σ2 as the follows:

m(r) = (2σ2)
r
2 Γ
(r
2

+ 1
)
1F1(−

r

2
, 1; − S2

2σ2
) (D.3.8)

In summary, Eq. (D.3.8) defines the rth moments of a Rician distribution.
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Eq. (D.1.5) - Eq. (D.1.8) specifies how to compute the first four cumulants of

the distribution from the corresponding moments. Finally Eq. (D.2.16) and

Eq. (D.2.16) govern the computation of the standardized third and fourth

cumulants. According to this set of equations, κ1, κ2, κ
s
3, and κs

4 of a Rician

distribution can be evaluated numerically.

D.4 Convergence Analysis of Rician Noise

The convergence range (or the range of convergence) refers to the range of

signal intensity S where a Gaussian distribution is deemed to be a reasonable

approximation to a Rician distribution. The infinumD.6 of this range is

referred as the point of convergence, that is, the lowest signal intensity at

which the approximation remains reasonable. The cumulants of the Rician

distribution associated with the signal intensity S over the convergence range

should approach their Gaussian distribution counterparts. The rest of this

appendix presents a convergence analysis which seeks a rough estimation

of this range based on the distance between each of corresponding pair of

cumulants. For the first and second cumulants, the relative distances are

used to measure how close the corresponding cumulants are to each other.

The first cumulant of a Gaussian distribution measures the mean. The

conditional mean EX|S,σ of observed data is equal to the true signal S.

The second cumulant measures the variance, σ2. Let Rκi and Rκs
i denote

the ith cumulant and the ith standardized cumulant of a Rician distribution

D.6Infinum of a set A, denoted by supA is the greatest lowest bound of the set; For
details, see [53].
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respectively. The relative distances of the first two cumulants are given by

D1

∣∣
S, σ

=

∣∣Rκ1 − S
∣∣

S
for S > 0 (D.4.1)

D2

∣∣
S, σ

=

∣∣Rκ2 − σ2
∣∣

σ2
. (D.4.2)

Since the higher cumulants of a Gaussian distribution are zero, we use the

absolute distances for the standardized third and fourth cumulants – that

is,

D3

∣∣
S, σ

=
∣∣ Rκs

3

∣∣; (D.4.3)

D4

∣∣
S, σ

=
∣∣ Rκs

4

∣∣. (D.4.4)

We may expect the point of convergence SC to be located at the lowest

signal intensity where for all S ≥ SC Di = 0, i = 1, 2, 3, 4. In practice,

Di is not zero for two reasons: (1) the numerical results may depart from

the theoretical values and (2) more importantly, a Rician distribution is ap-

proximately Gaussian only in the range of infinite signal magnitude. Over

the range of a finite signal, a Rician distribution departs from Gaussian,

although the difference between the distribution and its approximation dis-

tribution diminishes as the signal gets stronger relative to the noise. It is

therefore reasonable to expect the point of convergence to be in a neighbor-

hood where the difference between the corresponding cumulants is diminish-

ing in a stable fashion. That is to say, the distance between the cumulants of

the two distributions are diminishing to a reasonably small magnitude over

the range of signal intensity greater or equal to the point of convergence. In

particular, as the signal intensity approaches this point from below, (1) each

of these distance measures, Di, converges to some small value, and (2) its
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change, ∂Di

∂S , and its rate of change, ∂2Di

∂S2 , converge to a point within some

considerably small neighborhoods around the asymptote at zero. Moreover,

all these measures stay within these neighborhoods over the range of signal

intensities above this point.

Figure D.1 summarizes the numerical resultsD.7. Diagram (A) on the

left shows SC
Di

i.e., the signal intensity where each of Di starts to converge

towards the asymptote at zero. The point of convergence shown in Diagram

(B) on the right is given at the intensity where all Di converge. That is

to say, for a given σ, SC = max
i∈[1···4]

SC
Di

. The relation between SC and σ

are found to be linearD.8, as shown in Diagram B. Obvious is that as σ

tends to zero, this linear relation is no longer true. This range, however, has

no practical relevance for our purpose. Over a broad reference range where

σ ∈ [1, 14] as shown in the diagram, the linear approximation provides a

good description of the data.

D.7The details of some selected numerical results are shown in Fig. D.2 - Fig. D.5 at the
end of this section.

D.8A number of data within and outside the range are obtained for the validation pur-
pose. Polynomials of different orders are used to approximate the relation. The linear
approximation provides the predictions which are closest to the validation data.
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(A)

(B)

Figure D.1: Point of Convergence of Rician Data. Diagram (A) shows the
points of convergence in terms of distance measures with respect to different
cumulants at selected σ’s. Diagram (B) shows the linear relation between
the point of convergence and σ.
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Figure D.2: First and Second Cumulants of Rician Distribution. Right
Column: 1st cumulant. Dashed line represents the values for a Gaussian
variable where κ1 = S. Left Column: 2nd cumulant. In the case of a

Gaussian variable, κ
1
2
2 = σ.
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Figure D.3: Standardized Third and Fourth Cumulants of Rician Distribu-
tion. Right Column: Standardized third cumulants. κs

3 = 0 for a Gaussian
variable. Left Column: Standardized fourth cumulant. κs

4 = 0 for a Gaus-
sian variable.
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Figure D.4: Convergence of Cumulants of Rician Distribution for σ = 4 and
σ = 6.
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Figure D.5: Convergence of Cumulants of Rician Distribution for σ = 8 and
σ = 10.
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Appendix E

Wavelet Shrinkage and Noise

Attenuation

E.1 Introduction

There is a panoply of wavelet-based techniquesE.1 for (Gaussian) noise at-

tenuation. A comprehensive review of these techniques is however beyond

the scope of this thesis. Instead, this appendix focuses on the basic ideas of

noise attenuation by means of selective reconstruction of image signal, an

idea underlying many approaches to wavelet-based noise attenuation.

The general ideas of noise enhancement via selective reconstruction is

developed under the assumption of independent Gaussian noise. Consider

E.1This section focuses on the general framework of wavelet shrinkage which lays a con-
ceptual foundation for different approaches to wavelet-based function approximation and
signal smoothing. Many of them incorporate statistical and geometrical modeling of im-
age features in the wavelet domain, such as approximation-theoretic approach[21; 35],
Bayesian modeling[23; 26; 27; 44; 71; 72; 90; 93; 103; 102; 110], hypothesis testing[1; 85],
singularity detection[57; 75] and spatial context modeling[11; 14; 18; 20; 19; 29; 30; 42;
43; 48; 47; 91; 88; 92; 89; 98]. A general reference can be found in [58; 74; 84; 104]. For
approaches to special classes of non-Gaussian noise, see [10; 72; 93; 96].
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an approximation model of an image where the observed data, I, can be

decomposed into two uncorrelated components – (1) noise-free data denoted

by Υ and (2) random noise by ξ. Our model of the image can be written as

I = Υ + ξ (E.1.1)

The noise component ξ ∼ N (0, σ2) belongs to the Gaussian family of ran-

dom variables with a mean of zero and a variance of σ2.

The noise component ξ is assumed to be a class of high frequency oscilla-

tions. This has significant implications for the wavelet representation of the

data. The cut-off scale J0 can be set in such a way that it is reasonable to

expect the approximation coefficients {Sj0,µ} to be noise free. No such as-

sumption can be made about the wavelet coefficients {ωη} because wavelets

constitute the basis of the detail signal space upon which the high frequency

components are projected. The set of wavelet coefficients is thus noisy. The

empirical wavelet coefficientsE.2 are the linear combination of the wavelet

coefficients Υωη of the noise-free data and the coefficients ξωη of the noise

component of the observed data. By the linearity of the wavelet transform,

the wavelet decomposition is linear with respect to the data components,

E.2Substitution of the image model given by Eq. (E.1.1) in Eq. (A.0.21) yields the wavelet
coefficients for the noisy image { Iωη }

ωη =

Z

Ω

I(τ )ψ∗
η(τ )dτ.

=

Z

Ω

`
Υ(τ ) + ξ(τ )

´
ψ

∗
η(τ )dτ.

=

Z

Ω

Υ(τ )ψ∗
η(τ )dτ +

Z

Ω

ξ(τ )ψ∗
η(τ )dτ

= Υ
ωη + ξ

ωη (E.1.2)
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i.e.,

I =
∑

µ

Sj0,µ φ
2D
j0,µ +

∑

η

Υωη ψη

︸ ︷︷ ︸
Υ

+
∑

η

ξωη ψη

︸ ︷︷ ︸
ξ

(E.1.3)

The obvious implication of Eq. (E.1.3) is that the noise-free signal Υ can be

recovered by removing the noise-component of the wavelet coefficient set. A

diverse number of approaches have been proposed to estimate the noise-free

coefficients. Many of these approaches shares a common point of departure

in the localization and energy compactness propertiesE.3 of multiresolution

analysis. The presence of random, uncorrelated noise changes the empirical

coefficients: a large number of non-zero but low coefficients that contribute

noise and a few large coefficients contributing signalE.4. This observation

leads to the idea of signal approximation by way of selective wavelet recon-

struction.

The noise-free signal can be approximately reconstructed with a selected

set of significant coefficients. Pivotal to the approximation is a decision

rule by which observed coefficients are modified according to a threshold

set which discriminates the significant coefficients from the non-significant

ones. The Gaussian noise model allows a variety of coefficient selection poli-

cies proposed for different applications. Despite their diversity, most of them

are variants on the general idea of assuming that the low energy coefficients

represent noise, the image is reconstructed with only a subset of largest co-

efficients according to some threshold set.

E.3For these properties, see Appendix A.

E.4See [37; 20].
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E.2 SU Decision Rule: Wavelet Shrinkage with

the Universal Threshold

Suppose the image model (E.1.1) with additive noise, generated by an i .i .d .

Gaussian process, with a mean of zero and a variance of σ2. A series of

seminal papers [37; 38; 39] propose a family of decision rules which are

asymptotically minimax E.5 within logarithmic terms over a broad space of

images.

First, given an appropriate threshold, two wavelet shrinkage rules stand

out as classic exemplars in the literature of wavelet shrinkage. The ’keep-

and-kill’ procedure leads to a hard thresholding estimator. Given a threshold

λT , the estimator of the noise-free coefficients is given by

ω̃η

∣∣∣
λT

=

{
ωη if | ωη | > λT

0 if | ωη | ≤ λT
(E.2.3)

E.5The risk of approximation (or estimation) is the average loss that will be incurred by

using an estimator bS to obtain an approximation from the observed data; see fn.2.27 and
the reference thereof. The minimax risk is defined as

R
mm(F) = inf

bS∈F
sup
S

R(S , bS), (E.2.1)

where F is the set of all possible estimators of S . The supremum in Eq. (E.2.1) is referred

to as the maximal risk of the estimator bS on the set F . The minimax risk provides a
yardstick for how well one can estimate a signal S over the class F . A minimax estimator
is the estimator that achieves the minimax risk. An estimator bS of S attains an optimal
rate of convergence if

sup
S∈F

E ‖ bS − S ‖2
L2

≍ R
mm(F) (E.2.2)

where ≍ refers to a asymptotic identical relation up to a constant factor. Decision rules
of wavelet shrinkage including the hard- and soft-thresholding rule with the universal
threshold attains the optimal rate within a logarithmic factor. For details, see [69; 54; 63]
and [40].
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The soft thresholding rule on the other hand reduces noise by attenuating

the wavelet coefficients for all coefficients larger than the threshold. The

coefficient estimator is given by

ω̃η

∣∣∣
λT

=





ωη − λT if ωη ≥ λT
ωη + λT if ωη ≤ −λT
0 if | ωη | < λT

(E.2.4)

Compromise between hard and soft thresholding rules leads to a range

of schemesE.6 in an attempt to increase the stability and reduce the bias of

the estimators for a finite sample. The semisoft shrinkage rule, which use a

firm shrinkage function, for example, is a generalized shrinkage scheme [46]:

ω̃η

∣∣∣
λT 1,λT 2

=





0, if ωj,µ ≤ λT 1,

sgn(ωj,µ)
λT 2(|ωj,µ|−λT 1)

λT 2−λT 1
, if λT 1 < ωj,µ ≤ λT 2,

ωj,µ, if ωj,µ > λT 2.

(E.2.5)

This scheme reduces to hard thresholding with λT 1 = λT 2 and to soft

thresholding with λT 2 = ∞. In general, semisoft shrinkage does not atten-

uate every coefficients, as shown in Fig. 2.8(c). The distance of a coefficient

from zero in magnitude measures the significance of a coefficient. A coeffi-

cient at a distance within one λT 1 from the origin is shrunk to zero. On the

other hand, large coefficients with absolute magnitudes greater than λT 2 are

immune to shrinkage.

Threshold selection is critical. On the one hand, thresholds should be

E.6These schemes include ‘hyperbola” rule [110], non-negative garrote rules [45], and
others
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set above the noise with a high probability. On the other hand, too high of

a threshold will remove most of the signal that is supposed to be recovered.

Suppose that an oracle gives the ideal threshold λOracle
T which defines the

significance of coefficients in such a way that the risk of estimation using a

decision rule with the ideal threshold is the lowest among all the linear and

non-linear rules which attenuates the coefficients. The threshold rules using

the universal threshold [38] given by

λUniv
T = σ

√(
2 lnN

)
, (E.2.6)

where σ is the standard derivation of the Gaussian noise andN is the number

of wavelet coefficients ωη, achieves the lowest bound within an algorithmic

factor[37]. In practice, the variance σ2 is usually unknown. In this case,

the standard deviation σ can be estimated from the wavelet coefficients at

the finest scale, assuming that most of the signal oscillations captured by

the observed wavelet coefficients at these subbands are noise. The stan-

dard deviation σ of noise may be estimatedE.7 using the median absolute

deviationE.8 (MAD) of the coefficients at the finest levelE.9. Let η̂ be the

subset of indices for the finest level of wavelet expansion, the estimated noise

standard deviation

σ̃ =
MAD({ωbη)

0.6745
(E.2.7)

E.7For details, see [36; 37].

E.8For the definition, see fn. 2.29.

E.9For details, see [74; 88].
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In general, the universal threshold is selected for a number of good

properties. First, the soft-thresholding rule with the threshold achieves a

”nearly” minimax risk which is close to the oracular risk up to the factor of

1 + 2lnN ; see[37]. With a high probability, the universal threshold is set at

the asymptotic upper bound of the noise. The resulting approximation is no

more rough than the underlying signal and much of the noise is removed from

the observed data. Sharp signal discontinuities remain sharp in the approx-

imation. Nevertheless, by using a universal threshold set at the asymptotic

upper bound of noise, the algorithm prefers killing (the noise) to preserving

(the signal). Other approaches for threshold selection are proposed to im-

prove the quality of approximation, such as data adaptive threshold based

on Stein’s unbiased risk estimator (SURE) to minimize the estimation risk

[38]; or thresholds based on cross-validation functions and generalized cross-

validation functions to estimate the mean squared error [58; 59; 74; 81; 122].

E.3 MSE Decision Rule: Wavelet Shrinkage with

Minimum Mean Squared Error (MSE)

A mean squared error (MSE) approach is proposed for the high SNR MR imagesE.10.

It aims at an estimate of the the noise-free component of each empirical

wavelet coefficient that minimizes the mean squared error (MSE) of estima-

tion of the coefficient. Let ω̃
MSE

η be the estimated wavelet coefficient. Each

E.10As reviewed in Section 1.2, this approach in its original formulation starts with the
assumption that MR images can be classified into high SNR and low SNR images; see
[51], and [83].
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coefficient is shrunk toward zero according to a shrinkage factorE.11:

ω̃η = αηωη (E.3.1)

Assume that an empirical wavelet coefficient is an unbiased estimator of the

noise-free coefficient,

E(ωη) = Υωη. (E.3.2)

An estimate of the noise-free coefficient with the minimum mean squared

error (MSE) is the solution to the following optimization problem

Ξ = E

[(
Υωη − ω̃η

)2
]
−→ min . (E.3.3)

where Υωη is the noise-free componentE.12 of the coefficients. By the signal

model given by Eq. (E.3.1) and the linearity of the expectation operator,

the mean squared error of estimation can be expressed as follows:

Ξ = E

[(
Υωη − ω̃η

)2
]
;

= E

[(
Υωη − αηωη

)2
]
;

= E

[
Υω2

η − 2Υωηαηωη +

(
αηωη

)2
]
;

= Υω2
η − 2ΥωηαηE

[
ωη

]
+ α2

ηE
[
ω2

η

]
. (E.3.4)

The transition to the last step is allowed by the fact that both the noise-free

component of a wavelet coefficient Υωη and the shrinkage factor αη are non-

random quantities. With the assumption given by Eq. (E.3.2), the necessary

E.11These factors are called filtering weights in [51], and [83].

E.12See Eq. (E.1.2).
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condition for αη to be a stationary point gives the following equality:

ΥωηE
[
ωη

]
= αηE

[
ω2

η

]
(E.3.5)

With the assumption given by Eq. (E.3.2) that E(ωη) = Υωη, and the well-

known properties[64] that

var(x) = E[x2] − (E[x])2, (E.3.6)

Eq (E.3.5) gives the shrinkage factor

αη
MSE =

Υω2
η

E
[
ω2

η

]

=
Υω2

η

Υω2
η + var(ωη)

(E.3.7)

The second derivative of Ξ with respect to αη is E
[
ω2

η

]
> 0. According to

the second derivative test, ωMSE
η = αη

MSEωη, attains the minimum Ξ, the

mean squared error of estimation of the noise-free coefficient.

This optimal shrinkage factor is unknown in practice without knowledge

of the noise-free component Υωη and the variance var(ωη) of the empirical

coefficient. Following from the assumption given in Eq. (E.3.2) and the

properties given in Eq. (E.3.6) is that E
(
ω2

η

)
= Υω2

η + var
(
ωη

)
Thus, the

noise-free coefficient can be estimated by

Υω2
η ≈ ω2

η − var
(
ωη

)
. (E.3.8)

The optimal (MSE) shrinkage factor given in Eq. (E.3.7) can be approxi-
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mated by the following shrinkage rule[51; 83]:

α̃η
MSE = H

(
ω2

η − var(ωη)

ω2
η

)
(E.3.9)

where H is the Heaviside step functionE.13. The shrinkage factor given in

Eq. (E.3.9), bounded over the interval, 1 ≤ α̃η
MSE ≤ 0, attenuates the ab-

solute magnitude of the empirical coefficient toward zero. The variance of

the coefficient can be estimated by τσ2 where τ ≥ 1 and σ can be estimated

from the image background as detailed in Appendix C. According to [83],

setting the parameter τ to two leads to good results.

It should be emphasized that the MSE properties of the shrinkage rule

defined in Eq. (E.3.1) with the shrinkage factor given by Eq. (E.3.9) only

holds for the convergence range of magnitude MR images. It is obvious from

the foregoing discussion that the optimality of the shrinkage factor as given

by Eq. (E.3.9) relies heavily on the assumption given in Eq.(E.3.2) which in

general is not valid outside the convergence range.

E.4 SSR Decision Rule: Semisoft Shrinkage with

Rician based Thresholds

The last section of this appendix aims to explore the problem of integrating

the properties of Rician noise in a shrinkage rule. For our purpose, it is

desirable to have the thresholds selected with some consideration of the the-

E.13 The Heaviside step function is given by

H(x) =

{
0 : x < 0
1 : x ≥ 0

(E.3.10)

For details see [60].
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oretical properties of image noise. The second moment of a Rician variable

given by [49; 65; 101]:

m(2)(I) = S2 + 2σ2 (E.4.1)

is signal dependent. Over the range of convergence, the first moment is

converging to S up to a diminishing bias. Assuming that the bias is negligible

within the convergence range, i.e., m1 = S, the variance of Rician noise

approaches 2σ2. This bound is also consistent with the experimental findings

in [83] which suggests 2σ2 is a better choice for estimating the noise-free

wavelet coefficients. At a very low intensity range, as S approaches zero,

the variance of Rician noise is given by [41] var(I) = (2− π
2 )σ2. Thus, noise

variance is bounded approximately by the following interval:

[
σ

√
2 − π

2
, σ

√
2

]
.

These theoretical bounds motivate the following decision rule which is re-

ferred to as the SSR decision rule or SSR rule for short. Consider the

semisoft shrinkage rule defined in Eq. (E.2.5).

λT k
= σ̂k

√
2 ln N for k = 1, 2. (E.4.2)

where

σ̂1 = σ̂

√
2 − π

2
; (E.4.3)

σ̂2 = σ̂
√

2. (E.4.4)

The parameter σ from Eq. (2.2.1) and Eq. (2.2.3) is in general unknown,

but an accurate estimate σ̂ can be obtained from the signal-free data in the
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image backgroundE.14.

E.14For details see Appendix C.
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Appendix F

χ
2 Noise in Squared

Magnitude Images

A squared magnitude image IS arises mathematically from a sum of squares

transformationF.1 on a pair of images, each with additive Gaussian noise

distributed N (0, σ2). The conditional distribution of the resulting data

set IS is transformed from a Gaussian distribution to a noncentral χ
′2

distribution[51; 52; 62; 83]:

f(IS |S, σ) ∼ σ2χ
′2
ν (λ)

with two degrees of freedom (ν = 2) and the non-centrality parameter λ =

S2

σ2 . The probability density function of a noncentral χ
′2
ν (λ) variate is given

by

f(z|ν, λ) = 2−v/2 exp

{
− z + ν

2

}
z

ν−2
2

∞∑

r=0

λrzr

22rr!Γ(1
2ν + r)

(F.0.1)

F.1see Fig. 2.2.
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with mean and variance given as the following:

E

(
χ

′2
ν (λ)

)
= ν + λ (F.0.2)

var

(
χ

′2
ν (λ)

)
= 2(ν + 2λ); (F.0.3)

see [41; 62] and [106]. The conditional mean and variance of squared mag-

nitude signals is therefore [83]

EI|S2,σ = S2 + 2σ2 (F.0.4)

varI|S2,σ = 4S2σ2 + 4σ4 (F.0.5)
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Part II

Output Data Sets of

Performance Evaluation
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The purpose of this appendix is to show the input/output images of

performance evaluation. These data are organized by cases of study. For

each test case, the data are presented in a matrix form. Each row shows

an image which is either an input or output of an enhancement procedure.

Of each of these images, three representations are displayed: (1) the given

image on the left; (2) the contrast-adjusted image in the second column;

and (3) the edge map on the right.
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Appendix G

Synthetic Test Cases
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σ

Figure G.1: Synthetic Images. Comparison of contrast improvement across
algorithms on test images corrupted by noise with σ over the range from 3
to 10
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σ

Figure G.2: Synthetic Images. Comparison of absolute error with respect to
l1 norm and SNR with respect to l2 norm across algorithms on test images
corrupted by noise with σ over the range from 3 - 10.
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Appendix H

Medical Test Cases
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) Gaussian Filtering

(C) Anisotropic Diffusion Filtering

Figure H.1: Cardiac Image: SRS0000-10. Diffusion Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) S-SU Procedure

(C) S-MSE Procedure

Figure H.2: Cardiac Image: SRS0000-10. S Group.
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Data Views Contrast Adjusted Views Edge Maps

(B) SE-SU Procedure

(C) SE-MSE Procedure

(D) SE-SSR Procedure

Figure H.3: Cardiac Image: SRS0000-10. SE Group
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) Gaussian Filtering

(C) Anisotropic Diffusion Filtering

Figure H.4: Cardiac Image: SRS0000-70. Diffusion Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) S-SU Procedure

(C) S-MSE Procedure

Figure H.5: Cardiac Image: SRS0000-70. S Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) SE-SU Procedure

(B) SE-MSE Procedure

(C) SE-SSR Procedure

Figure H.6: Cardiac Image: SRS0000-70. SE Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) Gaussian Filtering

(C) Anisotropic Diffusion Filtering

Figure H.7: Cardiac Image: Eman-70. Diffusion Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) S-SU Procedure

(C) S-MSE Procedure

Figure H.8: Cardiac Image: Eman-70. S Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) SE-SU Procedure

(B) SE-MSE Procedure

(C) SE-SSR Procedure

Figure H.9: Cardiac Image: Eman-70. SE Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) Gaussian Filtering

(C) Anisotropic Diffusion Filtering

Figure H.10: Cardiac Image: Eman-83. Diffusion Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) S-SU Procedure

(C) S-MSE Procedure

Figure H.11: Cardiac Image: Eman-83. S Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) SE-SU Procedure

(C) SE-MSE Procedure

(C) SE-SSR Procedure
tbtail

Figure H.12: Cardiac Image: Eman-83. SE Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) Gaussian Filtering

(C) Anisotropic Diffusion Filtering

Figure H.13: Cardiac Image: SRS0006-24. Diffusion Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) S-SU Procedure

(C) S-MSE Procedure

Figure H.14: Cardiac Image: SRS0006-24. S Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) SE-SU Procedure

(B) SE-MSE Procedure

(C) SE-SSR Procedure

Figure H.15: Cardiac Image: SRS0006-24. SE Group
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) Gaussian Filtering

(C) Anisotropic Diffusion Filtering

Figure H.16: Brain Image: BG-3. Diffusion Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) S-SU Procedure

(C) S-MSE Procedure

Figure H.17: Brain Image: BG-3. S Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) SE-SU Procedure

(B) SE-MSE Procedure

(C) SE-SSR Procedure

Figure H.18: Brain Image: BG-3. SE Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) Gaussian Filtering

(C) Anisotropic Diffusion Filtering

Figure H.19: Cardiovascular Image: Carotid Arteries 2. Diffusion Group.
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Data Views Contrast Adjusted Views Edge Maps

(A) Input Image

(B) S-SU Procedure

(C) S-MSE Procedure

Figure H.20: Cardiovascular Image: Carotid Arteries 2. S Group.
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Given Images Edge Maps

(A) SE-SU Procedure

(B) SE-MSE Procedure

(C) SE-SSR Procedure

‡ Contrast adjustment is not applicable to these images since most of the
image features are removed by the SE schemes.

Figure H.21: Cardiovascular Image: Carotid Arteries 2. SE Group.
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