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Abstract

While the interest in human-friendly autonomous wheelchairs for disabled people

grows, the issue of obtaining feedback from the user in convenient and unobtru-

sive ways becomes critical. The major research focus in this area is concentrated

on issues of autonomous capabilities, such as obstacle avoidance and autonomous

navigation. Relatively little attention is being paid to the issue of interaction of

the autonomous wheelchair with a user.

Naturally, mobility impaired persons are limited in their activities and may have

difficulties performing their everyday activities, so providing efficient and convenient

interaction with a wheelchair user becomes an important component of autonomous

wheelchairs. Some of the sample tasks that such a system can perform are detecting

when the user points to something, looks at a display, is happy or distressed, etc.

Having this type of information about the actions of the user, provides valuable

feedback to the autonomous wheelchair and greatly facilitates its decision making

process. Existing autonomous wheelchair systems have user interaction systems
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that concentrate on controlling the wheelchair, either by hand or head gestures of

the user. These systems have several drawbacks, including inability to provide any

feedback from the user to the autonomous wheelchair, limitations in functionality

and unsuitability for some users. The purpose of this research is to examine the

feasibility of a system that obtains feedback from the user by monitoring his/her

gestures using a camera mounted on a wheelchair. The prototype of such a system,

which recognizes static facial gestures, has been implemented and tested, achieving

90% recognition rate with 6% false positive and 4% false negative rates.
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1 Introduction

1.1 Motivation

In 2002, 2.7 million people that were aged fifteen and older used a wheelchair in the

USA [1]. This number is greater than the number of people who are unable to see

or hear [1]. The majority of these wheelchair-bound people have serious difficulties

in performing routine tasks and are dependent on their caregivers. The problem of

providing disabled people with greater independence has attracted the attention of

researchers in the area of assistive technology. Wheelchair-bound individuals are

the most vulnerable group of disabled people because they are most limited in their

mobility. Therefore, the problem of creating an intelligent wheelchair, which allows

performing of some routine everyday tasks, has especially attracted attention of

researchers. Controlling such a wheelchair and ensuring its safe operation may be

challenging for disabled people. Hence, obtaining feedback from the user and taking

independent decisions based on this feedback is one of the important components of

an intelligent system. Ideally, an autonomous wheelchair should be able to perform

1



some of the routine tasks autonomously instead of relying on the direct input of a

user. Such a wheelchair requires some form of feedback to obtain information about

the intentions of the user. For example, an automatic wheelchair may determine

if the user is pointing at anything, looking at the display, showing happiness or

looking elsewhere. It is desirable to obtain the feedback in an unconstrained and

non intrusive way and the use of a video camera is one of the most popular methods

to achieve this goal. This work explores the feasibility of a system capable of

obtaining visual feedback from the user for usage by an automatic wheelchair. In

particular, this work considers visual feedback, namely facial gestures. Current

research appears to lack work on obtaining visual feedback from a wheelchair user.

The requirement to obtain feedback in a non-intrusive way that does not allow

placement of a video camera directly in front of the user. This fact makes obtaining

visual feedback from the person sitting in the wheelchair challenging, due to an

inability to obtain pure frontal images of the person. Facial features in non frontal

images are usually distorted and occluded; therefore, their detection and analysis

are difficult.

1.2 An Approach to Wheelchair User Monitoring

Growing demand to provide an increasing number of disabled people with a wheelchair

that can give them a greater degree of independence has led to great interest in
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research for the area of assistive technology. Significant progress has been achieved

in the area of intelligent wheelchairs. Modern intelligent wheelchairs are able to

autonomously navigate indoors and outdoors, and avoid collisions during move-

ment without intervention of the user. However, in order to serve the user in the

best possible way, even the most sophisticated wheelchair should be able to accept

some sort of input from the user. Such input provides the wheelchair with direc-

tions for the next task and feedback from the user about the task being executed.

The form of the input has the greatest impact on the convenience of using the

wheelchair. Ideally, the user should not be involved in the low level direct control

of the wheelchair. For example, if the user wishes to move from the bedroom to

the bathroom, the wheelchair should receive instruction to move to the bathroom

and navigate there autonomously without any assistance from the user. During the

execution of the task, the wheelchair will monitor the user in order to detect if the

user is satisfied with the decisions taken by the wheelchair, if he/she requires some

type of assistance or he/she wishes to give new instructions. The task of moinitor-

ing the user may be difficult for an autonomous wheelchair due to the fact that the

wheelchair is generally unaware whether the user produced a facial expression in

response to an action of the wheelchair or as a result of some unrelated event. To

the best of the author’s knowledge, there is no such system available for intelligent

wheelchairs. This work concentrates on one component of such a system; namely,
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on the monitoring system.

This section proceeds with a general overview of the proposed system, then con-

tinues with the general design, description of training of the system and integration

into existing intelligent wheelchair systems, and finally discusses possible future

directions and implementation.

1.2.1 System Overview

While intelligent wheelchairs are becoming more and more sophisticated, the task

of controlling them becomes increasingly important in order to utilize their full

potential. The direct control of the wheelchair that is customary for non-intelligent

wheelchairs cannot utilize fully the capabilities of an autonomous wheelchair. More-

over, the task of directly controlling the wheelchair may be too complex for some

patients. To overcome this drawback this work proposes to add a monitoring sys-

tem to a controlling system of an autonomous wheelchair. The purpose of such a

system is to provide the wheelchair with timely and accurate feedback of the user

on the actions performed by the wheelchair or about the intentions of the user.

The wheelchair will use this information for planning of its future actions or cor-

recting the actions that are currently performed. The response of the wheelchair to

feedback of the user depends on the context in which this feedback was obtained.

In other words, the wheelchair may react differently or even ignore feedback of the
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user in different situations. Due to the fact that it is difficult to infer intentions

of the user from his/her facial expressions, the monitoring system will complement

regular controlling system of a wheelchair instead of replacing it entirely. Such an

approach facilitates the task of controlling an autonomous wheelchair and makes a

wheelchair more friendly to the user. The most appropriate way to obtain feedback

of the user is to monitor the user constantly using some sort of input device and

classify the observations into categories that can be understood by the automatic

wheelchair. To be truly user friendly, the monitoring system should neither distract

the user from his/her activities nor limit the user in any way. Wearable devices,

such as gloves, cameras or electrodes, usually distract the user and therefore, are

unacceptable for the purposes of monitoring. Microphones and similar voice input

devices are not suitable for passive monitoring, because their usage requires explicit

involvement of the user. In other words, the user has to talk, so that the wheelchair

may respond appropriately. Vision based approaches are the most suitable for the

purposes of monitoring the user. Video cameras do not distract the user, and if

they are installed properly, they do not limit the field of view.

The vision based approach is versatile and capable of capturing a wide range

of forms of user feedback. For example, they may capture facial, head and various

hand gestures as well as face orientation and gaze direction of the user. As a result,

the monitoring system may determine, for example, where the user is looking, is the

5



user is pointing at anything, is the user happy or distressed. Moreover, the vision

based system is the only system that is capable of passive and active monitoring

of the user. In other words, a vision based system is the only system that will

obtain the feedback of the user by detecting intentional actions or by inferring the

meaning of unintentional actions. The wheelchair has a variety of ways to use this

information. For example, if the user looks at a certain direction, which may differ

significantly from the direction of movement, the wheelchair may slow down or even

stop, to let the user look at the area of interest. If the user is pointing at something,

the wheelchair may identify the object of interest and move in that direction or bring

the object over if the wheelchair is equipped with a robot manipulator. If there is a

notification that should be brought to attention of the user, the wheelchair may use

only visual notification if the user is looking at the screen or a combination of visual

and auditory notifications if the user is looking away from the screen. The fact that

the user is happy may serve as confirmation of the wheelchair actions, while distress

may indicate incorrect action or a need for help. As a general problem, inferring

intent from action is very difficult.

1.2.2 General Design

The monitoring system performs constant monitoring of the user, but it is not

controlled by the user and therefore, does not require any user interface. From
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the viewpoint of the automatic wheelchair, the monitoring system is a software

component that runs in the background and notifies the wheelchair system about

detected user feedback events. To make the monitoring system more flexible, it

should have the capability to be configured to recognize events. For example, one

user may express distress using some sort of face gesture while another may do the

same by using a head or hand gesture. The monitoring system should be able to

detect the distress of both kinds correctly depending on a user observed. Moreover,

due to the high variability of the gestures performed by different people, and because

of natural variability of disorders, the monitoring system requires training for each

specific user. The training should be performed by trained personnel at the home

of the person for which the wheelchair is designed. Such training may be required

for a navigation system of the intelligent wheelchairs, so the requirement to train

the monitoring system is not exaggerated. The training includes collection of the

training images of the user, manual processing of the collected images by personnel

and training the monitoring system. During training, the monitoring system learns

head, face and hand gestures as they are produced by the specific user and their

meanings for the wheelchair. In addition, various images that do not have any

special meaning for the system are collected and used to train the system to reject

spurious images. Such an approach produces a monitoring system with maximal

accuracy and convenience for the specific user. It may take a long time to train
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the monitoring system to recognize emotions of the user, such as distress, because

a sufficient number of images of genuine facial expressions of the user should be

collected. As a result, the full training of the monitoring system may consist of

two stages: in the first stage, the system is trained to recognize hand gestures and

the face of the user, and in the next stage, the system is trained to recognize the

emotions of the user.

To provide the wheelchair system with timely feedback, the system should have

good performance that allows real-time processing of input images. Such perfor-

mance is sufficient to recognize both static and dynamic gestures performed by the

user.

To avoid obstructing the field of view of the user, the camera should be mounted

outside the user’s field of view. However, the camera should be also capable of

taking images of the face and hands of the user. Moreover, it is desirable to keep

the external dimensions of the wheelchair as small as possible, because a compact

wheelchair has a clear advantage when navigating indoors or in crowded areas. To

satisfy these requirements one of the places to mount the camera is on an extension

of the side handrail of the wheelchair. This does not enlarge the overall external

dimensions of the wheelchair, limit the field of view of the user and allows tracking

of the face and hands of the user. However, this requires that the monitoring system

deals with non-frontal images of the user, taken from underneath of the face of the
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user. Such images are prone to distortions and therefore, the processing of such

images is challenging. To the best of the author’s knowledge, there is no research

that deals with facial images taken from underneath of the user face at such large

angles as required in this work. In addition, the location of the head and hands is

not fixed, so the monitoring system should deal with distortions due to changes of

the distance to the camera and viewing angle.

The block diagram of the proposed monitoring system is presented in Fig. 1.1.

The block diagram illustrates the general structure of the monitoring system and

its integration into the controlling system of an intelligent wheelchair.

1.2.3 Implementation and future work

The implementation of the monitoring system, which can satisfy all requirements,

is a very complex task. This work takes the first step towards the creation of such

a system by implementing a system that is capable of recognizing ten static facial

gestures. The proposed monitoring system uses an existing automatic wheelchair

system and satisfies the basic requirements as specified in this chapter. The system

uses as input, images that are obtained by using a video camera. Moreover, the

camera is mounted in the way that does not obstruct the field of view of the

user. In the current implementation, the proposed system does not have real time

performance and is not integrated into the wheelchair system.
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Figure 1.1: The block diagram of monitoring system
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The results allow the usage of this research as a base for future development.

One of the directions is implementing the capability of recognizing emotions. The

demonstrated recognition performance of the proposed algorithm may be sufficient

enough to recognize emotions from static images with proper training. The al-

gorithm may be also extended to recognize dynamic facial gestures of the user.

Another possible extension of the algorithm is detection of the direction of the

user’s gaze. The proposed algorithm produces contours of eyes as an interim result,

which greatly simplifies the task of detecting the direction of the user’s gaze, for

example, using approaches proposed by Wang and Sung [99] or Wang et al. [100].

In addition, the proposed approach may be adapted to detect static hand gestures

of the user.

1.3 Contributions

The research described in this report, works towards the development of an au-

tomatic wheelchair user monitoring system. This work presents a system that is

capable of monitoring static facial gestures of a user of an automatic wheelchair

in a non-intrusive way. The system obtains the images using a standard camera,

which is installed in the area above the knee of the user as illustrated in Figure 3.1.

Such a design does not obstruct the field of view of the user and obtains input in

a non-intrusive and unconstrained way.
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Previous research in the area of interfaces of automatic wheelchairs with humans

concentrates on the issue of controlling the wheelchair by a user. The majority of

proposed approaches are suitable for controlling the wheelchair only. One of the

major contributions of this work is that it examines the feasibility of creating a

monitoring system for users of autonomous wheelchairs and proposes a general

purpose static facial gesture recognition algorithm that can be adopted for a vari-

ety of applications that require feedback from the user. In addition, unlike other

approaches, the proposed approach relies solely on facial gestures, which is a signif-

icant advantage for users with severe mobility limitations. Moreover, the majority

of similar approaches requires the camera to be placed directly in front of the user,

obstructing his/her field of view. The proposed approach is capable of handling

non frontal facial images and therefore, does not obstruct the field of view.

The proposed approach has been implemented in software and evaluated on a

set of 9140 images from ten volunteers, producing ten facial gestures. Overall, the

implementation achieves a recognition rate of 90%.

1.4 Report outline

This report consists of five chapters. The first chapter provides motivation for the

research and describes the entire monitoring system in general. The second chapter

discusses previous related work. The third chapter provides technical and algorith-
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mic details of the proposed approach. The fourth chapter details the experimental

evaluation of a software implementation of the proposed approach. Finally, chap-

ter five provides a summary and conclusion of this work as well as suggestions for

future work.
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2 Background and Related Research

Automatic wheelchairs attract much attention from researchers (see e.g., [38, 88,

103] for general reviews). However, most research in the area of automatic wheelchairs

focus on automatic route planning, navigation and obstacle avoidance. Relatively,

little attention has been paid to the issue of the interface with the user. To the

best of the author’s knowledge, all existing research in the area of user interface

is concentrated on the issue of controlling the automatic wheelchair by the user

[88]. The methods that control the automatic wheelchair include mechanical de-

vices, such as joysticks, touch pads, etc. (e.g. [17]); voice recognition systems

(e.g.[52]); electrooculographic (e.g.[6]), electromyographic (e.g.[40]) and electroen-

cephalographic (e.g.[93]) devices; and machine vision systems (e.g.[70]). The sys-

tems involving machine vision have clear advantages over other approaches because

mechanical devices and voice recognition systems are unsuitable for user monitor-

ing, and electro-oculographic devices are too intrusive. Therefore, only machine

vision approaches are considered in this work. This chapter proceeds with a brief
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review of the research on interaction with automatic wheelchairs and then continues

with research on gesture recognition.

2.1 Review of research on interaction with automatic wheelchairs

Due to the fact that this work considers only machine vision approaches, this section

reviews a research on controlling autonomous wheelchairs using various computer

vision approaches.

Bley et al. [17] proposed a system that allows the control of an automatic

wheelchair, using a joystick, touchscreen and facial gestures. The facial gestures

are used to control the motion of the wheelchair. The authors proposed the use

of Active Appearance Models (AAMs) [90] to detect and interpret facial gestures,

using the concept of Action Units (AUs) introduced by Ekman and Friesen [29]. To

improve the performance of the algorithm, an AAM is trained, using an artificial

3D model of a human head, on which a frontal image of the human face is pro-

jected. The model of the head can be manipulated in order to model variations of a

human face due to head rotations or illumination changes. Such an approach allows

one to build an AAM which is insensitive to different lighting conditions and head

rotations. The authors do not specify the number of facial gestures recognizable by

the proposed system or the performance of the proposed approach.
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Bien et al. [14] proposed a wheelchair system that has several control mecha-

nisms. One of the mechanisms, called Eye-mouse, is of particular interest in the

context of this work. This system tracks the direction of the user gaze and uses it

to manipulate objects on the computer screen. The flexibility of such an approach

is limited only by the application. To eliminate an effect of the head rotation, the

user is required to wear a special device that tracks the pupil of the eye. Wearing

such a device seriously obstructs the field of view of the user. No quantitative

results were provided by the authors.

Moon et al. [74] proposed a system that combines various techniques to com-

municate with the user. The techniques include an electromyographic device, a

voice recognition system and face directional gesture recognition system. Such an

approach provides great flexibility and applicability to a wide range of disorders.

The face directional gesture recognition system uses a combination of face direction

with head gestures to encode a face directional gesture. The system classifies all

possible face directions into three categories: forward, left and right. Head gestures,

defined in the context of this work, are shaking and nodding. Nodding is used to

set the direction of movement of the wheelchair. For example, if the user turns

head left and simultaneously nodes his/her head, the wheelchair will move to the

left. Shaking is used to stop the wheelchair. The system uses frontal images of

a user sitting in the wheelchair as input. To obtain the direction of the face, the
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system detects a face by using skin color segmentation and then infers the direction

of the face from the difference between the center of the facial region and center of

gravity of facial features. In total, the system is able to recognize four commands

with a recognition rate of 93%.

Kang et al. [49] proposed an algorithm that utilizes static palm gestures to

control the wheelchair. To improve the performance of the algorithm, gestures

were performed against a semi opaque surface and the camera was mounted behind

the surface. The images that are obtained in this way are actually shadows of

the palm that can be easily segmented and processed. Such an approach makes

the algorithm insensitive to skin color. In addition, the proposed approach does

not require extensive hand movements and therefore it is usable by people with

limited hand mobility. In order to obtain images of palm gestures, the source of

light and semi opaque screen should be mounted on the wheelchair. To classify

the gestures, the algorithm uses eight geometric properties of a palm shape. The

authors reported that their approach is capable of recognizing fourteen gestures

reliably. However, no quantitative results were provided.

Nakanishi et al. [75], and Adachi et al. [2], similarly to [74], proposed the use

of the face direction of a wheelchair user, to control the wheelchair. The system

uses face direction to set the direction of the movement of the wheelchair. How-

ever, a straightforward implementation of such an approach produces poor results
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because unintentional head movements may lead to false recognition. To deal with

this problem, the authors ignored quick movements and took into account the en-

vironment around the wheelchair [75]. Such an approach allows improvement of

the performance of the algorithm by ignoring likely unintentional head movements.

The algorithms operated on images obtained by a camera tilted by 15 degrees,

which is much less than the angles in this work. To ignore quick head movements,

both algorithms performed smoothing on a sequence of angles obtained from a se-

quence of input images. While this technique effectively filters out fast and small

head movements, it does not allow fast and temporally accurate control of the

wheelchair. Unfortunately, only subjective data about the performance of these

approaches have been provided.

Yoda et al. [105], and Yoda et al. [104] proposed to control a wheelchair using

head gestures which were detected by a stereo camera. The camera obtained non-

frontal facial images, although in a less steep angle than in this work. The authors

defined a head gesture as turning the head right or left and monitored the face

orientation angle in order to detect these gestures. The approach is similar to the

ones proposed in [75] and [2], in the sense that face orientation angles obtained

from a sequence of input images are used to classify head movements into gestures.

The authors proposed to estimate face orientation angle from disparity information,

obtained from an analysis of stereo images. Unlike the approaches proposed in [75]
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and [2], this approach uses thresholds instead of smoothing to classify a sequence of

face orientation angles into head gestures. The proposed approach achieves a 94%

success recognition rate. Recognized facial gestures are used to select wheelchair

commands from a predefined set, which may be of any size.

Satoh and Sakaue [84] suggested the use of an omnidirectional stereo camera

to detect gestures of a wheelchair bound person. The omnidirectional stereo cam-

era, mounted above the wheelchair, had the shape of a regular dodecahedron with

trinocular camera units on each face, with 36 cameras in total. Obtained images

were used to generate a panoramic image of the environment. To generate such an

image, the algorithm also required data of attitude sensors in order to deal with in-

clination of the camera during movement and inaccurate installation of the camera

on the wheelchair. This approach has a clear advantage over other approaches due

to the absence of blind spots in the field of view of the camera, except occlusions

caused by the wheelchair itself or the user. The authors reported that the proposed

system is capable of recognizing two types of gestures: emergency stop and pointing

to the direction of movement. No quantitative data about the performance of the

algorithm was provided.

Kuno et al. [57] proposed a system to control an automatic wheelchair, using

hand gestures. The most distinctive features of this approach is the ability to

distinguish between intentional and unintentional hand gestures and ”guessing” of
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the meaning of unrecognized intentional hand gestures. The system assumed that

a person who makes an intentional gesture will continue to do so until the system

recognizes it. Once the system established the meaning of the gesture, the person

continued to produce the same gesture. Hence, to distinguish between intentional

and unintentional gestures, repetitive patterns in hand movement are detected.

Once a repetitive hand movement is detected, it is considered an intentional gesture.

In the next stage, the system tried to find the meaning of the detected gesture by

trying all possible actions until the user confirmed the correct action by repeating

the gesture. The authors reported that the proposed wheelchair supports four

commands, but they do not provide any data about the performance of the system.

Matsumoto et al. [70] suggested the use of a combination of head gestures and

gaze direction to control an automatic wheelchair. The system obtained images of

the head of a wheelchair user by a stereo camera. The camera of the wheelchair was

tilted upward 15 degrees, so that the images obtained by the camera were almost

frontal. The usage of a stereo camera permits a fast and accurate estimate of the

head posture as well as gaze direction. The authors used the head direction to

set the direction of wheelchair movement. To control the speed of the wheelchair,

the authors used a combination of face orientation and gaze direction. If face

orientation coincided with a gaze direction, the wheelchair moved faster. To start

or stop the wheelchair, the authors used head shaking and nodding. These gestures
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were defined as consecutive movements of the head of some amplitude in opposite

directions. The authors do not provide data on the performance of the proposed

approach.

Hu et al. [42] presented a system that controlled the wheelchair using static

head gestures. The input images were obtained by a camera, installed in front of

the wheelchair bound person. The system supported five commands, which were

given by turning the head left, right, up, down or keeping the head straight. The

head posture was detected using a combination of face detection [98] and template

matching. Unfortunately, the quantitative data on the performance of this approach

has not been provided by the authors.

Bergasa et al. [12], and Bergasa et al. [11] proposed to control a wheelchair

by using a combination of head and facial gestures. Input images were obtained

using a video camera placed in front of a wheelchair user. In the context of this

approach, head gestures were defined as turning the head left, right, up or down;

facial gestures were defined as opening or closing of the eyes or mouth. The face

of a user was detected using color based segmentation and analyzed using some

heuristics, to obtain the contours of the eyes and mouth. To detect the event of

turning the head, the face was tracked using a Kalman filter [46]. Each gesture

defined a command for the wheelchair, so the wheelchair supported a set of eight

commands. The authors do not provide quantitative performance of the proposed
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approach.

While the approaches presented in this section mainly deal with controlling the

wheelchair, some of the approaches may be useful for the monitoring system. The

approach proposed in [17] is extremely versatile and can be adopted to recognize

facial gestures of a user. The approaches presented in [2, 75] and especially in [70]

may be used to detect the area of interest of the user. The approach presented in

[57] may be useful to distinguish between intentional and unintentional gestures.

However, more research is required to determine whether this approach is applicable

to head or facial gestures.

2.2 Review of research on gesture recognition

Gesture recognition is an active research area in computer vision (see, e.g., [73,

101] for general reviews). Gestures can be defined as a body motion intended to

communicate with the environment. Of particular interest are gestures performed

by hands, fingers, heads, faces or the whole body. Given the breadth of this area,

the review of all relevant work is beyond the scope of this work. In particular, this

work does not consider body language or gestures formed by body motions of the

whole body. This subsection proceeds with brief reviews of the research in facial,

head and hand gesture recognition.
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2.2.1 Review of research on facial gesture recognition

Detection and recognition of facial gestures attract a great deal of research attention

(see e.g., [30, 81] for general reviews). This section proceeds with a brief review of

the research in the area of recognition of facial gestures and expressions.

Algorri and Escobar [4] proposed the use of PCA analysis [41] for recognizing

facial features. The main purpose of the proposed algorithm is to compress face

images for videoconferencing. Hence, no classification of the detected facial features

into categories is performed. However, this approach may be adapted for classifica-

tion of facial gestures. The authors trained separate detectors for the left and right

eyes as well for the mouth. Aside from training, the algorithm required an initial

setup in order to track the eyes and mouth of a person. The authors admitted that

their method is not able to handle all possible variations due to movements of the

user. Unfortunately, a quantitative evaluation of the performance of the proposed

algorithm is not provided.

Fazekas and Santa [31] proposed the use of an SVM classifier [24] to recognize

facial gestures from static frontal monochrome images of a face. The authors pro-

posed two approaches to solve the problem of facial gesture recognition. In the first

approach, the separate classifier was trained using the whole face for each gesture.

The second approach used two layers of classifiers. The first layer contained two
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classifiers for each gesture that were trained to recognize the eyes and mouth for

each facial gesture. The second layer contained a separate classifier for each gesture.

Each classifier at the second layer received as an input, the output of all classifiers of

the first layer. Both approaches were trained to recognize five facial gestures. The

authors do not provide the overall performance of their approaches. For the first

approach, the recognition rate ranges from 67.78% to 85.56% for images of people

unknown to the classifier and from 77.65% to 88.24% for people whose images were

used to train the classifier. For the second approach, the recognition rate ranges

from 77.78% to 95.56% for images of people unknown to the classifier and from

84.71% to 94.12% for people whose images were used to train the classifier

Liao and Cohen [62] proposed an algorithm to recognize facial gestures in the

presence of head motion. The authors estimated 3D head poses by modeling the

head as a 3D cylinder whose position and rotation were estimated from an image

sequence. According to this approach, facial gestures may be modeled as a combi-

nation of local deformations of some regions on the face. The authors defined nine

such regions that represent facial gestures, so that facial gestures were represented

as a combination of local deformations in each region. The motion inside each

region was estimated using an affine motion model. The parameters of the affine

motion of all regions are considered as a random multidimensional variable. The

likelihood of this variable is estimated using a graph model of a face and classified
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into facial gestures using an SVM classifier [24]. According to the authors, the

algorithm is capable of recognizing six facial gestures, which represent emotions,

in the presence of head motion. The performance of the algorithm ranges from

70.46% to 83.24% for different gestures.

The algorithm presented by La Cascia et al. [61] is capable of detecting facial

gestures in low resolution video sequences. To estimate the posture of a head, the

head was modeled as a texture mapped cylinder. The approach recognized two fa-

cial gestures: mouth opening and eyebrow raising. To detect these facial gestures,

the authors proposed two approaches to extend the tracker. The first approach

used head models with raised eyebrows or an opened mouth for tracking so that

facial gestures were detected simultaneously with the head tracking. However, this

approach performs poorly when head motion occurs simultaneously with facial ges-

tures. The second approach performed the head posture estimation and then facial

gesture detection. In the experiments conducted by the authors, the recognition

rate for mouth opening ranged from 27% to 72% for the first approach and from

50% to 88% for the second approach. The recognition rate for the eyebrows raising

ranged from 25% to 70% for the first approach and from 42% to 86% for the second

approach.

The facial expression recognition algorithm, proposed by Bartlett et al. [7],

is capable of recognizing seven facial expressions which correspond to emotions.
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The algorithm used a face detector, similar to the face detector proposed by Viola

and Jones [98], to detect frontal faces in input images. To detect characteristic

facial features, the results were processed using Gabor filters [37]. In the next

stage, detected features were used as an input for the facial expressions classifier.

The facial expression classifier consisted of seven SVM classifiers [24]. Each of the

SVM classifiers was trained to recognize a specific facial expression. To improve the

classification performance, the authors suggested the use of the Adaboost algorithm,

first proposed by Freund and Schapire [35], to select the most informative Gabor

features for classification by the SVM classifiers. In the experiments conducted by

the authors, the algorithm achieved a 93.3% recognition rate.

Unlike the approaches proposed in [7, 98], the algorithm of facial expression

recognition by Chen et al. [19] is robust to pose and size variations as well as

partial occlusions. The authors proposed the use of a multi-class hybrid-boost

learning classifier to detect faces and classify facial expressions. This classifier is

similar to other boost algorithms, e.g. Adaboost [35], in a sense that its output is

combined from the outputs of several weak classifiers. Weak classifiers are usually

simple, but do not have a good recognition rate. The boost classifier selects a

number of weak classifiers from a large pool during the training and combines them

into a single strong classifier, which has better performance than any weak classifier.

The authors proposed the use of Gabor [37] and Haar-like features [97] for weak
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classifiers. They reported that the proposed approach is capable of detecting six

facial expressions which correspond to emotions, with a 93.1% average recognition

rate.

Zhan et al. [108] presented an algorithm to recognize facial expressions using

2D Gabor wavelet transformation, derived from [37], and elastic template match-

ing that was first described by Balkenius [5]. The Gabor wavelet transformation

is used to extract distinct facial expression features, which are used by the elastic

template matching algorithm to detect facial expressions. To train the algorithm,

the authors calculated the Gabor wavelet transformation on latticed training im-

ages and selected the points, located around the eyes, mouth and nose, with the

largest amplitude values to train the elastic template classifier. At the recogni-

tion stage, trained elastic templates were matched to values of the Gabor wavelet

transformation of an input image, which were calculated in a way similar to the

training stage. The authors reported that the proposed algorithm recognizes six

facial gestures which correspond to emotions, with an average recognition rate of

90.4%.

Kim et al. [55] proposed an extension of the face detector, which was suggested

by Viola and Jones [98], for detection of facial expressions. In the first stage, the

algorithm detected a face in the input image using the face detection algorithm

proposed in [98]. However, any face detection algorithm may be used. To adapt
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the face detection algorithm [98] to the task of recognizing facial expressions, the

authors proposed an extension of a set of rectangular features used in [98] to a set of

all possible rectangular features that is sized 3×3. The algorithm selected the five

most efficient features for each trained facial expression. The selected features along

with features used in [98] were used to train the classifier. The authors reported

that the proposed algorithm is capable of recognizing seven facial expressions which

represent emotions, with an average recognition rate of 92.2%.

The approach proposed by Shan and Gritti [86] uses local binary patterns, which

were first introduced by Ojala et al. [78], and an SVM classifier [24] to recognize

facial expressions. Local binary patterns were used to describe the local structure

of an image due to their computational simplicity and tolerance to monotonic illu-

mination changes. Generally, the local binary pattern is a number, which encodes

a texture around some point in an image. The structure of some image region

may be represented as a histogram, containing values of local binary patterns at

each point that belongs to this region. Similar to [7], the authors proposed the

use of an Adaboost to select the most discriminative regions of an image by ex-

amining the histograms of local binary patterns. An SVM classifier was used to

classify facial expressions using histograms of local binary patterns selected by the

Adaboost algorithm. In the experiments conducted by the authors, the proposed

algorithm recognized seven facial gestures which corresponded to emotions, with a
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93.1% recognition rate.

Sohail and Bhattacharya [89] proposed the classification of facial expressions

by classifying distances between the salient features of a face using the k Nearest

Neighbor classifier [32]. The algorithm relies on the concept of action units, intro-

duced by Ekman and Friesen [29], to define facial features for classification. The

algorithm detected eleven feature points, which were located in the areas that pro-

vide information about action units involved in an expression, mainly around the

eyes and mouth. The eyelids, eyebrows, nostrils and mouth were detected using

various heuristics and were used to locate the feature points. The distances be-

tween the detected feature points were used to classify the facial expressions. The

authors reported that the algorithm is capable of recognizing six facial gestures

which represent emotions, with an average recognition rate of 90.76%.

Due to the fact that all of the described approaches deal with images taken by a

camera that is located in front of a face, none of the approaches can be readily used

in autonomous wheelchairs. The approaches based on the algorithm of Viola and

Jones [98], e.g. [19, 55], have good recognition performance of over 90%, but gener-

ally require extensive training and the large number of training samples. Therefore,

such approaches may be inapplicable for usage in a wheelchair monitoring system.

The approach that combines an Adaboost with SVM classifiers, e.g. [7, 86], usu-

ally have better performance than other approaches and do not require extensive
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training. The approach proposed by Zhan et al. [108] has a good performance and

does not require large amounts of training samples. Both approaches are capable

of recognizing facial expressions. However, more research is required to use these

approaches for the monitoring of a wheelchair user.

2.2.2 Review of research on head gesture recognition

The approach proposed by Kapoor and Picard [51] recognizes head shakes and

nods by tracking the pupils. To detect the pupils, the authors proposed the use of

a camera with infrared LEDs. Switched on LEDs create a red-eye effect, hence, the

pupils may be easily and accurately detected by analyzing the difference between a

pair of images taken with LEDs switched on and off. The locations of pupils were

used for classification of head movements. The authors used two separate Hidden

Markov Model (HMM) [9] based classifiers to classify head movements for nods

and shakes. The HMM classifier is capable of classifying a sequence of observations

into categories. This fact makes the HMM classifier especially suitable for gesture

classification. In the experiments, the algorithm achieved an average recognition

rate of 78.46%.

Kawato and Ohya [54] proposed an approach to detect head nodding and shak-

ing by tracking a point between the eyes, which is a midpoint on the line connecting

the centers of the two eyes. The area between the eyes has dark parts on the left
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and right (eyes and eyebrows) and bright parts on the top and bottom (forehead

and nose). To detect this area, the authors suggested the extraction of the face area

using skin color thresholding and applying a circle frequency filter to the detected

region. The authors defined the circle frequency filter of a pixel p as a discreet

Fourier transform of pixels laying along a circle centered at the pixel p. Such an

approach allows the detection of circular structures in the image, such as the area

between the eyes. After initial detection, the area was tracked using template

matching. The position of the point between the eyes was used to classify head

movements into nodding or shaking. The classification was performed using empir-

ically selected rules. The authors reported that the proposed algorithm is capable

of detecting shaking and nodding in real time with an average recognition rate of

86.22%.

The algorithm proposed by Ng and De Silva [77] is capable of recognizing three

head gestures in low resolution videos of poor quality with a complex background.

The algorithm worked with frontal color images of a face and recognized nodding,

shaking and tilting gestures. Face and hair regions were detected using simple color

thresholding. In the next stage, feature vectors for the classification were formed

from the first four invariant moments, which were proposed by Hu [43], for each

detected region. The authors proposed the use of a separate HMM classifier [9] for

each head gesture to classify feature vectors to head gestures. They reported that
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the proposed algorithm achieves an average recognition rate of 87%.

The approach proposed by Tang and Nakatsu [94] is based on a feature point

tracker, proposed by [67, 87, 96], and a neural network classifier. In the first stage,

the algorithm extracted the head region using color thresholding. In the next stage,

the head was tracked using a feature point tracker. Finally, a feature vector was

formed from tracked point coordinates and fed to the neural network classifier,

proposed by Lin and Kung [64]. To improve the performance of the classification, a

separate neural network was trained for each gesture. The output of such a classifier

is an output of a neural network that produced the best result. In the experiments

conducted by the authors, the algorithm successfully recognized ten head gestures

with a recognition rate that ranges from 84.3% to 95.7% for different gestures.

Bayesian networks, first proposed by Pearl [83], were used by Lu et al. [66] to

recognize head nods and shake gestures. In the first stage, the head was detected

in the input image by using the face detection algorithm, proposed in [65]. The

detected face was aligned using Active Shape Models, first proposed by Cootes

et al. [22]. The color model of the detected face was learned and used to track

the head and infer its posture. Inferred poses were used to infer a head gesture

using an HMM [9] classifier. These estimations of head posture and gesture were

used by the Bayesian network to estimate the probability of a head gesture. The

authors used a separate Bayesian network for each gesture. They reported that the
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proposed algorithm is capable of recognizing head shakes and nods with an average

recognition rate of 92.1%.

Similar to the approach proposed in [51], Kang and Rhee [50] suggested an

algorithm to recognize head gestures by tracking eyes. The authors did not use any

special hardware, e.g. as in [51] and used the face detection algorithm, proposed

by Nam and Rhee [76]. In the next stage, the eyes were detected in the detected

face region using heuristic rules. The eyes were detected in each input frame.

In cases where eye detection failed, the authors proposed the interpolation of the

location of the eyes using information from previous input frames. The detected

eye coordinates were used to classify the gestures by using the classifier based on

HMMs [9]. The algorithm distinguished between head shakes, referred as negative

gestures, nods, referred as positive gestures, and all other head movements, which

are referred to as neutral gestures. To improve the performance of the classification,

separate classifiers were used to classify head nods and shakes. In the experiments

conducted by the authors, the algorithm achieved an average recognition rate of

93.3%.

The majority of the approaches presented in this section are capable of recog-

nizing a very limited number of head gestures: head shakes and nods. It is not

clear if these approaches may be extended to recognize other gestures. The ap-

proach proposed in [94] is capable of recognizing a large number of gestures with a
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good recognition rate. These facts make this algorithm especially attractive for use

in the monitoring system of an autonomous wheelchair. Other approaches, such

as [50, 66], have good recognition and computational rates and may be also used

in monitoring systems. However, more research is required to ensure that more

gestures may be recognized using these approaches.

2.2.3 Review of the research on hand gesture recognition

Recognition of hand gestures is an active research area in computer vision (see, e.g.,

[45, 82] for general reviews). This section proceeds with a brief review of research

in the area of recognition of hand gestures.

Marcel et al. [69] proposed an algorithm based on Input-Output HMMs, in-

troduced by Bengio and Frasconi [10], to recognize hand gestures. While HMMs

[9] calculate the probability that a sequence of observations can be generated by

a model, Input-Output HMMs calculate a probability that a sequence of output

events can be generated by a sequence of input observations. In the context of the

proposed algorithm, a gesture is defined as a movement of a person’s hand relative

to his/her face. The hand and face were detected using skin color thresholding. The

algorithm classified all gestures into two categories: deictic gestures, representing

pointing movements, and symbolic gestures, representing intentions to execute a

command, e.g. grasp, rotate. In the experiments conducted by the authors, the
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algorithm recognized 97.6% of deictic gestures and 98.9% of symbolic gestures.

The algorithm proposed by Okkonen et al. [79] is able to recognize hand gestures

in a cluttered environment. The authors defined a hand gesture as a static hand

posture formed by the fingers of a hand. To initialize the algorithm, the authors

proposed the learning of the background and usage of this information to perform

initial segmentation of the hand. This initial segmented region was used to learn

the color of the hand. After the initialization, the algorithm used a combination of

learned background and hand color to perform segmentation of the hand in input

images. In the next stage, the segmented hand contour was represented by Fourier

descriptors [107] and classified by an SVM classifier [24]. The authors reported that

the proposed algorithm is capable of recognizing five gestures with a recognition

rate of 89.2%.

The approach proposed by Binh et al. [15] combined the Kalman filter [46] and

Pseudo 2D HMMs, first proposed by Kuo and Agazzi [60], to recognize 36 American

Sign Language gestures in real-time. The hand region was extracted using skin

color segmentation and tracked using the Kalman filter [46]. The Kalman filter

was used to predict the location of the hand in the subsequent input frames, so

this information is used to accelerate the detection of the hand region and reject

spurious skin color regions. The trajectory of the centroid of the hand region was

classified using the Pseudo 2D HMM classifier. The Pseudo 2D HMM classifier
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allows incorporation of the hand shape and trajectory information into one HMM

[9] to improve recognition. The authors reported that the proposed algorithm

recognizes 36 hand gestures with a recognition rate up to 98%.

Yoon et al. [106] proposed an algorithm that recognizes 48 hand gestures using

hand location, velocity and angle. Their work considered planar hand gestures,

performed in front of a camera, representing alphanumeric characters and graphic

elements. The authors detected the hand in every input image using skin color

thresholding. The locations of the detected hand from several input frames were

collected and the trajectory as well as the velocity of the hand movement were

obtained. Unlike similar approaches, e.g. [15, 69], this algorithm does not use the

hand trajectory for classification. Instead, the coordinates and velocity at every

point of the hand trajectory were clustered into 48 gesture tokens using the k-means

algorithm which was first proposed by Steinhaus [91]. Obtained clustered gesture

tokens were classified using HMM classifier [9]. In the experiments conducted by

the authors, the algorithm recognized 48 hand gestures with a 93.25% recognition

rate.

The main purpose of the approach, proposed by Licsar and Sziranyi [63], is to

control a virtual reality system, so it uses a projector to display the user interface on

a surface while a user performs static hand gestures against this surface, hence, the

background is also projected on the hand. Such an approach makes straightforward
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hand detection based on skin color thresholding impossible due to the influence of

the projected background. To perform hand detections, the authors used the fact

that the projected background is known and proposed to detect the hand using

background subtraction. The obtained contours of a hand were processed using

Fourier descriptors [107] and classified using the k Nearest Neighbors classifier [32].

In the experiments conducted by the authors, the algorithm recognized nine hand

gestures with a recognition rate that ranges from 86.2% to 99.8%. To improve

the recognition efficiency, the authors retrained the system dynamically. According

to this approach, if the gesture is recognized correctly, the algorithm updates the

previously learned gesture parameters to ensure adaptation of the system to small

gradual changes in gestures performance; if the gesture is not recognized, the user

may retrain this gesture. This approach improves the performance and adaptability

of the algorithm. The performance of the algorithm after dynamic retraining ranges

from 96.1% to 99.2%.

The approach proposed by Chen et al. [18] combines spatial and temporal fea-

tures to classify dynamic hand gestures in real time. To achieve the computational

efficiency and robustness a combination of edge, motion, skin color information was

used to detect the hand. As a result of the detection, shape and motion parame-

ters of the hand were estimated. The shape parameters of the detected hand were

represented by Fourier descriptors [107]. The calculated Fourier descriptors as well
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as motion parameters formed the feature vector for classification. Similar to [106],

feature vectors were clustered into 64 gesture tokens, which were used to classify

the gestures. The authors used a separate HMM classifier [9] for each gesture and

selected as an output, the output of a classifier that achieved the highest classifica-

tion score. In the experiments, the algorithm recognized 20 hand gestures with a

recognition rate of 93.5%.

Huang and Jeng [44] proposed an algorithm that uses hand shape to classify

dynamic hand gestures. The authors used hand motion to detect a hand in the

input image and ignored the trajectory of hand movements during classification. It

was assumed that the hand is the only moving object in a scene and the hand was

detected in input frame using edge and motion information. To create a compact

representation of the shape of the hand, the shapes were aligned by using Procrustes

analysis [39], which is similar to [22], and then a PCA analysis [41] was performed.

This approach allows compact representation of possible hand shape variations and

achieves invariance to scale, rotation and translation. A single HMM classifier

[9] was used to classify 18 hand gestures. The input for the classifier was the

distance between the hand shape detected in the image and the previously trained

hand model. In the experiments conducted by the authors, the performance of the

algorithm ranged from 79% to 96%.

The approach proposed by Malima et al. [68] is extremely simple, computa-
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tionally efficient, and capable of recognizing static hand gestures. Gestures were

defined by the number of unbent fingers. Such an approach limits the number of

gestures that can be recognized, but makes the algorithm extremely simple and

computationally efficient. In the first stage, the hand was detected using skin color

thresholding. In the next stage, the center of the hand region was estimated. Then,

the most extreme point, belonging to the hand region, was determined. It is as-

sumed that this point belongs to the tip of one of the unbent fingers. In the next

stage, a circle was placed on the center of the hand region. The radius of this

circle was suggested to be 0.7 of the distance from the center of the head to the

most extreme hand point. This circle crosses all of the fingers participating in the

gesture. The values of the pixels laying on this circle were extracted and considered

as the 1D signal. The number of fingers was determined as a number of low-to-

high transitions of the signal minus one (for the wrist). Naturally, the number of

gestures recognizable by this algorithm was limited to five. The authors reported

that the algorithm achieved a 91% recognition rate during the experiments.

Freeman and Roth [34] suggested the use of orientation histograms to classify

static hand gestures in real time. The authors did not specify how to locate the

hand region in the input image and assumed that the hand is the only object in an

input image. The local dominant orientations of the input image was calculated in

accordance to Freeman and Adelson [33]. A histogram of these orientations would
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also be built. Such an approach is invariant to illumination changes and transla-

tions. Each gesture was represented by a histogram of local dominant orientations

and classified using a classifier similar to the k-Nearest Neighbors classifier [32].

Orientation histogram of each gesture was compared to those of trained gestures

in terms of Euclidean distance. The authors noted that this approach may also be

extended to the recognition of dynamic gestures. Unfortunately, no quantitative

data were provided on the performance of the algorithm.

The approach suggested by Chen et al. [20] uses Haar-like features with an

AdaBoost classification algorithm [97] and grammar based syntactic analysis to

recognize dynamic hand gestures. The authors defined a hand gesture as a sequence

of static hand postures connected by global and local motions over a period of

time, so that gesture classification consists of the problem of recognizing static

hand postures and classifying the sequence of these postures to hand gestures. In

this work the authors dealt with a first part of the problem, recognition of static

hand postures. To improve the performance, separate classifiers were trained for

each recognized gesture. As a result, some gestures may be classified by several

classifiers. To overcome such ambiguity, the authors proposed the selection of a

correct gesture using a grammar based analysis. The proposed algorithm is reported

with capability of recognizing four static hand gestures with a recognition rate that

is above 90%.
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Coogan et al. [21] presented an approach that uses hand shape and motion to

recognize dynamic hand gestures. Color, motion and position information were

used to detect a hand. Unlike similar approaches, e.g. [44], the proposed approach

is robust to occlusions of the face by a hand. The occlusion detection was performed

by predicting the positions of the head and hands using a Kalman filter [46]. In

addition, the prediction of the hand position by the Kalman filter was used to

improve the detection speed of the algorithm by limiting the region, where the

search was performed. The shape of a hand for a particular gesture was encoded as a

subspace created using PCA analysis [41]. Unlike the approach proposed by Huang

and Jeng [44], this work does not use Procrustes analysis [39]. A PCA analysis

was performed on a set of rotated, translated and scaled images of a hand gesture.

This approach ensures invariance to translation, rotation and scaling of a hand in

input images. The classification of a hand shape was performed by projecting input

hand shape into each subspace and finding the subspace which is the closest to the

input hand shape. The authors reported that the proposed approach is capable

of recognizing 28 static shapes with 94.5% accuracy. To classify dynamic gestures,

the authors used a separate HMM classifier [9] for each gesture. The shape and

location of a hand were used as input for the classifier. To improve the performance

of the classifier, the image was divided into nine regions and the location of the

hand was encoded as a region, where the hand was located in the input image. The
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authors reported that the proposed approach is capable of recognizing 17 dynamic

gestures with a recognition rate of 98.6%.

Derpanis et al. [26] suggested the use of linguistic theory to recognize American

Sign Language gestures in real-time. Such an approach, originally proposed in [92],

allows representing of complex hand gestures in terms of simple components, such

as hand shape, location and movement. To describe the movement of the hand the

authors proposed the use of an affine model. The parameters of the model were

estimated from motion analysis of the input images. The motion analysis can be

performed automatically or with manual initialization of a hand region in the first

input frame. In the next stage, kinematic features were computed from the motion

model. The authors assumed that each gesture has distinctive kinematic features,

referred as a gesture signature. To classify the gestures, the signature of the input

gesture is compared to a set of signatures of prototypical gestures. The prototypical

gesture which has the closest signature in terms of Euclidean distance was selected

as an output of the algorithm. The authors reported that the algorithm classified

592 hand gestures and achieved 86% recognition rate for fully automatic processing

and 97.13% for manual initialization.

While all of the presented approaches deal with frontal images of a person,

it is not clear whether these approaches may be applied to monitor a user of

an autonomous wheelchair, because it is impossible to obtain frontal images of
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a wheelchair user. However, some of the presented approaches are particularly in-

teresting. The idea of dynamic training, proposed in [63], may significantly simplify

the training of a monitoring system and make the whole autonomous wheelchair

more user friendly. The approaches that use a combination of hand shape and

trajectory to recognize hand gestures, e.g. [15, 18, 21, 106] and especially [26], are

generally capable of recognizing a large number of gestures with very good accu-

racy. These facts make such approaches especially attractive for the monitoring

system of an autonomous wheelchair. The idea of using grammar based analysis

for classification, proposed in [20], may greatly improve the performance of ges-

ture recognition. However, more research is required to make these approaches

applicable for the monitoring of a wheelchair user.
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3 A Methodology for Gesture Recognition

3.1 System Overview

This chapter describes the theory and technical details behind the current work.

This section briefly describes the requirements for the monitoring system and then

proceeds with a detailed description of the algorithm.

The facial gesture recognition system is part of an existing automatic wheelchair

and this fact will have some implications on the system. It takes an image of the

face as input, using a standard video camera, and produces the classification of the

facial gesture as an output. The software for the monitoring system may run on

a computer that controls the wheelchair. However, the input for the monitoring

system can not be obtained using the existing design of the wheelchair and requires

installation of additional hardware. Due to the fact that the system is intended for

automatic wheelchair users, the hardware should neither limit the user nor obstruct

his or her field of view. Currently, the automatic wheelchair has a touch screen as

an operating console for the user, which is mounted on a wheelchair handrail.
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This location may also be suitable for mounting a video camera for the monitoring

system because in doing so, it will neither limit the user nor obstruct the field of

view. This approach has one serious drawback: the camera mounted in such a

manner produces non frontal images of the face of the user who is sitting in the

wheelchair. Non frontal images are distorted and some parts of the face may even be

invisible. These facts make detection of facial gestures extremely difficult. Dealing

with non frontal facial images taken from underneath of a person is very uncommon

and rarely addressed. The automatic wheelchair with an installed camera for the

monitoring system and a sample of the picture that is taken by the camera, are

shown in Figure 3.1.

Figure 3.1: (a) The automatic wheelchair[left]. (b) Sample of picture taken by face

camera [right].
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3.1.1 Facial Gestures

Generally, facial gestures are caused by the action of one or several facial muscles.

This fact along with the great natural variability of the human face make the

general task of classifying facial gestures difficult. Ekman and Friesen [29] proposed

Facial Action Coding System (FACS), a comprehensive system that classifies facial

gestures. The approach is based on classifying clearly visible changes on a face

and ignoring invisible or subtly visible changes. It classifies a facial gesture using a

concept of Action Unit (AU) which represents a visible change in the appearance

on some area of the face. Ekman [28] classified over 7000 possible facial gestures.

It is beyond the scope of this work to deal with this full spectrum of facial gestures.

In this work, a facial gesture is defined as a consistent and unique facial ex-

pression that has some meaning in the context of application. The human face is

represented as a set of contours of various distinguishable facial features that can

be detected in the image of the face. Naturally, as the face changes its expression,

contours of some facial features may change their shapes, some facial features may

disappear, and some new facial features may appear on the face. Hence, in the

context of the monitoring system, the facial gesture is defined as a set of contours

of facial features, which uniquely identify a consistent and unique facial expression

that has some meaning for the application. It is desirable to use a constant set of
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facial features to identify the facial gesture. Obviously, there are a lot of possibili-

ties in selecting facial features, whose contours define the facial gesture. However,

selected facial gestures should be easily and consistently detectable. Taking into

consideration the fact that the most prominent and noticeable facial features are

the eyes and mouth, the facial gestures produced by the eyes and mouth are most

suitable for usage in the system. Therefore, only contours of the eyes and mouth

are considered in this research. Facial gestures formed by only the usage of the

eyes and mouth, are a small subset of all facial gestures that can be produced by a

human. Hence, many gestures cannot be classified using this approach. However,

it is assumed that the facial gestures that have some meaning for the monitoring

system differ in the contours of the eyes and mouth. Hence, this subset is enough

for the purpose of this research, namely a feasibility study. The samples of facial

gestures used in this work are shown in Figure 4.1.

3.1.2 System Design

Conceptually, the algorithm behind the facial gesture detection has three stages:

(1) detection of the eyes and mouth in the image and obtaining their contours; (2)

conversion of contours of facial features to a compact representation that describes

the shapes of contours; and (3) classification of contour shapes into categories

representing facial gestures. This section proceeds to briefly describe these stages;
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the rest of the chapter discusses these stages in more details.

In the first stage, the algorithm of the monitoring system detects the eyes and

mouth in the input image and obtains their contours. In this work, the modified

AAM algorithm, first proposed by Taylor et al. [95] and later modified by Stegmann

[90], is used. The AAM algorithm is a statistical, deformable model-based algo-

rithm, typically used to fit a previously trained model into an input image. One

of the advantages of the AAM and similar algorithms is their ability to handle

variability in the shape and the appearance of the modeled object due to prior

knowledge. In this work, the AAM algorithm successfully obtains contours of the

eyes and mouth in non-frontal images of individuals of different gender, race, facial

expression, and head pose. Some of these individuals wore eyeglasses. Section 3.2

begins with a detailed description of the original AAM algorithm and its modifica-

tion used in this work and then, proceeds to the details of how the AAM algorithm

is used here.

In the second stage, contours of facial features obtained in the first stage are

converted to a representation suitable for the classification to categories by a clas-

sification algorithm. Due to movements of the head, contours, obtained in the first

stage, are at different locations in the image, have different sizes and are usually ro-

tated at different angles. Moreover, due to non-perfect detection, a smooth original

contour becomes rough after detection. This factors make classification of contours

48



using homography difficult. In order to perform robust classification of contours,

a post processing stage is needed. The result of post processing should produce

a contour representation, which is invariant to rotation, scaling and translation.

To overcome non perfect detection, such a representation should be insensitive to

small, local changes of a contour. In addition, to improve the robustness of the clas-

sification, the representation should capture the major shape information only and

ignore fine contour details that are irrelevant for the classification. In this work,

Fourier descriptors, first proposed by Zahn and Roskies [107], are used. Several

comparisons [53, 58, 72, 110] show that Fourier descriptors outperform many other

methods of shape representation in terms of accuracy, computational efficiency and

compactness of representation. Fourier descriptors are based on an algorithm that

performs shape analysis in the frequency domain. The major drawback of Fourier

descriptors is their inability to capture all contour details with a representation of a

finite size. To overcome non-perfect detection by the AAM algorithm, the detected

contour is first smoothed and then Fourier descriptors are calculated. Therefore, a

representation of the finest details of the contour that would not be well-captured

by the method are removed. Moreover, the level of detail that can be represented

using this method is easily controlled. Section 3.3 contains a discussion of the

Fourier descriptors and details about their usage in this work.

In the third stage, contours are classified into categories. A classification al-
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gorithm is an algorithm that selects a hypothesis from a set of alternatives. The

algorithm may be based on different strategies. One is to base the decision on a set

of previous observations. Such a set is generally referred in the literature as a train-

ing set. In this research, the best results are obtained using the k-Nearest Neighbors

algorithm [32]. The k-Nearest Neighbors is one of the oldest, simplest, and most

intuitive classification algorithms. Yet, as shown in Chapter 4, it demonstrated

the best results classifying contours, that were processed using Fourier descriptors

in the previous stage, into facial gestures. Zhang and Lu [109] suggested the use

of the nearest neighbor algorithm, which is a special case of k-Nearest Neighbors

algorithm, for searching and retrieving shapes, represented by Fourier descriptors.

Section 3.4 contains a detailed description of the algorithm and its usage in this

work.

3.2 Active Appearance Models (AAMs)

This section presents the main ideas behind AAMs, first proposed by Taylor et al.

[95]. AAM is a combined model-based approach to image understanding. In par-

ticular, it learns the variability in shape and texture of an object that is expected

to be in the image, and then, uses the learned information to find a match in

the new image. The learned object model is allowed to vary; the degree to which

the model is allowed to change is controlled by a set of parameters. Hence, the
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task of finding the model match in the image, becomes the task of finding a set

of model parameters that maximize the match between the image and modified

model. The resulting model parameters are used for contour analysis in the next

stages. The learned model contains enough information to generate images of the

learned object. This property is actively used in the process of matching.

The shape in an AAM is defined as a triangulated mesh and can be expressed

as:

s = (u1, v1, u2, v2, . . . , un, vn)T (3.1)

where, ui and vi are x and y coordinates of vertex i of the mesh. Basically, the

vertices (u1, v1, u2, v2, u3, v3) represent vertices of the first triangle in the mesh,

traversed clockwise; the vertices (u4, v4, u5, v5, u6, v6) represent vertices of the second

triangle in the mesh; etc.

To simplify the process of the optimization, only the linear variation of a shape

is allowed. In other words, any shape s can be expressed as a base shape s0 plus a

linear combination of m basis shapes si:

s = s0 +
m∑

i=1

pisi (3.2)

where the coefficients pi are shape parameters and vectors si are orthonormal, the

shapes s0 and si are of the form depicted in Equation 3.1.

The texture of the AAM is the pattern of intensities or colors across an image
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patch. More specifically, the set of pixels u = (u, v)T that lie inside the base shape

s0 is denoted as a0, so the texture or appearance of the AAM is then an image A(u)

defined over the pixels u ∈ a0. Similar to shapes, the AAM allows a linear variation

of appearance i.e. the appearance A(u) can be expressed as a base appearance

A0(u) plus a linear combination of l basis appearance images Ai(u):

A(u) = A0(u) +
l∑

i=1

λiAi(u) ∀u ∈ a0 (3.3)

where the coefficients λi are the appearance parameters and images Ai are orthonor-

mal.

Equations 3.2 and 3.3 are used to generate a model instance. Given the shape

parameters p=(p1, p2, . . . , pn)T , the shape s is generated, using Equation 3.2. Sim-

ilarly, given appearance parameters λ = (λ1, λ2, . . . , λm)T , the appearance A(u) of

AAM defined over the a0 is generated and then warped to the shape s. In particu-

lar, the pair of meshes s0 and s defines a piecewise affine warp W (u, p) from s0 to

s.

The goal of AAM fitting is, given the input image I, to minimize:

∑
u∈s0

F [A(u)− I(W (u, p))] (3.4)

simultaneously with respect to shape and appearance parameters λi and pi. A(u)

is of the form depicted in Equation 3.3. F (x) is an error norm function that will be

described later. In general, the optimization is non-linear in the shape parameters
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p, and linear in the appearance parameters λ. The problem of optimization can

be solved, using any available method of the numerical optimization. Cootes et al.

[23] proposed an iterative optimization algorithm and suggested multi-resolution

models to improve the robustness and speed of model matching. According to this

idea, in order to build the multi-resolution AAM of an object with k levels, the

set of k images is built by successively scaling down the original image. For each

image in this set, a separate AAM is created as described below. This set of AAMs

is multi-resolution AAM with k levels. The matching of the multi-resolution AAM

with k levels to an image is performed as follows: first, the image is scaled down

k times, and the smallest model in the multi-resolution AAM, is matched to this

scaled down image. The result of the matching is scaled up and matched to the

next model in the AAM. This procedure is performed k times until the largest

model in the multi-resolution AAM is matched to the image of the original size.

This approach is faster and more robust than the approach that matches the AAM

to the input image directly.

The main purpose of building an AAM is to learn the possible variations of

object shape and appearance. However, it is impractical to take into account all of

the possible variations of shape and appearance of object. Therefore, all observed

variations of shape and appearance in training images are processed statistically in

order to learn the statistics of variations that explain some percentage of all observed
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variation. The best way to achieve this, is to collect a set of images of the object

and manually mark the boundary of the object in each image. Marked contours

are first aligned using the Procrustes analysis [39], and then, processed using PCA

analysis [41] to obtain the base shape s0 and the set of m shapes that can explain a

certain percentage of shape variation. Similarly, to obtain the base appearance A0

and the appearance variation Ai, training images are first normalized by warping

the training shape to the base shape s0, and then, PCA analysis is performed

in order to obtain l images that can explain a certain percentage of variation in

the appearance. For more detailed description of AAMs, the reader is referred to

[23, 27, 95].

The introduction of AAMs has attracted much attention among researchers and

numerous improvements and modifications have been proposed. In this work, the

modified version of AAM, proposed by Stegmann [90], is used. The modifications of

original AAMs that were used in the current work are summarized in the following

subsections.

3.2.1 Increased Texture Specificity

As described above, the accuracy of AAM matching is greatly affected by the

texture of the object. If the texture of the object is uniform, AAM tends to produce

contours that lie inside the real object. This happens because the original AAM
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algorithm is trained on the appearance inside of training shapes; it has no way

to discover boundaries of an object with a uniform texture. To overcome this

drawback, Stegmann [90] suggested the inclusion of a small region outside the

object. Assuming that there is a difference between the texture of the object and

background, it is possible for the algorithm to accurately detect boundaries of the

real object in the image. Due to the fact that the object may be placed on different

backgrounds, a large outside region included in the model may badly affect the

performance of the algorithm. In this work, a strip that is 1 pixel wide around the

original boundary of the object, as suggested in [90], is used.

3.2.2 Robust similarity measure

According to Equation 3.4 the performance of the AAM optimization is greatly

affected by the measure, or more formally, the error norm, by which texture simi-

larity is evaluated, and denoted as F (x) in the equation. The quadratic error norm,

also known as least squares norm or L2 norm, is one of the most popular among

the many possible choices of error norm. It is defined as:

F (e) = e2 (3.5)

where e is the difference between the image and reconstructed model. Due to the

fast growth of function x2, the quadratic error norm is very sensitive to outliers, and
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thus, can affect the performance of the algorithm. Stegmann [90] suggested the us-

age of the Lorentzian estimator, which was first proposed by Black and Rangarajan

[16], and defined as:

F (e, σs) = log(1 +
e2

2σ2
s

) (3.6)

where e is the difference between the textures of the image and the reconstructed

AAM model; σs is a parameter that defines the values considered as outliers. The

Lorentzian estimator grows much slower than a quadratic function, and thus, it is

less sensitive to outliers and hence it is used in this research. According to Stegmann

[90], the value of σ2
s is taken equal to the standard deviation of appearance variation.

3.2.3 Initialization

The performance of the AAM algorithm depends highly on the initial placement,

scaling and rotation of the model in the image. If the model is placed too far from

the true position of the object, it may not find the object or mistakenly matches the

background as an object. Thus, finding good initial placement of the model in the

image, is a critical part of the algorithm. Generally, initial placement or initializa-

tion depends on the application, and may require different techniques for different

applications to achieve good results. Stegmann [90] proposed a technique to find

the initial placement of a model that does not depend on the application. The idea

is to test any possible placement of the model, and build a set of most probable
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candidates for the true initial placement. Then, the algorithm tries to match the

model to the image at every initial placement from the candidate set using a small

number of optimization iterations. The placement that produces the best match is

selected as a true initial placement. After the initialization, the model at the true

initial placement is optimized using a large number of optimization iterations. This

technique produces good results at the expense of a high computational cost. In

this research, a grid with a constant step is placed over the input image. The value

of the step is obtained empirically as described in Section 3.5. At each grid loca-

tion, the model is matched with the image at different scales. To improve the speed

of the initialization, only a small number of initialization iterations is performed

at this stage. Pairs of location and scale, where the best match is achieved, are

selected as a candidate set. In the next stage, a normal model match is performed

at each location and scale from the candidate set, and the best match is selected

as the final output of the algorithm. This technique is independent of application

and produces good results in this research. However, the high computational cost

makes it inapplicable in applications requiring real time response. In this research,

the fitting of a single model may take more than a second in the worst cases, which

is unacceptable for the purposes of real-time monitoring the user.

57



3.2.4 Fine-tuning the model fit

The usage of prior knowledge when matching the model to the image, does not

always lead to an optimal result because the variations of the shape and the texture

in the image may not be strictly the same as observed during the training [90].

However, it is reasonable to assume that the result produced during the matching

of the model to the image, is close to the optimum [90]. Therefore, to improve the

matching of the model, Stegmann [90] suggested the application of a general purpose

optimization to the result, produced by the regular AAM matching algorithm.

However, it is unreasonable to assume that there are no local minimums around the

optimum and the optimization algorithm may become stuck at the local minimum

instead of optimum. To avoid a local minima near the optimum, Stegmann [90]

suggested the usage of a simulated annealing optimization technique, which was

first proposed by Kirkpatrick et al. [56], a random-sampling optimization method

that is more likely to avoid local minimum and hence it is used in this research.

3.2.5 Usage in current research

As mentioned above, in this work, the contours of the eyes and mouth define a facial

gesture for the proposed system. Hence, in this research, the model consists of 3

shapes, where each shape consists of 64 landmarks. The choice of the number of
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landmarks for each shape is determined by the fact that the shapes obtained by the

AAM matching are used for representation a shape by using Fourier descriptors.

According to the experiments conducted by Zhang and Lu [110], the use of 64

points per shape produced the best results for shape classification. To improve

the accuracy of the match, a multi-resolution AAM model with five levels is built.

To make the model more compact, the percentage of shape variation that can be

explained, using Equation 3.2, is chosen to be 95%, as suggested in [90]. Similarly,

the percentage of appearance variation that can be explained, using Equation 3.3,

is also selected to be 95% [90]. In addition, as observed during the experiments, the

heads of people sitting in the wheelchair were located in approximately the same

area in the image. Hence, it is possible to find the best initial placement for the

model by testing only a relatively small area of the image.

The described AAM algorithm is not capable of rejecting images that do not

contain the trained model. In other words, the algorithm always fits a trained

model to any image. To reject spurious matches, the fitted model is classified by

its similarity measure. If the match is classified as a valid facial gesture image, it

is passed to the next stage of the algorithm for further processing; otherwise the

match is rejected. The classification algorithm is described in Section 3.5.

To train the AAMs, the boundaries of eyes and mouth were manually delineated

in the images of the training set, and then, each boundary was normalized to
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have 64 landmarks, placed equidistantly. Such processing creates the shape for

AAM training and matching consisting of 192 landmarks. For details regarding the

training model in this research, the reader is referred to Chapter 4.

3.3 Fourier Descriptors

Contours, obtained in the previous stage, are not suitable for classification because

it is difficult to define a robust and reliable similarity measure between two contours,

especially when neither centers nor sizes nor orientations of these contours coincide.

Similarly to [21], the contours may be classified by their model parameters as pro-

duced by AAM algorithm. However, to produce good recognition results, such an

approach requires very extensive training. Therefore, there is a need to obtain some

sort of shape descriptor for these contours. Shape descriptors represent the shape

in a way that allows robust classification, which means that the shape represen-

tation is invariant under translation, scaling, rotation, and noise due to imperfect

model matching. There are many shape descriptors available. In this work, Fourier

descriptors, first proposed by Zahn and Roskies [107], are used. Fourier descriptors

provide compact shape representation, and outperform many other descriptors in

terms of accuracy and efficiency [53, 58, 72, 110]. Moreover, Fourier descriptors are

not computationally expensive and can be computed in real time. The performance

of the Fourier descriptors algorithm is due to the fact that it processes contours
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in the frequency domain, and it is much easier to obtain invariance to rotation,

scaling, and translation in the frequency domain than in the spatial domain. This

fact, along with simplicity of the algorithm and its low computational cost, are the

main reasons for selecting this algorithm for usage in this research.

The Fourier descriptor of a contour is a description of the contour in the fre-

quency domain that is obtained by applying the discrete Fourier transform on a

shape signature and normalizing the resulting coefficients. The shape signature is

a one dimensional function, representing two dimensional coordinates of contour

points. The choice of the shape signature has a great impact on the performance

of Fourier descriptors. Zhang and Lu [109] recommended the use of a centroid dis-

tance shape signature that can be expressed as follows. Suppose the shape consists

of L points represented as a set (x(t), y(t)), t = 0, 1, . . . , L− 1 where x(t) and y(t)

are x and y coordinates of the tth shape point. Then, the centroid distance shape

signature is expressed as the Euclidean distance of the contour points from the

contour centroid (xc, yc) or formally:

r(t) =
√

(x(t)− xc)2 + (y(t)− yc)2 (3.7)

. This shape signature is translation invariant due to the subtraction of shape

centroid and therefore, Fourier descriptors that are produced, using this shape

signature, are also translation invariant.

Despite the fact that AAMs for the first stage were trained using contours with
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landmarks and placed equidistantly, the landmarks of contours produced by the first

stage are not placed equidistantly due to deformation of the model shape during

the match of the model to the image. In order to obtain a better description of

the contour, the contour should be normalized. The main purpose of normalizing

is to ensure that all parts of the contour are taken into consideration, and improve

the efficiency and insensitivity to noise of Fourier descriptors by smoothing the

shape. Zhang and Lu [109] compared several methods of contour normalization

and suggested that the method of equal arc length sampling produces the best

result among other methods. According to this method, landmarks should be

placed equidistantly on the contour or in other words, the contour is divided into

arcs of equal length, and the end points of such arcs form a normalized contour.

Then, the shape signature function is applied to the normalized contour, and the

discrete Fourier transform is calculated on the result according to the equation:

Fn =
1

N

N−1∑
t=0

r(t)e
−j2πnt

N (3.8)

where r(k) is a shape signature, defined in Equation 3.7.

Note that the rotation of the boundary will cause the shape signature, used in

this research, to shift. According to the time shift property of the Fourier trans-

form, it causes a phase shift of Fourier coefficients. Thus, taking only a magnitude

of the Fourier coefficients and ignoring the phase provides invariance to rotation. In

addition, the output of the shape signature are real numbers, and according to the

62



property of discrete Fourier transform, Fourier coefficients of a real-valued function

are conjugate symmetric. However, only the magnitude of Fourier coefficients are

taken into consideration, which means that only half of the Fourier coefficients have

distinct values. The coefficient |F0| represents the scale of the contour only, so it

is possible to normalize the remaining coefficients by dividing by |F0| in order to

achieve invariance to scaling. The resulting Fourier descriptors can be calculated

as FD = ( |F1|
|F0| ,

|F2|
|F0| , . . . ,

|FN/2|
|F0| ), where F0, F1, . . . FN/2 are calculated according to

Equation 3.8. The fact that only the first few Fourier coefficients are taken into

consideration allows Fourier descriptors to catch the most important shape informa-

tion and ignore fine shape details and boundary noise. As a result, a compact shape

representation is produced, which is invariant under translation, rotation, scaling,

and insensitive to noise. Such a representation is appropriate for classification by

various classification algorithms.

3.3.1 Usage in this research

The output of the first stage is the boundaries of eyes and mouth that each contains

64 landmarks. For each boundary, Fourier descriptors are calculated as described

above, producing as output, 3 Fourier descriptor vectors of length 31. For the sake

of simplicity of classification, these vectors are concatenated to a single vector of

length 93. During the testing of the algorithm, it was discovered that combining
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the vector of Fourier descriptors with elongations of contours, slightly improves the

performance of the classification. One of the reasons for the improvement of the

classification can be the fact that the contour elongation has good discriminating

ability for the typical shapes of eyes and mouth. The elongation of a contour can

be calculated using the equation:

Econtour =
Scontour

L2
contour

(3.9)

where Lcontour is a length of the contour, and Scontour is an area of the contour. The

length of the contour can be calculated as a sum of distances between consequent

landmarks. According to [13], and assuming that the contour does not intersect

itself, the signed area of the contour with landmarks (x1, y1), . . . , (xn, yn) can be

calculated according to the following equation:

S =
1

2
(

∣∣∣∣∣∣∣∣
x1 x2

y1 y2

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
x2 x3

y2 y3

∣∣∣∣∣∣∣∣ + . . . +

∣∣∣∣∣∣∣∣
xn x1

yn y1

∣∣∣∣∣∣∣∣) (3.10)

where |X| denotes a determinant. Equation 3.10 can be written as:

S =
1

2
(x1y2 − x2y1 + x2y3 − x3y2 + . . . + xny1 − x1yn) (3.11)

In Equation 3.9, the absolute value of the area, calculated by Equations 3.10 or

3.11, should be used.

The resulting vector, representing the contours of eyes and mouth, is passed to

the next stage for classification.
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3.4 k-Nearest Neighbors classification

The third stage performs classification of facial features, obtained in the previous

stage, into categories or in other words, it determines which facial gesture is repre-

sented by the detected boundaries of the eyes and mouth. This stage is essential

because boundaries represent numerical data, whereas the system is required to

produce facial gestures corresponding to boundaries or in other words, the system

is required to produce categorical output. The task of classifying items into cat-

egories attracts much research, and numerous classification algorithms have been

proposed. For this research, a group of algorithms that learn categories from train-

ing data and predict the category for an input image, is suitable. In the literature,

these algorithms are called supervised learning algorithms. Generally, no algorithm

performs equally in all applications, and it is impossible to analytically predict

which algorithm will have the best performance in the application. In the case of

Fourier descriptors, Zhang and Lu [109] recommended classification according to

the nearest neighbor, or in other words, Fourier descriptor of the input image is

classified according to the nearest, in terms of Euclidean distance, Fourier descrip-

tor of the training set. In this research, the generalization of this method, known as

the k-Nearest Neighbors which was first proposed by Fix and Hodges [32], is used.

In this work this method produced better results than SVM [24] and its modifica-
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tion, NuSVM [85]. The general idea of the method is to classify the input sample

by a majority of its k nearest, in terms of some distance metrics, neighbors from the

training set. k is a positive integer. Specifically, distances from an input sample to

all stored training samples are calculated and k closest samples are selected. The

input sample is classified by majority vote of k selected training samples. A major

drawback of such an approach is that classes with more training samples tend to

dominate the classification of an input sample. Figure 3.2 illustrates classification

of an input sample by k-Nearest Neighbors algorithm. In this figure green circle

represents an input sample, blue rectangles and red triangles represent training

samples belonging to two different classes. In the specific example, if the value of k

is selected to be equal to three an input sample is classified as a red triangle because

there are two red triangles among three nearest neighbors of the input sample; if

the value of k is selected to be equal to five an input sample is classified as a blue

rectangle because there are three blue rectangles among five nearest neighbors of

the input sample. The distance between two samples can be defined in many ways.

In this research, Euclidean distance is used as a distance measure. The Euclidean

distance between samples P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) is defined as:

D =

√√√√ n∑
i=1

(pi − qi)2 (3.12)

The process of training of k-Nearest Neighbors is simply caching of training samples

in internal data structures. Such an approach is also called in the literature, as lazy
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Figure 3.2: Example of k-Nearest Neighbors classification

learning [3]. To optimize the search of nearest neighbors some sophisticated data

structures, e.g. Kd-trees [25], might be used. The process of classification is simply

finding the k nearest, cached training samples, and deciding the category of the

input sample. The value of k has a significant impact on the performance of the

classification. Low values of k may produce a better result, but are very vulnerable

to noise. Large values of k are less susceptible to noise, but in some cases, the

performance may degrade. The process of selection of the optimal value of k is

described in Section 3.5. The result of the classification, produced by this stage, is

a final result of the static facial gesture recognition system.
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3.4.1 Usage in this research

To obtain a fast and effective implementation of the algorithm, the OpenCV Library

[80] is used in this work. This library is very popular for the fast and effective

implementation of many algorithms, used in computer vision. To the best of the

author’s knowledge, the version of the OpenCV library used in this workdoes not

use any sophisticated data structures, e.g. Kd-trees [25], and uses a straight-forward

algorithm to find nearest neighbors of an input sample. The input for this stage

is a vector of length 93 representing a facial gesture. This vector is produced in

the previous stage by concatenation of Fourier descriptors of the contours of the

eyes and mouth and elongations of these contours. In this work the best results

were produced by selecting the value of k equal to 1 and by training the classifier

using randomly selected 30% of all contours. The optimal value of k as well as a

number of contours to train the classifier are determined empirically. For the details

regarding the training of the classifier, selection of values of k and performance of

the classification, the reader is referred to Section 3.5.

The described classifier is not capable of rejecting samples that are not similar to

the trained samples. In other words, the algorithm always classifies an input sample

into a class. To reject the spurious classifications, the distance of the input sample

from the nearest trained sample is checked against the threshold. The sample is
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rejected if the distance is greater than the value of the threshold. The method to

determine the value of the threshold is described in Section 3.5.

3.5 Selection of the optimal configuration of the algorithm

The purpose of selecting the optimal configuration is to find the values of various

algorithm parameters that ensure the best recognition rate with the lowest false

positive recognition rate.

Due to the fact that there are several parameters that affect the recognition rate

and false positive recognition rate (e.g. initialization step of AAM algorithm, choice

of classifier, number of samples used to train the classifier, number of neighbors for

k-Nearest Neighbors classifier), the testing of all possible combinations of param-

eters is impractical. To simplify the process of finding the optimal configuration

for the algorithm, the optimal initialization step of the AAM algorithm with an

optimal number of training images and neighbors for k-Nearest Neighbors classifier

are obtained. The obtained configuration is used to compare the performance of

several classifiers and check the influence of adding shape elongation of eyes and

mouth on the performance of the whole algorithm. In addition, this configuration

is used to tune the spurious images classifier to improve the false positive recog-

nition rate of the algorithm. This approach works under the assumption that the

configuration that provides the best results without the classifier of the spurious
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images will still produce the best results when the classifier is engaged.

Both the AAM and k-Nearest Neighbors algorithms do not have the ability to

reject spurious samples automatically. However, the algorithm proposed in this

work should be able to reject the facial gestures that are not considered as having

special meaning and therefore not trained. To reject such samples, the confidence

measures (similarity measure for the AAM algorithm; the shortest distance to train-

ing sample for k-Nearest Neighbors algorithm) should be evaluated to determine if

the sample is likely to contain the valid gesture. The performance of such classifi-

cation has a great impact on the performance of the whole algorithm. It is clear

that any classifier will inevitably reject some valid images and classify some of the

spurious images as valid. The classifier used in this work consists of two parts: the

first part classifies the matches obtained by the AAM algorithm; the second part

classifies the results obtained by the k-Nearest Neighbors classifiers. These parts

are independent of each other and trained separately.

In this work, the problem of classifying spurious images is solved by analyzing

the distribution of the values of confidence measures of valid images and classifying

the images using simple thresholding. First, the part of the classifier that deals

with results of the AAM algorithm is tuned. The results produced by the first

part of the classifier are used to tune the second part of the classifier. While such

an approach does not always provide the best results, it is extremely simple and
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computationally efficient. Some ideas to improve the classifier are described in

Chapter 5. For details on the tuning of the spurious image classifier, the reader is

referred to Chapter 4.

Chapter 4 describes the process of selecting the optimal values of the parameters,

which influence the performance of the algorithm. Due to the great number of such

parameters and range of their values, testing of all possible combinations of values

of the parameters goes beyond the scope of this research. In this research, the

initialization step for the AAM algorithm, number of images for the training of the

shape classifier, type of the shape classifier, and usage of shape elongation have been

tested. It was found that the initialization step of 20×20, usage of shape elongations

along with Fourier descriptors, k Nearest Neighbors classifier as a shape classifier

with k equal to 1, and 2748 shapes to train the shape classifier, provide the best

classification results. For the details on obtaining the values of these parameters,

the reader is referred to Chapter 4.
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4 Experimental results

4.1 Experimental design

In order to test the proposed approach, the software implementation of the system

was tested on a set of images that depicted human volunteers producing facial

gestures. The goal of the experiment was to test the ability of the system to

recognize facial gestures, irrespective of the volunteer, and measure the overall

performance of the system.

Due to the great variety of facial gestures that can be produced by humans by

using their eyes and mouth, the testing of all possible facial gestures is not feasible.

Instead, the system was tested on a set of ten facial gestures that were produced

by volunteers. The participation of volunteers in this research is essential due to

specificity of the system. The system is designed for wheelchair users, and to test

such a system, images of people sitting in a wheelchair are required. Moreover, the

current mechanical design of the wheelchair does not allow frontal images of a person

sitting in the wheelchair, so the images should be acquired from the same angle as
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in a real wheelchair. Unfortunately, there is no publicly available image database

that contains such images. All volunteers involved in this research have normal

face muscle control. This fact limits the validity of the results of the experiment to

people with normal control of facial muscles. Signed consent was obtained for each

volunteer to participate in the experiment as required by York University rules.

The sample of consent is presented in Appendix A.

The experiment was conducted in a laboratory with a combination of overhead

fluorescent lighting with natural lighting from windows of the laboratory. The light-

ing was not controlled during the experiment and remained more or less constant.

To make the experiment closer to the real application, volunteers sat in the auto-

matic wheelchair, and their images were taken by the camera mounted on the touch

screen as described in Section 3.1. The mechanical design of the wheelchair allows

the touch screen to move freely and therefore, it is impossible to fix the location of

the camera relative to the face of a person sitting in the wheelchair. In addition,

volunteers were allowed to move during the experiment in order to provide a greater

variety of facial gesture views. Each of the ten volunteers produced ten facial ges-

tures. Five volunteers wore glasses during the experiment; two were females and

eight were males; two were of Asian origin and others of Caucasian origin. Such

an approach allows the testing of the robustness of the proposed approach to the

variability of facial gestures among different volunteers of different gender and ori-
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gin. To make the testing process easier for volunteers, they were presented with

samples of facial gestures and asked to reproduce the gesture as close as possible

to the sample. The task of selecting proper facial gestures for the facial gesture

recognition algorithm for monitoring system is very complex, because many sam-

ples of facial expressions of disabled people expressing genuine emotions need to

be collected. Such work is beyond the scope of this research. The purpose of the

experiments described in this chapter is to prove that the algorithm has the capa-

bility to classify facial expressions by testing it on a set of various facial gestures.

Samples of facial gestures are shown in Figure 4.1. In addition, five volunteers

produced various gestures to measure the false positive rate of the algorithm. The

volunteers were urged to produce as many gestures as possible. However, to avoid

testing the algorithm only on artificial and highly improbable gestures, some of the

volunteers were encouraged to talk. The algorithm is very likely to deal with facial

expressions produced during talking, so it is critical to ensure that the algorithm

is robust enough to reject such facial expressions. Such an approach ensured that

the algorithm was tested on a great variety of facial gestures.

Each gesture was captured as a color image at a resolution of 1024×768 pixels.

For each volunteer and each facial gesture, 100 images were taken, which creates

a resulting set of 10000 images. However, not every image in the resulting set is

acceptable for further processing. Blinking, for example, confuses the system be-
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Figure 4.1: Facial gestures recognized by the system

75



cause closed eyes are part of a separate gesture. In addition, due to the limited

field of view of the camera, accidental movements may cause the eyes or mouth to

be occluded. Such images can not be processed by the system because the system

requires both eyes and the entire mouth be clearly visible in order to recognize

the facial gesture. These limitations are not an inherent drawback of the system.

Blinking, for instance, can be overcome by careful selection of facial gestures; oc-

clusions can be treated using more sophisticated contour detection techniques that

will be briefly described in Chapter 5. Out of a resulting set of 10000 images, 9140

images were manually selected for training and testing of the algorithm. Similarly,

to test the algorithm for false positive rate, each of 5 volunteers produced 100 facial

gestures. Out of a resulting set of 500 images, 440 images were selected manually

for testing of the algorithm. Examples of images, used for the training and testing

of the system, are shown in Figure 4.2. Samples of facial gestures used for testing

false positives are shown in Figure 4.3.

4.2 Training of the system

The task of training the system consists of two parts. First, the system is trained

to detect contours of the eyes and mouth of a person sitting in the wheelchair.

Then, the system is trained to classify the contours of the eyes and mouth to facial

gestures. Generally, training of both parts can be performed independently, using
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Figure 4.2: Sample images processed by the system

Figure 4.3: Sample images used to measure the system for false positive rate
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manually marked images. However, in order to speed up the training and achieve

better results, the training of the second part is performed, using results obtained

by the first part. In other words, the first stage is trained using manually marked

images; the second stage is trained using contours which are produced as a result

of the processing of input set of images by the first part. This approach produces

better final results because the training of the second stage is performed, using real

examples of contours. The training, using real examples that may be encountered

as input, generally produces better results than using manually or synthetically

produced examples, because it is impossible to accurately predict the variability of

input samples and reproduce it in training samples. In addition, such an approach

facilitates and accelerates the process of training for the system, especially when

the system is retrained for a new person. In this work, the best results are obtained

using 100 images to train the first part of the system and 2748 contours to train

the second part of the system.

4.2.1 Training of AAMs

The performance of AAMs has a crucial influence on the performance of the whole

system. Therefore, the training of AAMs becomes crucial for the performance of

the system. As described in Chapter 3, AAMs learn variability of training images to

build a model of eyes and mouth, and then, try to fit the model to an input image.
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To provide greater reliability of the results of these experiments, several volunteers

participated in the research. However, a model built from training samples of all

participants leads to poor detection and overall results. This phenomenon is due

to the great variability among images of all volunteers that can not be described

accurately by a single model. To improve the performance of the algorithm, several

models are trained. Models are trained independently, and each model is trained

on its own set of training samples. The fitting to the input image is also performed

independently for each model, and the result of the algorithm is a model that

produces the best fit to the input image. Generally, the algorithm that uses more

trained models, tends to produce better results due to more accurate modeling of

possible image variability. However, due to the high computational cost of fitting

an AAM to the input image, such an approach is impractical in terms of processing

time. Selecting the optimal number of models is not an easy task. There are

techniques that allow selecting the number of models automatically. In this work, a

simple approach has been taken: each model represents all facial gestures, produced

by a single volunteer. While this approach is probably not optimal in terms of

accuracy of modeling, the variability and number of models, it has clear advantage

in terms of simplicity and ease of use. This technique does not require a great

number of images in a training set: one image for each facial gesture and volunteer

is enough to produce acceptable results. To build the training set from each set of
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100 images representing a volunteer producing a facial gesture, one image is selected

randomly. As a result, the training set for AAM consists of only 100 images. To

train an AAM model, the eyes and mouth are manually marked on these images.

The marking is performed, using custom software, which allows the user to draw

and store the contours of eyes and mouth over the training image. These contours

are then normalized to have 64 landmarks that are placed equidistantly on the

drawn contour. Samples of contours that are used in the research are shown in

Fig. 4.4. The images and contours of every volunteer are grouped together, and a

separate AAM model is trained for each volunteer. Such an approach has a clear

advantage when the wheelchair has only a single user. In fact, this represents the

target application.

Each AAM is built as a five level multi-resolution model as described in Chapter

3. The percentage of shape and texture variation that can be explained, using the

model is selected to be 95%. In addition to building the AAM, the location of the

volunteer’s face in each image is noted. These locations are used to optimize the

fitting of an AAM to an input image by limiting the search for the best fit by a

small region, where the face is likely to be located.

As mentioned in Chapter 3, the performance of the AAM fitting depends on the

initial placement of the model. In this research, it is proposed that a grid be placed

over the input image and to fit the model at each grid location. The location where
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Figure 4.4: Sample images used to train AAM
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Figure 4.4: Sample images used to train AAM
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Figure 4.4: Sample images used to train AAM
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the best fit is obtained, is considered the true location of the model in the image.

Therefore, the size of the grid has a great impact on the performance of fitting of

the model. The usage of the the small grid obtains excellent fitting results, but

has prohibitively high computational cost, whereas the usage of the last grid has

a low computational cost, but leads to poor fitting results. In this research, the

optimal size of the grid was empirically determined to be 20×20. In other words,

the initialization grid, placed on the input image, has 20 locations in width and 20

locations in height. Therefore, the AAM algorithm tests 400 locations during the

initialization phase of the fitting. The size of the grid was chosen after series of

experiments to select the optimal value. The results are presented in Section 4.3.

As mentioned in the Section 3.5 the AAM algorithm can not reject spurious

images. To reject the spurious images, the statistics about similarity measures of

valid images and spurious images is collected. The spurious images are detected

using simple thresholding. The collected statistics and the value of the threshold

are presented in the Section 4.3.

4.2.2 Training of the shape classifier

The shape classifier is the final stage of the whole algorithm, so its performance

influences the performance of the entire system. The task of the shape classifier

is to classify the shapes of eyes and mouth, represented as a vector, to categories
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representing facial gestures. To accomplish this task, this research uses a technique

of supervised learning. According to this technique, in the training stage, the clas-

sifier is presented with labeled samples of the input shapes. The classifier learns

training samples and tries to predict the category of input samples using the learned

information. In this research, the k-Nearest Neighbors classifier is used for shape

classification. This classifier classifies input samples according to the closest k sam-

ples from the training set. Naturally, a large training set tends to produce better

classification results at the cost of large memory consumption and slower classifi-

cation. Hence, it may be impractical to collect a large number of training samples

for the classifier. However, a small training set may produce poor classification

results. The number of neighbors k, according to which the shape is classified, also

has an impact on the performance of the classification. Large values of k are less

susceptible to noise, but may miss some input samples. Small values of k usually

produce better classification, but are more vulnerable to noise.

To train the classifier, the input images are first processed by the AAM algorithm

to obtain the contours of the eyes and mouth. Then, Fourier descriptors of each

contour are obtained and combined to a single vector, representing a facial gesture.

As a result, a set of 9140 vectors, representing the facial gestures of volunteers, is

built. Out of these vectors, some are randomly selected to train the classifier. The

remaining vectors are used to test the performance of the classifier. The results of
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the testing are presented in Section 4.3.

As mentioned in Section 3.5, the k-Nearest Neighbors classifier can not reject

shapes obtained from spurious images. To reject the spurious shapes, the statistics

on the closest distance of the input sample to the training set of valid images

and spurious images are collected. The spurious shapes are detected using simple

thresholding. The collected statistics and the value of the threshold are presented

in Section 4.3.

4.3 Results

The testing was performed on a computer that has 512 megabytes of RAM and 1.5

GHz Pentium 4 processor under Windows XP. To detect the contours of eyes and

mouth, a slightly modified C++ implementation of AAMs, proposed by Stegmann

[90], is used. To classify the shapes, the k-Nearest Neighbors classifier implemen-

tation of OpenCV Library [80] was used.

The input images were first processed by the AAM algorithm to obtain the

contours of the eyes and mouth. Then, Fourier descriptors of each contour were

obtained and combined to a single vector, representing a facial gesture. In the

last stage, the vectors were classified by the shape classifier. The performance of

the algorithm was measured according to the final results produced by the shape

classifier.
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To obtain the best performance of the algorithm, the optimal configuration of

parameters should be obtained. Performing a full sensitivity analysis is beyond

the scope of this work, but the experiments described in this chapter may provide

some ideas about the influence of the parameters on the performance of the al-

gorithm. The parameters of the algorithm are summarized in Table 4.1. Due to

the large number of parameters that influence the performance of the algorithm,

it is unpractical to test all the possible combinations of parameters. Hence, the

optimal number of training images, number of neighbors for the shape classifier

and size of the initialization grid of the AAM were determined first. The tuning of

spurious images classifier as well as checking the influence of other parameters were

performed using obtained optimal configuration.

The tested values of the size of the initialization grid for the AAM algorithm

are 5×5, 10×10, 15×15, 20×20, and 25×25. The tested values of the number of

neighbors of the k-Nearest Neighbors shape classifier are from 1 to 32. The tested

values of the number of the shapes used for the training of the shape classifier are

919, 1833, 2748, 3661, 4572, 5488, 6401, 7316.

Figures 4.5 and 4.6 show the success rate of the classification as a function of

the value of k for a different number of contours, used to train the classifier and

the size of the initialization grid of the AAM algorithm. Figure 4.5 groups the

data by the size of the initialization step of the AAM algorithm, while Figure 4.6
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Parameter Tested values Best value in set

The size of the initialization grid

of the AAM algorithm

5×5, 10×10, 15×15, 20×20,

25×25

20×20

The type of the shape classifier k Nearest Neighbors, SVM,

NuSVM

k Nearest Neighbors

The number of shapes used for

the training of the shape classifier

919, 1833, 2748, 3661, 4572,

5488, 6401, 7316

2748

The number of neighbors for the k

Nearest Neighbors shape classifier

1 . . . 32 1

Usage of elongation along with

Fourier descriptors

Yes, No Yes

Threshold for the AAM spurious

images classifier

0.0089

Threshold for the shape classifier

spurious images classifier

0.000958

Table 4.1: Summary of parameters of the algorithm
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groups data by the number of shapes used to train the shape classifier. The graphs

show that the configuration, where 919 shapes are used to train the shape classifier,

performs poorest for any initialization grid size of the AAM. Other configurations

have similar performances for any given size of the initialization grid. In addition,

the recognition rates decrease for greater values of k. Generally, increase in the size

of the initialization grid for the AAM leads to better recognition rate. However,

the differences in the performance between 20×20 and 25×25 grids are small.

The graphs show that the 5×5 initialization grid performs poorly with any

number of shapes used to train the shape classifier. Other configurations have very

similar performances for any given number of shapes used to train the shape clas-

sifier. In addition, the recognition rates decrease for greater values of k. Generally,

an increase in the number of the shapes used to train the shape classifier leads to

better recognition rates. However, when the number of shapes used to train the

shape classifier is greater than 4572, the differences in the performance are small.

The experiments showed that the two configurations produce the highest recog-

nition rates: a 20×20 grid to initialize the AAM, one neighbor for the shape clas-

sifier, 2748 shapes to train the shape classifier and a 25×25 grid to initialize the

AAM, one neighbor for the shape classifier, and 3661 shapes to train the shape

classifier. The latter configuration has a very slim advantage in terms of perfor-

mance at the expense of a larger training set and higher computational cost (up
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(a) 5×5 grid to initialize the AAM (b) 10×10 grid to initialize the AAM

(c) 15×15 grid to initialize the AAM (d) 20×20 grid to initialize the AAM

Figure 4.5: Recognition rate at various values of k and the number of training

shapes grouped by the size of the initialization step of the AAM algorithm
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(e) 25×25 grid to initialize the AAM

Figure 4.5: Recognition rate at various values of k and the number of training

shapes grouped by the size of the initialization step of the AAM algorithm

to 45 seconds per image), so the first configuration is selected as a base for further

experiments. The value of k is taken equal to one; the number of contours, used to

train the classifier, is taken equal to 2748, which is 30% of all the contours and the

grid size of the initialization of the AAM algorithm is taken equal to 20×20. The

processing of the image in this configuration takes about 15 seconds on average.

The most time consuming part of the algorithm is the AAM matching, and the

time consumed by other components is negligible. Samples of contours, produced

by the AAM algorithm, are shown in Fig. 4.7. The performance achieved by the

algorithm in this configuration is 93.15%.

In addition, other classifiers, such as SVM [24] and its modification NuSVM

91



(a) 919 shapes to train the shape classifier (b) 1833 shapes to train the shape classifier

(c) 2748 shapes to train the shape classifier (d) 3661 shapes to train the shape classifier

Figure 4.6: Recognition rate at various values of k and the size of the initialization

step of the AAM algorithm grouped by the number of training shapes
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(e) 4572 shapes to train the shape classifier (f) 5488 shapes to train the shape classifier

(g) 6401 shapes to train the shape classifier (h) 7316 shapes to train the shape classifier

Figure 4.6: Recognition rate at various values of k and the size of the initialization

step of the AAM algorithm grouped by the number of training shapes
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Figure 4.7: Sample images produced by AAM algorithm
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Figure 4.7: Sample images produced by AAM algorithm
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Figure 4.7: Sample images produced by AAM algorithm
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[85], implemented using the OpenCV Library[80], were tested. The algorithms were

trained and tested on the same samples that were used in the optimal configuration

described earlier in this section. The SVM classifier achieved an 84.03% success rate

and NuSVM achieved an 83.32% recognition rate.

As mentioned in Section 3.3, the vectors, representing the shapes of eyes and

mouth, which are used as input for the shape classifier contain elongations of the

eyes and mouth shapes. To measure the influence of adding the elongations to

the input for the shape classifier, additional experiments were performed. The

shape classifier was trained and tested on the same samples that were used in the

optimal configuration described earlier in this section. During this experiment, the

shape classifier ignored the values of elongations of the eyes and mouth in the input

vectors. The algorithm achieved a 93.01% recognition rate.

To tune the spurious image classifier of the AAM algorithm, the statistics of

values of similarity measures was collected and analyzed. It was discovered that

the distribution of value of similarity measure of all images is very close to those

that were used to train the shape classifier. This observation allows the decrease of

the number of images required to obtain the value of threshold for spurious image

classifier for the AAM algorithm. It is very important from a practical point of

view, because it allows the training of the classifier by using a small number of

images. Figure 4.9 shows the distribution of values of similarity measures of all
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images; Figure 4.8 shows the distribution of values of similarity measures of images

used to train the shape classifier. As evident from the graphs, the vast majority

of values are concentrated between 0.00011 and 0.00597. Due to the fact that

distribution of the values of the similarity measure is very compact, the task of

setting the threshold for classification of spurious images by the AAM algorithm

is relatively simple and is set equal to 0.0089. This value was calculated as a

middle of the histogram bin next to the bin where the majority of all similarity

measure values are concentrated. After the determining of the threshold for the

spurious image classifier for the AAM algorithm, all images were processed again

by the AAM algorithm. There were 9011 images successfully processed, and the

rest were rejected by the AAM algorithm. There were 2711 shapes, which is 30%

of the successfully processed images, selected to train the shape classifier and the

rest, 6300 shapes, for the testing of the performance of the classifier. The AAM

algorithm successfully processed 234 out of 440 images, which is 53.18%. Such a

high false positive rate is unacceptable for the system that is proposed in this work.

Therefore, the shape classifier should be able to reject spurious shapes.

To determine the threshold for the shape classifier, the statistics of values of

distances between the input shape and the nearest training shape were collected

and analyzed. Figure 4.10 shows the distribution of the values of distances between

the input shape and nearest training shape of all training images. As evident from
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(a) Distribution of similarity measure values of images from shape clas-

sifier training set

Figure 4.8: The histogram of the distribution of similarity measure values of images

used to train the shape classifier

the graph, the majority of values are concentrated below 0.000638. The distribu-

tion of the values is very compact. Hence, the task of setting the threshold for

classification of spurious shapes by the shape classifier is relatively simple and set

equal to 0.000958. This value is calculated as the middle of the histogram bin

next to the bin where the majority of all values are concentrated. After engaging

the spurious shape detector, the algorithm successfully recognized 5703 out of 6300

valid images, which is a 90% success rate. The algorithm recognized 27 out of 440
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(a) Distribution of similarity measure values of all images

Figure 4.9: The histogram of the distribution of similarity measure values of all

images

spurious images which is a 6% false positive rate. The shape classifier rejected 266

valid images and the AAM algorithm rejected 129 valid images. Therefore, in total

the algorithm rejected 395 valid images, which is a 4% false negative rate.

Detailed results, showing the performance of the algorithm on each particu-

lar facial gesture, are shown in Table 4.2. Facial gestures are denoted by letters

a,b,c,. . . ,j. Spurious gestures are denoted by letter s. The axes of the table rep-

resent the actual facial gesture (vertical) versus the classification result. Each cell

(i,j) in the table holds the number of cases that were actually i, but classified as j.
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(a) Distribution of distances between input shape and the nearest training shape

Figure 4.10: The histogram of the distribution of distances between input shape

and the nearest training shape of all training images
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The diagonal represents the count of correctly classified facial gestures. Table 4.3

summarizes performance of the algorithm on a set of spurious images. The details

about rejected images are presented in Table 4.4.

a b c d e f g h i j

a 659 0 8 2 1 0 1 0 8 2

b 0 509 68 0 0 16 1 4 1 2

c 3 1 601 0 1 2 4 8 2 3

d 6 0 2 432 0 0 3 0 1 11

e 0 0 2 7 425 2 2 1 0 4

f 0 2 6 0 0 628 2 3 2 1

g 0 1 6 1 3 0 635 2 1 3

h 0 0 5 1 1 10 0 642 0 0

i 8 0 6 1 0 9 5 1 528 47

j 2 1 0 13 4 0 2 1 2 644

Table 4.2: Facial gesture classification results.

4.4 Discussion

The experiment was conducted on data consisting of ten facial gestures images,

produced by ten volunteers. The images were typical indoor images of a human
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a b c d e f g h i j

0 0 2 3 4 12 2 4 0 0

Table 4.3: Spurious images classification results.

a b c d e f g h i j

9 27 30 95 109 41 20 15 30 19

Table 4.4: Images rejected by the algorithm.

sitting in a wheelchair. The volunteers were of different origin and gender; some of

them wore glasses. The location of the volunteer face relative to the camera could

not be fixed due to the mechanical design of the wheelchair. Moreover, the volun-

teers were allowed to move during the experiment. The experiment was conducted

according to the following procedure. First, the pictures of the volunteers were

taken and stored. Next, a number of images were selected to train the first stage

of the algorithm, to detect the contours of the eyes and mouth. After training, all

images were run through the first stages of the algorithm to obtain the compact

representations of facial gestures detected in the images. Some of these represen-

tations were used to train the last stage of the algorithm. The rest were used to

test the last stage of the algorithm. The results of this test are presented in this

chapter.
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In addition, multiple facial gestures, produced by five volunteers, were collected

to test the ability of the algorithm to reject spurious images.

Naturally, misclassification of a facial gesture by the system can occur due to the

failure to accurately detect the contours of the eyes and mouth in the input image

or misclassification of the detected contours to facial gestures. The reasons for the

failure to detect the contours of the eyes and mouth include a large variation in the

appearance of the face and insufficient training of AAMs. The great variation in the

appearances can be explained by excessive distortion, caused by movements of the

volunteers during the experiment, as well as natural variation in the facial appear-

ance of the volunteer when producing a facial gesture. The reasons for inaccurate

classification of the detected contours into facial gestures include inaccurate repro-

duction of the gestures by volunteers, insufficient discriminative ability of Fourier

descriptors used in this work, and non optimal training of the classifier. The poor

performance of SVM classifiers can be explained by the inability of such classifiers

to separate the contours by a hyperplane with satisfactory accuracy. In addition,

some images are misclassified by the spurious image classifier, which classifies the

images by using a simple thresholding

Overall, the results demonstrate the ability of the system to recognize correctly,

the facial gestures of different persons and suggest that the proposed approach can

be used in automatic wheelchairs to obtain feedback from a user.
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5 Conclusions

This report presented a new approach in monitoring a user of an automatic wheelchair

and performed a feasibility analysis on this approach. Many approaches have been

proposed to monitor the user of an automatic wheelchair. However the major-

ity of these approaches monitor the user in dealing with low level direct control

of a wheelchair or activating a limited set of simple automatic operations. Such

approaches are usually inconvenient for the user and not suitable for the modern

intelligent wheelchair. The approach proposed in this work suggests monitoring the

user to obtain information about intentions and then using this information to make

decisions automatically about the future actions of the wheelchair. The approach

has a clear advantage over other approaches in terms of flexibility and convenience

to the user. The report examines feasibility and suggests the implementation of a

component of such a system that monitors the facial gestures the user. The results

of the evaluation suggest applicability of this approach to monitoring the user of

an automatic wheelchair.
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5.1 Summary of implementation

The monitoring of facial gestures in the context of this work is complicated by

the fact that due to the peculiarity of the mechanical design of the automatic

wheelchair, it is impossible to obtain frontal images of the face of a person sitting

in the wheelchair. Using a set of ten facial gestures as a test bed application,

it is demonstrated that the proposed approach is capable of robust and reliable

monitoring of the facial gestures of a person sitting in a wheelchair.

The approach, presented in this work, can be summarized as follows. First, the

input image which is taken by a camera, installed on the wheelchair, is processed by

AAM algorithm in order to obtain the contours of the eyes and mouth of a person

sitting in the wheelchair. Then, Fourier descriptors of the detected contours are

calculated to obtain compact representation of the shapes of the eyes and mouth.

Finally, obtained Fourier descriptors are classified to facial gestures, using the k

Nearest Neighbors classifier. To reject the spurious images, the matches obtained

by the AAM algorithm and results of k Nearest Neighbors classifier are analyzed

and rejected if the results are likely to be spurious images.

Over the experiments conducted in this work, the system that has implemented

this approach is able to recognize correctly 90% of facial gestures produced by ten

volunteers. The implementation demonstrated a low false positive rate of 6% and
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low false negative rate of 4%. The approach has proved to be robust to natural

variations of facial gestures, produced by several volunteers as well as to variations

due to inconstant camera point of view and perspective. The results suggest ap-

plicability of this approach to recognizing facial gestures in automatic wheelchair

applications. However, the computational performance of the current implemen-

tation of the system is not sufficient for most of the real world applications. This

drawback can be corrected, using more efficient implementations of the AAM algo-

rithm that will be described in the next section.

5.2 Future Work

Suggestions for future work can be classified into two categories: improvements

of the current work in terms of performance and accuracy, and extensions of the

current work in terms of functionality.

An immediate improvement of the current work is to remove the assumption

that the face of a person sitting in the wheelchair is located approximately in

the same region for all images. To eliminate the assumption, future work may

incorporate some type of face detector into the algorithm. The majority of known

face detectors, for example, the face detector proposed by Viola and Jones [98], may

be used in the algorithm. However, from a practical point of view, face detectors

that do not require extensive training, such as the one proposed by Bauckhage et al.
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[8], should be preferred.

The computational performance of the proposed algorithm is very important

for practical applications. Currently, the algorithm does not provide real time

performance and can not be used in some applications. The most important factor,

contributing to the poor performance of the algorithm overall, is the performance

of the AAM fitting. To improve the performance of the AAM fitting, modifications

of the AAM algorithm, proposed by Matthews and Baker [71] or Xiao et al. [102],

can be used. The reported performance of these modifications to the original AAM

algorithm is enough to make the proposed algorithm extremely efficient in terms of

computation time.

To improve the accuracy of classification results, improvement in AAM fitting

and discriminative ability of Fourier descriptors may be considered.

The variability of perspective of the camera and movement of a person sitting

in a wheelchair, may affect the accuracy of the AAM fitting. The main reason

for such a phenomenon is that in these cases, variations of the shapes of facial

features become too great to be described by a single AAM. The naive approach

in dealing with this phenomenon is to increase the number of models that describe

the variation. However, this approach may be not applicable for some applications

due to the high computational cost. The approaches, proposed by Kanaujia and

Metaxas [48] and Kanaujia et al. [47], might be suggested instead.
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The classification results can also potentially improve by enhancing the repre-

sentation of facial features contours. The improved contour representation describes

more details of the contour and leads to better classification results. One of the

simplest ways to improve the contour representation, proposed in this work, is to in-

crease the number of points that describe the contour. However, in the case of short

contours, the number of points that represents the contour is limited, and further

increase in the number of points does not lead to improved contour representa-

tion. Kunttu et al. [59] proposed a technique to improve the contour representation

by Fourier descriptors without increasing the number of points, representing the

contour. Such an approach can also be used in this work.

To improve the robustness of the algorithm to spurious facial gestures more

sophisticated classifier, e.g. Bayesian classifier [36], of spurious images may be

used. To improve the performance of such a classifier, the facial gestures of the

user that are not meaningful should be used for training.

The most logical extension of this work is to extend the implementation of the

algorithm to detect the gaze direction of a person sitting in a wheelchair. Since

the existing algorithm obtains contours of the eyes as an intermediate result, it is

possible to analyze the image inside the contours, and obtain the direction of a

gaze of a person, sitting in the wheelchair. Such an extension allows the system to

determine where the user is looking, and use this information in various applica-

109



tions. One application would be to enhance the operational safety of a wheelchair

by preventing movement in the direction which is currently the blind spot of the

user.

Another possible extension of the work is to train the algorithm to classify

human emotions, especially, happiness and distress. Such an extension provides

the automatic wheelchair with valuable feedback about the reaction of the user to

the actions of the wheelchair.
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A Appendix I

Consent for research participation

I, the undersigned, voluntarily and without undue inducement or any element

of force, deceit, or other form of constraint or coercion, consent to be a participant

in the on going research of Dr. John Tsotsos.

I understand the risks in this study are not greater then those ordinarily experi-

ence in daily life, but participation in this study may be terminated at any time by

my request or at the request of the investigator. Even after I give my permission,

I am free to withdraw at any time without explanation.

The researcher has clearly explained the purpose and procedure of the experi-

ment. The purpose of the experiment is to collect data for facial gesture recognition

algorithm. I will make facial gestures according to instructions. The experiment

will be conducted in a single session, the session will last 5-15 minutes.

I understand that responses will be gathered in such a way to insure the greatest

anonymity and kept in the strictest of confidence. Any published results will either
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be presented in a group format or without any form of identification.

After finishing the experiment there will be debriefing session in which I will

be informed in more detail about the experimental question that the study intends

to answer as well as how my results contribute to it. I will have the possibility of

acquiring information about the kind of research the investigators are conducting

as well as their methods and the implications of their results for the development

of science.

I have been given a copy of this consent form for my records. I understand that

if I have any question, I can contact the researcher at 416-7362100(ext. 3313) or Dr.

John Tsotsos at 416-7362100(ext. 70135). Any concerns about the ethical aspects

of the study can be addressed to the University’s ethics committee (c/o Office of

Research Administration, 416-736 5055).

Subject consent

I have been read the above description, it has been explained to me verbally,

and my questions have been adequately addressed. I understand that as a subject

in these experiments , I am free to withdraw from the experiments at any time,

without penalty. I understand that if published in any form, only a letter (e.g.

’A’,’B’, etc.) or number (e.g. ’1’,’2’, etc.) will be associated with my data.

Further I will have complete access to my results once the experiments are
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completed. In other words, if I choose, the experimenter will show and explain my

results for each experiment.

Subject: Witness:

Signature: Signature:

Telephone: Date:

Email:
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