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Abstract The concept ofactive perceptioror active visionwas
first introduced by Bajcsy], as “a problem of intelligent
We present some theoretical results related to the prob-control strategies applied to the data acquisition prdcess
lem of actively searching for a target in a 3D environment, Active control of a vision based sensor offers a number of
under the constraint of a maximum search time. We definebenefits [9]. It allows us to: (i) Bring into the sensor’s
the objectlocalization problem as the maximization over th field of view regions that are hidden due to occlusion and
search region of the Lebesgue integral of the scene streictur self-occlusion(ii) Foveate and compensate for spatial non-
probabilities. We study variants of the problem as they re- uniformity of the sensor.(ii:) Increase spatial resolution
late to actively selecting a finite set of optimal viewpoints through sensor zoom and observer motion that brings the
of the scene for detecting and localizing an object. We doregion of interest in the depth of field of the camefay)
a complexity-level analysis on the problems, by showing Disambiguate degenerate views due to finite camera reso-
that in the best case scenario, the problems have high or-lution, lighting changes and induced motic#.[ (v) Deal
der pseudo-polynomial running times or are NP-Complete. with incomplete information and complete a task.
We study the tradeoffs of localizing vs. detecting a target  An active vision system’s benefits must outweigh the as-
object, using single-view and multiple-view recognition;  sociated execution costs]. The associated costs in an ac-
der imperfect dead-reckoning and an imperfect recognition tjve vision system includéz) Deciding the actions to per-
algorithm. We use these results to propose a set of sufficienform and their execution order(ii) The time to execute
properties that efficient and reliable active object lozal  the commands and bring the actuators to their desired state.
tion algorithms should satisfy. (iii) Adapt the system to the new viewpoint, find the cor-
respondences between the old and new viewpoint and deal
with the inevitable ambiguities due to sensor noise.

1. Introduction A number of active object detection, localization and
In one of the earliest known treatises on visiah Aris- recognition algorithms have been proposed over the years

totle describes vision as a passive process that is mediated® % & 8 11 12, 13, 15, 16, 20, 21]. A smaller number of
by what he refers to as the “transparem{pars), an in- papers have dealt with issues related to the complexity and

visible property that allows the sense organ to become likeeliability of such systemsi 9, 18, 19, 21]. Limited work

the actual form of the visible object. Much has been learned &XiSts on the complexity of search tasks and the effect that
since then and today, a popular definition is that visiongs th IMPerfect recognition and imperfect dead-reckoning has on
process of discovering from images what is present in the ©Pi€ct localization. In this paper, we argue that the proble
world and where it is []. Within this context, four levels 1S likely intractable, by proving that the active objectabe

of tasks in the vision problem are discerniblef ization prpbler_n_is NP-Hard and by showing t_hat_the _prpb-
lem remains difficult at best, even under certain simplidyin

e Detection is a particular item present in the stimulus? variants of the main problem. We study the tradeoffs of lo-

e Localization detection plus accurate location of item. calizing vs. detecting a target object under single-vied an

e Recognition localization of the items present in the multiple-view recognition schemes and show that there are
stimulus plus their accurate description through their a number of bias/variance/entropy relationships and trade

association with linguistic labels. offs between the reliability of target localization and-tar
e Understandingrecognition plus role of stimulusinthe  get detection, that depend on the quality of the recognition
context of the scene. algorithm used and the magnitudes of the correspondence



or dead-reckoning errors. We exemplify the relevance of Definition 5. (3D Object Localization) Find the cell;, =
these results in practical computer vision applicatiorss, a argmax; [ p(c;|u, (Z))dp,dp1, where we are taking the
first-principles based motivators for a set of propertied th Lebesgue integraléf] over T and Y (v) and ¢; denotes

active object localization algorithms should satisfy. the event that the target object’s centroid is in cell
p(cilpy (7)) is a recognition algorithm depending oz, .
2. Problem Formulation If p(cilpy (7)) is a “good” algorithm, i, = i;, wherei, is

_ _ defined as the cell containing the target’s centroid.
Assumption 1. We assume that exactly one instance of the

target object exists in the scene. Definition 6. (Constrained Active Object Localization)

o . Find the celli; € C maximizingp(c;, |, (%), .-, po, (7))
Definition 1. (Search SpaceJhe search space consists of across alln > 0, all sequences, ..., v, of sensor states
a 3D region whose coordinates are expressed with respectzng all corresponding,, , ... ftv, , under the constraint
to an inertial coordinate frame. T(n) < T', whereT" is a search cost bound.

Definition 2. (Target Map) The target map is a discretiza- Solutions to the CAOL problem must compensate for
tion of the inertial coordinate frame into non-overlapping (;) our limited knowledge oril, Y(v) and (ii) the need
3D cells coinciding with the search space. Each cell is as- to minimize sensor movements, by finding a finite sample
signed the probability of containing the target centroid. Lo, (Z), .., 1o, () that best samples the unknown probabil-
L ity spaces without exceeding the maximum alloted search
Wi t of positive integel®, £ {1,2,....|C|}, : e ¢
€ use a set of positive integers, = {1,2,...,|C1} cost. Even if we know the distributions of the probability

to index each cell in the target map. Notice, that, since we & liminati (i d votentiall
assume a single target object exists in the scene, the targestpace » T(v), eliminating point(:) and potentially even

makingp(c;|t, (Z), ..., p, (£)) a function ofuvy,...v,, the
map cell values sum to one. problem remains intractable. As we show later, the CAOL
Definition 3. (Scene Sample FunctionA scene sample problem belongs to the class of NP-Hard probleris [
function ., (Z) denotes the sensor output, whereepre-  implying that there is no known polynomial time algo-
sents the values assigned to the controllable sensor param+ithm that solves the problem. One can attempt to make
eters €.g.,coordinate frame, zoom, focus) afids anindex it tractable by using variants of the problem:
into the scene sample.@.,in the case of greyscale images

# = (i, ) can denote a pixel index). Definition 7. (Constrained Active Object Localization:

Variant 1) Find a sequencey, ..., v, of sensor states and
We define a probability spac® = (X;,%,,p;) for  the cellsi; € C satisfyingp(c; [ttv, (%), -, fro, (Z)) > 0
the sensor parameter states, where X; denotes a sen- and7'(n) < T" for some,, , ..., ji,,,, WhereT" is a search
sor parameter state); is a o-algebra of X; andp, is cost bound and is a probability threshold.
a probability measure oX; whose support includes all
statesv that have a non-zero probability of occuring in the
search space. Similarly, for eachwe define a probability
spaceY (v) = (X, Xy, py) With p, (1, (Z)) > 0 for each
1y (%) € X,, denoting the probability of occurence of the
corresponding scene sample function given sensor param
ter valuesv. The underlying probability measure, models
the sensed scene uncertaingygy(,image noise, varying il-
lumination conditions, dead-reckoning errors, etc.) af&l i  Theorem 1. (Simplified Bayesian Updating)

Definition 8. (Constrained Active Object Localiza-
tion: Variant 2) Find the cell it € C maximiz-
ing p(c;, [po,, (T), ..s o, (7)) across alln > 0, all se-
guencesvy, ..., v, Of sensor states and all corresponding
vy -+ b, » Under the constrainif’(n) < T', whereT” is a
search cost bound and each movement tg&iy, ..., v;) is

bounded from below by a positive non-zero constnt

largely unknown and difficult to model in practice. Since Assumep(jiy, [ci, fro, s ftor) = plis,|ci).  Then,
we do not know the distribution qf;, p,,, we approximate P(Cilto,, 4 ooemsttoy )P (thon 1)
them by using a finite sample of optimally selected.,,. P(Cilto, s oy o) = ) DT CENTHNS TTI I

Definition 4. (Sequence Costfsiven a sequencs, ..., v, Proof. p(ci|tiv, s v toy )P(Hvy s oos oy )= D(Ciy Py 15 -
of sensor parameter states, the c@¥t) associated with —, fto, )P(ftv,, [¢i) & P(Ho, [Cis oy s ooos oy )= Do, [C3)-

executing the sequence is given®Bfn) £ T(n — 1) + Notice also that > .p(cj, tu, [, 1y s Hoy) =
to(v1, ..., vy), Whereto (vr, ..., v,,) > 0 denotes the cost of > P(ttw,, [¢5)P(Cil 1o, 15 ooy o) O
moving to state,, given all previous states arifi(1) is the ) o )

cost of reaching state; from the initial sensor state. When we are not using the simplifying assumption stated

in Theorem 1, we say we are usingrmal Bayesian up-
We define th&D object localizatiorandconstrained ac-  dating Theorem 1 assumes that the scene sample func-
tive object localizatiofCAOL) problems as follows: tions are conditionally independent given the celthere



the target is centred. By Assumption 1, exactly one in-

Definition 9. (Valid Sequence).etv;=(vx, (1), -V, (1(5)))

stance of the target exists in the scene, which implies thatdenote an ordered set of length), wherer;:Z*— Z* is

eventc; is sufficient to determine which regions pf,, (if

a one-to-one mapping. A sequenge, ...,v; of ordered

IR

any) correspond to the projection of the target object on sets is valid ifi(i;) = 1, I(ix+1) = [l(ix) + 1 for each
the image plane and which regions correspond to the back-l < k <n — 1 andm;, (j) = 74, (4), V5 1 < 7 < I(i).

ground. We are implicitly assuming thats.,, |c;) denotes
a generative modeling of the recognition algorithm’s resul

tant binary segmentation into the foreground (target posi- For any ordered set; = (v, (1), .- Vr, (1)) l€t vi(ve)
tion) and the background, based on a single view. Simi-

larly p(¢;|p,, , -, 1o, ) denotes the corresponding probabil-
ity of eventc;, based on the bayesian fusion of multiple-
VIEWS [1,,, ..., . Notice that for a uniform priop(c;),
argmax; p(p,, |c;) = argmax; p(c;|py, ). The greater the
uncertainty implicit in space¥ (v), the weaker the assump-

tion of conditional independence becomes, due to increasec%,
sources of error. Nevertheless, it is convenient to use Theo
rem 1 to model various localization and detection tradeoffs

In the next section, we prove that if we know the distribu-

tions of T, T (v) and under normal Bayesian updating, Vari-
ant 1 of the CAOL problem (Def) and the corresponding

detection problem are NP-Hard and NP-Complete respec-fa(v; , j) £ fo(vh,j

tively. It is easy to see that Dé&fis reducible to the simi-
larly discretized version of De&.and thus, the CAOL prob-
lem is NP-Hard. Variant 2 of the problem, has a high-orde
pseudo-polynomial solution: Since there are at ntc%étj
sensor settings to execute within tiri&, an enumeration

and evaluation of all candidate solutions, run€imn <)),

r QUESTION: Is there a valid sequeneg, ..., v]

We define an ordered set of length zerowgs= ().
A

(Vs (1)5 -5 Umy (1(3)) » Ve) - AlSO v (we) £ (v.) andig £ 0.

Definition 10. (II;, :Constrained Active Object Detec-
tion Problem : Variant 1)
INSTANCE: A finite seV = {vi,...,vy|}. A cost con-
straint B’ € QT, and a cost functior©'(v;) € Q' where
i = (Un,1)s o V(i) 0 € Z*, vy, s Unsi(i)) € V-
€ Z* denoting the number of cells in the target map.
A function f (v}, j) € Qf such that for any ordered set
v and anyl < j < 8, >y fi(vi(ve),j) = 1.
A function f5(v!, j) Qf defined for1 < j < ¢,
such thath:1 fa(vl,j) = 1 for all ordered sets; and
n fl(vfikvj)
7 A
) Ti= S fa (v, o) fi(v] o)
recognition threshold € Q. A query celll < j, < S’
so that

- Ui

> oreq C(vgk) < B’ and f5 (v}

in )

i) = 67

Definition 11. (IT :Constrained Active Object Localiza-
tion Problem : Variant 1)

wherem is the total number of possible states. But this solu- INSTANCE: Same as i;, (j, can be arbitrary). We use a

tion remains exponential in terms of the sizeldf Using a
reduction from DefZ, we notice that De8 is NP-Hard and
if we add to Def7 the minimum cost constraint of D&f.

the resulting problem remains NP-Hard—the reductions in-

volve settingC’ to the minimum sensor state pair cost. We

could also approach the localization problem by threshold-

ing the generative probability(s.,, (¥)|c;) rather than the
discriminative probability(c; | iy, (Z), ..., t, (£)). Ye [21]

bar to differentiate the input variables from thoselbf .
TASK: Find a valid sequence; ,...,v; and the cor-
responding cellsj, 1 < 5 < 5, which satisfy
Yk Cviy) < B and fo(v; ) > 0.

As 0,0 decrease, the expected running timegIgf, TT
do not increasee(g, for 6,6 = 0, solutions inO(|V|) are
trivial to find). Notice that ford > % there is at most one

uses a binary classifier with a presumed zero false positivecell thatII can output. We quote the Knapsack problem (an

rate, to show that a similar problem is NP-Complete.

3. The Constrained Active Object Localization
Problem:Variant 1, is NP-Hard

To analyze the complexity of the constrained active ob-

ject localization problem when we know the distributions
of T, Y(v), we first reformulate the problem into the cor-

responding detection problem, taking into account the fi-

nite precision of floating point arithmetic, and the finité se

states(X;). LetQt £ {2 : p,q € Z"} denote the set of

NP-Complete problem) as given by Garey and Johnspn [

Definition 12. (IT' :Knapsack Problem)

INSTANCE: A finite set/, a “size” s(u) € Z* and a
“value” w(u) € Z* for eachu € U, a size constraint
B e Z*,and avalue goak € Z™.

QUESTION: Is there a subset// C U such that
Yower s(u) < Band)®, o w(u) > K?

I1;, is in NP, since any candidate solution is verifiable in
- K . ¥
polynomial time. We assumm < 1 since other

. wise AU’ C U that satisfied]’. We define a mapping
V' that is necessary to represent the space of scene sam

ple functions(X,) achievable across the sensor parameter

rom IT’ to IT;, for which I’ is true iff IT;, is true:

1. VU

positive rational numbers. We model each probability bya 2. B’ +— B

non-negative rational iR} = {z € Q* U {0} : z < 1}.

3. C(v}) = s(vr, (i)



4, 8" — 2
5.0 — —K
Yuey wu)
6. We need to defing (v}, j) andfz2 (v, j) for all ordered
setsv; that are composed of elementslinand all j,
1 < j < 5’ suchthatf, f satisfy their preconditions
stated inll;,.

For each distinct se’” C V and each distinct ordering
o of the elements iU/, we assumel(U’,0) € Z* is

a subset/’ C U problemII’ holds. Choose an arbitrary or-
deringo and leti;, = d(U’,0,k), 1 < k <1(d(U’,0)) = n.
We see thaffz(v; ,j:) > 6. The converse direction of the
proof holds regardless of the ordering assignefito Re-
gardless of the orderingassigned td@/’, ;(;"1) Cvi,) <
B'iff ) ,cu s(u) < B, which proves that there is a subset
U’ satisfyingII’ iff an ordered set satisfid$;, . This proves
thatIl;,, under normal Bayesian updating, is NP-Complete.

To prove thafll is NP-Hard, we define a mapping from

unique and denotes the identifier of the corresponding or-11;, toTI as follows:V «— V, B’ — B/, C(v)) = C(v)),

dered setvy ;) =
where [(d(U’,0))
for 1 < k <
composed of the first: elements ofvy,;,

(O 1,0y (1) -3 Ve ) (AU 0)))
|U’|.  Furthermore,d(U’, o, k),

— e,
vtli(U/,o,k) = (’Uﬂ'd(U/,o)(l)7"'7v7rd(U/,o)(k)) andv:i(U/,o,k) =
vj iff d(U’,0,k) = j. For any ordering and setU’ =
{Uﬂ-d(U/)D)(l), ey ’Uﬂ.d(U,’o)(l(d(U/_’O)))} Cc V, we need to de-
fine f1(vyr o1)-7) @A fo (v, 1y, 7) foralll < k <
1(d(U’, 0)). We also need to make sufe(vy . , 1), j) and

f2(Vywr o1y, J) satisfy the requirements set in the defini- =

tion of I1;, and only depend op and the first: parameters
of vfi( For each instance @i’ we definef, inII,, by

U’,0)"
(i
S, w0V, 1)) it =,
/- ZMEV w(u)
fQ(Uia]) = :
1 S w(ve, )
(1- &=t Tk otherwise
S =1 > ey w(w)

Sincezji1 f2(vl, ) = 1, fa(vl, 4) satisfies the require-
ments inIl;,. Notice from DeflO that if fo(v; ,j) = 1,
then f1 (v}, ,j) # 0. Also, if 0 < fa(v} ,j) < 1, then
0 < fa(vi,_,,J) < 1. From the definition of1;,, for each
subset/’, each ordering and eachl < k < I(d(U’,0)),

we want to defingf;, so that

fa(vi, ) (v, ,9)
YA IRV D LIV D

wherei, = d(U’,0,k), 1 < k < I(d(U’,0)), is used to

fQ(Uz/’kaj): (2)

S" 2,0 — 3, f2(v],,1) = Flaw) + 351 Ay f2(V],,2) =
3lag) + %IA(,C), where Iy € {0, 1} is an indicator function

I(d(U’,0)), denotes the ordered set that takes a value of 1 iff boolean variabl is true and

A(k), A(k) are true iff f2(v; , ji) > 0 or fa(v], ,ji) < 0
respectively. By Lemma 1, this also implicitly defings
We see thall;, holds iff II finds a valid sequence that is
satisfied by cell = 1. This shows thall is NP-Hard.

In the reduction fromil’ to II;,, each call tof; is in
O(]V]) and take®)(|V| - S”) space to encode. We are mak-
ing the implicit assumption that;, f» in I1;, and f1, f2 in
IT have running times and encoding sizes that are polyno-
mial functions of{V|, S’ and |V'|, S’ respectively, imply-
ing that the scene structure must exhibit a minimum degree
of “non-randomness”. From the above proofs and Lemma
1, we notice thatf;(v;, ,j) and fl(vgk,j) correspond to
Py, [€5, ey -5 oy ). ONIYif f1 (v}, 7) depended ex-
clusively onj andv,,ik (iix))» Would this constitute a proof
that Defl1is NP-Hard under simplified Bayesian updating.
f2(vhy, 7) and fo(vh, 7) denote the prior distributions of the
target maps and are typically set to a uniform distribution.

Lemmal. Lets, aq, ..., € QF suchthal""  a; =1,
if 5 =1,thena; #0andif0 < g < 1, then0 < a; < 1.

a1y —
it 6

Ifm > 1,321,..., 2 € QF such thaty—a—
i=1

Proof. If 5 = 1, letz; = 1 and leta; = 0 fori # 1.

If 3 =0, letxzs = 1 and letz; = 0 fori # 2. Oth-

erwise, if0 < 8 < 1, assumer; > 0 and notice that
st =0 e a1 — fa = >, (Bag)yi, a linear
equation ofy; = jj—l Sinceld < < 1,0 < a; < 1and
consequentlyzz’;2 a; > 0, which impliesa; — fa; > 0
and> ", Ba; > 0. Therefore, there exish, ..., y, > 0

denote a valid sequence of ordered sets. From Lemma 1 hich satisfy the linear equation. We leave it as an exercise

below, we know that for each sensor settirjg and v,
there exists an assignment to functigi(v;, , j) that sat-
isfies Eq.R) and depends only on the parametels j —
i.e.,given parameters; andj, f1 is independent of séf’.
Also Eq.Q) is independent of scaling factors applied fan
implying that we can assume thal,, - f1(vi(ve),j) =1
as wanted. We see that mappifiguns in polynomial time.
We now show that there exists a valid sequerjce..v;
that satisfiedI;,, iff 3U’ C U that satisfiedI’: If II;,
holds, fo(v; ,jt) > 0 = >, ey w(u) > K whereU’ =
{Vr, (1)5 5 Uy, 1))} € U. Conversely, assume that for

for the reader to verify that for any, ..., y, € QT U {0},
3wy, 22, ...; y € QF (21 # 0) which Satifyin;—i. O

4. Localization vs. Detection

We formalize some of the tradeoffs of single-view and
multiple-view recognition schemes for localizing and de-
tecting a target object under simplified Bayesian updating
and under a number of different sources of errors. In Sec.
4.1 we define and discuss the problems and in Sec. 4.2-4.3
we prove the respective theorems.



4.1. Definitions and Discussion argmaxjec E(Y," V), B(X™) > B(X!"™Y),

Tt Jt
Definition 13. (Correspondence Error) Any error in the (v) If iy # Ji, i = argmaxjec E(Yj(")) and j, =
calculation of the corresponden.ce(s) between the indexargmaxjec E(yj(nfl)), then it is not necessarily the case
value Z of a scene sample functign,(Z) and the target that B(X ™) > B(x @D
map cell indices whose structure projectsian ( it ) = E( Jt )

Case(iv) shows that with good correspondences, detec-

Definition 14. (Dead-Reckoning Errors)We are dealing ) ; _ ) _
tion based on fusing multiple views becomes more reliable

with dead-reckoning errors when there exists a rigid trans- X i ) MR h
formationRT(-) of the sensor's estimated coordinate frame than single-view detection (sinag, j; € V(uv,)). Case
with respect to the inertial coordinate frame of the search (?) Shows that under dead-reckoning errors, there is an in-
space, that corrects all correspondence errors without in- creased likelihood that fusing multiple-views will lead to

troducing any new correspondence errors. more false negative detections (singgj; € V(v,)), and
thus, single-view detection (cagé)) might be preferable

Definition 15. (Visibility) Celli is visible for statev,,, if it when dead-reckoning errors occur. Despite the strong as-
falls in the sensor’s field of view and satisfies a set of nec-sumption of Defl6, correspondence or dead-reckoning er-
essary conditions for localizing a target centeredijthat ~ rors make the detection problem significantly harder.

only depend on the coordinates of a point ind the depth (n) A

map of i1, with respect to the sensor coordinate frame. ~ Definition 17. (Dual = Support) Let z;" =
p(Ci|pto, s - 1y ). A single-view recognition algorithm has

Definition 16. (Good Single-View Recognition)Me have  dual support at step if Vi, %('n) ¢ [1, 1]. Equivalentlyvi,

1l
good single-view recognition at stepif p(u., |c;,) is not P, | i) " (e—1)or p(;vn\ci) . 1—z{"""
affected by changes to the inertial coordinate frame. Also, »(#vnlci) 1—a{" D P(troy, [2ei) "D

under dead-reckoning errorgy(i.,, [ci) > p(iv, [-e;) for
all target map distributions at step — 1 iff i € V/(v,) and
RT(iy) =4, 061 & V(v,) and RT (i¢) & V (vy).

Definition 18. (Flipped Cells) We say that there exist

flipped cells at stem, if there exist two cellgy, is, such
(n—1) (n—1) (n) _ (n—1)
thatzi > %’ 2 < %' i T Ty
RT(i;) denotes the cell containing the transformation xE:) = a:z(.;’_l) + 20 > % for positivexy, x5.
of the target’s centroid undeR7'(-) (Def.14). p(uy, |—¢;) ) ) ]
is defined in Sec. 4.2.V(v,) is the ground truth of Under Defl6 and a uniform target map prior, flipped

visible cells for s, , v, and no correspondence errors, Ce€lls can only occur due to correspondence errors.

while V(v,,) denotes the calculated visible cells based on Definition 19. (Boundary Constraints) We say that the

our estimate of the sensor coordinate frame and under Nq.g|s in a sets satisfy the boundary constraints at stef
guaranty of perfect correspondences. Under perfect cor,, aachi ¢ S (o, |c5) < Py, |~c:) and
] v | G2 Un, (3

respondence¥ (v,,) = V(v,), but the converse does not

hold. For good single-view recognition, as the COMTeSPON- )yl 1i oo i, < P(tto, | ci) = v/D(po, |ei)p (o, [2ci)
dence errors increase, it is more likely thefu,, [c;,) < ne P, [=ei) = pltto, |ci)
p(t, |—ci,). Defld6implies that ifiy,io & V(v,), i3 €

V(va) and RT(i)) & V(va), plin,lei) = pliy, leiy) 0 PHenle) > plp, [7ei) and
andp(piv, [ciy) < p(pw,|ciy). Also, if RT(ir) € V(vn), _ P(po, |=ei) = /Pl [ei)p (o, [-ei)
P, [err(iy)) > o, ej) Vi # RT (ir) (see Sec. 4.2). Pl Py ) > (o, |7¢i) — p(p, | i) '

1
—x1<§,

3

Theorem 2. (Detection Tradeoff)

Assumei; € V(v1),...iit € V(v,). Assume a uniform

target map prior and good single-view recognition. Let . o

X(%) Y(")pdr:enote Bergrlloulli ran?jom variableg with prob- assume a uniform prior distribution forttu)a target map. De-
i . e (M) & (n—=1) (n) (n) a _ d;"

ability of succes(c;|po, , ..., fto, ), p(cilpin, ) respectively.  fined; 2 x; — ;" andry)] £ SPICE

Detection at step: is based onmax )E(XJ(”)) or (1) Assume there are no flipped cells at stepand V:

Theorem 3. (Localization Tradeoff)
Assume' satisfies the boundary constraints at stepAlso

jeV(vy,
max;p,.) E(Yj(")) being above a given threshold. :cl(,”fl) < % Then, there exists a céll forwhich:cgf) > %
(i) Givenw,, u,, , single-view detection at stepis inde- Furthermore, ifxl(_?’l) > i, (xl("*l))rﬂ)l, the target
pendent of dead-reckoning errors. map entropy at step is smaller than it is at step — 1.
(@) 1f p(pto,, |ci) < Pl |~ci), B(X) < B(XY), (i) If 2" > 1 for some celli;, there exists a celf;,
(#40) 1f p(pto, 1) > pitnn |ci), B(X™) > B(XTD). which does not have to equal, such thatoﬁ” > L

(iv) If 3, = Ji, iy = arg max;ecc E(Yj(")) and j, = (#4¢) If there are no flipped cells at stepand there exists a



cell iy satisfyingxf.?’l) > 1 ande?) > 1, then, the target  p(so, |=c;,) but notp(p,, |c;) > p(p,, |=c;,) for all tar-
map entropy at step is smaller than it is at step — 1. get map distributions at step — 1, there exists a cell

(iv) If there exist flipped cell$,, i, at stepn, the condi-  j # Jj; such thatp(u,,|c;) = p(tw, lc;,) and thus
tionzy, zo > 2" Y —a:z(.:_l) (see Defl8) and single-view  P(tw,[c;) = p(pw,|—c;) for all target maps, contradict-

2

recognition with dual support, guarantees that the target ing Def16. Thusj, = argmax;.y(, )p(tv,|c;) =
map entropy at step is smaller than it is at step — 1. argmax_p(, )E(Yj(")) (because of the uniform prior).

Any termination condition based on probability thresh- Thus max; ¢, EY") = B} ;,)) and since we

olding (e.g., Def.7), requires a decreasing target map en- have assumed to know the valuesm;t Mo, @ny change

tropy. The above theorem quantifies a set of sufficient prop-in the dead-reckoning errors is equivalent to a change

erties of the recognition algorithm, under which, multiple to the inertial coordinate frame and potentially to the

view localization leads to a decreasing entropy and there-label RT'(i;) assigned to the structure represented by

fore, after a certain number of steps, a smaller target mapcell i;, which does not affectE(Yé;)(it)), thus prov-

e_ntropy than that ofasmgle—wew. Theorem 3 lists all pos- ing (/). Notice that E(X_(n)) < E(X.(nfl)) N

sible target map behaviours under the boundary constraints (o, |e) ! s .

If we also assume good single-view recognition and that N0 > .cc,,~¢,} P(albv, 1 hv)P(boy, [0) < 1 which in conjunc-

correspondence errors exist, Theorem 3 defines a set of suftion with Lemma 2 below, prove§i). The proof of case

ficient properties of the single-view recognition algomith  (7i¢) is similar to that of caséii) and we leave it as an ex-

so that multiple-view recognition leads to a decreasing tar ercise. Caséiv) follows trivially from case(iii). Case

get map entropy and a smaller bias and variance in the tar{v) follows sinceE(X%,(:L_l)) can be arbitrarily small and

get§ localization at each step. Without the_ boundary con- E(XA,(")) is proportional toE(XA,(”_l)).

straints, we have no guaranty of a decreasing entropy. Un- it it

de_r goqd single-view recognition and a uniform target map | emma 2. Letg(z, o, ) = am+ﬁozl—w) With0 < o, 8,z <

prior, _fI|pped ce_IIs are the result of correspondence &ITOTS | <ch thata + B(1—x) # 0. Theng(z,a,8) < 1 iff

implying a possible increased target map entropy and bias mB Saorz=1lora=j

the target localization. Theorem 3 shows that without good '

single-view recognition, it is possible to have a decregsin Proof. Notice thatg(z,a,3) <1 < a — 3 < (a — B)x.

target map entropy and an increasing bias in the estimatedf o < 3, theng(z, o, 8) holds iff z < 1 which we know is

target position, exemplifying the difficulty of the problem  always true. Ifa > 3, theng(z, «, 3) holds iff z = 1. If
Case(i) shows that itrl(.?’l) is the maximum probabil- o = 3, theng(z, a, 3) = 1 which proves the lemma. O

ity amongst all cells at step — 1, the entropy decreases

at the next step. It also shows that as the probabilities of4-3. Proof of Theorem 3

the other cells relative tmg?fl) decrease, or as the relative To S|mp||fy certain arguments, we assume that no cell

Weightsn(") for smaller probabilities increase (by decreas- ever takes a value of zero. Lé&[i(") denote a Bernoulli
ing their respective probabilities from step- 1 to stepn, random variable with probability of succegén) £
more than the other cells), it becomes more likely that the (¢, |1, | ..., 4., ). By Lemma 3, the boundary constraint
entropy will decrease in the next step. Cé&¢ shows that

a localization threshold of ove} easily leads to biased re-
sults under dead-reckoning or correspondence errors. Cas . . .- e
(iv) is applicable when the correspondence errors increaserand?m Va.m.able Is equal tp(l —p) it '15 ma.x'm.'zeq at
and shows that more stringent requirements on the recogni? =~ 2 anditis also symmetric aroupd= 3, which implies
tion algorithm can compensate for such errors and guaranihat when the variance ot (" has decreasefl;\" — 4| >
tee a decrease in the entropy (by requiring dual support anqxz(.”_l) - %|. Since Var(X.(")) < Var(X.("_l)) for

K] K2

T1, Lo > 2" ;cl(.g’l)), No such requirement is needed all cells i, there exists exactly one cell at stepn with

i1

assumption of Theorem 3 is equivalenthaLr(Xi(”)) <
gar(Xi("’l)) Vi € C. Since the variance of a Bernouf)(

in case(#it), which assumes that no flipped cells exist. ng) > % since otherwise, the variance of all cells could
not have decreased and maintained a sum of one across all
4.2. Proof of Theorem 2 target map cells. This proves the first half of Theor).

One of the following conditions must hold at each step
Let p(p, [-e;) = S TS (we ;=) 1 i :
izt PACUlHun 1500 bo (1): Vi, x; < 3 and there exists exactly one cell
assume a non-zero denominator). Since we only have oot ) 1
dead-reckoning errors i), 3j; € V(v,) such that thatsatisfies; = > 5. X
RT (i) = ji. Thusp(u,lc;,) > p(po, |—c;,) regardless (2): There exist two cellg,, i» such thatvﬂ“ ) > 3
of p(¢ilto, 1y ey iy ) Vi # Jj:, because iﬁo(uvn]cﬁt) > " < %, :Cf?) > 1= 1

2 27 g 2
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(3): ngfl) > 1,z (" V< 5T (”) éxgl) > 1.
Assume condltlon(l) applies. We now prove the
second half of TheoremB(i).  For notational sim-
plicity we index the |C| — 1 cells that are not
equal to iy by the set{1,2,..|C| — 1}. Let

g(p) & —plg( ). We want to show thag( 4+
S D) > @) + S )

(n—1) (n—1) (n)
or equivalently Y ICI-tolr oo, —d )

g(a{" V42 —g (")
2(n)

gg(n)

where z(m £ Z‘C‘ 1dz(")

P(pto, i) < p(fro, |-ei) and

P, |7¢:) = /P, ) p (o, | 7¢:)
P(fto, |2¢i) — ppho, i)

p(ci“jwn—la RS :uvl) <

or p(ftv, |ci) > p(tv, |—ci) and

Pt |7¢:) — /P, ) p(po, [7¢i)
(o, [2¢i) — ppo, i)

p(ci|M’Un71a [RX) /’I’Ul) >

Notice that because of the boundary constraint and LemmaProof. For notational simplicity, letv = p(, [c;), § =

3, dn) > 0 fori # 4 andx”) = :v(" D4

since the target map cells have to sum to one atVar(X("))

step n. By the Mean Value Theorem, for each
i€ {1,..,1C] =1}, 3z € [z"7Y — d"7D g Y
such thatg(«{""") — g(a;"™" —d[") = d{"g'(=)
and 3z € ["Va"Y 4 2] such that
g(x;, (=1 | )y — g(:cgzI Yy = 2Mg/(z). Notice
that Z'CI ! 172 = 1l andg'(p) = % - m.
This in turn implies thaty %/ " ¢/(z;) > ¢'(2) and

Tisiq

the entropy decreases if and onIyIl'ﬂgll_1 z

4
' - - 1)

But since [/ 2 [T (D)% and
2" < 2, a sufficient condition for a decrease in the

i1
(n)
entropy isz\" " > [T\ (&{" V)" This proves(i).

The proof of part(i7) of the theorem follows, since if

xE”) < % for all cellsi € C, then the probability of cell;

has decreased at stepéng) <ic< :vl(.?’l)) and for at least
one celliz, :cz(.:’l) < :cgf) < 1 so that all cell probabilities
sum to one at step. But this contradicts the monotonically
decreasing variances implied by Lemma 3, pro\ifig.

If condition (2) holds, by a recursive application
of Lemma 4 (by settingy = 2) we see that

n n—1 n—1

~ et 18(@) <~ Ticon" Vg V) as de-
sired. This proves paftii) of the theorem.

For the proof of partiv) of the theorem, conditio(3)
applies. Notice thay(p) is monotonically increasing on

(0, 1] and monotonically decreasing @8, 1]. Since we

have assumed, , o > :v( ~H 2" it suffices to show

thatg(z\" ") + g (2"~ ”) > g(ai™) + g(2) (since the
probab|I|t|es of all ceIIsa # iy, 10 have decreased and we

< z.

(n)
Tizl <

'3 =

Notice that
<X<">> =
. Thus,

(Cl|M’Un—17' 7Mv1)
E(X“”)() B(X™)),

p(po, |mei) and - =

'ram-l—ﬁ(l—w)

Var(Xi(n)) <1
Var(Xi(nfl))
0 < (o= B)*a® +2B(c — B)z + B(B —

af
< (ax+ (1 —x))?

a) £ g(x).

<le

3)
The zeros ofy(z) arex = Bjﬁ[_@. Notice that the zeros
of g(z) are independent of changesdn /5 that retain the
ratio of o to 3. Sinceg(z) is a quadratic function af, we

can determine the range of values that sati8fyIf o < 3,
g(z) is concave up,ﬁg%g‘? > 1, and 5;!2“7’ < 5;;1/00‘7

which implies that §) is satisfied iffx < 2322 (see the
graph of f»(a) in Fig.(1)). If o > 3, g(z) is again con-

cave up,ﬁ*ﬁ‘\_/g_ﬁ < 0, and ﬁ*ﬁ"_/(‘? < ﬁg\_/g_ﬁ which im-
plies that 8) is satisfied iffx > 5;%275 (see the graph of
f1(8) in Fig.(1)). The lemma shows that there exist a set
of achievable probability values based on a relationship be
tween the quality of the discriminative and single-view-gen
erative probabilities that is sufficient to decrease the-var
ance of each cell’s Bernoulli distribution. In conjunction
with Theorem 3, it demonstrates the strong relationship be-
tween each cell’'s variance and the target map entropyl

A

Lemma 4. Letg(p) = — plg(p), where0 < p < 1. Let
vye(0,1),0 < a<y<f<1,0<2z < aand
0 <z <1-—p. Theng(a)+g(B) > gla—z)+g(f+x).

Proof. Notice thatg(a) + g(8) > g(a — z) + g(B + z) &

assume dual support). Equivalently, we want to show thatg(a) — g(a — z) > g(8 + z) — g(8) & W >

9@ N gl YY) > 9@V —a1) + gl 4 ).
Butsmcer(" 0y ) (" D <:c(" 1)+x2 and

> T —x1,T; in
we have assumed dual supp@ri > 5 (: V< 1),
we have proven paftv) of the theorem

Lemma 3. Var(X(™) < Var(X""") if and only if

M. By the Mean Value Theorem, there ex-
ist o/ € [a — x,0] and 3 € [B,8 + z] such that
g (/) = gla)— 9(04 z) andg 8) = g(ﬁJrI)*g(ﬁ)' But
sinceq’(p) = };’2(’2’3 1og(2) is a decreasing function and
vall c [Oé _x Of] 6// [ﬁ ﬁ+x]’ I( I/) > g (6//),

have proven the lemma. D
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Figure 1. Graphs showing on theaxis the zeros of(z) for vari-
ous ratios ofx, 3 (see Ineqd) in Lemma 3).

5. Discussion

A number of optimization algorithms for navigation,

mapping and next-view-planning have been suggested,

based on POMDPs.[], Bayesian methods P, 13], heuris-

tics [5, 8, 20] and greedy algorithmsLp, 21] amongst oth-
ers. The arguments in Sec. 3 suggest what kind of policies
would lead to efficient and reliable solutions for the com-
ponents of active object detection and localization system
that deal with sensor control for recognition. These inelud
next-view-planners that use efficient approximation algo-
rithms, or algorithms based on greedy and dynamic pro-
gramming solutions to the Knapsack problem71], sug-
gesting that a mixture of specialized optimizers, rathanth

a single kind of optimization, could lead to more efficient
solutions, without a significant decrease in reliabilty.

Theorems 2,3 suggest that single-view localization,
where the updated target map is only used to guide the
where-to-look-next policy, can lead to fewer false posi-
tive/negative detections, at the expense of greater kaali
tion bias when dead-reckoning errors occur. Alternatively
if we have some prior knowledge about the expected max-
imum dead reckoning error—typically the main source of

correspondence errors—, we can define appropriate dimen-

sions for celli;, such that the target’s centroid always falls
inside celli;. For example, an adaptive multiscale target
map approach could be used. At each step, we could adjus
the scale of the cells close to the expected target position
based on the expected dead-reckoning errors, in order t
guarantee a monotonically decreasing target map entropy.
This would make a termination condition based on proba-
bility thresholding €.g.,Def.7) more reliable under modest
dead-reckoning errors, despite potentially increasegetar
localization bias. At that point, target re-localizatioputd

take place within this region, to refine the target position.

131

6. Conclusions

We have proven that the active object localization prob-
lem and a number of its variants, are NP-Hard or NP-
Complete. We have studied the tradeoffs of localizing vs.
detecting a target object under single-view and multiple-
view recognition schemes. We have shown that a number
of bias/variance/entropy relationships and tradeoffsrgme
under single-view and multi-view localization and deteunti
schemes, that depend on the quality of the recognition algo-
rithm and the magnitudes of the correspondence or dead-
reckoning errors. The results motivated a set of properties
for active detection and localization algorithms.
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