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Abstract

The problem of finding contrast patterns has recently
attracted much attention. As a result, a number of
promising methods have been proposed to capture sig-
nificant differences or changes between two or more
datasets. Such differences can be captured by emerg-
ing patterns and some other types of contrasts. In this
paper, we present a framework for mining diverging pat-
terns, a new type of contrast patterns whose frequency
changes in different directions in two data sets, e.g., it
changes from a relatively low to a relatively high value
in one dataset, but from high to low in the other. In this
framework, a measure called diverging ratio is used to
discover diverging patterns. We use a two-dimensional
vector to represent a pattern, and define the pattern’s
diverging ratio based on the angular difference between
its vectors in two datasets. An algorithm is proposed to
mine diverging patterns from a pair of datasets, which
makes use of a standard frequent pattern mining al-
gorithm to compute relevant vectors efficiently. We
demonstrate the usefulness of our approach on some
real-world datasets, showing that the method can reveal
novel and interesting knowledge from large databases.

Keywords: Diverging patterns, Contrast patterns,
Frequent patterns.

1 Introduction

The problem of finding contrast patterns has recently
attracted much attention. Contrast patterns are those
patterns that capture important and significant differ-
ences or changes between two or more sets of data in the
same domain. A number of promising methods have
been proposed to capture such differences, including
emerging pattern mining [6, 2], contrast set mining [4],
and some other methods for mining complex types of
contrasts [11, 16, 12]. Contrast patterns are useful
for identifying distinguishing characteristics of data and
can also be used to build powerful classifiers [10, 7].

The support-confidence framework [1] is the most
common measure used in mining interesting patterns,
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Table 1: Simple gene expression data sets
normal disease

G1 G2 G3 G4 G1 G2 G3 G4

t01 1 0 1 0 1 1 1 0
t02 0 1 1 1 0 1 1 1
t03 1 1 1 0 0 1 1 0
t04 1 1 1 1 1 0 0 1
t05 1 1 0 1 1 1 1 1
t06 1 1 1 1 1 0 0 1
t07 0 1 0 1 1 1 1 1
t08 1 1 0 1 1 1 1 0
t09 1 1 0 0 1 0 1 1
t10 1 1 1 1 0 0 1 0
t11 0 1 1 0 0 1 1 1
t12 1 1 1 1 1 1 0 1
t13 1 1 0 0 1 1 1 1
t14 1 1 1 1 0 1 0 1
t15 1 0 0 1 1 1 1 1
t16 1 1 0 0 1 1 0 0
t17 0 1 1 0 1 1 1 0
t18 1 0 0 1 1 1 1 1
t19 0 1 1 0 1 0 1 1
t20 1 0 0 1 1 1 1 0

including contrast patterns, due to its anti-monotonicity
that effectively simplifies the search lattice. For in-
stance, in emerging pattern mining, the significance of
differences is measured by the magnitude of the support-
change-ratio (called growth rate [6]) of the patterns over
one data set to another. The larger the support-change-
ratio, the more different and important the patterns are.
However, this is not always the case. Let’s see the fol-
lowing examples.

Example 1. Microarrays have already been exten-
sively used in bioinformatics to address a wide variety
of problems. One of the most attractive applications
of microarray technology is the study of the differential
gene expression in diseases. There are many genetic dis-
eases that are the result of mutations in a gene of a set
of genes. For example, microarray-based gene expres-
sion profiling can be used to identify disease genes by
comparing gene expression in diseased and normal cells.
Suppose we have a pair of simplified gene-time data sets,
normal and disease, which record the expression levels
of four genes (G1, ..., G4) in normal and diseased tissues
during important biological processes over a series of
time-stamps (t01, ..., t20), as shown in Table 1. A row
represents the expression levels of all genes measured at



one time-stamp, and a column the expression levels of a
single gene. Each cell represents the expression level of a
certain gene at a certain time-stamp, whose value is rep-
resented by 0 or 1. If a gene is up or down regulated at
a specific time-stamp, the corresponding element takes
a value of 1; otherwise, the value is 0.

Let us consider the gene set {G1, G2}. Because its
frequency is exactly the same (11

20 = 0.55) in both data
sets, it cannot be considered as a valid emerging pattern,
or any other contrast patterns based on the support-
confidence framework. However, interesting differences
of the gene set between these two data sets can be found
after we take into account the time information in the
data sets. We can easily see that before (and including)
t10 in the normal data set, {G1, G2} appears 7 times;
but after t10, {G1, G2} only occurs 4 times. That is to
say that the frequency of {G1, G2} in normal decreases
significantly from 70% to 40% after t10. On the
contrary, the frequency of {G1, G2} in disease increases
significantly from 40% to 70%.

Example 2. Consider two groups of patients, A
and B, that have different demographic backgrounds.
Both groups of patients have used a new drug for
a chronic disease for a period of time, during which
they have been tested for their blood level of alkaline
phosphatase (ALP) that is an enzyme produced by liver
(and other) cells. Elevated blood levels of this substance
may indicate abnormal function of the liver. Suppose
that for the observed period of time high ALP levels
occur frequently in both groups of patients and their
frequencies are roughly equal in the two groups. This
indicates that the new drug has a side effect of increasing
ALP levels in both groups of patients. However, a closer
examination of the blood test results reveals that for
group A the frequency of high ALP levels decreases
significantly over the observed period of time, but the
frequency for group B increases significantly in the same
period of time. This indicates that group A patients can
tolerate the side effect of the new drug better than group
B patients in a long run although at the beginning of
taking this drug they showed a more severe side effect
than group B.

These observations assert that a pattern might have
significantly different distributions between two data
sets, even though it has a subtle frequency-difference
in the data sets. This motivates our research in this
paper to identify a new class of contrast patterns to
capture their significant dissimilarities between the data
sets, especially those patterns whose frequency changes
in opposite directions, i.e., it changes from a relatively
low to a relatively high value in one data set, but from
high to low in the other.

The main contributions of this paper are as follows:

• We propose a framework for mining diverging pat-
terns, a new type of contrast patterns whose fre-
quency changes in different directions in a pair of
data sets;

• We define a measure, called diverging ratio, to cap-
ture the frequency-change-difference of a pattern in
two data sets. The measure uses a two-dimensional
vector to represent a pattern in a data set and is
defined based on the angular difference between its
vectors in two data sets;

• An algorithm is proposed to mine diverging pat-
terns from a pair of data sets. The algorithm makes
use of a standard frequent pattern mining algo-
rithm to compute relevant vectors efficiently;

• We perform extensive experiments on several real-
world data sets to verify the effectiveness and use-
fulness of diverging patterns. Our results illustrate
that mining diverging patterns is highly promising
as a practical approach to discovering novel and
interesting knowledge in real-world domains.

The rest of the paper is organized as follows. Sec-
tion 2 presents basic concepts and notations. The for-
mal definition of diverging patterns and an algorithm for
mining the set of diverging patterns from a pair of data
sets are given in Section 3 and Section 4, respectively.
A discussion is given in Section 5. We provide extensive
experimental evaluations of our techniques in Section 6.
We review related work in Section 7 and conclude this
paper in Section 8.

2 Preliminaries and Notations

Mining frequent patterns is one of the fundamental op-
erations in data mining applications for extracting inter-
esting patterns from databases (e.g. association rules,
correlations, sequences, episodes, classifiers, clusters).
In this section, we briefly review the basic concepts of
frequent pattern mining. Table 2 summarizes the nota-
tions that will be used throughout this paper and their
meanings.

Let I = {i1, i2,. . . , im} be a set of m distinct items.
A subset X ⊆ I is called an itemset or a pattern. A
k -itemset is an itemset that contains k items. In this
paper, we use AB to represent pattern {A, B}, where
A ∈ I and B ∈ I, for simplicity. A transaction over
I is a couple T = (tid, I) where tid is the transaction
identifier (or time-stamp) and I ⊆ I is an itemset. A
transaction T = 〈tid , I〉 is said to support an itemset
X ⊆ I, if and only if X ⊆ I. A transaction database D
over I is a set of transactions over I.

The cover of an itemset X in D, denoted as cov(X ,
D), consists of the set of transactions in D that support



Table 2: Notations used in this paper
D a database of transactions
||S|| the cardinality of set S

cov(X , D) the cover of a pattern X in D
sup(X,D) the support of a pattern X in D

ρ(T , D) The position of a transaction T in D
δ(T ,D) the central distance of a transaction T in D

ω−(X,D) the negative weight of a pattern X in D
ω+(X,D) the positive weight of a pattern X in D
−→ω (X,D) the weight of a pattern X in D

div(X) the diverging ratio of a pattern X
supi(X,D) the ith support of a pattern X in D

X .

cov(X,D) := {〈tid, I〉 | 〈tid, I〉 ∈ D, X ⊆ I}.

An itemset X in a transaction database D has a
support, denoted as sup(X , D), which is the ratio of
transactions in D containing X. That is, sup(X,D) =
‖cov(X,D)‖

||D|| , where ‖S‖ is the cardinality of set S. Given

a transaction database D and a user specified minimum
support threshold min sup, an itemset X is called a
frequent itemset or frequent pattern in D if sup(X , D)
≥ min sup. The problem of mining frequent patterns
is to find the complete set of frequent patterns in a
transaction database with respect to a given support
threshold.

3 Diverging Pattern

In this section we define several concepts relevant to our
proposed framework.

3.1 Definition of weight.

Definition 3.1. Assuming that the transactions in a
transaction database D are ordered by their transaction
identifiers (or time-stamps), the position of a transac-
tion T in D, denoted as ρ(T , D), is the number of trans-
actions whose transaction identifier (or time-stamp) is
less than or equal to that of T . Thus, 1 ≤ ρ(T , D) ≤
‖D‖.

Definition 3.2. The central distance of a transaction
T in D, denoted as δ(T , D), is the distance from the
transaction to the central position of D:

δ(T ,D) := [ρ(T ,D)−
‖D‖+ 1

2
],(3.1)

where [x] is a round function of a real number x in
which a positive x is converted to the smallest integer
that is greater than x but a negative x is converted to
the biggest integer that is smaller than x.1

1The reason we use a round function is to keep the unit (which

The central distance of a transaction T is negative if
the position of T is before the central position of the
database; and it is positive if the position is after the
central position. For example, the central position of the
normal or disease database is between transactions t10
and t11. Thus, transaction t10 is the first transaction
before the central position. According to the above
definition, its central distance is -1. Similarly, the
central position of transaction t12 is +2.

Definition 3.3. The negative weight of a pattern X
in D, denoted as ω−(X, D), is the ratio of the sum of
all negative central distances of transactions in cov(X,
D) to the number of transactions in D:

ω−(X,D) :=

∑

T ∈cov(X,D){δ(T ,D) < 0}

‖D‖
.(3.2)

Definition 3.4. The positive weight of a pattern X in
D, denoted as ω+(X, D), is the ratio of the sum of all
positive central distances of transactions in cov(X, D)
to the number of transactions in D:

ω−(X,D) :=

∑

T ∈cov(X,D){δ(T ,D) > 0}

‖D‖
.(3.3)

Definition 3.5. The weight of a pattern X in D,
denoted as −→ω (X, D), is defined as a two-dimensional
vector of ω−(X, D) and ω+(X, D):

−→ω (X,D) :=< ω−(X,D), ω+(X,D) > .(3.4)

Intuitively, the weight of a pattern X in a database
D provides us with some information about the distri-
bution of X in D by considering the distances of the
transactions where X occurs to the central position of
D. It can capture the general frequency-changing di-
rection of patter X in database D. 2 For example,
−→ω (G1G2, normal) = < −1.6, +0.75 > and −→ω (G1G2,
disease) = < −1.0, +2.05 > indicate that the frequency
of pattern G1G2 is generally decreasing in the normal
database, but it is increasing in the disease database.

3.2 Definition of diverging ratio. We are inter-
ested in finding patterns whose frequency changes in
different directions in a pair of databases. For this pur-
pose, we need to measure the difference between the

is 1) of distance from a transaction to the central position to be
the same for the data sets with either even or odd number of
transactions.

2Note that the weight of a pattern as defined above does not
capture the detailed form of the pattern’s distribution in the
database, e.g., whether the distribution is normal or periodical,
but rather the general frequency-changing direction.



weight vector of a pattern in one database and its weight
vector in the other.

A simple way to measure the difference between
two vectors (−→ω (X , D1) and −→ω (X , D2)) is to treat
each vector as a point in a 2-dimensional space and
use the Euclidean distance between the two points to
describe the difference between the two vectors, which
is computed as

√

(ω−(X,D2) − ω−(X,D1))2 + (ω+(X,D2) − ω+(X,D1))2.

However, the use of the Euclidean distance for our pur-
pose has the following limitation. The Euclidean dis-
tance only shows the difference in the value magnitude
of the two vectors. If the sizes of the two databases are
quite different or if the pattern is much more frequent
in one database than it is in the other, the absolute val-
ues of the pattern’s positive and negative weights in one
database can be much larger than the ones in the other
database. In this situation, the Euclidean distance be-
tween the two vectors can be large no matter whether
the frequency of the pattern changes differently or not in
the two databases. This situation is illustrated in Fig-
ure 1, in which three weight vectors, −→ω (X , D1), −→ω (X ,
D2) and −→ω (X , D3), are depicted. Obviously, the differ-
ence between vectors −→ω (X , D1) and −→ω (X , D3) is due to
that fact that −→ω (X , D1) has larger negative and posi-
tive weights than −→ω (X , D3) does, but the ratio between
the positive and negative weights in −→ω (X , D1) is the
same as the one in −→ω (X , D3), indicating X ’s frequency
change is the same in D1 and D3. On the other hand,
it can be easily seen that the difference between −→ω (X ,
D1) and −→ω (X , D2) is due to the different directions of
changes in their positive and negative weights. How-
ever, the Euclidean distance between −→ω (X , D1) and
−→ω (X , D3) are about the same as the distance between
−→ω (X , D1) and −→ω (X , D2).

Another popular measure of similarity between two
vectors is the cosine of the angle θ between two vectors,
which is defined as follow:

cos(θ) =
−→ω (X,D1) • −→ω (X,D2)

|−→ω (X,D1)| × |−→ω (X,D2)|
,

where u•v is the dot product of two vectors u and v, and
|v| is the magnitude of the vector v. Different from the
Euclidean distance, the cosine measure is independent
of magnitude differences, and it treats both vectors as
unit vectors by normalizing them with the magnitudes
of the vectors. Thus, it can be used to provide a good
measure of divergence between the two weight vectors.
According to Definitions 3.3 and 3.4, the angle between
the weight vectors of a pattern in any pair of data sets
is in the range [0, π/2]. Thus, the cosine measure
ranges from 1 (cos(0)=1) for vectors pointing in the
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Figure 1: The pattern weight plane

same direction to 0 for orthogonal vectors (cos(π/2)=0).
Based on the cosine measure, we define a measure of
distance between two weight vectors as follows.

Definition 3.6. The diverging ratio of a pattern X
between a pair of data sets D1 and D2, denoted as
div(X), is defined as:3

div(X) := 1−
−→ω (X,D1) • −→ω (X,D2)

|−→ω (X,D1)| × |−→ω (X,D2)|
.(3.5)

where u • v is the dot product of two vectors u and v,
and |v| is the magnitude of the vector v.

For example, the diverging ratio of pattern G1G2

between the normal and disease data sets is div(G1G2)
= 22.16% (θ ≈ 38.9o). It’s easy to see that the diverging
ratio is between 0 and 1. The higher the diverging
ratio, the bigger the angle between−→ω (X , D1) and−→ω (X ,
D2), and thus the greater the difference of the pattern
between the two data sets.

3.3 Definition of diverging pattern. In this pa-
per, we are interested in finding patterns whose diverg-
ing ratio is large, which is defined as follows.

Definition 3.7. A pattern X is a Diverging Pattern
(DP) with respect to a pair of transaction databases D1

and D2, if the following conditions hold:

(1) sup(X,D1) ≥ ts and sup(X,D2) ≥ ts;

(2) div(X) ≥ td;

where ts and td are called pattern support threshold and
diverging ratio threshold, respectively.

3We omit D1 and D2 whenever it is clear from the context.



There are several reasons that we only consider fre-
quent itemsets in both data sets, as shown in condition
(1). First, the inclusion of infrequent itemsets would
much enlarge the size of mining results, which has been
deemed unfavorable to the end users. Second, infre-
quent itemsets are likely to be random noise patterns.
Including them may lead to misleading patterns. Third,
in finding a diverging pattern, we are more interested in
a pattern’s different frequency-change directions than
its actual frequency-difference between two data sets.
Finally, another reason is that the weight vector of ev-
ery frequent pattern can be obtained efficiently during
the frequent pattern mining process, which will be dis-
cussed in more detail in the next section.

In practice, ts should be set to a low value for real
data sets, as experienced in frequent pattern mining.
Intuitively, td can be set to 0.3 to guarantee that the
frequency of a discovered pattern changes in different
directions in the two databases since cos(π/4) = 0.707.4

However, a user may want to lower the td value a
bit to find more patterns whose frequency changes
either in the same direction but the extents of their
frequency changes are significantly different in the two
databases, or in different directions but the extents of
their frequency changes in the two databases are less
different from each other than what they would be if td
was set to 0.3. More discussion on the setting of td will
be given in Section 6.2.

4 Mining Diverging Patterns

In this section, we present an algorithm, called DP-
mine, for mining the set of diverging patterns from a
pair of data sets. Since a diverging pattern is a frequent
pattern in both of the data sets, it is natural to make
use of existing well-developed frequent pattern mining
algorithms such as Apriori and FP-growth in finding
diverging patterns. However, since the diverging ratio
does not satisfy the anti-monotone property (that is, it
does NOT hold that if a pattern satisfies a diverging
ratio threshold td, all of its subsets also satisfy td), it is
difficult (if not impossible) to incorporate the diverging
ratio constraint (i.e., Condition (2) in Definition 3.7)
into the frequent pattern mining process. Nevertheless,
it is still possible to make use of a frequent pattern
mining algorithm to calculate the positive and negative
weights of a pattern at the same time of mining frequent
patterns. After the weights of frequent patterns are
calculated, the remaining process of finding diverging

4This is because if div(X) > 0.3, the angle between the two
weight vectors of X in the two databases is greater than 45o,
which guarantees that the absolute value of the negative weight
of X is less than its positive weight in one database but it is

greater than its positive weight in the other database.

patterns becomes trivial. Next, we first present the
general structure of the DP-mine algorithm and then
describe how to incorporate the weight calculation into
two most popular frequent pattern mining algorithms.

4.1 General structure of DP-mine. The general
steps of the DP-mine algorithm is presented below.

Algorithm: DP-mine (Mine Diverging Patterns
from a pair of data sets)

Input: A pair of data sets (D1 and D2), pattern
support threshold (ts) and diverging ratio threshold
(td)

Output: The set of diverging patterns (SDP )

1: Extract two sets of frequent patterns, F1 and F2,
from D1 and D2, respectively, and their weights
using a frequent pattern generation algorithm with
min sup = ts.

2: S ← F1

⋂

F2

3: SDP ← ∅
4: for all P ∈ S do

5: Compute div(P );
6: if div(P ) ≥ td then

7: SDP ← SDP

⋃

{P}
8: end if

9: end for

10: return SDP

There are two major phases in this algorithm.
During the first phase (Step 1), all frequent itemsets in
the two data sets along with their supports and weights
are derived using a standard frequent pattern generation
algorithm, such as Apriori or FP-growth, with ts as
the minimum support threshold. In the second phase
(starting from Step 2 to the end), the algorithm finds
all the diverging patterns between the data sets based
on the set of frequent itemsets.

In Step 2, patterns that are frequent in both D1

and D2 are collected in set S. From step 4 to 9, the
algorithm computes the diverging ratio of each pattern
in S based on the pattern’s weights obtained in step 1.
If the pattern’s diverging ratio is greater than or equal
to td, then the pattern is a diverging pattern and is
added into the set SDP , which is returned in the last
step of the algorithm.

4.2 Computation of positive and negative

weights. Apriori [1] and FP-growth [8] are two most
popular algorithms for mining frequent patterns. Below
we describe how weight computation can be integrated
into either of the two algorithms in Step (1) of the DP-
mine algorithm.
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Figure 2: FP-tree with negative and positive weights

Apriori [1] and its variants conduct a bottom-up
level-wise search over the itemset lattice. Candidate
itemsets with k + 1 items are only generated from
frequent itemsets with k items. In each level, all
candidate itemsets are tested for frequency by scanning
the database. During the database scan, we can update
the positive or negative weight of a candidate at the
same time when the count of the candidate needs to
be updated, i.e., when the candidate is matched with
a transaction, by calculating the central distance of the
transaction based on the position of the transaction in
the database. Thus, the positive and negative weights
of all the frequent itemsets can be obtained.

The FP-growth [8] algorithm first constructs a
(compressed) FP-tree, which maps each transaction into
a path of the tree, while keeping only the frequent
items. Each tree node is associated with the count of
transactions that contain the items on the path from the
root to the node. To incorporate weight computation
into the mining process, we also associate each node
with a negative weight field and a positive weight field.
During the FP-tree building process, when processing a
transaction, if the count value of a node is incremented
by 1, we also add the central distance of the transaction
to the negative weight field of the node if the distance
is less than zero; otherwise, it is added to the positive
weight field of the node. Thus, after the tree is built,
the negative weight field of a node records the sum of
the negative central distances of all the transactions
represented by the path from the root to the node,
and the positive weight field records the sum of positive
central distances of the corresponding transactions.

Figure 2 illustrates the modified FP-tree for the
normal data set with min sup = 25%. When building
this tree, the frequent items are sorted in frequency-
descending order: G2, G1, G4 and G3. Each node in
the tree records two extra values: negative and positive

weights. During the recursive mining process of FP-
growth, whenever there is a need to compute the count
of a pattern in a conditional pattern base, the negative
and positive weights of the pattern are computed in the
same way. For instance, there are only two paths in the
tree that contain both G3 and G4: G2-G1-G4-G3 and
G2-G4-G3. Therefore, the count value of G3G4 is the
sum of the count values of the two G3 nodes on the two
paths, i.e., 1 + 5 = 6. Similarly, the negative (positive)
weight of G3G4 is the sum of negative (positive) weight
values of the same nodes, i.e., ω−(G3G4, normal) =
(−0.65) + (−0.45) = −1.1 and ω+(G3G4, normal) =
(+0.3) + (+0.0) = +0.3.

4.3 Complexity analysis. The first phase of the
DP-mine algorithm is dominated by the complexity
of finding frequent patterns in the pair of data sets,
with extra space to store two weights in each node of
the FP-tree if the FP-growth algorithm is used. Steps
4-9 can be implemented in O(nlogn), assuming the
patterns in F1 and F2 are ordered lexicographically and
n = max(‖F1‖, ‖F2‖). Therefore, the time complexity
of the DP-mine algorithm is F + O(nlogn + n), where
F is the complexity of the frequent pattern mining
algorithm used in the first phase and n is usually much
smaller than the number of transactions in either of the
data sets. As can be seen, if an efficient algorithm (such
as FP-growth) is used for frequent pattern mining, DP-
mine is also efficient since its efficiency is dominated
by the frequent pattern mining process.5 This is the
benefit of using existing well-developed frequent pattern
algorithms in the design of DP-mine.

5 Discussion

We have defined a framework for finding diverging
patterns from a pair of databases. This framework is
related to but different from emerging patterns, first
introduced in [6]. An Emerging Pattern (EP) is defined

as an itemset X satisfying growthrate(X) = sup(X,D2)
sup(X,D1)

≥ g, where D1, D2 are two different data sets and g > 1
is called the growth rate threshold.

In our framework, we defined the weight vector
of a pattern in a database based on the distances of
the pattern’s occurrences to the central position of the
database. It might appear that diverging patterns
defined based on the weight vectors can be found by
splitting each of the two databases in half at the central

5FP-growth may not be efficient when the database is
sparse [13]. In such a case, other efficient frequent pattern min-
ing algorithms, such as H-mine [13], can be used. Incorporating
weight computation into these algorithms is possible but beyond
the topic of this paper.



position and then finding patterns that are emerging in
opposite directions in the two databases. However, this
is not true. Let us look at the following example.

Assume that there are two databases (A and B),
each with 100 transactions. Suppose that in database A
a pattern X appears in the first 8 transactions (whose
tids range from 1 to 8) and in the four transactions
close to the central position in the second half of the
database, whose tids are 55, 60, 65 and 70 respectively.
According to Definition 3.4, the weight of X in database
A is < −3.72, 0.50 >. Now let us consider database B.
Suppose that in database B pattern X appears in 16
transactions right before the central position, whose tids
are 35, 36, ..., 50 respectively, and in the 8 transactions
near the end of the database, whose tids are 86, 88, 90,
92, 94, 96, 98 and 100 respectively. Thus, the weight
of X in database B is < −1.36, 3.44 >. Obviously,
pattern X changes in different directions in A and B.
In database A, X is frequent at the beginning and in
the middle, but it is infrequent at other places including
the end. But in database B, X is infrequent at the
beginning, but frequent in the middle and at the end.
This difference can be well captured by our framework
because the diverging ratio of X in A and B is 0.5113
according to Definition 3.5, which is quite high.

However, this difference cannot be captured by
splitting each database in half at the central position
and finding the patterns that are emerging in opposite
directions in the two databases. This is because in
database A the frequency of X changes from 8 to 4
with respect to the central position and in database B
it changes from 16 to 8, resulting in the same growth
rate in both databases. This example indicates that
simply applying emerging pattern mining to each of
the databases as described above cannot find all the
diverging patterns.

This example also illustrates that although the
weights used in our framework are defined based on
the distances of the pattern to the central position of
a database, the framework can still find the signifi-
cant frequency-changing difference of a pattern in two
databases even when the pattern’s frequency change
with respect to the central position is the same in the
two databases.

6 Experimental Evaluation

In this section we present our empirical results to
demonstrate the effectiveness and usefulness of diverg-
ing patterns and the scalability of DP-mine.

6.1 Real-world data sets. We conducted experi-
ments on several real-world data sets with different
characteristics, as shown in Table 3. The first three

Table 3: Characteristics of data sets
data # of # of # of # of # of
set items trans FPs joined FPs DPs

A1 497
18451 906

555 50
A2 41151 854
B1 3340

44760 9235
1322 24

B2 32752 4794
C1 1657

223957 27791
24414 8818

C2 291640 27957
M1 294

19096 1731
1554 1

M2 13615 1837
R1 16470

36251 3032
1882 62

R2 51911 2803
L1 38679

16041 29794
12101 11888

L2 14545 28130
ts = 0.2% td = 0.3

A = BMS-WebView-1 M = MSweb
B = BMS-WebView-2 R = Retail
C = BMS-POS L = Livelink

data sets6 were contributed by Blue Martini Software
as the KDD Cup 2000 data [17]. BMS-WebView-1 and
BMS-WebView-2 contain several months worth of click-
stream data from two e-commerce web sites. BMS-
POS contains several years worth of point-of-sale data
from a large electronics retailer. Data in MSweb7 was
obtained from UCI Machine Learning Repository. It
records the use of www.microsoft.com by 38000 anony-
mous, randomly-selected users. For each user, the data
lists all the areas of the web site that the user visited
in one week. Retail8 is taken from the Frequent Item-
set Mining Implementations Repository, it contains the
(anonymized) retail market basket data from an anony-
mous Belgian retail store [5]. The Livelink data set
was first used in [9] to discover interesting association
rules from Livelink9 web log data. The log files contain
Livelink access data for a period of two months. For
each data set except Livelink, we randomly select a split
point between the 30th and 70th percentiles of the data
to partition the data set into two disjoined subsets. For
example, BMS-WebView-1 is partitioned into A1 and
A2, where A1 contains the first 18,451 transactions of
BMS-WebView-1 and A2 contains the last 41,151 trans-
actions. For the Livelink data set, two subsets L1 and
L2 are click streams from two groups of Livelink users.
Column 3 of Table 3 shows the sizes of subsets for each
data set.

6http://www.ecn.purdue.edu/KDDCUP/data/
7http://kdd.ics.uci.edu/databases/msweb/msweb.html
8http://fimi.cs.helsinki.fi/data/retail.dat
9
Livelink is a web-based enterprise content management prod-

uct of Open Text Corporation.
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Figure 3: Number of Diverging Patterns with different ts and td.

6.2 Number of discovered patterns. The last
three columns of Table 3 list the number of frequent
patterns in each subset, the number of patterns that
are freqent in both subsets, and the number of diverging
patterns generated from each pair of data sets, with ts =
0.2% and td = 0.3, respectively. As can be seen, when
the pattern support threshold is low, a huge number
of frequent patterns can be generated from these data
sets. In contrast, the number of diverging patterns
discovered by our approach is generally much smaller
except in the Livelink data set. Note that the number
of diverging patterns discovered from a pair of data
sets depends on the underlying distributions of patterns
in the two data sets. The great number of diverging
patterns in the Livelink data set indicates that the
viewing behaviors of the two groups of users are actually
quite different even though they both frequently view
a large set of information objects in common. Our
approach enables us to identify those frequent patterns
that are actually different between the two data sets but
cannot be distinguished by frequent pattern mining.

Figure 3(a) shows the numbers of diverging patterns
discovered in these data sets, with td = 0.3 and ts
varying from 0.1% to 1.0%. Figure 3(b) illustrates the
numbers of diverging patterns, with ts = 0.2% and td
varying from 0.1 to 1.0. As expected, at any fixed
diverging ratio threshold (or pattern support threshold),
the number of generated diverging patterns decreases
with the increase of the pattern support threshold (or
diverging ratio threshold). We also used µd + n · σd

( 0 ≤ n ≤ 4) as the diverging ratio threshold, where
µd and σd are the the means and standard deviations
of the diverging ratios in the joint set of frequent
patterns generated from the two data sets, respectively.
Figure 3(c) shows the numbers of diverging patterns
discovered in each data set, using such a threshold.

In practice, analysis may start with a high diverging
ratio threshold (for example, td = µd+2σd) at very small
support threshold, to effectively extract strong diverg-
ing patterns; and then gradually reduce the diverging
ratio threshold (to µd + σd or td = µd) to obtain more
diverging patterns that may be interesting to the end
users.

6.3 Visualization and significance test. In this
subsection, we exploit the empirical distribution func-
tion (or empirical c.d.f) used in the Kolmogorov-
Smirnov test [14] (also called the K-S test10) in statistics
to graphically illustrate the distribution difference of a
diverging pattern between a pair of data sets. First,
from each data set, we collect a sample of random vari-
ables for a diverging pattern X , called the ith support
of X which is defined below.

Definition 6.1. The ith support of a pattern X in D,
denoted as supi(X, D), is the probability of X occurring
in the set of transactions from the beginning of D to the
ith occurrence of X in D.

Let sup1(X , D), sup2(X , D), ..., supn(X , D) (n =
‖cov(X , D)‖) be the set of the ith supports (1 ≤ i ≤ n)
of a pattern X in D. The empirical distribution function
Fn(x) is a function of x, which equals the decimal
fraction of the number of supi(X , D) that are less than
or equal to x for each x, −∞ < x < +∞, i.e.,

Fn(x) =
1

n

n
∑

i=1

I{supi(X,D)≤x},(6.6)

10The K-S test is a goodness of fit test used to determine
whether two underlying one-dimensional probability distributions
differ, or whether an underlying probability distribution differs
from a hypothesized distribution, in either case based on finite
samples.
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Figure 4: K-S test for gene set {G1, G2}.

where I{xi≤x} is the indicator function that equals 1 if
xi ≤ x and 0 otherwise.

One of the advantages of empirical distribution
function is that it leads to a graphical presentation of
the data. Figure 4 plots the empirical distribution func-
tions of supm(G1G2, normal) and supn(G1G2, disease),
where 1 ≤ m, n ≤ 11. You can see that, for most of the
x values, the distribution of supm(G1G2, normal) that
is strictly less than x is clearly less than the distribu-
tion of supn(G1G2, disease) that is less than x. That
is, by-and-in-large the supm(G1G2, normal) values are
larger than the supn(G1G2, disease) values for the same
empirical distribution. Moreover, in this case, the max-
imum deviation occurs near x = 0.56, where the empiri-
cal c.d.f of supm(G1G2, normal) that is less than 0.56 is
around 0.1818 (2 out of the 11 values), and the empiri-
cal c.d.f of supn(G1G2, disease) that is less than 0.56 is
0.9091 (10 out of the 11 values). Thus the maximum dif-
ference between supm(G1G2, normal) and supn(G1G2,
disease) in empirical c.d.f is 0.7273. According to the
K-S test, the two distributions are significantly different
at the 0.3% significance level.

Table 4 describes some discovered diverging pat-
terns (one for each dataset) in terms of their support
values (column 2 and 3), weights (column 4 and 5), and
diverging ratio (column 6). We illustrate their empirical
distribution functions in Figure 5. According to the K-S
test, the two distributions illustrated in each sub-figure
are significantly different with p-values less than 0.5%.

We have done the K-S test on all the diverging pat-
terns discovered from the above six real-world databases
with ts = 0.2% and td = 0.3. The results show that the
distributions of all the discovered patterns in the two
corresponding datasets are significantly different with
p-values less than 1%.

6.4 Usefulness of the discovered patterns. The
two Livelink data sets (L1 and L2) are the click streams

from two groups of Livelink users for the same period
of time. The diverging pattern shown in Table 4 for the
Livelink data set is {1509, 4571}, where 1509 represents
“Advanced Search Options” and 4571 represents “Ad-
vanced Search Using Categories and Attributes”. From
Table 4, this pattern is more frequent in L2 than in
L1, which seems to indicate that L2 users like ”Ad-
vanced Search Using Categories and Attributes” bet-
ter than L1 users. However, the frequency of the pat-
tern changes differently in the two data sets. In L1

its frequency increases as shown in its weight vector
〈−1.02, +15.11〉, but in L2 it decreases dramatically as
shown in 〈−12.24, +0.85〉. This means that the first
group of users considers “Advanced Search using Cate-
gories and Attributes” useful and uses it more and more
often, but the second group of users may consider this
search option not as helpful as they thought and thus
uses it less often than before. This discovery reveals
that the “categories and attributes” designed in the ad-
vanced search tool is more suitable for the first group
of users but not for the second group. Such a discovery
can help the system designers improve their designs.

The other data sets used in our experiments are
anonymized (i.e., their items and time stamps are re-
named to protect privacy). Thus, we cannot reveal the
true meanings of the diverging patterns discovered from
them. To further show the usefulness of a diverging
pattern, we assume that R1 is a transaction data set
for a supermarket for January and R2 is for Febru-
ary. The frequencies that the customers bought the
products {39, 48, 389} together are about the same
in the two months as shown in Table 4, which means
that the customers liked to buy these three products to-
gether in both months. However, the two weight vectors
< −5.07, +49.43 > and < −40.02, +15.09 > indicate
that the customers bought the three products together
more frequently in late January and early February. The
frequency of this product combination has significantly
decreased in February. Such a trend cannot be discov-
ered by applying only frequent pattern mining over the
two data sets.

6.5 Scalability of DP-mine algorithm. Figure 6
illustrates the execution time of the proposed DP-mine
algorithm on these data sets with different support
thresholds between 0.2% and 1.0%. To test the scal-
ability of DP-mine against the number of transactions,
we generated several subsets of the biggest data set
BMS-POS. The number of transactions in these sub-
sets ranges from 100K to 500K. Figure 7 shows that
DP-mine has linear scalability against the number of
transactions in BMS-POS with td = 0.2 and different
ts values. Similar results are obtained from other data



Table 4: Selected diverging patterns
Pattern sup(X , D1) sup(X , D2) −→ω (X , D1) −→ω (X , D2)

div(X)
Figure

(X) (%) (%) (%)
A{309, 314} 2.56 1.78 < −10.6, +110.12 > < −204.49, +7.07 > 86.96 5(a)
B{429, 1130} 0.25 0.36 < −0.55, +38.81 > < −29.87, +8.53 > 71.20 5(b)
C{880, 1189} 0.21 0.31 < −96.49, +24.02 > < −26.75, +182.51 > 62.03 5(c)

M{212, 245, 268} 0.29 0.21 < −9.37, +4.89 > < −1.55, +6.22 > 33.61 5(d)
R{39, 48, 389} 0.38 0.35 < −5.07, +49.43 > < −40.02, +15.09 > 55.36 5(e)
L{1509, 4571} 0.25 0.47 < −1.02, +15.11 > < −12.24, +0.85 > 86.40 5(f)
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Figure 5: Visualization of selected diverging patterns
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sets. We use FP-growth to find frequent patterns and
their weights in the first phase of DP-mine. All the ex-
periments are performed on a double-processor server,
which has 2 Intel Xeon 2.4G CPU and 2G main memory,
running on Linux with kernel version 2.6.

7 Related Work

Discovery of useful distinguishing features between data
sets is an important objective in data mining. The
concept of Emerging Patterns was first introduced in [6]
to capture changes or differences between data sets.
An Emerging Pattern (EP) is defined as an itemset

X satisfying growthrate(X) = sup(X,D2)
sup(X,D1) ≥ g, where

D1, D2 are two different data sets and g > 1 is called
the growth rate threshold. Several variants of emerging
patterns have been introduced, with Jumping Emerging
Patterns (JEPs) being the most important one [10].
JEPs are emerging patterns with infinity growth rate.
Since a JEP can only be found in one distinct class in
the database, it is a good indicator of that class. Other
variants of emerging patterns include strong emerging

patterns (which are emerging patterns with all subsets
being emerging patterns) and the Most Expressive JEPs
(which are the minimal JEPs) [10]. Different from
diverging patterns, emerging patterns do not consider
how frequency of a pattern changes within a dataset
and how this change differs from the change in another
dataset.

In [15], a new type of contrast patterns, called
transitional patterns, was proposed to represent pat-
terns whose frequencies increase/decrease dramatically
at some time points of a transaction database. The con-
cept of significant milestones for a transitional pattern
was also introduced, which are the time points at which
the frequency of the pattern changes most significantly.
Different from diverging patterns, transitional patterns
were defined on and discovered from a single database.

The problem of contrast-set mining was introduced
in [3, 4], and the STUCCO algorithm was proposed
to efficiently search through the space of contrast-sets.
Contrast-sets are defined as conjunctions of attributes-
value pairs that differ meaningfully in their probabilities
across several groups. They can be used to identify
differences between groups. Follow-up work in [16]
discovered that existing commercial rule-finding system,
Magnum Opus, can successfully perform the contrast-
set task. The authors concluded that contrast-set
mining is a special case of the more general rule-
discovery task.

None of the above work addresses the problem of
finding patterns whose frequency changes in different
directions in two contrast data sets, which is the topic
of this paper.

8 Conclusions

In this paper, we define a new type of contrast pat-
terns, called diverging patterns, to represent the pat-
terns whose frequency changes in different directions
in two contrast data sets. We use a two-dimensional
vector to represent each pattern, and define the pat-
tern’s diverging ratio based on the angular difference
between its vectors in two data sets. Furthermore, an
algorithm called DP-mine is developed, which makes
use of a standard frequent pattern mining algorithm to
compute relevant vectors efficiently. Finally, we present
experimental results on six real-world data sets, show-
ing that DP-mine can effectively and efficiently reveal
new and useful knowledge from large databases.

There are several future topics of research that we
are currently considering. First, we are applying diver-
ing pattern mining to a medical data set that contains
blood test results for a large number of patients in a
five-year period. Our initial results are encouraging,
showing interesting and potentially useful divering pat-



terns. We are currently validating the results. Due to
proprietary reasons, we cannot release the initial results
we obtained from this medical data set at this time,
but may report them in the future. We also plan to
apply diverging pattern mining to other real-world do-
mains. For example, in stock market analysis, traders
can make better transaction decisions by identifying sit-
uations of divergence, where the price of a stock and a
set of relevant indicators, such as the money flow in-
dex (MFI), are moving in opposite directions. Second,
in this paper we focused on proposing the new frame-
work for defining and finding diverging patterns. The
DP-mine algorithm proposed in this paper makes use
of existing frequent pattern mining algorithms as the
first step in finding diverging patterns. To further im-
prove the efficiency of the algorithm, we will investigate
whether it is possible to mine diverging patterns without
finding all the frequent patterns in the two databases.
Third, we are interested in applying the present stud-
ies to other data mining problems, such as sequential
mining, stream mining, and graph mining. Finally, the
weight vector defined in this paper captures the gen-
eral direction of a pattern’s frequency change by con-
sidering the distances of the pattern’s occurrences to
the central position of the database. Obviously, more
types of frequency changes exist in real data sets. One
way to extend this framework is to automatically find
a reference point in each of the data sets, which is a
point where a pattern changes its frequency most signifi-
cantly, and use the reference point (instead of the center
position) to calculate the positive and negative weights
of the pattern in a data set. We will also study the
possibility of representing a pattern’s distribution using
N -dimensional (N > 2) vectors so that more types of
divergence can be represented and discovered.
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