
A Theory of Active Object Localization

Alexander Andreopoulos

John K. Tsotsos

Technical Report CSE-2009-01

March 10 2009

Department of Computer Science and Engineering

4700 Keele Street Toronto, Ontario M3J 1P3 Canada



A Theory of Active Object Localization

Alexander Andreopoulos, John K. Tsotsos
Dept. of Computer Science and Engineering
Centre for Vision Research, York University

Toronto, Ontario, Canada
{alekos, tsotsos}@cse.yorku.ca

Abstract

We present some theoretical results related to the prob-
lem of actively searching for a target in a 3D environment,
under the constraint of a maximum search time. We define
the object localization problem as the maximization over the
search region of the Lebesgue integral of the scene structure
probabilities. We study variants of the problem as they re-
late to actively selecting a finite set of optimal viewpoints
of the scene for detecting and localizing an object. We do
a complexity-level analysis on the problems, by showing
that in the best case scenario, the problems have high or-
der pseudo-polynomial running times or are NP-Complete.
We study the tradeoffs of localizing vs. detecting a target
object, using single-view and multiple-view recognition,un-
der imperfect dead-reckoning and an imperfect recognition
algorithm. We use these results to propose a set of sufficient
properties that efficient and reliable active object localiza-
tion algorithms should satisfy.

1. Introduction

In one of the earliest known treatises on vision [1], Aris-
totle describes vision as a passive process that is mediated
by what he refers to as the “transparent” (διαϕανές), an in-
visible property that allows the sense organ to become like
the actual form of the visible object. Much has been learned
since then and today, a popular definition is that vision is the
process of discovering from images what is present in the
world and where it is [10]. Within this context, four levels
of tasks in the vision problem are discernible [17]:

• Detection: is a particular item present in the stimulus?
• Localization: detection plus accurate location of item.
• Recognition: localization of the items present in the

stimulus plus their accurate description through their
association with linguistic labels.
• Understanding: recognition plus role of stimulus in the

context of the scene.

The concept ofactive perceptionor active visionwas
first introduced by Bajcsy [2], as “a problem of intelligent
control strategies applied to the data acquisition process”.
Active control of a vision based sensor offers a number of
benefits [19]. It allows us to: (i) Bring into the sensor’s
field of view regions that are hidden due to occlusion and
self-occlusion.(ii) Foveate and compensate for spatial non-
uniformity of the sensor.(iii) Increase spatial resolution
through sensor zoom and observer motion that brings the
region of interest in the depth of field of the camera.(iv)
Disambiguate degenerate views due to finite camera reso-
lution, lighting changes and induced motion [5]. (v) Deal
with incomplete information and complete a task.

An active vision system’s benefits must outweigh the as-
sociated execution costs [19]. The associated costs in an ac-
tive vision system include:(i) Deciding the actions to per-
form and their execution order.(ii) The time to execute
the commands and bring the actuators to their desired state.
(iii) Adapt the system to the new viewpoint, find the cor-
respondences between the old and new viewpoint and deal
with the inevitable ambiguities due to sensor noise.

A number of active object detection, localization and
recognition algorithms have been proposed over the years
[3, 4, 6, 8, 11, 12, 13, 15, 16, 20, 21]. A smaller number of
papers have dealt with issues related to the complexity and
reliability of such systems [5, 9, 18, 19, 21]. Limited work
exists on the complexity of search tasks and the effect that
imperfect recognition and imperfect dead-reckoning has on
object localization. In this paper, we argue that the problem
is likely intractable, by proving that the active object local-
ization problem is NP-Hard and by showing that the prob-
lem remains difficult at best, even under certain simplifying
variants of the main problem. We study the tradeoffs of lo-
calizing vs. detecting a target object under single-view and
multiple-view recognition schemes and show that there are
a number of bias/variance/entropy relationships and trade-
offs between the reliability of target localization and tar-
get detection, that depend on the quality of the recognition
algorithm used and the magnitudes of the correspondence
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or dead-reckoning errors. We exemplify the relevance of
these results in practical computer vision applications, as
first-principles based motivators for a set of properties that
active object localization algorithms should satisfy.

2. Problem Formulation

Assumption 1. We assume that exactly one instance of the
target object exists in the scene.

Definition 1. (Search Space)The search space consists of
a 3D region whose coordinates are expressed with respect
to an inertial coordinate frame.

Definition 2. (Target Map) The target map is a discretiza-
tion of the inertial coordinate frame into non-overlapping
3D cells coinciding with the search space. Each cell is as-
signed the probability of containing the target centroid.

We use a set of positive integers,C , {1, 2, ..., |C|},
to index each cell in the target map. Notice, that, since we
assume a single target object exists in the scene, the target
map cell values sum to one.

Definition 3. (Scene Sample Function)A scene sample
functionµv(~x) denotes the sensor output, wherev repre-
sents the values assigned to the controllable sensor param-
eters (e.g.,coordinate frame, zoom, focus) and~x is an index
into the scene sample (e.g.,in the case of greyscale images
~x = (i, j) can denote a pixel index).

We define a probability spaceΥ = (X1, Σ1, p1) for
the sensor parameter states, wherev ∈ X1 denotes a sen-
sor parameter state,Σ1 is a σ-algebra ofX1 and p1 is
a probability measure onX1 whose support includes all
statesv that have a non-zero probability of occuring in the
search space. Similarly, for eachv, we define a probability
spaceΥ(v) = (Xv, Σv, pv) with pv(µv(~x)) > 0 for each
µv(~x) ∈ Xv, denoting the probability of occurence of the
corresponding scene sample function given sensor parame-
ter valuesv. The underlying probability measure, models
the sensed scene uncertainty (e.g.,image noise, varying il-
lumination conditions, dead-reckoning errors, etc.) and it is
largely unknown and difficult to model in practice. Since
we do not know the distribution ofp1, pv, we approximate
them by using a finite sample of optimally selectedv, µv.

Definition 4. (Sequence Cost)Given a sequencev1, ..., vn

of sensor parameter states, the costT (n) associated with
executing the sequence is given byT (n) , T (n − 1) +
to(v1, ..., vn), whereto(v1, ..., vn) > 0 denotes the cost of
moving to statevn given all previous states andT (1) is the
cost of reaching statev1 from the initial sensor state.

We define the3D object localizationandconstrained ac-
tive object localization(CAOL) problems as follows:

Definition 5. (3D Object Localization) Find the cell̂it =
argmaxi

∫

p(ci|µv(~x))dpvdp1, where we are taking the
Lebesgue integrals[14] over Υ and Υ(v) and ci denotes
the event that the target object’s centroid is in celli.
p(ci|µv(~x)) is a recognition algorithm depending onv, µv.
If p(ci|µv(~x)) is a “good” algorithm, ît = it, whereit is
defined as the cell containing the target’s centroid.

Definition 6. (Constrained Active Object Localization)
Find the cell̂it ∈ C maximizingp(cît

|µvn
(~x), ..., µv1(~x))

across alln > 0, all sequencesv1, ..., vn of sensor states
and all correspondingµv1 , ..., µvn

, under the constraint
T (n) ≤ T ′, whereT ′ is a search cost bound.

Solutions to the CAOL problem must compensate for
(i) our limited knowledge onΥ, Υ(v) and (ii) the need
to minimize sensor movements, by finding a finite sample
µvn

(~x), ..., µv1(~x) that best samples the unknown probabil-
ity spaces without exceeding the maximum alloted search
cost. Even if we know the distributions of the probability
spacesΥ, Υ(v), eliminating point(i) and potentially even
makingp(ci|µvn

(~x), ..., µv1(~x)) a function ofv1,...,vn, the
problem remains intractable. As we show later, the CAOL
problem belongs to the class of NP-Hard problems [7],
implying that there is no known polynomial time algo-
rithm that solves the problem. One can attempt to make
it tractable by using variants of the problem:

Definition 7. (Constrained Active Object Localization:
Variant 1) Find a sequencev1, ..., vn of sensor states and
the cellsît ∈ C satisfyingp(cît

|µvn
(~x), ..., µv1(~x)) ≥ θ

andT (n) ≤ T ′ for someµv1 , ..., µvn
, whereT ′ is a search

cost bound andθ is a probability threshold.

Definition 8. (Constrained Active Object Localiza-
tion: Variant 2) Find the cell ît ∈ C maximiz-
ing p(cît

|µvn
(~x), ..., µv1(~x)) across all n > 0, all se-

quencesv1, ..., vn of sensor states and all corresponding
µv1 , ..., µvn

, under the constraintT (n) ≤ T ′, whereT ′ is a
search cost bound and each movement costto(v1, ..., vi) is
bounded from below by a positive non-zero constantC′.

Theorem 1. (Simplified Bayesian Updating)
Assumep(µvn

|ci, µvn−1 , ..., µv1) = p(µvn
|ci). Then,

p(ci|µvn
, ..., µv1) =

p(ci|µvn−1
,...,µv1)p(µvn |ci)

∑

j
p(cj ,µvn |µvn−1

,...,µv1) .

Proof. p(ci|µvn
, ..., µv1)p(µvn

, ..., µv1)= p(ci, µvn−1 , ...

, µv1)p(µvn
|ci) ⇔ p(µvn

|ci, µvn−1 , ..., µv1)= p(µvn
|ci).

Notice also that
∑

j p(cj , µvn
|µvn−1 , ..., µv1) =

∑

j p(µvn
|cj)p(cj |µvn−1 , ..., µv1).

When we are not using the simplifying assumption stated
in Theorem 1, we say we are usingnormal Bayesian up-
dating. Theorem 1 assumes that the scene sample func-
tions are conditionally independent given the celli where



the target is centred. By Assumption 1, exactly one in-
stance of the target exists in the scene, which implies that
eventci is sufficient to determine which regions ofµvn

(if
any) correspond to the projection of the target object on
the image plane and which regions correspond to the back-
ground. We are implicitly assuming thatp(µvn

|ci) denotes
a generative modeling of the recognition algorithm’s resul-
tant binary segmentation into the foreground (target posi-
tion) and the background, based on a single view. Simi-
larly p(ci|µvn

, ..., µv1) denotes the corresponding probabil-
ity of eventci, based on the bayesian fusion of multiple-
views µvn

,...,µv1. Notice that for a uniform priorp(ci),
argmaxi p(µvn

|ci) = argmaxi p(ci|µvn
). The greater the

uncertainty implicit in spacesΥ(v), the weaker the assump-
tion of conditional independence becomes, due to increased
sources of error. Nevertheless, it is convenient to use Theo-
rem 1 to model various localization and detection tradeoffs.

In the next section, we prove that if we know the distribu-
tions ofΥ, Υ(v) and under normal Bayesian updating, Vari-
ant 1 of the CAOL problem (Def.7) and the corresponding
detection problem are NP-Hard and NP-Complete respec-
tively. It is easy to see that Def.7 is reducible to the simi-
larly discretized version of Def.6 and thus, the CAOL prob-
lem is NP-Hard. Variant 2 of the problem, has a high-order
pseudo-polynomial solution: Since there are at mostb T ′

C′ c
sensor settings to execute within timeT ′, an enumeration

and evaluation of all candidate solutions, runs inΩ(mb T ′

C′ c),
wherem is the total number of possible states. But this solu-
tion remains exponential in terms of the size ofT ′. Using a
reduction from Def.7, we notice that Def.8 is NP-Hard and
if we add to Def.7 the minimum cost constraint of Def.8,
the resulting problem remains NP-Hard—the reductions in-
volve settingC′ to the minimum sensor state pair cost. We
could also approach the localization problem by threshold-
ing the generative probabilityp(µvn

(~x)|ci) rather than the
discriminative probabilityp(ci|µvn

(~x), ..., µv1(~x)). Ye [21]
uses a binary classifier with a presumed zero false positive
rate, to show that a similar problem is NP-Complete.

3. The Constrained Active Object Localization
Problem:Variant 1, is NP-Hard

To analyze the complexity of the constrained active ob-
ject localization problem when we know the distributions
of Υ, Υ(v), we first reformulate the problem into the cor-
responding detection problem, taking into account the fi-
nite precision of floating point arithmetic, and the finite set
V that is necessary to represent the space of scene sam-
ple functions(Xv) achievable across the sensor parameter
states(X1). Let Q+ , { p

q
: p, q ∈ Z+} denote the set of

positive rational numbers. We model each probability by a
non-negative rational inQ+

1 , {x ∈ Q+ ∪ {0} : x ≤ 1}.

Definition 9. (Valid Sequence)Letv′i=(vπi(1), ...,vπi(l(i)))
denote an ordered set of lengthl(i), whereπi:Z+→ Z+ is
a one-to-one mapping. A sequencev′i1 , ..., v

′
in

of ordered
sets is valid ifl(i1) = 1, l(ik+1) = l(ik) + 1 for each
1 ≤ k ≤ n− 1 andπik

(j) = πik+1
(j), ∀j 1 ≤ j ≤ l(ik).

We define an ordered set of length zero asv′0 , ().
For any ordered setv′i = (vπi(1), ..., vπi(l(i))) let v′i(vc) ,

(vπi(1), ..., vπi(l(i)), vc). Also v′0(vc) , (vc) andi0 , 0.

Definition 10. (Πjt
:Constrained Active Object Detec-

tion Problem : Variant 1)
INSTANCE: A finite setV = {v1, ..., v|V |}. A cost con-
straint B′ ∈ Q+, and a cost functionC(v′i) ∈ Q+ where
v′i = (vπi(1), ..., vπi(l(i))), i ∈ Z+, vπi(1), ..., vπi(l(i)) ∈ V .
S′ ∈ Z+ denoting the number of cells in the target map.
A functionf1(v

′
i, j) ∈ Q+

1 such that for any ordered set
v′i and any1 ≤ j ≤ S′,

∑

vc∈V f1(v
′
i(vc), j) = 1.

A function f2(v
′
i, j) ∈ Q+

1 defined for1 ≤ j ≤ S′,

such that
∑S′

j=1 f2(v
′
i, j) = 1 for all ordered setsv′i and

f2(v
′
in

, j) , f2(v
′
0, j)

∏n
k=1

f1(v′
ik

,j)
∑

S′

c=1 f2(v′
ik−1

,c)f1(v′
ik

,c)
. A

recognition thresholdθ ∈ Q+
1 . A query cell1 ≤ jt ≤ S′.

QUESTION: Is there a valid sequencev′i1 , ..., v
′
in

so that
∑n

k=1 C(v′ik
) ≤ B′ andf2(v

′
in

, jt) ≥ θ?

Definition 11. (Π :Constrained Active Object Localiza-
tion Problem : Variant 1)
INSTANCE: Same as inΠjt

(jt can be arbitrary). We use a
bar to differentiate the input variables from those ofΠjt

.
TASK: Find a valid sequencev′i1 , ..., v

′
in

and the cor-
responding cellsj, 1 ≤ j ≤ S̄′, which satisfy
∑n

k=1 C̄(v′ik
) ≤ B̄′ andf̄2(v

′
in

, j) ≥ θ̄.

As θ, θ̄ decrease, the expected running times ofΠjt
, Π

do not increase (e.g., for θ, θ̄ = 0, solutions inO(|V |) are
trivial to find). Notice that for̄θ > 1

2 , there is at most one
cell thatΠ can output. We quote the Knapsack problem (an
NP-Complete problem) as given by Garey and Johnson [7]:

Definition 12. (Π′ :Knapsack Problem)
INSTANCE: A finite setU , a “size” s(u) ∈ Z+ and a
“value” w(u) ∈ Z+ for eachu ∈ U , a size constraint
B ∈ Z+, and a value goalK ∈ Z+.
QUESTION: Is there a subsetU ′ ⊆ U such that
∑

u∈U ′ s(u) ≤ B and
∑

u∈U ′ w(u) ≥ K?

Πjt
is in NP, since any candidate solution is verifiable in

polynomial time. We assume K
∑

u∈U
w(u) ≤ 1 since other-

wise @U ′ ⊆ U that satisfiesΠ′. We define a mappingf
from Π′ to Πjt

for whichΠ′ is true iff Πjt
is true:

1. V ← U

2. B′ ← B

3. C(v′i) = s(vπi(l(i)))



4. S′ ← 2
5. θ ← K

∑

u∈V
w(u)

6. We need to definef1(v
′
i, j) andf2(v

′
i, j) for all ordered

setsv′i that are composed of elements inV and allj,
1 ≤ j ≤ S′, such thatf1, f2 satisfy their preconditions
stated inΠjt

.

For each distinct setU ′ ⊆ V and each distinct ordering
o of the elements inU ′, we assumed(U ′, o) ∈ Z+ is
unique and denotes the identifier of the corresponding or-
dered setv′d(U ′,o) = (vπd(U′,o)(1)

, ..., vπd(U′,o)(l(d(U ′,o))))

where l(d(U ′, o)) = |U ′|. Furthermore,d(U ′, o, k),
for 1 ≤ k ≤ l(d(U ′, o)), denotes the ordered set
composed of the firstk elements ofv′

d(U ′,o) — i.e.,
v′

d(U ′,o,k) = (vπd(U′,o)(1)
, ..., vπd(U′,o)(k)) andv′

d(U ′,o,k) =

v′j iff d(U ′, o, k) = j. For any orderingo and setU ′ =
{vπd(U′,o)(1)

, ..., vπd(U′,o)(l(d(U ′,o)))} ⊆ V , we need to de-
fine f1(v

′
d(U ′,o,k), j) andf2(v

′
d(U ′,o,k), j) for all 1 ≤ k ≤

l(d(U ′, o)). We also need to make suref1(v
′
d(U ′,o,k), j) and

f2(v
′
d(U ′,o,k), j) satisfy the requirements set in the defini-

tion of Πjt
and only depend onj and the firstk parameters

of v′
d(U ′,o). For each instance ofΠ′ we definef2 in Πjt

by

f2(v
′
i, j) =























∑l(i)
k=1 w(vπi(k))
∑

u∈V w(u)
if j = jt

1

S′ − 1
(1−

∑l(i)
k=1 w(vπi(k))
∑

u∈V w(u)
) otherwise

Since
∑S′

j=1 f2(v
′
i, j) = 1, f2(v

′
i, j) satisfies the require-

ments inΠjt
. Notice from Def.10 that if f2(v

′
ik

, j) = 1,
thenf1(v

′
ik

, j) 6= 0. Also, if 0 < f2(v
′
ik

, j) < 1, then
0 < f2(v

′
ik−1

, j) < 1. From the definition ofΠjt
, for each

subsetU ′, each orderingo and each1 ≤ k ≤ l(d(U ′, o)),
we want to definef1 so that

f2(v
′
ik

, j) =
f2(v

′
ik−1

, j)f1(v
′
ik

, j)
∑S′

j′=1 f2(v′ik−1
, j′)f1(v′ik

, j′)
(2)

whereik = d(U ′, o, k), 1 ≤ k ≤ l(d(U ′, o)), is used to
denote a valid sequence of ordered sets. From Lemma 1
below, we know that for each sensor settingv′ik

and ∀j,
there exists an assignment to functionf1(v

′
ik

, j) that sat-
isfies Eq.(2) and depends only on the parametersv′ik

, j —
i.e.,given parametersv′ik

andj, f1 is independent of setU ′.
Also Eq.(2) is independent of scaling factors applied onf1,
implying that we can assume that

∑

vc∈V f1(v
′
i(vc), j) = 1

as wanted. We see that mappingf runs in polynomial time.
We now show that there exists a valid sequencev′i1 ,...,v′in

that satisfiesΠjt
, iff ∃U ′ ⊆ U that satisfiesΠ′: If Πjt

holds,f2(v
′
in

, jt) ≥ θ ⇒∑

u∈U ′ w(u) ≥ K whereU ′ =
{vπin(1), ..., vπin (l(in))} ⊆ U . Conversely, assume that for

a subsetU ′ ⊆ U problemΠ′ holds. Choose an arbitrary or-
deringo and letik = d(U ′, o, k), 1 ≤ k ≤ l(d(U ′, o)) = n.
We see thatf2(v

′
in

, jt) ≥ θ. The converse direction of the
proof holds regardless of the ordering assigned toU ′. Re-
gardless of the orderingo assigned toU ′,

∑l(in)
k=1 C(v′ik

) ≤
B′ iff

∑

u∈U ′ s(u) ≤ B, which proves that there is a subset
U ′ satisfyingΠ′ iff an ordered set satisfiesΠjt

. This proves
thatΠjt

, under normal Bayesian updating, is NP-Complete.
To prove thatΠ is NP-Hard, we define a mapping from

Πjt
to Π as follows: V̄ ← V , B̄′ ← B′, C̄(v′i) = C(v′i),

S̄′ ← 2, θ̄ ← 2
3 , f̄2(v

′
ik

, 1) = 2
3 IA(k) +

1
2 IĀ(k), f̄2(v

′
ik

, 2) =
1
3 IA(k) + 1

2 IĀ(k), where IX ∈ {0, 1} is an indicator function
that takes a value of 1 iff boolean variableX is true and
A(k), Ā(k) are true ifff2(v

′
ik

, jt) ≥ θ or f2(v
′
ik

, jt) < θ

respectively. By Lemma 1, this also implicitly definesf̄1.
We see thatΠjt

holds iff Π finds a valid sequence that is
satisfied by cellj = 1. This shows thatΠ is NP-Hard.

In the reduction fromΠ′ to Πjt
, each call tof2 is in

O(|V |) and takesO(|V | ·S′) space to encode. We are mak-
ing the implicit assumption thatf1, f2 in Πjt

andf̄1, f̄2 in
Π have running times and encoding sizes that are polyno-
mial functions of|V |, S′ and |V̄ |, S̄′ respectively, imply-
ing that the scene structure must exhibit a minimum degree
of “non-randomness”. From the above proofs and Lemma
1, we notice thatf1(v

′
ik

, j) and f̄1(v
′
ik

, j) correspond to
p(µvk

|cj , µvk−1
, ..., µv1). Only if f̄1(v

′
ik

, j) depended ex-
clusively onj andvπik

(l(ik)), would this constitute a proof
that Def.11is NP-Hard under simplified Bayesian updating.
f2(v

′
0, j) andf̄2(v

′
0, j) denote the prior distributions of the

target maps and are typically set to a uniform distribution.

Lemma 1. Letβ, α1, ..., αm ∈ Q+
1 such that

∑m
i=1 αi = 1,

if β = 1, thenα1 6= 0 and if 0 < β < 1, then0 < α1 < 1.
If m > 1, ∃x1, ..., xm ∈ Q+

1 such that α1x1
∑

m
i=1 αixi

= β.

Proof. If β = 1, let x1 = 1 and letxi = 0 for i 6= 1.
If β = 0, let x2 = 1 and letxi = 0 for i 6= 2. Oth-
erwise, if 0 < β < 1, assumex1 > 0 and notice that

α1x1
∑

m
i=1 αixi

= β ⇔ α1 − βα1 =
∑m

i=2(βαi)yi, a linear
equation ofyi = xi

x1
. Since0 < β < 1, 0 < α1 < 1 and

consequently
∑m

i=2 αi > 0, which impliesα1 − βα1 > 0
and

∑m
i=1 βαi > 0. Therefore, there existy2, ..., yn ≥ 0

which satisfy the linear equation. We leave it as an exercise
for the reader to verify that for anyy2, ..., yn ∈ Q+ ∪ {0},
∃x1, x2, ..., xn ∈ Q+

1 (x1 6= 0) which satifyyi= xi

x1
.

4. Localization vs. Detection

We formalize some of the tradeoffs of single-view and
multiple-view recognition schemes for localizing and de-
tecting a target object under simplified Bayesian updating
and under a number of different sources of errors. In Sec.
4.1 we define and discuss the problems and in Sec. 4.2-4.3
we prove the respective theorems.



4.1. Definitions and Discussion

Definition 13. (Correspondence Error)Any error in the
calculation of the correspondence(s) between the index
value~x of a scene sample functionµv(~x) and the target
map cell indices whose structure projects on~x.

Definition 14. (Dead-Reckoning Errors)We are dealing
with dead-reckoning errors when there exists a rigid trans-
formationRT (·) of the sensor’s estimated coordinate frame
with respect to the inertial coordinate frame of the search
space, that corrects all correspondence errors without in-
troducing any new correspondence errors.

Definition 15. (Visibility) Cell i is visible for statevn, if it
falls in the sensor’s field of view and satisfies a set of nec-
essary conditions for localizing a target centered ini, that
only depend on the coordinates of a point ini and the depth
map ofµvn

with respect to the sensor coordinate frame.

Definition 16. (Good Single-View Recognition)We have
good single-view recognition at stepn if p(µvn

|cit
) is not

affected by changes to the inertial coordinate frame. Also,
under dead-reckoning errors,p(µvn

|ci) ≥ p(µvn
|¬ci) for

all target map distributions at stepn− 1 iff i ∈ V̂ (vn) and
RT (it) = i, or, i 6∈ V̂ (vn) andRT (it) 6∈ V̂ (vn).

RT (it) denotes the cell containing the transformation
of the target’s centroid underRT (·) (Def.14). p(µvn

|¬ci)
is defined in Sec. 4.2. V (vn) is the ground truth of
visible cells for µvn

, vn and no correspondence errors,
while V̂ (vn) denotes the calculated visible cells based on
our estimate of the sensor coordinate frame and under no
guaranty of perfect correspondences. Under perfect cor-
respondenceŝV (vn) = V (vn), but the converse does not
hold. For good single-view recognition, as the correspon-
dence errors increase, it is more likely thatp(µvn

|cit
) <

p(µvn
|¬cit

). Def.16 implies that if i1, i2 6∈ V̂ (vn), i3 ∈
V̂ (vn) and RT (it) 6∈ V̂ (vn), p(µvn

|ci1) = p(µvn
|ci2)

andp(µvn
|ci3) < p(µvn

|ci1). Also, if RT (it) ∈ V̂ (vn),
p(µvn

|cRT (it)) > p(µvn
|cj) ∀j 6= RT (it) (see Sec. 4.2).

Theorem 2. (Detection Tradeoff)
Assumeit ∈ V (v1),...,it ∈ V (vn). Assume a uniform
target map prior and good single-view recognition. Let
X

(n)
i , Y

(n)
i denote Bernoulli random variables with prob-

ability of successp(ci|µvn
, ..., µv1), p(ci|µvn

) respectively.

Detection at stepn is based onmax
j∈V̂ (vn) E(X

(n)
j ) or

max
j∈V̂ (vn) E(Y

(n)
j ) being above a given threshold.

(i) Givenvn, µvn
, single-view detection at stepn is inde-

pendent of dead-reckoning errors.
(ii) If p(µvn

|ci) ≤ p(µvn
|¬ci), E(X

(n)
i ) ≤ E(X

(n−1)
i ).

(iii) If p(µvn
|ci) ≥ p(µvn

|¬ci), E(X
(n)
i ) ≥ E(X

(n−1)
i ).

(iv) If ît = ĵt, ît = argmaxj∈C E(Y
(n)
j ) and ĵt =

argmaxj∈C E(Y
(n−1)
j ), E(X

(n)

ît
) ≥ E(X

(n−1)

ĵt
).

(v) If ît 6= ĵt, ît = arg maxj∈C E(Y
(n)
j ) and ĵt =

argmaxj∈C E(Y
(n−1)
j ), then it is not necessarily the case

thatE(X
(n)

ît
) ≥ E(X

(n−1)

ĵt
).

Case(iv) shows that with good correspondences, detec-
tion based on fusing multiple views becomes more reliable
than single-view detection (sincêit, ĵt ∈ V̂ (vn)). Case
(v) shows that under dead-reckoning errors, there is an in-
creased likelihood that fusing multiple-views will lead to
more false negative detections (sinceît, ĵt ∈ V̂ (vn)), and
thus, single-view detection (case(i)) might be preferable
when dead-reckoning errors occur. Despite the strong as-
sumption of Def.16, correspondence or dead-reckoning er-
rors make the detection problem significantly harder.

Definition 17. (Dual Support) Let x
(n)
i ,

p(ci|µvn
, ..., µv1). A single-view recognition algorithm has

dual support at stepn if ∀i, x
(n)
i 6∈ [ 1

e
, 1

2 ]. Equivalently∀i,
p(µvn |¬ci)
p(µvn |ci)

>
x
(n−1)
i

1−x
(n−1)
i

(e− 1) or p(µvn |ci)
p(µvn |¬ci)

>
1−x

(n−1)
i

x
(n−1)
i

.

Definition 18. (Flipped Cells) We say that there exist
flipped cells at stepn, if there exist two cellsi1, i2, such
that x(n−1)

i1
> 1

2 , x
(n−1)
i2

< 1
2 , x

(n)
i1

= x
(n−1)
i1

− x1 < 1
2 ,

x
(n)
i2

= x
(n−1)
i2

+ x2 > 1
2 for positivex1, x2.

Under Def.16 and a uniform target map prior, flipped
cells can only occur due to correspondence errors.

Definition 19. (Boundary Constraints) We say that the
cells in a setS satisfy the boundary constraints at stepn if
for eachi ∈ S, p(µvn

|ci) < p(µvn
|¬ci) and

p(ci|µvn−1 , ..., µv1) <
p(µvn

|¬ci)−
√

p(µvn
|ci)p(µvn

|¬ci)

p(µvn
|¬ci)− p(µvn

|ci)
,

or, p(µvn
|ci) > p(µvn

|¬ci) and

p(ci|µvn−1 , ..., µv1) >
p(µvn

|¬ci)−
√

p(µvn
|ci)p(µvn

|¬ci)

p(µvn
|¬ci)− p(µvn

|ci)
.

Theorem 3. (Localization Tradeoff)
AssumeC satisfies the boundary constraints at stepn. Also
assume a uniform prior distribution for the target map. De-

fined
(n)
i , x

(n−1)
i − x

(n)
i andr

(n)
i,k ,

d
(n)
i

∑

j 6=k
d
(n)
j

.

(i) Assume there are no flipped cells at stepn and ∀i
x

(n−1)
i ≤ 1

2 . Then, there exists a celli1 for whichx
(n)
i1

> 1
2 .

Furthermore, ifx(n−1)
i1

>
∏

i6=i1
(x

(n−1)
i )r

(n)
i,i1 , the target

map entropy at stepn is smaller than it is at stepn− 1.
(ii) If x

(n−1)
i1

> 1
2 for some celli1, there exists a cellj1,

which does not have to equali1, such thatx(n)
j1

> 1
2 .

(iii) If there are no flipped cells at stepn and there exists a



cell i1 satisfyingx(n−1)
i1

> 1
2 andx

(n)
i1

> 1
2 , then, the target

map entropy at stepn is smaller than it is at stepn− 1.
(iv) If there exist flipped cellsi1, i2 at stepn, the condi-

tion x1, x2 > x
(n−1)
i1

−x
(n−1)
i2

(see Def.18) and single-view
recognition with dual support, guarantees that the target
map entropy at stepn is smaller than it is at stepn− 1.

Any termination condition based on probability thresh-
olding (e.g.,Def.7), requires a decreasing target map en-
tropy. The above theorem quantifies a set of sufficient prop-
erties of the recognition algorithm, under which, multiple-
view localization leads to a decreasing entropy and there-
fore, after a certain number of steps, a smaller target map
entropy than that of a single-view. Theorem 3 lists all pos-
sible target map behaviours under the boundary constraints.
If we also assume good single-view recognition and that no
correspondence errors exist, Theorem 3 defines a set of suf-
ficient properties of the single-view recognition algorithm
so that multiple-view recognition leads to a decreasing tar-
get map entropy and a smaller bias and variance in the tar-
get’s localization at each step. Without the boundary con-
straints, we have no guaranty of a decreasing entropy. Un-
der good single-view recognition and a uniform target map
prior, flipped cells are the result of correspondence errors,
implying a possible increased target map entropy and bias in
the target localization. Theorem 3 shows that without good
single-view recognition, it is possible to have a decreasing
target map entropy and an increasing bias in the estimated
target position, exemplifying the difficulty of the problem.

Case(i) shows that ifx(n−1)
i1

is the maximum probabil-
ity amongst all cells at stepn − 1, the entropy decreases
at the next step. It also shows that as the probabilities of
the other cells relative tox(n−1)

i1
decrease, or as the relative

weightsr(n)
i for smaller probabilities increase (by decreas-

ing their respective probabilities from stepn − 1 to stepn,
more than the other cells), it becomes more likely that the
entropy will decrease in the next step. Case(ii) shows that
a localization threshold of over12 easily leads to biased re-
sults under dead-reckoning or correspondence errors. Case
(iv) is applicable when the correspondence errors increase
and shows that more stringent requirements on the recogni-
tion algorithm can compensate for such errors and guaran-
tee a decrease in the entropy (by requiring dual support and
x1, x2 > x

(n−1)
i1

− x
(n−1)
i2

). No such requirement is needed
in case(iii), which assumes that no flipped cells exist.

4.2. Proof of Theorem 2

Let p(µvn
|¬cj) ,

∑

i6=j p(µvn |ci)p(ci|µvn−1
,...,µv1)

∑

i6=j p(ci|µvn−1
,...,µv1) (we

assume a non-zero denominator). Since we only have
dead-reckoning errors in(i), ∃ĵt ∈ V̂ (vn) such that
RT (it) = ĵt. Thusp(µvn

|cĵt
) > p(µvn

|¬cĵt
) regardless

of p(ci|µvn−1 , ..., µv1) ∀i 6= ĵt, because ifp(µvn
|cĵt

) ≥

p(µvn
|¬cĵt

) but notp(µvn
|cĵt

) > p(µvn
|¬cĵt

) for all tar-
get map distributions at stepn − 1, there exists a cell
j 6= ĵt such thatp(µvn

|cj) = p(µvn
|cĵt

) and thus
p(µvn

|cj) ≥ p(µvn
|¬cj) for all target maps, contradict-

ing Def.16. Thus ĵt = argmaxj∈V̂ (vn) p(µvn
|cj) =

argmaxj∈V̂ (vn) E(Y
(n)
j ) (because of the uniform prior).

Thus maxj∈V̂ (vn) E(Y
(n)
j ) = E(Y

(n)
RT (it)

) and since we
have assumed to know the values ofvn, µvn

, any change
in the dead-reckoning errors is equivalent to a change
to the inertial coordinate frame and potentially to the
label RT (it) assigned to the structure represented by

cell it, which does not affectE(Y
(n)
RT (it)

), thus prov-

ing (i). Notice that E(X
(n)
i ) ≤ E(X

(n−1)
i ) ⇔

p(µvn |ci)
∑

a∈{ci,¬ci}
p(a|µvn−1

,...,µv1)p(µvn |a) ≤ 1 which in conjunc-

tion with Lemma 2 below, proves(ii). The proof of case
(iii) is similar to that of case(ii) and we leave it as an ex-
ercise. Case(iv) follows trivially from case(iii). Case
(v) follows sinceE(X

(n−1)

ît
) can be arbitrarily small and

E(X
(n)

ît
) is proportional toE(X

(n−1)

ît
).

Lemma 2. Letg(x, α, β) = α
αx+β(1−x) with 0 ≤ α, β, x ≤

1 such thatαx + β(1 − x) 6= 0 . Theng(x, α, β) ≤ 1 iff
β > α or x = 1 or α = β.

Proof. Notice thatg(x, α, β) ≤ 1 ⇔ α − β ≤ (α − β)x.
If α < β, theng(x, α, β) holds iff x ≤ 1 which we know is
always true. Ifα > β, theng(x, α, β) holds iff x = 1. If
α = β, theng(x, α, β) = 1 which proves the lemma.

4.3. Proof of Theorem 3

To simplify certain arguments, we assume that no cell
ever takes a value of zero. LetX

(n)
i denote a Bernoulli

random variable with probability of successx(n)
i ,

p(ci|µvn
, ..., µv1). By Lemma 3, the boundary constraint

assumption of Theorem 3 is equivalent toV ar(X
(n)
i ) <

V ar(X
(n−1)
i ) ∀i ∈ C. Since the variance of a Bernoulli(p)

random variable is equal top(1 − p), it is maximized at
p = 1

2 and it is also symmetric aroundp = 1
2 , which implies

that when the variance ofX(n)
i has decreased,|x(n)

i − 1
2 | >

|x(n−1)
i − 1

2 |. Since V ar(X
(n)
i ) < V ar(X

(n−1)
i ) for

all cells i, there exists exactly one celli1 at stepn with
x

(n)
i1

> 1
2 , since otherwise, the variance of all cells could

not have decreased and maintained a sum of one across all
target map cells. This proves the first half of Theorem3(i).
One of the following conditions must hold at each stepn:

(1): ∀i, x
(n−1)
i ≤ 1

2 and there exists exactly one celli1

that satisfiesx(n)
i1

> 1
2 .

(2): There exist two cellsi1, i2 such thatx(n−1)
i1

> 1
2 ,

x
(n−1)
i2

< 1
2 , x

(n)
i1

> 1
2 , x

(n−1)
i2

< 1
2 .



(3): x
(n−1)
i1

> 1
2 , x

(n−1)
i2

< 1
2 , x

(n)
i1

< 1
2 , x

(n)
i2

> 1
2 .

Assume condition(1) applies. We now prove the
second half of Theorem3(i). For notational sim-
plicity we index the |C| − 1 cells that are not
equal to i1 by the set {1, 2, ..., |C| − 1}. Let

g(p) , − p lg(p). We want to show thatg(x
(n−1)
i1

) +
∑|C|−1

i=1 g(x
(n−1)
i ) > g(x

(n)
i1

) +
∑|C|−1

i=1 g(x
(n)
i )

or equivalently
∑|C|−1

i=1
g(x

(n−1)
i

)−g(x
(n−1)
i

−d
(n)
i

)

x(n) >

g(x
(n−1)
i1

+x(n))−g(x
(n−1)
i1

)

x(n) where x(n) ,
∑|C|−1

i=1 d
(n)
i .

Notice that because of the boundary constraint and Lemma
3, d

(n)
i > 0 for i 6= i1 and x

(n)
i = x

(n−1)
i1

+ x(n)

since the target map cells have to sum to one at
step n. By the Mean Value Theorem, for each
i ∈ {1, ..., |C| − 1}, ∃zi ∈ [x

(n−1)
i − d

(n−1)
i , x

(n−1)
i ]

such thatg(x
(n−1)
i ) − g(x

(n−1)
i − d

(n)
i ) = d

(n)
i g′(zi)

and ∃z ∈ [x
(n−1)
i1

, x
(n−1)
i1

+ x(n)] such that

g(x
(n−1)
i1

+ x(n)) − g(x
(n−1)
i1

) = x(n)g′(z). Notice

that
∑|C|−1

i=1 r
(n)
i,i1

= 1 and g′(p) = − log(p)
log(2) − 1

log(2) .

This in turn implies that
∑|C|−1

i=1 r
(n)
i,i1

g′(zi) > g′(z) and

the entropy decreases if and only if
∏|C|−1

i=1 z
r
(n)
i,i1

i < z.

But since
∏|C|−1

i=1 z
r
(n)
i,i1

i ≤
∏|C|−1

i=1 (x
(n−1)
i )r

(n)
i,i1 and

x
(n−1)
i1

≤ z, a sufficient condition for a decrease in the

entropy isx(n−1)
i1

>
∏|C|−1

i=1 (x
(n−1)
i,i1

)r
(n)
i,i1 . This proves(i).

The proof of part(ii) of the theorem follows, since if
x

(n)
i ≤ 1

2 for all cells i ∈ C, then the probability of celli1
has decreased at stepn (x

(n)
i1
≤ 1

2 < x
(n−1)
i1

) and for at least

one celli2, x
(n−1)
i2

< x
(n)
i2
≤ 1

2 so that all cell probabilities
sum to one at stepn. But this contradicts the monotonically
decreasing variances implied by Lemma 3, proving(ii).

If condition (2) holds, by a recursive application
of Lemma 4 (by settingγ = 1

2 ), we see that

−∑

i∈C x
(n)
i lg(x

(n)
i ) < −∑

i∈C x
(n−1)
i lg(x

(n−1)
i ) as de-

sired. This proves part(iii) of the theorem.
For the proof of part(iv) of the theorem, condition(3)

applies. Notice thatg(p) is monotonically increasing on
(0, 1

e
] and monotonically decreasing on(1

2 , 1]. Since we

have assumedx1, x2 > x
(n−1)
i1

−x
(n−1)
i2

, it suffices to show

thatg(x
(n−1)
i1

) + g(x
(n−1)
i2

) > g(x
(n)
i1

) + g(x
(n)
i2

) (since the
probabilities of all cellsi 6= i1, i2 have decreased and we
assume dual support). Equivalently, we want to show that
g(x

(n−1)
i1

)+g(x
(n−1)
i2

) > g(x
(n−1)
i1

−x1)+g(x
(n−1)
i2

+x2).

But sincex(n−1)
i2

> x
(n−1)
i1

−x1, x(n−1)
i1

< x
(n−1)
i2

+x2 and

we have assumed dual support(x
(n−1)
i1

> 1
2 , x

(n−1)
i2

< 1
e
),

we have proven part(iv) of the theorem.

Lemma 3. V ar(X
(n)
i ) < V ar(X

(n−1)
i ) if and only if

p(µvn
|ci) < p(µvn

|¬ci) and

p(ci|µvn−1 , ..., µv1) <
p(µvn

|¬ci)−
√

p(µvn
|ci)p(µvn

|¬ci)

p(µvn
|¬ci)− p(µvn

|ci)

or p(µvn
|ci) > p(µvn

|¬ci) and

p(ci|µvn−1 , ..., µv1) >
p(µvn

|¬ci)−
√

p(µvn
|ci)p(µvn

|¬ci)

p(µvn
|¬ci)− p(µvn

|ci)

Proof. For notational simplicity, letα = p(µvn
|ci), β =

p(µvn
|¬ci) and x = p(ci|µvn−1 , ..., µv1). Notice that

V ar(X
(n)
i ) = E(X

(n)
i )(1 − E(X

(n)
i )), E(X

(n)
i ) =

x α
αx+β(1−x) and1−E(X

(n)
i ) = (1− x) β

αx+β(1−x) . Thus,

V ar(X
(n)
i )

V ar(X
(n−1)
i )

< 1⇔ αβ

(αx + β(1− x))2
< 1⇔

0 < (α− β)2x2 + 2β(α− β)x + β(β − α) , g(x). (3)

The zeros ofg(x) arex = β±
√

αβ
β−α

. Notice that the zeros
of g(x) are independent of changes inα, β that retain the
ratio of α to β. Sinceg(x) is a quadratic function ofx, we
can determine the range of values that satisfy (3): If α < β,
g(x) is concave up,β+

√
αβ

β−α
≥ 1, and β−

√
αβ

β−α
≤ β+

√
αβ

β−α

which implies that (3) is satisfied iffx < β−
√

αβ
β−α

(see the
graph off2(α) in Fig.(1)). If α > β, g(x) is again con-
cave up,β+

√
αβ

β−α
≤ 0, and β+

√
αβ

β−α
≤ β−

√
αβ

β−α
which im-

plies that (3) is satisfied iffx > β−
√

αβ
β−α

(see the graph of
f1(β) in Fig.(1)). The lemma shows that there exist a set
of achievable probability values based on a relationship be-
tween the quality of the discriminative and single-view gen-
erative probabilities that is sufficient to decrease the vari-
ance of each cell’s Bernoulli distribution. In conjunction
with Theorem 3, it demonstrates the strong relationship be-
tween each cell’s variance and the target map entropy.

Lemma 4. Let g(p) , − p lg(p), where0 < p ≤ 1. Let
γ ∈ (0, 1), 0 < α < γ < β ≤ 1, 0 < x < α and
0 < x ≤ 1− β. Theng(α) + g(β) > g(α− x) + g(β + x).

Proof. Notice thatg(α) + g(β) > g(α− x) + g(β + x)⇔
g(α) − g(α − x) > g(β + x) − g(β) ⇔ g(α)−g(α−x)

x
>

g(β+x)−g(β)
x

. By the Mean Value Theorem, there ex-
ist α′ ∈ [α − x, α] and β′ ∈ [β, β + x] such that
g′(α′) = g(α)−g(α−x)

x
and g′(β′) = g(β+x)−g(β)

x
. But

sinceg′(p) = − log(p)
log(2) − 1

log(2) is a decreasing function and
∀α′′ ∈ [α − x, α] ∀β′′ ∈ [β, β + x], g′(α′′) > g′(β′′), we
have proven the lemma.
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Figure 1. Graphs showing on they-axis the zeros ofg(x) for vari-
ous ratios ofα, β (see Ineq.(3) in Lemma 3).

5. Discussion

A number of optimization algorithms for navigation,
mapping and next-view-planning have been suggested,
based on POMDPs [11], Bayesian methods [12, 13], heuris-
tics [5, 8, 20] and greedy algorithms [15, 21] amongst oth-
ers. The arguments in Sec. 3 suggest what kind of policies
would lead to efficient and reliable solutions for the com-
ponents of active object detection and localization systems
that deal with sensor control for recognition. These include
next-view-planners that use efficient approximation algo-
rithms, or algorithms based on greedy and dynamic pro-
gramming solutions to the Knapsack problem [7, 21], sug-
gesting that a mixture of specialized optimizers, rather than
a single kind of optimization, could lead to more efficient
solutions, without a significant decrease in reliabilty.

Theorems 2,3 suggest that single-view localization,
where the updated target map is only used to guide the
where-to-look-next policy, can lead to fewer false posi-
tive/negative detections, at the expense of greater localiza-
tion bias when dead-reckoning errors occur. Alternatively,
if we have some prior knowledge about the expected max-
imum dead reckoning error—typically the main source of
correspondence errors—, we can define appropriate dimen-
sions for cellit, such that the target’s centroid always falls
inside cellit. For example, an adaptive multiscale target
map approach could be used. At each step, we could adjust
the scale of the cells close to the expected target position,
based on the expected dead-reckoning errors, in order to
guarantee a monotonically decreasing target map entropy.
This would make a termination condition based on proba-
bility thresholding (e.g.,Def.7) more reliable under modest
dead-reckoning errors, despite potentially increased target
localization bias. At that point, target re-localization could
take place within this region, to refine the target position.

6. Conclusions

We have proven that the active object localization prob-
lem and a number of its variants, are NP-Hard or NP-
Complete. We have studied the tradeoffs of localizing vs.
detecting a target object under single-view and multiple-
view recognition schemes. We have shown that a number
of bias/variance/entropy relationships and tradeoffs emerge
under single-view and multi-view localization and detection
schemes, that depend on the quality of the recognition algo-
rithm and the magnitudes of the correspondence or dead-
reckoning errors. The results motivated a set of properties
for active detection and localization algorithms.
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